1
|
Nguyen TTK, Woo SM, Seo SU, Banstola A, Kim H, Duwa R, Vu ATT, Hong IS, Kwon TK, Yook S. Enhanced anticancer efficacy of TRAIL-conjugated and odanacatib-loaded PLGA nanoparticles in TRAIL resistant cancer. Biomaterials 2025; 312:122733. [PMID: 39106819 DOI: 10.1016/j.biomaterials.2024.122733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/27/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) demonstrates unique characteristics in anticancer therapies as it selectively induces apoptosis in cancer cells. However, most cancer cells are TRAIL-resistant. Odanacatib (ODN), a cathepsin K inhibitor, is considered a novel sensitizer for cancer treatment. Combination therapy between TRAIL and sensitizers is considered a potent platform that improves TRAIL-based anticancer therapies beyond TRAIL monotherapy. Herein, we developed ODN loaded poly(lactic-co-glycolic) nanoparticles conjugated to GST-TRAIL (TRAIL-ODN-PLGA-NPs) to target and treat TRAIL-resistant cancer. TRAIL-ODN-PLGA-NPs demonstrated a significant increase in cellular uptake via death receptors (DR5 and DR4) on surface of cancer cells. TRAIL-ODN-PLGA-NPs exposure destroyed more TRAIL-resistant cells compared to a single treatment with free drugs. The released ODN decreased the Raptor protein, thereby increasing damage to mitochondria by elevating reactive oxygen species (ROS) generation. Additionally, Bim protein stabilization improved TRAIL-resistant cell sensitization to TRAIL-induced apoptosis. The in vivo biodistribution study revealed that TRAIL-ODN-PLGA-NPs demonstrated high location and retention in tumor sites via the intravenous route. Furthermore, TRAIL-ODN-PLGA-NPs significantly inhibited xenograft tumor models of TRAIL-resistant Caki-1 and TRAIL-sensitive MDA-MB-231 cells.The inhibition was associated with apoptosis activation, Raptor protein stabilizing Bim protein downregulation, Bax accumulation, and mitochondrial ROS generation elevation. Additionally, TRAIL-ODN-PLGA-NPs affected the tumor microenvironment by increasing tumor necrosis factor-α and reducing interleukin-6. In conclusion, we evealed that our formulation demonstrated synergistic effects against TRAIL compared with the combination of free drug in vitro and in vivo models. Therefore, TRAIL-ODN-PLGA-NPs may be a novel candidate for TRAIL-induced apoptosis in cancer treatment.
Collapse
Affiliation(s)
- Thoa Thi Kim Nguyen
- College of Pharmacy, Keimyung University, Daegu, 42602, Republic of Korea; Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Seon Min Woo
- Department of Immunology, School of medicine, Keimyung University, Daegu, Republic of Korea
| | - Seung Un Seo
- Department of Immunology, School of medicine, Keimyung University, Daegu, Republic of Korea
| | - Asmita Banstola
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Haesoo Kim
- College of Pharmacy, Keimyung University, Daegu, 42602, Republic of Korea
| | - Ramesh Duwa
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Radiology, Molecular Imaging Program at Stanford (MIPS), School of medicine, Stanford University, Stanford, CA, 94305, USA
| | - An Thi Thanh Vu
- College of Pharmacy, Keimyung University, Daegu, 42602, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of medicine, Keimyung University, Daegu, Republic of Korea; Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Zhu J, Gillissen B, Dang Tran DL, May S, Ulrich C, Stockfleth E, Eberle J. Inhibition of Cell Proliferation and Cell Viability by Sinecatechins in Cutaneous SCC Cells Is Related to an Imbalance of ROS and Loss of Mitochondrial Membrane Potential. Antioxidants (Basel) 2022; 11:antiox11071416. [PMID: 35883905 PMCID: PMC9312260 DOI: 10.3390/antiox11071416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
The term sinecatechins designates an extract containing a high percentage of catechins obtained from green tea, which is commercially registered as Veregen or Polyphenon E (PE) and may be considered for treatment of cutaneous squamous cell carcinoma (cSCC) and actinic keratosis (AK). As shown here, treatment of four cSCC cell lines with 200 µg/mL of PE resulted in strong, dose-dependent decrease in cell proliferation (20–30%) as well as strongly decreased cell viability (4–21% of controls, 48 h). Effects correlated with loss of mitochondrial membrane potential, whereas early apoptosis was less pronounced. At the protein level, some activation of caspase-3 and enhanced expression of the CDK inhibitor p21 were found. Loss of MMP and induced cell death were, however, largely independent of caspases and of the proapoptotic Bcl-2 proteins Bax and Bak, suggesting that sinecatechins induce also non-apoptotic, alternative cell death pathways, in addition to apoptosis. Reactive oxygen species (ROS) were downregulated in response to PE at 4 h, followed by an increase at 24 h. The contributory role of initially reduced ROS was supported by the antioxidant N-acetyl cysteine, which in combination with PE further enhanced the negative effects on cell viability. Thus, sinecatechins inhibited cell proliferation and viability of cSCC cells, which could suggest the use of PE for AK treatment. The mechanisms appear as linked to an imbalance of ROS levels.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (J.Z.); (D.L.D.T.); (S.M.); (C.U.)
- Department of Gynecology and Obstetrics, Jilin University, Changchun 130001, China
| | - Bernd Gillissen
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Dieu Linh Dang Tran
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (J.Z.); (D.L.D.T.); (S.M.); (C.U.)
- Beuth-Hochschule für Technik Berlin–University of Applied Sciences, Luxemburger Str. 10, 13353 Berlin, Germany
| | - Stefanie May
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (J.Z.); (D.L.D.T.); (S.M.); (C.U.)
| | - Claas Ulrich
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (J.Z.); (D.L.D.T.); (S.M.); (C.U.)
| | - Eggert Stockfleth
- Dermatologie, Venerologie und Allergologie, Klinikum Bochum, Ruhr-Universität Bochum, Gudrunstr. 56, 44791 Bochum, Germany;
| | - Jürgen Eberle
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (J.Z.); (D.L.D.T.); (S.M.); (C.U.)
- Correspondence: ; Tel.: +49-30-450-518-383
| |
Collapse
|
3
|
Knoll G, Ehrenschwender M. The non-peptidomimetic IAP antagonist ASTX660 sensitizes colorectal cancer cells for extrinsic apoptosis. FEBS Open Bio 2021; 11:714-723. [PMID: 33484626 PMCID: PMC7931242 DOI: 10.1002/2211-5463.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 01/16/2023] Open
Abstract
Apoptosis resistance worsens treatment response in cancer and is associated with poor prognosis. Inhibition of anti-apoptotic proteins can restore cell death and improve treatment efficacy. cIAP1, cIAP2, and XIAP belong to the inhibitor of apoptosis protein (IAP) family and block apoptosis. Targeting IAPs with peptides or peptidomimetics mimicking the IAP-antagonizing activity of the cell's endogenous IAP antagonist SMAC (SMAC mimetics) showed promising results and fueled development of novel compounds. ASTX660 belongs to the recently introduced class of non-peptidomimetic IAP antagonists and successfully completed phase I clinical trials. However, ASTX660 has thus far only been evaluated in few cancer entities. Here, we demonstrate that ASTX660 has cell death-promoting activity in colorectal cancer and provide a head-to-head comparison with birinapant, the clinically most advanced peptidomimetic IAP antagonist. ASTX660 facilitates activation of the extrinsic apoptosis pathway upon stimulation with the death ligands TNF and TRAIL and boosts effector caspase activation and subsequent apoptosis. Mechanistically, ASTX660 enhances amplification of death receptor-generated apoptotic signals in a mitochondria-dependent manner. Failure to activate the mitochondria-associated (intrinsic) apoptosis pathway attenuated the apoptosis-promoting effect of ASTX660. Further clinical studies are warranted to highlight the therapeutic potential of ASTX660 in colorectal cancer.
Collapse
Affiliation(s)
- Gertrud Knoll
- Institute of Clinical Microbiology and HygieneUniversity Hospital RegensburgGermany
| | | |
Collapse
|
4
|
Tumor Suppressor Protein p53 and Inhibitor of Apoptosis Proteins in Colorectal Cancer-A Promising Signaling Network for Therapeutic Interventions. Cancers (Basel) 2021; 13:cancers13040624. [PMID: 33557398 PMCID: PMC7916307 DOI: 10.3390/cancers13040624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Tumor suppressor 53 (p53) is a multifunctional protein that regulates cell cycle, DNA repair, apoptosis and metabolic pathways. In colorectal cancer (CRC), mutations of the gene occur in 60% of patients and are associated with a more aggressive tumor phenotype and resistance to anti-cancer therapy. In addition, inhibitor of apoptosis (IAP) proteins are distinguished biomarkers overexpressed in CRC that impact on a diverse set of signaling pathways associated with the regulation of apoptosis/autophagy, cell migration, cell cycle and DNA damage response. As these mechanisms are further firmly controlled by p53, a transcriptional and post-translational regulation of IAPs by p53 is expected to occur in cancer cells. Here, we aim to review the molecular regulatory mechanisms between IAPs and p53 and discuss the therapeutic potential of targeting their interrelationship by multimodal treatment options. Abstract Despite recent advances in the treatment of colorectal cancer (CRC), patient’s individual response and clinical follow-up vary considerably with tumor intrinsic factors to contribute to an enhanced malignancy and therapy resistance. Among these markers, upregulation of members of the inhibitor of apoptosis protein (IAP) family effects on tumorigenesis and radiation- and chemo-resistance by multiple pathways, covering a hampered induction of apoptosis/autophagy, regulation of cell cycle progression and DNA damage response. These mechanisms are tightly controlled by the tumor suppressor p53 and thus transcriptional and post-translational regulation of IAPs by p53 is expected to occur in malignant cells. By this, cellular IAP1/2, X-linked IAP, Survivin, BRUCE and LIVIN expression/activity, as well as their intracellular localization is controlled by p53 in a direct or indirect manner via modulating a multitude of mechanisms. These cover, among others, transcriptional repression and the signal transducer and activator of transcription (STAT)3 pathway. In addition, p53 mutations contribute to deregulated IAP expression and resistance to therapy. This review aims at highlighting the mechanistic and clinical importance of IAP regulation by p53 in CRC and describing potential therapeutic strategies based on this interrelationship.
Collapse
|
5
|
Xiang RP, Zhou MJ, Cui R, Yu HY, Chen Q, Huang YJ, Li Z, Yu C. Effects of Different Degrees of Carotid Artery Stenosis on the Expression of XIAP and Smac in the Ischemic Penumbra of Rats with Cerebral Ischemia-Reperfusion. J Stroke Cerebrovasc Dis 2021; 30:105516. [PMID: 33310074 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the effects of different degrees of carotid artery stenosis (CAS) on the expression of XIAP and Smac in ischemic penumbra of rats with cerebral ischemia-reperfusion (I/R). MATERIALS AND METHODS Samples were collected at 12 h and 24 h after reperfusion, and then the treated groups were divided into the NC-12 group, NC-24 group, MIS-12 group, MIS-24 group, MOS-12 group, MOS-24 group, SES-12 group and SES-24 group. HE staining was used to observe the pathological changes of the brain tissue. TUNEL assay was used to detect the apoptosis in the ischemic penumbra. IHC and RT-qPCR were used to detect the expression of XIAP and Smac in the brain tissue. RESULTS By observing the pathological sections of brain tissue, the rats in MIS, MOS and SES groups showed loose brain tissue on the infarcted side and neuronal pyknosis in the ischemic penumbra. And with the aggravation and prolongation of the degree of stenosis, the degree of brain injury deepened. It was further found that the TUNEL positive rate was significantly increased in the ischemic penumbra in the SES and MOS groups compared with that in the normal control (NC) group. The results of IHC and RT-qPCR showed that the mRNA expression of XIAP and Smac in the ischemic penumbra was significantly up-regulated in the MIS, MOS and SES groups compared with that in the NC group. CONCLUSIONS CAS may activate XIAP/Smac signaling pathway to induce neuronal apoptosis and promote the injury in the ischemic penumbra caused by cerebral I/R.
Collapse
Affiliation(s)
- Ru-Ping Xiang
- Department of Neurology, Changsha Hospital of Hunan Normal University, Changsha 410006, Hunan, China
| | - Mei-Jun Zhou
- Department of Neurology, Changsha Hospital of Hunan Normal University, Changsha 410006, Hunan, China
| | - Rong Cui
- Department of Intensive Care Unit, Changsha Hospital of Hunan Normal University, No.70 Lu-Shan Road, Changsha 410006, Hunan, China.
| | - Hui-Yun Yu
- Department of Neurology, Changsha Hospital of Hunan Normal University, Changsha 410006, Hunan, China
| | - Qiong Chen
- Department of Neurology, Changsha Hospital of Hunan Normal University, Changsha 410006, Hunan, China
| | - Yu-Juan Huang
- Department of Neurology, Changsha Hospital of Hunan Normal University, Changsha 410006, Hunan, China
| | - Zhi Li
- Department of Neurology, Changsha Hospital of Hunan Normal University, Changsha 410006, Hunan, China
| | - Cheng Yu
- Department of Neurology, Changsha Hospital of Hunan Normal University, Changsha 410006, Hunan, China
| |
Collapse
|
6
|
Yoon JY, Wang JY, Roehrl MHA. An Investigation Into the Prognostic Significance of High Proteasome PSB7 Protein Expression in Colorectal Cancer. Front Med (Lausanne) 2020; 7:401. [PMID: 32850906 PMCID: PMC7426439 DOI: 10.3389/fmed.2020.00401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/26/2020] [Indexed: 01/17/2023] Open
Abstract
Using unbiased proteomics, we had previously discovered that the catalytic proteasome subunit β type 7 (PSB7) protein is frequently overexpressed in colorectal adenocarcinomas. In this paper, we validate this finding and derive a prognostic significance for PSB7 by examining an expanded, well-annotated clinical cohort of 318 colorectal cancer patients. We found PSB7 protein levels to be similarly increased in both advanced stage primary disease and metastatic lesions. We then examined the prognostic value of PSB7 protein expression. Elevated PSB7 protein as well as PSMB7 mRNA levels showed associations with lower overall survival, particularly in female patients. The prognostic value of elevated PSB7 protein levels was highest for female patients who were older (>60 years of age at diagnosis) or who had received adjuvant chemotherapy. While high PSB7 did not retain its prognostic significance on multivariate analysis, we discuss the potential significance of PSB7 as a biomarker, considering its differential prognostic strength in different colorectal cancer patient groups and given its role as a subunit of the immunoproteasome for antigen presentation.
Collapse
Affiliation(s)
- Ju-Yoon Yoon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, United States
| | | | - Michael H A Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
7
|
Abstract
For over three decades, a mainstay and goal of clinical oncology has been the development of therapies promoting the effective elimination of cancer cells by apoptosis. This programmed cell death process is mediated by several signalling pathways (referred to as intrinsic and extrinsic) triggered by multiple factors, including cellular stress, DNA damage and immune surveillance. The interaction of apoptosis pathways with other signalling mechanisms can also affect cell death. The clinical translation of effective pro-apoptotic agents involves drug discovery studies (addressing the bioavailability, stability, tumour penetration, toxicity profile in non-malignant tissues, drug interactions and off-target effects) as well as an understanding of tumour biology (including heterogeneity and evolution of resistant clones). While tumour cell death can result in response to therapy, the selection, growth and dissemination of resistant cells can ultimately be fatal. In this Review, we present the main apoptosis pathways and other signalling pathways that interact with them, and discuss actionable molecular targets, therapeutic agents in clinical translation and known mechanisms of resistance to these agents.
Collapse
Affiliation(s)
| | - Wafik S El-Deiry
- The Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
8
|
NeMoyer R, Mondal A, Vora M, Langenfeld E, Glover D, Scott M, Lairson L, Rongo C, Augeri DJ, Peng Y, Jabbour SK, Langenfeld J. Targeting bone morphogenetic protein receptor 2 sensitizes lung cancer cells to TRAIL by increasing cytosolic Smac/DIABLO and the downregulation of X-linked inhibitor of apoptosis protein. Cell Commun Signal 2019; 17:150. [PMID: 31744505 PMCID: PMC6862756 DOI: 10.1186/s12964-019-0469-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/22/2019] [Indexed: 01/01/2023] Open
Affiliation(s)
- Rachel NeMoyer
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Arindam Mondal
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Mehul Vora
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Elaine Langenfeld
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Danea Glover
- RBHS Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ, 08854, USA
| | - Michael Scott
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ, 08903, USA
| | | | - Christopher Rongo
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - David J Augeri
- Ernest Mario School of Pharmacy, Rutgers Translational Science, Rutgers University, Piscataway, NJ, 08854, USA
| | - Youyi Peng
- Biomedical Informatics Shared Resources, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - John Langenfeld
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
9
|
Matveeva A, Fichtner M, McAllister K, McCann C, Sturrock M, Longley DB, Prehn JHM. Heterogeneous responses to low level death receptor activation are explained by random molecular assembly of the Caspase-8 activation platform. PLoS Comput Biol 2019; 15:e1007374. [PMID: 31553717 PMCID: PMC6779275 DOI: 10.1371/journal.pcbi.1007374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/07/2019] [Accepted: 09/03/2019] [Indexed: 01/29/2023] Open
Abstract
Ligand binding to death receptors activates apoptosis in cancer cells. Stimulation of death receptors results in the formation of intracellular multiprotein platforms that either activate the apoptotic initiator Caspase-8 to trigger cell death, or signal through kinases to initiate inflammatory and cell survival signalling. Two of these platforms, the Death-Inducing Signalling Complex (DISC) and the RIPoptosome, also initiate necroptosis by building filamentous scaffolds that lead to the activation of mixed lineage kinase domain-like pseudokinase. To explain cell decision making downstream of death receptor activation, we developed a semi-stochastic model of DISC/RIPoptosome formation. The model is a hybrid of a direct Gillespie stochastic simulation algorithm for slow assembly of the RIPoptosome and a deterministic model of downstream caspase activation. The model explains how alterations in the level of death receptor-ligand complexes, their clustering properties and intrinsic molecular fluctuations in RIPoptosome assembly drive heterogeneous dynamics of Caspase-8 activation. The model highlights how kinetic proofreading leads to heterogeneous cell responses and results in fractional cell killing at low levels of receptor stimulation. It reveals that the noise in Caspase-8 activation-exclusively caused by the stochastic molecular assembly of the DISC/RIPoptosome platform-has a key function in extrinsic apoptotic stimuli recognition.
Collapse
Affiliation(s)
- Anna Matveeva
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael Fichtner
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine McAllister
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, United Kingdom
| | - Christopher McCann
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, United Kingdom
| | - Marc Sturrock
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Daniel B. Longley
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, United Kingdom
| | - Jochen H. M. Prehn
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|
10
|
The SMAC mimetic LCL-161 displays antitumor activity in preclinical models of rituximab-resistant B-cell lymphoma. Blood Adv 2019; 2:3516-3525. [PMID: 30530779 DOI: 10.1182/bloodadvances.2018018168] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/28/2018] [Indexed: 01/05/2023] Open
Abstract
Clinical observations suggest the existence of shared resistance pathways between rituximab and chemotherapy agents. To explore the mechanisms of rituximab resistance, our group created rituximab-resistant cell lines (RRCLs), which display altered expression of several inhibitor of apoptosis (IAP) family proteins. Here, we provide evidence to support pharmacologically targeting IAPs in lymphoma with LCL-161, a small molecule mimetic of the second mitochondria-derived activator of caspases (SMAC). The antitumor effect of LCL-161 was determined using luminescent adenosine triphosphate assays, flow cytometry, SCID mouse xenografts, and ex vivo patient biopsy sample studies. In vitro exposure to LCL-161 also resulted in a dose-dependent decrease in IAP levels, along with synergistic enhancement of the antitumor effect of cytotoxic chemotherapy, in rituximab-sensitive cell lines and RRCLs. In addition, LCL-161 increased the cytotoxic effect of the proteasome inhibitor carfilzomib in ex vivo lymphoma patient samples. The combination of LCL-161 with the chemotherapy regimen rituximab, gemcitabine, and vinorelbine (RGV) improved in vivo survival compared with RGV alone in severe combined immunodeficient mice implanted with RRCLs but not in animals implanted with rituximab-sensitive cell lines. In summary, LCL-161 exhibits synergistic antitumor activity in both in vitro and in vivo models of resistant lymphoma. Our data support further preclinical investigation of LCL-161 as a novel antilymphoma agent.
Collapse
|
11
|
The prodomain of caspase-3 regulates its own removal and caspase activation. Cell Death Discov 2019; 5:56. [PMID: 30701088 PMCID: PMC6349851 DOI: 10.1038/s41420-019-0142-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022] Open
Abstract
Caspase-3 is a cysteine–aspartic acid protease that cleaves cellular targets and executes cell death. Our current understanding is caspase-3 is activated by the cleavage of the interdomain linker and then subsequent cleavage of the N-terminal prodomain. However, previous reports have suggested that removal of the prodomain can result in the constitutive activation of caspase-3, although other studies have not observed this. To address this question in a more physiological setting, we developed an inducible doxycycline system to express a mutant form of caspase-3 that lacks the prodomain (∆28). We found that the removal of the prodomain renders the cells more susceptible to death signals, but the caspase is not constitutively active. To elucidate the regions of the prodomain that regulate activity, we created deletion constructs that remove 10 and 19 N-terminal amino acids. Surprisingly, removal of the first 10 amino acids renders caspase-3 inactive. Following serum withdrawal, the interdomain linker is cleaved, however, the remaining prodomain is not removed. Therefore, there is a specific amino acid or stretch of amino acids within the first 10 that are important for prodomain removal and caspase-3 function. We created different point mutations within the prodomain and found amino acid D9 is vital for caspase-3 function. We hypothesize that an initial cleavage event at D9 is required to allow cleavage at D28 that causes the complete removal of the prodomain allowing for full caspase activation. Together these findings demonstrate a previously unknown role of the prodomain in caspase activation.
Collapse
|
12
|
Targeting the BIR Domains of Inhibitor of Apoptosis (IAP) Proteins in Cancer Treatment. Comput Struct Biotechnol J 2019; 17:142-150. [PMID: 30766663 PMCID: PMC6360406 DOI: 10.1016/j.csbj.2019.01.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 01/07/2023] Open
Abstract
Inhibitor of apoptosis (IAP) proteins are characterized by the presence of the conserved baculoviral IAP repeat (BIR) domain that is involved in protein-protein interactions. IAPs were initially thought to be mainly responsible for caspase inhibition, acting as negative regulators of apoptosis, but later works have shown that IAPs also control a plethora of other different cellular pathways. As X-linked IAP (XIAP), and other IAP, levels are often deregulated in cancer cells and have been shown to correlate with patients' prognosis, several approaches have been pursued to inhibit their activity in order to restore apoptosis. Many small molecules have been designed to target the BIR domains, the vast majority being inspired by the N-terminal tetrapeptide of Second Mitochondria-derived Activator of Caspases/Direct IAp Binding with Low pI (Smac/Diablo), which is the natural XIAP antagonist. These compounds are therefore usually referred to as Smac mimetics (SMs). Despite the fact that SMs were intended to specifically target XIAP, it has been shown that they also interact with cellular IAP-1 (cIAP1) and cIAP2, promoting their proteasome-dependent degradation. SMs have been tested in combination with several cytotoxic compounds and are now considered promising immune modulators which can be exploited in cancer therapy, especially in combination with immune checkpoint inhibitors. In this review, we give an overview of the structural hot-spots of BIRs, focusing on their fold and on the peculiar structural patches which characterize the diverse BIRs. These structures are exploited/exploitable for the development of specific and active IAP inhibitors.
Collapse
|
13
|
Anderson MW, Moss JJ, Szalai R, Lane JD. Mathematical Modeling Highlights the Complex Role of AKT in TRAIL-Induced Apoptosis of Colorectal Carcinoma Cells. iScience 2019; 12:182-193. [PMID: 30690394 PMCID: PMC6354781 DOI: 10.1016/j.isci.2019.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/13/2018] [Accepted: 01/08/2019] [Indexed: 01/10/2023] Open
Abstract
Protein kinase B/AKT is a highly connected protein involved in a range of signaling pathways. Although it is known to regulate several proteins in the apoptotic pathway, its system-level effects remain poorly understood. We investigated the dynamic interactions between AKT and key apoptotic proteins and constructed a deterministic ordinary differential equation protein interaction model of extrinsic apoptosis. Incorporating AKT and its indirect inhibitor, phosphatase and tensin homolog (PTEN), this was used to generate predictions of system dynamics. Using eigen analysis, we identified AKT and cytochrome c as the protein species most sensitive to perturbations. Cell death assays in Type II HCT116 colorectal carcinoma cells revealed a tendency toward Type I cell death behavior in the XIAP−/− background, with cells displaying accelerated TRAIL-induced apoptosis. Finally, AKT inhibition experiments implicated AKT and not PTEN in influencing apoptotic proteins during early phases of TRAIL-induced apoptosis. TRAIL-induced apoptosis model describes AKT protein interaction dynamics AKT and cytochrome c identified as the proteins most sensitive to perturbations HCT116 cells shift from Type II to Type I cell death behavior in XIAP−/− background AKT and not PTEN influences early phases of TRAIL-induced apoptosis
Collapse
Affiliation(s)
- Matthew W Anderson
- Centre for Biomedical Modelling and Analysis, Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Joanna J Moss
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Robert Szalai
- Department of Engineering Mathematics, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK
| | - Jon D Lane
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
14
|
Sirtl S, Knoll G, Trinh DT, Lang I, Siegmund D, Gross S, Schuler-Thurner B, Neubert P, Jantsch J, Wajant H, Ehrenschwender M. Hypertonicity-enforced BCL-2 addiction unleashes the cytotoxic potential of death receptors. Oncogene 2018; 37:4122-4136. [PMID: 29706657 PMCID: PMC6062497 DOI: 10.1038/s41388-018-0265-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/20/2018] [Accepted: 03/23/2018] [Indexed: 01/20/2023]
Abstract
Attempts to exploit the cytotoxic activity of death receptors (DR) for treating cancer have thus far been disappointing. DR activation in most malignant cells fails to trigger cell death and may even promote tumor growth by activating cell death-independent DR-associated signaling pathways. Overcoming apoptosis resistance is consequently a prerequisite for successful clinical exploitation of DR stimulation. Here we show that hyperosmotic stress in the tumor microenvironment unleashes the deadly potential of DRs by enforcing BCL-2 addiction of cancer cells. Hypertonicity robustly enhanced cytotoxicity of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and other DR ligands in various cancer entities. Initial events in TRAIL DR signaling remained unaffected, but hypertonic conditions unlocked activation of the mitochondrial death pathway and thus amplified the apoptotic signal. Mechanistically, we demonstrate that hyperosmotic stress imposed a BCL-2-addiction on cancer cells to safeguard the integrity of the outer mitochondrial membrane (OMM), essentially exhausting the protective capacity of BCL-2-like pro-survival proteins. Deprivation of these mitochondrial safeguards licensed DR-generated truncated BH3-interacting domain death agonist (tBID) to activate BCL-2-associated X protein (BAX) and initiated mitochondrial outer membrane permeabilization (MOMP). Our work highlights that hyperosmotic stress in the tumor environment primes mitochondria for death and lowers the threshold for DR-induced apoptosis. Beyond TRAIL-based therapies, our findings could help to strengthen the efficacy of other apoptosis-inducing cancer treatment regimens.
Collapse
Affiliation(s)
- Simon Sirtl
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany
| | - Gertrud Knoll
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany
| | - Dieu Thuy Trinh
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Röntgenring 11, Würzburg, 97070, Germany
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Röntgenring 11, Würzburg, 97070, Germany
| | - Stefanie Gross
- Department of Dermatology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Ulmenweg 18, Erlangen, 91054, Germany
| | - Beatrice Schuler-Thurner
- Department of Dermatology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Ulmenweg 18, Erlangen, 91054, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Röntgenring 11, Würzburg, 97070, Germany
| | - Martin Ehrenschwender
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany.
| |
Collapse
|
15
|
ZBP-89 and Sp1 contribute to Bak expression in hepatocellular carcinoma cells. BMC Cancer 2018; 18:419. [PMID: 29653560 PMCID: PMC5899329 DOI: 10.1186/s12885-018-4349-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/08/2018] [Indexed: 02/05/2023] Open
Abstract
Background Kruppel family member zinc binding protein 89 (ZBP-89), also known as ZNF148, regulates Bak expression via binding to GC-rich promoter domain. It is not clear if other GC-rich binding factors, such as Sp family members, can interact with ZBPp-89 on Bak expression. This study aims to elucidate the mechanism of Bak expression regulation by ZBP-89 and Sp proteins, based on in vitro experiment and The Cancer Genome Atlas (TCGA) hepatocellular carcinoma (HCC) data cohort. Methods We downloaded TCGA hepatocellular carcinoma (HCC) cohort data to analysis the association of Bak transcription level with ZBP-89 and Sp proteins transcription level. HCC cell lines and liver immortal non-tumour cell lines were used for mechanism study, including western blotting analysis, expression vector mediated gene expression and siRNA interference. Results Results showed that cancer tissues have higher Bak transcription level compared with adjacent non-cancer tissues. Bak transcription level was correlated with Sp1 and Sp3 expression level, while no correlation was found in ZBP-89 and Bak, neither Sp2 nor Sp4. Mithramycin A (MMA) induced Bak expression in a dose-dependent manner. Western blotting results showed Sp1 overexpression increased Bak expression both in liver immortal non-tumour cells and HCC cells. Interference Sp1 expression could inhibit Bak expression alone. ZBP-89 siRNA suppressed Bak expression even in the presence of MMA treatment and S1 overexpression. Additionally, Bak and Sp1 level were associated with HCC patient survival. Conclusions Bak expression required ZBP-89 and Sp1 cooperative regulation simultaneously. Electronic supplementary material The online version of this article (10.1186/s12885-018-4349-y) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Rathore R, McCallum JE, Varghese E, Florea AM, Büsselberg D. Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs). Apoptosis 2018; 22:898-919. [PMID: 28424988 PMCID: PMC5486846 DOI: 10.1007/s10495-017-1375-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inhibitors of apoptosis (IAPs) are a family of proteins that play a significant role in the control of programmed cell death (PCD). PCD is essential to maintain healthy cell turnover within tissue but also to fight disease or infection. Uninhibited, IAPs can suppress apoptosis and promote cell cycle progression. Therefore, it is unsurprising that cancer cells demonstrate significantly elevated expression levels of IAPs, resulting in improved cell survival, enhanced tumor growth and subsequent metastasis. Therapies to target IAPs in cancer has garnered substantial scientific interest and as resistance to anti-cancer agents becomes more prevalent, targeting IAPs has become an increasingly attractive strategy to re-sensitize cancer cells to chemotherapies, antibody based-therapies and TRAIL therapy. Antagonism strategies to modulate the actions of XIAP, cIAP1/2 and survivin are the central focus of current research and this review highlights advances within this field with particular emphasis upon the development and specificity of second mitochondria-derived activator of caspase (SMAC) mimetics (synthetic analogs of endogenously expressed inhibitors of IAPs SMAC/DIABLO). While we highlight the potential of SMAC mimetics as effective single agent or combinatory therapies to treat cancer we also discuss the likely clinical implications of resistance to SMAC mimetic therapy, occasionally observed in cancer cell lines.
Collapse
Affiliation(s)
- Rama Rathore
- College of Literature, Sciences and the Arts, University of Michigan-Ann Arbor, Ann Arbor, MI, 48109, USA
| | | | | | - Ana-Maria Florea
- Institute of Neuropathology, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | | |
Collapse
|
17
|
Qian H, Chen Y, Huang T, Liu T, Li X, Jiang G, Zhang W, Cheng S, Li P. Combined application of Embelin and tumor necrosis factor-related apoptosis-inducing ligand inhibits proliferation and invasion in osteosarcoma cells via caspase-induced apoptosis. Oncol Lett 2018; 15:6931-6940. [PMID: 29731867 PMCID: PMC5921233 DOI: 10.3892/ol.2018.8209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
Embelin, as an inhibitor of the X-linked inhibitor of apoptosis protein (XIAP), may induce apoptosis in various types of cancer cells. The present study aimed to determine the effect of Embelin on the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of osteosarcoma cells. Embelin and TRAIL were applied to U2OS and MG63 cells, respectively or in combination. MTT was initially used to detect the difference in survival rates between the group receiving combined application of 100 ng/ml TRAIL and 20 µmol/l Embelin and the individual application groups. Light microscopic quantification was used to detect the morphology of the osteosarcoma cells in each group. Determination of cell apoptosis was subsequently performed using flow cytometry. The invasive ability of the cells was detected by a Transwell assay, prior to relative protein expression being determined by western blot analysis. Based on all the test data, it was revealed that the survival rates and the invasive ability were significantly lower following the combined application of 100 ng/ml TRAIL and 20 µmol/l Embelin than following the individual application of either (P<0.01). Additionally, upregulating expression of caspases, as well as death receptor 5, and downregulating expression of XIAP and matrix metalloproteinase 9 (MMP-9), had more significant effects in the combined group compared with the individual group and the control group. All these results suggested that Embelin may enhance TRAIL-induced apoptosis and inhibit the invasion of human osteosarcoma cells.
Collapse
Affiliation(s)
- Hao Qian
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yao Chen
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tao Huang
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tiemin Liu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiucheng Li
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guangjian Jiang
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuo Cheng
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Pengcheng Li
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
18
|
YM155 sensitizes TRAIL-induced apoptosis through cathepsin S-dependent down-regulation of Mcl-1 and NF-κB-mediated down-regulation of c-FLIP expression in human renal carcinoma Caki cells. Oncotarget 2018; 7:61520-61532. [PMID: 27528031 PMCID: PMC5308669 DOI: 10.18632/oncotarget.11137] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/27/2016] [Indexed: 11/25/2022] Open
Abstract
YM155, a small-molecule survivin inhibitor, has been reported for its anti-cancer activity in various cancer cells. In this study, we investigated the effect of YM155 to enhance TRAIL-mediated apoptosis in human renal carcinoma cells. We found that YM155 alone had no effect on apoptosis, however, combined treatment with YM155 and TRAIL markedly induced apoptosis in human renal carcinoma cells (Caki, ACHN, and A498), breast cancer cells (MDA-MB231), and glioma cells (U251MG), but not normal cells [mesangial cell (MC) and human skin fibroblast (HSF)]. YM155 induced down-regulation of Mcl-1 expression at the post-translational levels, and the overexpression of Mcl-1 markedly inhibited YM155 plus TRAIL-induced apoptosis. Furthermore, YM155 induced down-regulation of c-FLIP mRNA expression through inhibition of NF-κB transcriptional activity. Ectopic expression of c-FLIP markedly blocked YM155-induced TRAIL sensitization. Taken together, our results suggested that YM155 sensitizes TRAIL-mediated apoptosis via down-regulation of Mcl-1 and c-FLIP expression in renal carcinoma Caki cells.
Collapse
|
19
|
Knoll G, Bittner S, Kurz M, Jantsch J, Ehrenschwender M. Hypoxia regulates TRAIL sensitivity of colorectal cancer cells through mitochondrial autophagy. Oncotarget 2018; 7:41488-41504. [PMID: 27166192 PMCID: PMC5173074 DOI: 10.18632/oncotarget.9206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/24/2016] [Indexed: 11/25/2022] Open
Abstract
The capacity of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to selectively induce cell death in malignant cells triggered numerous attempts for therapeutic exploitation. In clinical trials, however, TRAIL did not live up to the expectations, as tumors exhibit high rates of TRAIL resistance in vivo. Response to anti-cancer therapy is determined not only by cancer cell intrinsic factors (e.g. oncogenic mutations), but also modulated by extrinsic factors such as the hypoxic tumor microenvironment.Here, we address the effect of hypoxia on pro-apoptotic TRAIL signaling in colorectal cancer cells. We show that oxygen levels modulate susceptibility to TRAIL-induced cell death, which is severely impaired under hypoxia (0.5% O2). Mechanistically, this is attributable to hypoxia-induced mitochondrial autophagy. Loss of mitochondria under hypoxia restricts the availability of mitochondria-derived pro-apoptotic molecules such as second mitochondria-derived activator of caspase (SMAC), thereby disrupting amplification of the apoptotic signal emanating from the TRAIL death receptors and efficiently blocking cell death in type-II cells. Moreover, we identify strategies to overcome TRAIL resistance in low oxygen environments. Counteracting hypoxia-induced loss of endogenous SMAC by exogenous substitution of SMAC mimetics fully restores TRAIL sensitivity in colorectal cancer cells. Alternatively, enforcing a mitochondria-independent type-I mode of cell death by targeting the type-II phenotype gatekeeper X-linked inhibitor of apoptosis protein (XIAP) is equally effective.Together, our results indicate that tumor hypoxia impairs TRAIL efficacy but this limitation can be overcome by combining TRAIL with SMAC mimetics or XIAP-targeting drugs. Our findings may help to exploit the potential of TRAIL in cancer therapy.
Collapse
Affiliation(s)
- Gertrud Knoll
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Sebastian Bittner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Maria Kurz
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Martin Ehrenschwender
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
20
|
Radhakrishnan H, Ilm K, Walther W, Shirasawa S, Sasazuki T, Daniel PT, Gillissen B, Stein U. MACC1 regulates Fas mediated apoptosis through STAT1/3 - Mcl-1 signaling in solid cancers. Cancer Lett 2017. [PMID: 28649004 DOI: 10.1016/j.canlet.2017.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MACC1 was identified as a novel player in cancer progression and metastasis, but its role in death receptor-mediated apoptosis is still unexplored. We show that MACC1 knockdown sensitizes cancer cells to death receptor-mediated apoptosis. For the first time, we provide evidence for STAT signaling as a MACC1 target. MACC1 knockdown drastically reduced STAT1/3 activating phosphorylation, thereby regulating the expression of its apoptosis targets Mcl-1 and Fas. STAT signaling inhibition by the JAK1/2 inhibitor ruxolitinib mimicked MACC1 knockdown-mediated molecular signatures and apoptosis sensitization to Fas activation. Despite the increased Fas expression, the reduced Mcl-1 expression was instrumental in apoptosis sensitization. This reduced Mcl-1-mediated apoptosis sensitization was Bax and Bak dependent. MACC1 knockdown also increased TRAIL-induced apoptosis. MACC1 overexpression enhanced STAT1/3 phosphorylation and increased Mcl-1 expression, which was abrogated by ruxolitinib. The central role of Mcl-1 was strengthened by the resistance of Mcl-1 overexpressing cells to apoptosis induction. The clinical relevance of Mcl-1 regulation by MACC1 was supported by their positive expression correlation in patient-derived tumors. Altogether, we reveal a novel death receptor-mediated apoptosis regulatory mechanism by MACC1 in solid cancers through modulation of the STAT1/3-Mcl-1 axis.
Collapse
Affiliation(s)
- Harikrishnan Radhakrishnan
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Berlin School of Integrative Oncology, Charité - Universitätsmedizin Berlin, Germany
| | - Katharina Ilm
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wolfgang Walther
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | | - Peter T Daniel
- Clinical and Molecular Oncology, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Bernhard Gillissen
- Clinical and Molecular Oncology, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ulrike Stein
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
21
|
Breunig C, Pahl J, Küblbeck M, Miller M, Antonelli D, Erdem N, Wirth C, Will R, Bott A, Cerwenka A, Wiemann S. MicroRNA-519a-3p mediates apoptosis resistance in breast cancer cells and their escape from recognition by natural killer cells. Cell Death Dis 2017; 8:e2973. [PMID: 28771222 PMCID: PMC5596553 DOI: 10.1038/cddis.2017.364] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/22/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022]
Abstract
Aggressive breast cancer is associated with poor patient outcome and characterized by the development of tumor cell variants that are able to escape from control of the immune system or are resistant to targeted therapies. The complex molecular mechanisms leading to immune escape and therapy resistance are incompletely understood. We have previously shown that high miR-519a-3p levels are associated with poor survival in breast cancer. Here, we demonstrate that miR-519a-3p confers resistance to apoptosis induced by TRAIL, FasL and granzyme B/perforin by interfering with apoptosis signaling in breast cancer cells. MiR-519a-3p diminished the expression of its direct target genes for TRAIL-R2 (TNFRSF10B) and for caspase-8 (CASP8) and its indirect target gene for caspase-7 (CASP7), resulting in reduced sensitivity and tumor cell apoptosis in response to apoptotic stimuli. Furthermore, miR-519a-3p impaired tumor cell killing by natural killer (NK) cells via downregulation of the NKG2D ligands ULBP2 and MICA on the surface of tumor cells that are crucial for the recognition of these tumor cells by NK cells. We determined that miR-519a-3p was overexpressed in more aggressive mutant TP53 breast cancer that was associated with poor survival. Furthermore, low levels of TRAIL-R2, caspase-7 and caspase-8 correlated with poor survival, suggesting that the inhibitory effect of miR-519a-3p on TRAIL-R2 and caspases may have direct clinical relevance in lowering patient’s prognosis. In conclusion, we demonstrate that miR-519a-3p is a critical factor in mediating resistance toward cancer cell apoptosis and impairing tumor cell recognition by NK cells. This joint regulation of apoptosis and immune cell recognition through miR-519a-3p supports the hypothesis that miRNAs are key regulators of cancer cell fate, facilitating cancer progression and evasion from immunosurveillance at multiple and interconnected levels.
Collapse
Affiliation(s)
- Christian Breunig
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Pahl
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Moritz Küblbeck
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Miller
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Antonelli
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nese Erdem
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelia Wirth
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Will
- Genomics &Proteomics Core Facilities, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Bott
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Gillissen B, Richter A, Richter A, Preissner R, Schulze-Osthoff K, Essmann F, Daniel PT. Bax/Bak-independent mitochondrial depolarization and reactive oxygen species induction by sorafenib overcome resistance to apoptosis in renal cell carcinoma. J Biol Chem 2017; 292:6478-6492. [PMID: 28154184 DOI: 10.1074/jbc.m116.754184] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/26/2017] [Indexed: 12/23/2022] Open
Abstract
Renal cell carcinoma (RCC) is polyresistant to chemo- and radiotherapy and biologicals, including TNF-related apoptosis-inducing ligand (TRAIL). Sorafenib, a multikinase inhibitor approved for the treatment of RCC, has been shown to sensitize cancer cells to TRAIL-induced apoptosis, in particular by down-regulation of the Bak-inhibitory Bcl-2 family protein Mcl-1. Here we demonstrate that sorafenib overcomes TRAIL resistance in RCC by a mechanism that does not rely on Mcl-1 down-regulation. Instead, sorafenib induces rapid dissipation of the mitochondrial membrane potential (ΔΨm) that is accompanied by the accumulation of reactive oxygen species (ROS). Loss of ΔΨm and ROS production induced by sorafenib are independent of caspase activities and do not depend on the presence of the proapoptotic Bcl-2 family proteins Bax or Bak, indicating that both events are functionally upstream of the mitochondrial apoptosis signaling cascade. More intriguingly, we find that it is sorafenib-induced ROS accumulation that enables TRAIL to activate caspase-8 in RCC. This leads to apoptosis that involves activation of an amplification loop via the mitochondrial apoptosis pathway. Thus, our mechanistic data indicate that sorafenib bypasses central resistance mechanisms through a direct induction of ΔΨm breakdown and ROS production. Activation of this pathway might represent a useful strategy to overcome the cell-inherent resistance to cancer therapeutics, including TRAIL, in multiresistant cancers such as RCC.
Collapse
Affiliation(s)
- Bernhard Gillissen
- From the Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany.,the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Anja Richter
- From the Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany.,the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Antje Richter
- From the Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany
| | - Robert Preissner
- the Institute of Physiology and Experimental Clinical Research Center, University Medical Center Charité, 13125 Berlin, Germany
| | - Klaus Schulze-Osthoff
- the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany.,the Interfaculty Institute for Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, and
| | - Frank Essmann
- the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany.,the Interfaculty Institute for Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, and
| | - Peter T Daniel
- From the Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany, .,the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany.,Clinical and Molecular Oncology, Max Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany
| |
Collapse
|
23
|
Siegmund D, Lang I, Wajant H. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J 2016; 284:1131-1159. [PMID: 27865080 DOI: 10.1111/febs.13968] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
Abstract
Since their identification more than 20 years ago, the death receptors CD95, TRAILR1, and TRAILR2 have been intensively studied with respect to their cell death-inducing activities. These receptors, however, can also trigger a variety of cell death-independent cellular responses reaching from the activation of proinflammatory gene transcription programs over the stimulation of proliferation and differentiation to induction of cell migration. The cell death-inducing signaling mechanisms of CD95 and the TRAIL death receptors are well understood. In contrast, despite the increasing recognition of the biological and pathophysiological relevance of the cell death-independent activities of CD95, TRAILR1, and TRAILR2, the corresponding signaling mechanisms are less understood and give no fully coherent picture. This review is focused on the cell death-independent activities of CD95 and the TRAIL death receptors and addresses mainly three questions: (a) how are these receptors linked to noncell death pathways at the molecular level, (b) which factors determine the balance of cell death and cell death-independent activities of CD95 and the TRAIL death receptors at the cellular level, and (c) what are the consequences of the cell death-independent functions of these receptors for their role in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Daniela Siegmund
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| |
Collapse
|
24
|
Klingbeil O, Lesche R, Gelato KA, Haendler B, Lejeune P. Inhibition of BET bromodomain-dependent XIAP and FLIP expression sensitizes KRAS-mutated NSCLC to pro-apoptotic agents. Cell Death Dis 2016; 7:e2365. [PMID: 27607580 PMCID: PMC5059870 DOI: 10.1038/cddis.2016.271] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022]
Abstract
Non-small cell lung cancer (NSCLC) has the highest incidence of cancer-related death worldwide and a high medical need for more effective therapies. Small-molecule inhibitors of the bromodomain and extra terminal domain (BET) family such as JQ1, I-BET762 and OTX-015 are active in a wide range of different cancer types, including lung cancer. Although their activity on oncogene expression such as c-Myc has been addressed in many studies, the effects of BET inhibition on the apoptotic pathway remain largely unknown. Here we evaluated the activity of BET bromodomain inhibitors on cell cycle distribution and on components of the apoptosis response. Using a panel of 12 KRAS-mutated NSCLC models, we found that cell lines responsive to BET inhibitors underwent apoptosis and reduced their S-phase population, concomitant with downregulation of c-Myc expression. Conversely, ectopic c-Myc overexpression rescued the anti-proliferative effect of JQ1. In the H1373 xenograft model, treatment with JQ1 significantly reduced tumor growth and downregulated the expression of c-Myc. The effects of BET inhibition on the expression of 370 genes involved in apoptosis were compared in sensitive and resistant cells and we found the expression of the two key apoptosis regulators FLIP and XIAP to be highly BET dependent. Consistent with this, combination treatment of JQ1 with the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or the pro-apoptotic chemotherapeutic agent cisplatin enhanced induction of apoptosis in both BET inhibitor sensitive and resistant cells. Further we showed that combination of JQ1 with cisplatin led to significantly improved anti-tumor efficacy in A549 tumor-bearing mice. Altogether, these results show that the identification of BET-dependent genes provides guidance for the choice of drug combinations in cancer treatment. They also demonstrate that BET inhibition primes NSCLC cells for induction of apoptosis and that a combination with pro-apoptotic compounds represents a valuable strategy to overcome treatment resistance.
Collapse
Affiliation(s)
- Olaf Klingbeil
- Drug Discovery, Bayer Pharma AG, Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralf Lesche
- Drug Discovery, Bayer Pharma AG, Berlin, Germany
| | | | | | | |
Collapse
|
25
|
Einsele-Scholz S, Malmsheimer S, Bertram K, Stehle D, Johänning J, Manz M, Daniel PT, Gillissen BF, Schulze-Osthoff K, Essmann F. Bok is a genuine multi-BH-domain protein that triggers apoptosis in the absence of Bax and Bak. J Cell Sci 2016; 129:2213-23. [PMID: 27076518 DOI: 10.1242/jcs.181727] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/11/2016] [Indexed: 12/15/2022] Open
Abstract
The pro-apoptotic multidomain Bcl-2 proteins Bax and Bak (also known as BAK1) are considered the gatekeepers of the intrinsic pathway of apoptosis by triggering the mitochondrial release of cytochrome c The role of the third Bax- and Bak-homologous multidomain protein Bok, however, is still unresolved. As cells doubly deficient for Bax and Bak are largely resistant to various apoptotic stimuli, it has been proposed that Bok is either dispensable for apoptosis or that its role is dependent on Bax and Bak. Here, we demonstrate, in several cell systems, that Bok efficiently induces cytochrome c release and apoptosis even in the complete absence of both Bak and Bax. Moreover, modulation of endogenous Bok levels affects the apoptosis response. By RNA interference and targeted deletion of the Bok gene, we demonstrate that Bok can significantly influence the apoptotic response to chemotherapeutic drugs in ovarian carcinoma cells. Hence, our results not only establish Bok as a Bak- and Bax-independent apoptosis inducer, but also suggest a potential impact of Bok expression in ovarian cancer therapy.
Collapse
Affiliation(s)
- Stephanie Einsele-Scholz
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Silke Malmsheimer
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Katrin Bertram
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Daniel Stehle
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Janina Johänning
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Marianne Manz
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Peter T Daniel
- Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, Humboldt University, Berlin 13125, Germany German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Bernhard F Gillissen
- Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, Humboldt University, Berlin 13125, Germany German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Klaus Schulze-Osthoff
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Frank Essmann
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| |
Collapse
|
26
|
Kumar R, Raghava GPS. ApoCanD: Database of human apoptotic proteins in the context of cancer. Sci Rep 2016; 6:20797. [PMID: 26861916 PMCID: PMC4748276 DOI: 10.1038/srep20797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/12/2016] [Indexed: 01/02/2023] Open
Abstract
In the past decade, apoptosis pathway has gained a serious consideration being a critical cellular process in determining the cancer progression. Inverse relationship between cancer progression and apoptosis rate has been well established in the literature. It causes apoptosis proteins under the investigative scanner for developing anticancer therapies, which certainly got a success in the case of few apoptosis proteins as drug targets. In the present study, we have developed a dedicated database of 82 apoptosis proteins called ApoCanD. This database comprises of crucial information of apoptosis proteins in the context of cancer. Genomic status of proteins in the form of mutation, copy number variation and expression in thousands of tumour samples and cancer cell lines are the major bricks of this database. In analysis, we have found that TP53 and MYD88 are the two most frequently mutated proteins in cancer. Availability of other information e.g. gene essentiality data, tertiary structure, sequence alignments, sequences profiles, post-translational modifications makes it even more useful for the researchers. A user-friendly web interface is provided to ameliorate the use of ApoCanD. We anticipate that, this database will facilitate the research community working in the field of apoptosis and cancer. The database can be accessed at: http://crdd.osdd.net/raghava/apocand.
Collapse
Affiliation(s)
- Rahul Kumar
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Gajendra P S Raghava
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| |
Collapse
|
27
|
Hernandez L, Kim MK, Noonan AM, Sagher E, Kohlhammer H, Wright G, Lyle LT, Steeg PS, Anver M, Bowtell DD, Annunziata CM. A dual role for Caspase8 and NF- κB interactions in regulating apoptosis and necroptosis of ovarian cancer, with correlation to patient survival. Cell Death Discov 2015; 1:15053. [PMID: 28179987 PMCID: PMC5198842 DOI: 10.1038/cddiscovery.2015.53] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is a deadly disease characterized by primary and acquired resistance to chemotherapy. We previously associated NF-κB signaling with poor survival in ovarian cancer, and functionally demonstrated this pathway as mediating proliferation, invasion and metastasis. We aimed to identify cooperating pathways in NF-κB-dependent ovarian cancer cells, using genome-wide RNA interference as a loss-of-function screen for key regulators of cell survival with IKKβ inhibition. Functional genomic screen for interactions with NF-κB in ovarian cancer showed that cells depleted of Caspase8 died better with IKKβ inhibition. Overall, low Caspase8 was associated with shorter overall survival in three independent gene expression data sets of ovarian cancers. Conversely, Caspase8 expression was markedly highest in ovarian cancer subtypes characterized by strong T-cell infiltration and better overall prognosis, suggesting that Caspase8 expression increased chemotherapy-induced cell death. We investigated the effects of Caspase8 depletion on apoptosis and necroptosis of TNFα-stimulated ovarian cancer cell lines. Inhibition of NF-κB in ovarian cancer cells switched the effects of TNFα signaling from proliferation to death. Although Caspase8-high cancer cells died by apoptosis, Caspase8 depletion downregulated NF-κB signaling, stabilized RIPK1 and promoted necroptotic cell death. Blockage of NF-κB signaling and depletion of cIAP with SMAC-mimetic further rendered these cells susceptible to killing by necroptosis. These findings have implications for anticancer strategies to improve outcome for women with low Caspase8-expressing ovarian cancer.
Collapse
Affiliation(s)
- L Hernandez
- Women’s Malignancies Branch, National Cancer Institute,
Bethesda, MD
20892-1906, USA
| | - M K Kim
- Women’s Malignancies Branch, National Cancer Institute,
Bethesda, MD
20892-1906, USA
| | - A M Noonan
- Women’s Malignancies Branch, National Cancer Institute,
Bethesda, MD
20892-1906, USA
| | - E Sagher
- Women’s Malignancies Branch, National Cancer Institute,
Bethesda, MD
20892-1906, USA
| | - H Kohlhammer
- Metabolism Branch, Center for Cancer Research, National Cancer Institute,
Bethesda, MD
20892-1906, USA
| | - G Wright
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National
Cancer Institute, Bethesda, MD
20892-1906, USA
| | - L T Lyle
- Women’s Malignancies Branch, National Cancer Institute,
Bethesda, MD
20892-1906, USA
| | - P S Steeg
- Women’s Malignancies Branch, National Cancer Institute,
Bethesda, MD
20892-1906, USA
| | - M Anver
- Pathology/Histotechnology Laboratory, LASP, Leidos Biomedical Research, Inc.,
Frederick, MD
21702-1201, USA
| | - D D Bowtell
- Centre for Cancer Genomics and Predictive Medicine, Peter MacCallum Cancer
Centre, East Melbourne, Victoria, Australia
- The Department of Pathology, University of Melbourne, Parkville,
Victoria, Australia
| | - on behalf of the Australian Ovarian Cancer Study Group
57
- Women’s Malignancies Branch, National Cancer Institute,
Bethesda, MD
20892-1906, USA
- Metabolism Branch, Center for Cancer Research, National Cancer Institute,
Bethesda, MD
20892-1906, USA
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National
Cancer Institute, Bethesda, MD
20892-1906, USA
- Pathology/Histotechnology Laboratory, LASP, Leidos Biomedical Research, Inc.,
Frederick, MD
21702-1201, USA
- Centre for Cancer Genomics and Predictive Medicine, Peter MacCallum Cancer
Centre, East Melbourne, Victoria, Australia
- The Department of Pathology, University of Melbourne, Parkville,
Victoria, Australia
| | - C M Annunziata
- Women’s Malignancies Branch, National Cancer Institute,
Bethesda, MD
20892-1906, USA
| |
Collapse
|
28
|
Chaudhary AK, Yadav N, Bhat TA, O'Malley J, Kumar S, Chandra D. A potential role of X-linked inhibitor of apoptosis protein in mitochondrial membrane permeabilization and its implication in cancer therapy. Drug Discov Today 2015; 21:38-47. [PMID: 26232549 DOI: 10.1016/j.drudis.2015.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/09/2015] [Accepted: 07/21/2015] [Indexed: 12/17/2022]
Abstract
X-chromosome-linked inhibitor of apoptosis protein (XIAP) has an important regulatory role in programmed cell death by inhibiting the caspase cascade. Activation of XIAP-dependent signaling culminates into regulation of multiple cellular processes including apoptosis, innate immunity, epithelial-to-mesenchymal transition, cell migration, invasion, metastasis and differentiation. Although XIAP localizes to the cytosolic compartment, XIAP-mediated cellular signaling encompasses mitochondrial and post-mitochondrial levels. Recent findings demonstrate that XIAP also localizes to mitochondria and regulates mitochondria functions. XIAP acts upstream of mitochondrial cytochrome c release and modulates caspase-dependent apoptosis. The new function of XIAP has potential to enhance mitochondrial membrane permeabilization and other cellular functions controlling cytochrome c release. These findings could exploit the overexpression of XIAP in human tumors for therapeutic benefits.
Collapse
Affiliation(s)
- Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Tariq A Bhat
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Jordan O'Malley
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Sandeep Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
29
|
Landré V, Rotblat B, Melino S, Bernassola F, Melino G. Screening for E3-ubiquitin ligase inhibitors: challenges and opportunities. Oncotarget 2015; 5:7988-8013. [PMID: 25237759 PMCID: PMC4226663 DOI: 10.18632/oncotarget.2431] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The ubiquitin proteasome system (UPS) plays a role in the regulation of most cellular pathways, and its deregulation has been implicated in a wide range of human pathologies that include cancer, neurodegenerative and immunological disorders and viral infections. Targeting the UPS by small molecular regulators thus provides an opportunity for the development of therapeutics for the treatment of several diseases. The proteasome inhibitor Bortezomib was approved for treatment of hematologic malignancies by the FDA in 2003, becoming the first drug targeting the ubiquitin proteasome system in the clinic. Development of drugs targeting specific components of the ubiquitin proteasome system, however, has lagged behind, mainly due to the complexity of the ubiquitination reaction and its outcomes. However, significant advances have been made in recent years in understanding the molecular nature of the ubiquitination system and the vast variety of cellular signals that it produces. Additionally, improvement of screening methods, both in vitro and in silico, have led to the discovery of a number of compounds targeting components of the ubiquitin proteasome system, and some of these have now entered clinical trials. Here, we discuss the current state of drug discovery targeting E3 ligases and the opportunities and challenges that it provides.
Collapse
Affiliation(s)
- Vivien Landré
- Medical Research Council, Toxicology Unit, Leicester, UK
| | - Barak Rotblat
- Medical Research Council, Toxicology Unit, Leicester, UK
| | - Sonia Melino
- Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Bernassola
- Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester, UK. Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
30
|
Wajant H. Principles and mechanisms of CD95 activation. Biol Chem 2015; 395:1401-16. [PMID: 25153377 DOI: 10.1515/hsz-2014-0212] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/06/2014] [Indexed: 11/15/2022]
Abstract
CD95 (Apo1/Fas) has been originally identified as the target of cell death-inducing antibodies. The recognition of CD95 as an apoptosis-triggering receptor represents one of the early milestones in the apoptosis field. Moreover, the research on CD95-induced cell death fostered various other discoveries of broad and general relevance in cell biology, for example, the identification of caspase 8 as the initiator caspase of the extrinsic apoptosis pathway. Activation of CD95-associated intracellular signaling pathways is not a simple consequence of ligand binding but is the fine-tuned result of a complex interplay of various molecular mechanisms that eventually determine the strength and quality of the CD95 response. There is growing evidence that different forms of CD95 stimulation trigger the assembly of CD95 signaling complexes of distinct composition. Moreover, the formation of signaling competent CD95 complexes is a multistep process and the subject of regulation by various cellular cues. This review addresses the relevance of the molecular nature of the CD95-stimulating agonist for the quality of the CD95 response and discusses the importance of modification, clustering, internalization, and lipid raft and actin association of CD95 for CD95 activity.
Collapse
|
31
|
XIAP-targeting drugs re-sensitize PIK3CA-mutated colorectal cancer cells for death receptor-induced apoptosis. Cell Death Dis 2014; 5:e1570. [PMID: 25501831 PMCID: PMC4649844 DOI: 10.1038/cddis.2014.534] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/17/2014] [Accepted: 11/05/2014] [Indexed: 02/07/2023]
Abstract
Mutations in the oncogenic PIK3CA gene are found in 10–20% of colorectal cancers (CRCs) and are associated with poor prognosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and agonistic TRAIL death receptor antibodies emerged as promising anti-neoplastic therapeutics, but to date failed to prove their capability in the clinical setting as especially primary tumors exhibit high rates of TRAIL resistance. In our study, we investigated the molecular mechanisms underlying TRAIL resistance in CRC cells with a mutant PIK3CA (PIK3CA-mut) gene. We show that inhibition of the constitutively active phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway only partially overcame TRAIL resistance in PIK3CA-mut-protected HCT116 cells, although synergistic effects of TRAIL plus PI3K, Akt or cyclin-dependent kinase (CDK) inhibitors could be noted. In sharp contrast, TRAIL triggered full-blown cell death induction in HCT116 PIK3CA-mut cells treated with proteasome inhibitors such as bortezomib and MG132. At the molecular level, resistance of HCT116 PIK3CA-mut cells against TRAIL was reflected by impaired caspase-3 activation and we provide evidence for a crucial involvement of the E3-ligase X-linked inhibitor of apoptosis protein (XIAP) therein. Drugs interfering with the activity and/or the expression of XIAP, such as the second mitochondria-derived activator of caspase mimetic BV6 and mithramycin-A, completely restored TRAIL sensitivity in PIK3CA-mut-protected HCT116 cells independent of a functional mitochondrial cell death pathway. Importantly, proteasome inhibitors and XIAP-targeting agents also sensitized other CRC cell lines with mutated PIK3CA for TRAIL-induced cell death. Together, our data suggest that proteasome- or XIAP-targeting drugs offer a novel therapeutic approach to overcome TRAIL resistance in PIK3CA-mutated CRC.
Collapse
|
32
|
Bullenkamp J, Raulf N, Ayaz B, Walczak H, Kulms D, Odell E, Thavaraj S, Tavassoli M. Bortezomib sensitises TRAIL-resistant HPV-positive head and neck cancer cells to TRAIL through a caspase-dependent, E6-independent mechanism. Cell Death Dis 2014; 5:e1489. [PMID: 25341043 PMCID: PMC4649534 DOI: 10.1038/cddis.2014.455] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/12/2014] [Accepted: 09/10/2014] [Indexed: 11/09/2022]
Abstract
Human papillomavirus (HPV) is causative for a new and increasing form of head and neck squamous cell carcinomas (HNSCCs). Although localised HPV-positive cancers have a favourable response to radio-chemotherapy (RT/CT), the impact of HPV in advanced or metastatic HNSCC remains to be defined and targeted therapeutics need to be tested for cancers resistant to RT/CT. To this end, we investigated the sensitivity of HPV-positive and -negative HNSCC cell lines to TRAIL (tumour necrosis factor-related apoptosis-inducing ligand), which induces tumour cell-specific apoptosis in various cancer types. A clear correlation was observed between HPV positivity and resistance to TRAIL compared with HPV-negative head and neck cancer cell lines. All TRAIL-resistant HPV-positive cell lines tested were sensitised to TRAIL-induced cell death by treatment with bortezomib, a clinically approved proteasome inhibitor. Bortezomib-mediated sensitisation to TRAIL was associated with enhanced activation of caspase-8, -9 and -3, elevated membrane expression levels of TRAIL-R2, cytochrome c release and G2/M arrest. Knockdown of caspase-8 significantly blocked cell death induced by the combination therapy, whereas the BH3-only protein Bid was not required for induction of apoptosis. XIAP depletion increased the sensitivity of both HPV-positive and -negative cells to TRAIL alone or in combination with bortezomib. In contrast, restoration of p53 following E6 knockdown in HPV-positive cells had no effect on their sensitivity to either single or combination therapy, suggesting a p53-independent pathway for the observed response. In summary, bortezomib-mediated proteasome inhibition sensitises previously resistant HPV-positive HNSCC cells to TRAIL-induced cell death through a mechanism involving both the extrinsic and intrinsic pathways of apoptosis. The cooperative effect of these two targeted anticancer agents therefore represents a promising treatment strategy for RT/CT-resistant HPV-associated head and neck cancers.
Collapse
Affiliation(s)
- J Bullenkamp
- Department of Molecular Oncology, King's College London, Guy's Campus, Hodgkin Building, London SE1 1UL, UK
| | - N Raulf
- Department of Molecular Oncology, King's College London, Guy's Campus, Hodgkin Building, London SE1 1UL, UK
| | - B Ayaz
- Department of Oral Pathology, King's College London, Guy's Campus, Dental Institute, London SE1 9RT, UK
| | - H Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, 72 Huntley Street, London WC1E 6BT, UK
| | - D Kulms
- Experimental Dermatology, Department of Dermatology, TU Dresden, Dresden 01307, Germany
| | - E Odell
- Department of Oral Pathology, King's College London, Guy's Campus, Dental Institute, London SE1 9RT, UK
| | - S Thavaraj
- Department of Oral Pathology, King's College London, Guy's Campus, Dental Institute, London SE1 9RT, UK
| | - M Tavassoli
- Department of Molecular Oncology, King's College London, Guy's Campus, Hodgkin Building, London SE1 1UL, UK
| |
Collapse
|
33
|
Differential response of head and neck cancer cell lines to TRAIL or Smac mimetics is associated with the cellular levels and activity of caspase-8 and caspase-10. Br J Cancer 2014; 111:1955-64. [PMID: 25314064 PMCID: PMC4229641 DOI: 10.1038/bjc.2014.521] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/17/2014] [Accepted: 09/02/2014] [Indexed: 11/09/2022] Open
Abstract
Background: Current treatment strategies for head and neck cancer are associated with significant morbidity and up to 50% of patients relapse, highlighting the need for more specific and effective therapeutics. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Smac mimetics (SMs) are promising anticancer agents, but their effect on head and neck squamous cell carcinoma (HNSCC) remains unknown. Methods: We examined the response of a panel of nine HNSCC cell lines to TRAIL and SMs and investigated the mechanism of cell type-specific response by functional analysis. Results: Head and neck cancer cell lines revealed a converse response pattern with three cell lines being highly sensitive to Smac-164 (SM) but resistant to TRAIL, whereas the other six were sensitive to TRAIL but resistant to SM. Distinct protein expression and activation patterns were found to be associated with susceptibility of HNSCC cell lines to TRAIL and SM. Tumour necrosis factor-related apoptosis-inducing ligand sensitivity was associated with high caspase-8 and Bid protein levels, and TRAIL-sensitive cell lines were killed via the type II extrinsic apoptotic pathway. Smac mimetic-sensitive cells expressed low levels of caspase-8 and Bid but had high TNF-α expression. Smac mimetic-induced cell death was associated with caspase-10 activation, suggesting that in the absence of caspase-8, caspase-10 mediates response to SM. Cotreatment with TNF-α sensitised the resistant cells to SM, demonstrating a decisive role for TNF-α-driven feedback loop in SM sensitivity. Conclusions: Tumour necrosis factor-related apoptosis-inducing ligand and SMs effectively kill HNSCC cell lines and therefore represent potential targeted therapeutics for head and neck cancer. Distinct molecular mechanisms determine the sensitivity to each agent, with levels of TNF-α, caspase-8, Bid and caspase-10 providing important predictive biomarkers of response to these agents.
Collapse
|
34
|
Obexer P, Ausserlechner MJ. X-linked inhibitor of apoptosis protein - a critical death resistance regulator and therapeutic target for personalized cancer therapy. Front Oncol 2014; 4:197. [PMID: 25120954 PMCID: PMC4112792 DOI: 10.3389/fonc.2014.00197] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/14/2014] [Indexed: 01/01/2023] Open
Abstract
Defects in apoptosis regulation are one main cause of cancer development and may result from overexpression of anti-apoptotic proteins such as inhibitor of apoptosis proteins (IAPs). IAPs are cell death regulators that, among other functions, bind caspases, and interfere with apoptotic signaling via death receptors or intrinsic cell death pathways. All IAPs share one to three common structures, the so called baculovirus-IAP-repeat (BIR)-domains that allow them to bind caspases and other proteins. X-linked inhibitor of apoptosis protein (XIAP) is the most potent and best-defined anti-apoptotic IAP family member that directly neutralizes caspase-9 via its BIR3 domain and the effector caspases-3 and -7 via its BIR2 domain. A natural inhibitor of XIAP is SMAC/Diablo, which is released from mitochondria in apoptotic cells and displaces bound caspases from the BIR2/BIR3 domains of XIAP thereby reactivating cell death execution. The central apoptosis-inhibitory function of XIAP and its overexpression in many different types of advanced cancers have led to significant efforts to identify therapeutics that neutralize its anti-apoptotic effect. Most of these drugs are chemical derivatives of the N-terminal part of SMAC/Diablo. These “SMAC-mimetics” either specifically induce apoptosis in cancer cells or act as drug-sensitizers. Several “SMAC-mimetics” are currently tested by the pharmaceutical industry in Phase I and Phase II trials. In this review, we will discuss recent advances in understanding the function of IAPs in normal and malignant cells and focus on approaches to specifically neutralize XIAP in cancer cells.
Collapse
Affiliation(s)
- Petra Obexer
- Department of Pediatrics II, Medical University Innsbruck , Innsbruck , Austria ; Tyrolean Cancer Research Institute , Innsbruck , Austria
| | - Michael J Ausserlechner
- Tyrolean Cancer Research Institute , Innsbruck , Austria ; Department of Pediatrics I, Medical University Innsbruck , Innsbruck , Austria
| |
Collapse
|
35
|
TRAIL-R2-specific antibodies and recombinant TRAIL can synergise to kill cancer cells. Oncogene 2014; 34:2138-2144. [PMID: 24909167 PMCID: PMC4240732 DOI: 10.1038/onc.2014.156] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/14/2014] [Accepted: 04/04/2014] [Indexed: 12/15/2022]
Abstract
TRAIL induces apoptosis in cancer cells whilst sparing normal tissues. Despite promising pre-clinical results, few patients responded to treatment with recombinant TRAIL (Apo2L/Dulanermin) or TRAIL-R2-specific antibodies, such as conatumumab (AMG655). It is unknown whether this was due to intrinsic TRAIL resistance within primary human cancers or insufficient agonistic activity of the TRAIL-R-targeting drugs. FcγR-mediated crosslinking increases the cancer-cell-killing activity of TRAIL-R2-specific antibodies in vivo. We tested this phenomenon using FcγR-expressing immune cells from patients with ovarian cancer. However, even in the presence of high numbers of FcγR-expressing immune cells, as found in ovarian cancer ascites, AMG655-induced apoptosis was not enabled to any significant degree, indicating that this concept may not translate into clinical use. On the basis of these results we next set out to determine whether AMG655 possibly interferes with apoptosis induction by endogenous TRAIL which could be expressed by immune cells. To do so, we tested how AMG655 affected apoptosis induction by recombinant TRAIL. This, however, resulted in the surprising discovery of a striking synergy between AMG655 and non-tagged TRAIL (Apo2L/TRAIL) in killing cancer cells. This combination was as effective in killing cancer cells as highly active recombinant isoleucine-zipper-tagged TRAIL (iz-TRAIL). The increased killing efficiency was due to enhanced formation of the TRAIL death-inducing signalling complex (DISC), enabled by concomitant binding of Apo2L/TRAIL and AMG655 to TRAIL-R2. The synergy of AMG655 with Apo2L/TRAIL extended to primary ovarian cancer cells and was further enhanced by combination with the proteasome inhibitor bortezomib or a SMAC mimetic. Importantly, primary human hepatocytes were not killed by the AMG655-Apo2L/TRAIL combination, also not when further combined with bortezomib or a SMAC mimetic. We therefore propose that clinical-grade non-tagged recombinant forms of TRAIL, such as dulanermin, could be combined with antibodies such as AMG655 to introduce a highly active TRAIL-R2-agonistic therapy into the cancer clinic.
Collapse
|
36
|
Abstract
Inhibitor of apoptosis (IAP) proteins are overexpressed in multiple human malignancies, an event that is associated with poor prognosis and treatment resistance. Therefore, IAP proteins represent relevant targets for therapeutic intervention. Second mitochondrial activator of caspases (Smac) is a mitochondrial protein that is released into the cytosol upon the induction of programmed cell death and promotes apoptosis by neutralizing IAP proteins. On the basis of this property, a variety of small-molecule inhibitors have been developed that mimic the binding domain of the native Smac protein to IAP proteins. Evaluation of these Smac mimetics in preclinical studies revealed that they particularly synergize together with agents that trigger the death receptor pathway of apoptosis. Such combinations might therefore be of special interest for being included in the ongoing evaluation of Smac mimetics in early clinical trials.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| |
Collapse
|
37
|
Matthess Y, Raab M, Knecht R, Becker S, Strebhardt K. Sequential Cdk1 and Plk1 phosphorylation of caspase-8 triggers apoptotic cell death during mitosis. Mol Oncol 2014; 8:596-608. [PMID: 24484936 PMCID: PMC5528627 DOI: 10.1016/j.molonc.2013.12.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/20/2013] [Indexed: 11/27/2022] Open
Abstract
Caspase-8 is crucial for cell death induction, especially via the death receptor pathway. The dysregulated expression or function of caspase-8 can promote tumor formation, progression and treatment resistance in different human cancers. Here, we show procaspase-8 is regulated during the cell cycle through the concerted inhibitory action of Cdk1/cyclin B1 and polo-like kinase 1 (Plk1). By phosphorylating S387 in procaspase-8 Cdk1/cyclin B1 generates a phospho-epitope for the binding of the PBD of Plk1. Subsequently, S305 in procaspase-8 is phosphorylated by Plk1 during mitosis. Using an RNAi-based strategy we could demonstrate that the extrinsic cell death is increased upon Fas-stimulation when endogenous caspase-8 is replaced by a mutant (S305A) mimicking the non-phosphorylated form. Together, our data show that sequential phosphorylation by Cdk1/cyclin B1 and Plk1 decreases the sensitivity of cells toward stimuli of the extrinsic pathway during mitosis. Thus, the clinical Plk1 inhibitor BI 2536 decreases the threshold of different cancer cell types toward Fas-induced cell death.
Collapse
Affiliation(s)
- Yves Matthess
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Monika Raab
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; Head and Neck Center, UKE Hamburg, Martinistr. 52, 20246 Hamburg, Germany
| | - Rainald Knecht
- Head and Neck Center, UKE Hamburg, Martinistr. 52, 20246 Hamburg, Germany
| | - Sven Becker
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
38
|
Mandal R, Raab M, Matthess Y, Becker S, Knecht R, Strebhardt K. pERK 1/2 inhibit Caspase-8 induced apoptosis in cancer cells by phosphorylating it in a cell cycle specific manner. Mol Oncol 2013; 8:232-49. [PMID: 24342355 DOI: 10.1016/j.molonc.2013.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 12/22/2022] Open
Abstract
ERK 1/2 are found to be hyperactive in many cancers. Active ERK 1/2 (pERK 1/2) are known to protect cancer cells from undergoing death receptor-mediated apoptosis, although the mechanism(s) behind this is poorly understood. Through in vitro kinase assays and mass-spectrometry we demonstrate that pERK 1/2 can phosphorylate pro-Caspase-8 at S387. Also, in EGFR-overexpressing Type I and II ovarian and breast cancer cell lines respectively, ERK 1/2 remain active only during the interphase. During this period, pERK 1/2 could inhibit Trail-induced apoptosis, most effectively during the G1/S phase. By knocking-down the endogenous pro-Caspase-8 using RNAi and replacing it with its non-phosphorylatable counterpart (S387A), a significant increase in Caspase-8 activity upon Trail stimulation was observed, even in the presence of pERK 1/2. Taken together, we propose that a combination of Trail and an inhibitor of ERK 1/2 activities could potentially enhance of Trail's effectiveness as an anti-cancer agent in ERK 1/2 hyperactive cancer cells.
Collapse
Affiliation(s)
- Ranadip Mandal
- Department of Gynaecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Monika Raab
- Department of Gynaecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Clinic and Polyclinic for Ear, Nose and Throat, UKE Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | - Yves Matthess
- Department of Gynaecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sven Becker
- Department of Gynaecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Rainald Knecht
- Clinic and Polyclinic for Ear, Nose and Throat, UKE Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | - Klaus Strebhardt
- Department of Gynaecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
39
|
MHC universal cells survive in an allogeneic environment after incompatible transplantation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:796046. [PMID: 24350288 PMCID: PMC3856147 DOI: 10.1155/2013/796046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 11/18/2022]
Abstract
Cell, tissue, and organ transplants are commonly performed for the treatment of different diseases. However, major histocompatibility complex (MHC) diversity often prevents complete donor-recipient matching, resulting in graft rejection. This study evaluates in a preclinical model the capacity of MHC class I-silenced cells to engraft and grow upon allogeneic transplantation. Short hairpin RNA targeting β2-microglobulin (RN_shβ2m) was delivered into fibroblasts derived from LEW/Ztm (RT1l) (RT1-Al) rats using a lentiviral-based vector. MHC class I (RT1-A-) expressing and -silenced cells were injected subcutaneously in LEW rats (RT1l) and MHC-congenic LEW.1W rats (RT1u), respectively. Cell engraftment and the status of the immune response were monitored for eight weeks after transplantation. In contrast to RT1-A-expressing cells, RT1-A-silenced fibroblasts became engrafted and were still detectable eight weeks after allogeneic transplantation. Plasma levels of proinflammatory cytokines IL-1α, IL-1β, IL-6, TNF-α, and IFN-γ were significantly higher in animals transplanted with RT1-A-expressing cells than in those receiving RT1-A-silenced cells. Furthermore, alloantigen-specific T-cell proliferation rates derived from rats receiving RT1-A-expressing cells were higher than those in rats transplanted with RT1-A-silenced cells. These data suggest that silencing MHC class I expression might overcome the histocompatibility barrier, potentially opening up new avenues in the field of cell transplantation and regenerative medicine.
Collapse
|