1
|
Chen S, Sun Q, Yao B, Ren Y. The Molecular Mechanism of Aurora-B Regulating Kinetochore-Microtubule Attachment in Mitosis and Oocyte Meiosis. Cytogenet Genome Res 2024; 164:69-77. [PMID: 39068909 DOI: 10.1159/000540588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Aurora kinase B (Aurora-B), a member of the chromosomal passenger complex, is involved in correcting kinetochore-microtubule (KT-MT) attachment errors and regulating sister chromatid condensation and cytoplasmic division during mitosis. SUMMARY However, few reviews have discussed its mechanism in oocyte meiosis and the differences between its role in mitosis and meiosis. Therefore, in this review, we summarize the localization, recruitment, activation, and functions of Aurora-B in mitosis and oocyte meiosis. The accurate regulation of Aurora-B is essential for ensuring accurate chromosomal segregation and correct KT-MT attachments. Aurora-B regulates the stability of KT-MT attachments by competing with cyclin-dependent kinase 1 to control the phosphorylation of the SILK and RVSF motifs on kinetochore scaffold 1 and by competing with protein phosphatase 1 to influence the phosphorylation of NDC80 which is the substrate of Aurora-B. In addition, Aurora-B regulates the spindle assembly checkpoint by promoting the recruitment and activation of mitotic arrest deficient 2. KEY MESSAGES This review provides a theoretical foundation for elucidating the mechanism of cell division and understanding oocyte chromosomal aneuploidy.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China,
| | - Qiqi Sun
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Bo Yao
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Yanping Ren
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Tornín J, Gallego B, Rey V, Murillo D, Huergo C, Rodríguez A, Canal C, Rodríguez R. Cold plasma-treated medium preferentially eliminates doxorubicin-resistant osteosarcoma cells. Free Radic Biol Med 2023; 209:127-134. [PMID: 37844652 DOI: 10.1016/j.freeradbiomed.2023.10.394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Osteosarcoma (OS) is an aggressive bone cancer with poor prognosis, largely due to the limited effectiveness of current treatments such as doxorubicin (DX). Developing ways to overcome DX resistance is a significant clinical challenge. Here, we used two DX-resistant models to study the potential of Cold Plasma Treated Medium (PTM) to prevent DX resistance in OS. During the acquisition of the resistant phenotype upon long-term DX exposure, OS resistant cells became less proliferative, overexpressed the drug resistance-related efflux pump MDR1 and displayed a concomitant loss of SOD2 or GPX1. According to the reduced expression of these antioxidant enzymes, PTM treatment produced higher levels of oxidative express and was more effective in eradicating DX-resistant cells. Moreover, PTM reduced the expression of MDR1, thus sensitizing resistant cells to DX. These findings uncover new vulnerabilities of DX-resistant cells related with their inability to cope with excessive oxidative stress and their dependence on MDR1 that can be exploited using PTM-based treatments to provide new therapeutic approaches for the management of drug resistance in OS.
Collapse
Affiliation(s)
- Juan Tornín
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain.
| | - Borja Gallego
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Verónica Rey
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain
| | - Dzohara Murillo
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Carmen Huergo
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Aida Rodríguez
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya·BarcelonaTECH (UPC), Escola d'Enginyeria Barcelona Est (EEBE), C/Eduard Maristany 14, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain.
| | - René Rodríguez
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
3
|
Estupiñán Ó, Rey V, Tornín J, Murillo D, Gallego B, Huergo C, Blanco-Lorenzo V, Victoria González M, Rodríguez A, Moris F, González J, Ayllón V, Ramos-Mejía V, Bigas A, Rodríguez R. Abrogation of stemness in osteosarcoma by the mithramycin analog EC-8042 is mediated by its ability to inhibit NOTCH-1 signaling. Biomed Pharmacother 2023; 162:114627. [PMID: 37018985 DOI: 10.1016/j.biopha.2023.114627] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Osteosarcomas are frequently associated to a poor prognosis and a modest response to current treatments. EC-8042 is a well-tolerated mithramycin analog that has demonstrated an efficient ability to eliminate tumor cells, including cancer stem cell subpopulations (CSC), in sarcomas. In transcriptomic and protein expression analyses, we identified NOTCH1 signaling as one of the main pro-stemness pathways repressed by EC-8042 in osteosarcomas. Overexpression of NOTCH-1 resulted in a reduced anti-tumor effect of EC-8042 in CSC-enriched 3D tumorspheres cultures. On the other hand, the depletion of the NOTCH-1 downstream target HES-1 was able to enhance the action of EC-8042 on CSCs. Moreover, HES1 depleted cells failed to recover after treatment withdrawal and showed reduced tumor growth potential in vivo. In contrast, mice xenografted with NOTCH1-overexpressing cells responded worse than parental cells to EC-8042. Finally, we found that active NOTCH1 levels in sarcoma patients was associated to advanced disease and lower survival. Overall, these data highlight the relevant role that NOTCH1 signaling plays in mediating stemness in osteosarcoma. Moreover, we demonstrate that EC-8042 is powerful inhibitor of NOTCH signaling and that the anti-CSC activity of this mithramycin analog highly rely on its ability to repress this pathway.
Collapse
|
4
|
Non-Canonical Programmed Cell Death in Colon Cancer. Cancers (Basel) 2022; 14:cancers14143309. [PMID: 35884370 PMCID: PMC9320762 DOI: 10.3390/cancers14143309] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Non-canonical PCD is an important player in colon cancer cell suicide. It influences colon cancer in many ways, such as through tumorigenesis, treatment, and prognosis. In this review, we present the mechanism, application, and prospect of different types of non-canonical PCD in colon cancer. Abstract Programmed cell death (PCD) is an evolutionarily conserved process of cell suicide that is regulated by various genes and the interaction of multiple signal pathways. Non-canonical programmed cell death (PCD) represents different signaling excluding apoptosis. Colon cancer is the third most incident and the fourth most mortal worldwide. Multiple factors such as alcohol, obesity, and genetic and epigenetic alternations contribute to the carcinogenesis of colon cancer. In recent years, emerging evidence has suggested that diverse types of non-canonical programmed cell death are involved in the initiation and development of colon cancer, including mitotic catastrophe, ferroptosis, pyroptosis, necroptosis, parthanatos, oxeiptosis, NETosis, PANoptosis, and entosis. In this review, we summarized the association of different types of non-canonical PCD with tumorigenesis, progression, prevention, treatments, and prognosis of colon cancer. In addition, the prospect of drug-resistant colon cancer therapy related to non-canonical PCD, and the interaction between different types of non-canonical PCD, was systemically reviewed.
Collapse
|
5
|
Estupiñán Ó, Niza E, Bravo I, Rey V, Tornín J, Gallego B, Clemente-Casares P, Moris F, Ocaña A, Blanco-Lorenzo V, Rodríguez-Santamaría M, Vallina-Álvarez A, González MV, Rodríguez A, Hermida-Merino D, Alonso-Moreno C, Rodríguez R. Mithramycin delivery systems to develop effective therapies in sarcomas. J Nanobiotechnology 2021; 19:267. [PMID: 34488783 PMCID: PMC8419920 DOI: 10.1186/s12951-021-01008-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sarcomas comprise a group of aggressive malignancies with very little treatment options beyond standard chemotherapy. Reposition of approved drugs represents an attractive approach to identify effective therapeutic compounds. One example is mithramycin (MTM), a natural antibiotic which has demonstrated a strong antitumour activity in several tumour types, including sarcomas. However, its widespread use in the clinic was limited by its poor toxicity profile. RESULTS In order to improve the therapeutic index of MTM, we have loaded MTM into newly developed nanocarrier formulations. First, polylactide (PLA) polymeric nanoparticles (NPs) were generated by nanoprecipitation. Also, liposomes (LIP) were prepared by ethanol injection and evaporation solvent method. Finally, MTM-loaded hydrogels (HG) were obtained by passive loading using a urea derivative non-peptidic hydrogelator. MTM-loaded NPs and LIP display optimal hydrodynamic radii between 80 and 105 nm with a very low polydispersity index (PdI) and encapsulation efficiencies (EE) of 92 and 30%, respectively. All formulations show a high stability and different release rates ranging from a fast release in HG (100% after 30 min) to more sustained release from NPs (100% after 24 h) and LIP (40% after 48 h). In vitro assays confirmed that all assayed MTM formulations retain the cytotoxic, anti-invasive and anti-stemness potential of free MTM in models of myxoid liposarcoma, undifferentiated pleomorphic sarcoma and chondrosarcoma. In addition, whole genome transcriptomic analysis evidenced the ability of MTM, both free and encapsulated, to act as a multi-repressor of several tumour-promoting pathways at once. Importantly, the treatment of mice bearing sarcoma xenografts showed that encapsulated MTM exhibited enhanced therapeutic effects and was better tolerated than free MTM. CONCLUSIONS Overall, these novel formulations may represent an efficient and safer MTM-delivering alternative for sarcoma treatment.
Collapse
Affiliation(s)
- Óscar Estupiñán
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain.,CIBER en Oncología (CIBERONC), 28029, Madrid, Spain
| | - Enrique Niza
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008, Albacete, Spain.,Universidad de Castilla-La Mancha, Facultad de Farmacia de Albacete, 02008, Albacete, Spain
| | - Iván Bravo
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008, Albacete, Spain.,Universidad de Castilla-La Mancha, Facultad de Farmacia de Albacete, 02008, Albacete, Spain
| | - Verónica Rey
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Juan Tornín
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain.,Materials Science and Engineering Department, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), 08019, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - Borja Gallego
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain
| | - Pilar Clemente-Casares
- Universidad de Castilla-La Mancha, Facultad de Farmacia de Albacete, 02008, Albacete, Spain.,Centro Regional de Investigaciones Biomédicas (CRIB), UCLM, 02008, Albacete, Spain
| | | | - Alberto Ocaña
- CIBER en Oncología (CIBERONC), 28029, Madrid, Spain.,Experimental Therapeutics Unit, Hospital Clínico San Carlos, IdISSC, 28040, Madrid, Spain
| | - Verónica Blanco-Lorenzo
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain.,Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, 33011, Oviedo, Spain
| | - Mar Rodríguez-Santamaría
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain
| | - Aitana Vallina-Álvarez
- Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain.,Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, 33011, Oviedo, Spain
| | - M Victoria González
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain.,CIBER en Oncología (CIBERONC), 28029, Madrid, Spain.,Departamento de Cirugía, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Aida Rodríguez
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain
| | - Daniel Hermida-Merino
- Netherlands Organisation for Scientific Research (NWO), DUBBLE@ESRF, 38000, Grenoble, France
| | - Carlos Alonso-Moreno
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008, Albacete, Spain. .,Universidad de Castilla-La Mancha, Facultad de Farmacia de Albacete, 02008, Albacete, Spain.
| | - René Rodríguez
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain. .,Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain. .,CIBER en Oncología (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
6
|
Goff PH, Bhakuni R, Pulliam T, Lee JH, Hall ET, Nghiem P. Intersection of Two Checkpoints: Could Inhibiting the DNA Damage Response Checkpoint Rescue Immune Checkpoint-Refractory Cancer? Cancers (Basel) 2021; 13:3415. [PMID: 34298632 PMCID: PMC8307089 DOI: 10.3390/cancers13143415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Metastatic cancers resistant to immunotherapy require novel management strategies. DNA damage response (DDR) proteins, including ATR (ataxia telangiectasia and Rad3-related), ATM (ataxia telangiectasia mutated) and DNA-PK (DNA-dependent protein kinase), have been promising therapeutic targets for decades. Specific, potent DDR inhibitors (DDRi) recently entered clinical trials. Surprisingly, preclinical studies have now indicated that DDRi may stimulate anti-tumor immunity to augment immunotherapy. The mechanisms governing how DDRi could promote anti-tumor immunity are not well understood; however, early evidence suggests that they can potentiate immunogenic cell death to recruit and activate antigen-presenting cells to prime an adaptive immune response. Merkel cell carcinoma (MCC) is well suited to test these concepts. It is inherently immunogenic as ~50% of patients with advanced MCC persistently benefit from immunotherapy, making MCC one of the most responsive solid tumors. As is typical of neuroendocrine cancers, dysfunction of p53 and Rb with upregulation of Myc leads to the very rapid growth of MCC. This suggests high replication stress and susceptibility to DDRi and DNA-damaging agents. Indeed, MCC tumors are particularly radiosensitive. Given its inherent immunogenicity, cell cycle checkpoint deficiencies and sensitivity to DNA damage, MCC may be ideal for testing whether targeting the intersection of the DDR checkpoint and the immune checkpoint could help patients with immunotherapy-refractory cancers.
Collapse
Affiliation(s)
- Peter H. Goff
- Department of Radiation Oncology, University of Washington, Seattle, WA 98195, USA;
| | - Rashmi Bhakuni
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.B.); (T.P.); (J.H.L.)
| | - Thomas Pulliam
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.B.); (T.P.); (J.H.L.)
| | - Jung Hyun Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.B.); (T.P.); (J.H.L.)
- Institute for Stem Cell and Regenerative Medicine, Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Evan T. Hall
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98109, USA;
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.B.); (T.P.); (J.H.L.)
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
7
|
Herbert KJ, Puliyadi R, Prevo R, Rodriguez-Berriguete G, Ryan A, Ramadan K, Higgins GS. Targeting TOPK sensitises tumour cells to radiation-induced damage by enhancing replication stress. Cell Death Differ 2021; 28:1333-1346. [PMID: 33168956 PMCID: PMC8027845 DOI: 10.1038/s41418-020-00655-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 01/04/2023] Open
Abstract
T-LAK-originated protein kinase (TOPK) overexpression is a feature of multiple cancers, yet is absent from most phenotypically normal tissues. As such, TOPK expression profiling and the development of TOPK-targeting pharmaceutical agents have raised hopes for its future potential in the development of targeted therapeutics. Results presented in this paper confirm the value of TOPK as a potential target for the treatment of solid tumours, and demonstrate the efficacy of a TOPK inhibitor (OTS964) when used in combination with radiation treatment. Using H460 and Calu-6 lung cancer xenograft models, we show that pharmaceutical inhibition of TOPK potentiates the efficacy of fractionated irradiation. Furthermore, we provide in vitro evidence that TOPK plays a hitherto unknown role during S phase, showing that TOPK depletion increases fork stalling and collapse under conditions of replication stress and exogenous DNA damage. Transient knockdown of TOPK was shown to impair recovery from fork stalling and to increase the formation of replication-associated single-stranded DNA foci in H460 lung cancer cells. We also show that TOPK interacts directly with CHK1 and Cdc25c, two key players in the checkpoint signalling pathway activated after replication fork collapse. This study thus provides novel insights into the mechanism by which TOPK activity supports the survival of cancer cells, facilitating checkpoint signalling in response to replication stress and DNA damage.
Collapse
Affiliation(s)
- Katharine J Herbert
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Rathi Puliyadi
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Remko Prevo
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Gonzalo Rodriguez-Berriguete
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Anderson Ryan
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Kristijan Ramadan
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Geoff S Higgins
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
8
|
Estupiñán Ó, Rendueles C, Suárez P, Rey V, Murillo D, Morís F, Gutiérrez G, Blanco-López MDC, Matos M, Rodríguez R. Nano-Encapsulation of Mithramycin in Transfersomes and Polymeric Micelles for the Treatment of Sarcomas. J Clin Med 2021; 10:jcm10071358. [PMID: 33806182 PMCID: PMC8037461 DOI: 10.3390/jcm10071358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcomas are aggressive tumors which often show a poor response to current treatments. As a promising therapeutic alternative, we focused on mithramycin (MTM), a natural antibiotic with a promising anti-tumor activity but also a relevant systemic toxicity. Therefore, the encapsulation of MTM in nano-delivery systems may represent a way to increase its therapeutic window. Here, we designed novel transfersomes and PLGA polymeric micelles by combining different membrane components (phosphatidylcholine, Span 60, Tween 20 and cholesterol) to optimize the nanoparticle size, polydispersity index (PDI) and encapsulation efficiency (EE). Using both thin film hydration and the ethanol injection methods we obtained MTM-loaded transferosomes displaying an optimal hydrodynamic diameter of 100–130 nm and EE values higher than 50%. Additionally, we used the emulsion/solvent evaporation method to synthesize polymeric micelles with a mean size of 228 nm and a narrow PDI, capable of encapsulating MTM with EE values up to 87%. These MTM nano-delivery systems mimicked the potent anti-tumor activity of free MTM, both in adherent and cancer stem cell-enriched tumorsphere cultures of myxoid liposarcoma and chondrosarcoma models. Similarly to free MTM, nanocarrier-delivered MTM efficiently inhibits the signaling mediated by the pro-oncogenic factor SP1. In summary, we provide new formulations for the efficient encapsulation of MTM which may constitute a safer delivering alternative to be explored in future clinical uses.
Collapse
Affiliation(s)
- Óscar Estupiñán
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Ó.E.); (V.R.); (D.M.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain; (C.R.); (P.S.); (G.G.)
| | - Claudia Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain; (C.R.); (P.S.); (G.G.)
| | - Paula Suárez
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain; (C.R.); (P.S.); (G.G.)
| | - Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Ó.E.); (V.R.); (D.M.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Dzohara Murillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Ó.E.); (V.R.); (D.M.)
| | | | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain; (C.R.); (P.S.); (G.G.)
- Asturias University Institute of Biotechnology, University of Oviedo, 33006 Oviedo, Spain;
| | - María del Carmen Blanco-López
- Asturias University Institute of Biotechnology, University of Oviedo, 33006 Oviedo, Spain;
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain; (C.R.); (P.S.); (G.G.)
- Asturias University Institute of Biotechnology, University of Oviedo, 33006 Oviedo, Spain;
- Correspondence: (M.M.); (R.R.)
| | - René Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Ó.E.); (V.R.); (D.M.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence: (M.M.); (R.R.)
| |
Collapse
|
9
|
Chakraborty A, Palo I, Roy S, Koh SW, Hande MP, Banerjee B. A Novel Balanced Chromosomal Translocation in an Azoospermic Male: A Case Report. J Reprod Infertil 2021; 22:133-137. [PMID: 34041010 PMCID: PMC8143005 DOI: 10.18502/jri.v22i2.5802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Balanced translocation and azoospermia as two main reasons for recurrent pregnancy loss are known to be the leading causes of infertility across the world. Balanced translocations in azoospermic males are very rare and extensive studies need to be performed to elucidate the translocation status of the affected individuals. Case Presentaion: The cytogenetic characterization of a 28 year old male and his female partner is reported in this study. The male partner was diagnosed with non-obstructive azoospermia (NOA) and the couple was unable to conceive. Cytogenetic analysis by karyotyping through Giemsa-trypsin-giemsa banding technique (GTG) showed a novel balanced translocation, 46,XY,t(19;22)(19q13.4;22q11.2), 13ps+ in the male and the female karyotype was found to be 46,XX. Multicolor fluorescence in situ hybridization (mFISH) analysis on paternal chromosomal preparations confirmed both the region and origin of balanced translocation. The status of Y chromosome microdeletion (YMD) was analyzed and no notable microdeletion was observed. Furthermore, protein-protein interaction (PPI) network analysis was performed for breakpoint regions to explore the possible functional genetic associations. Conclusion: The azoospermic condition of the male patient along with novel balanced chromosomal translocation was responsible for infertility irrespective of its YMD status. Therefore, cytogenetic screening of azoospermic patients should be performed in addition to routine semen analysis to rule out or to confirm presence of any numerical or structural anomaly in the patient.
Collapse
Affiliation(s)
- Abhik Chakraborty
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Indira Palo
- Department of Obstetrics and Gynecology, Amit Hospital, Odisha, India
| | - Souvick Roy
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Shu Wen Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Birendranath Banerjee
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India.,Division of Cytogenetics, inDNA Life Sciences Private Limited, Bhubaneswar, Odisha, India
| |
Collapse
|
10
|
Branigan TB, Kozono D, Schade AE, Deraska P, Rivas HG, Sambel L, Reavis HD, Shapiro GI, D'Andrea AD, DeCaprio JA. MMB-FOXM1-driven premature mitosis is required for CHK1 inhibitor sensitivity. Cell Rep 2021; 34:108808. [PMID: 33657372 PMCID: PMC7970065 DOI: 10.1016/j.celrep.2021.108808] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/24/2020] [Accepted: 02/09/2021] [Indexed: 12/25/2022] Open
Abstract
To identify genes whose loss confers resistance to CHK1 inhibitors, we perform genome-wide CRISPR-Cas9 screens in non-small-cell lung cancer (NSCLC) cell lines treated with the CHK1 inhibitor prexasertib (CHK1i). Five of the top six hits of the screens, MYBL2 (B-MYB), LIN54, FOXM1, cyclin A2 (CCNA2), and CDC25B, are cell-cycle-regulated genes that contribute to entry into mitosis. Knockout of MMB-FOXM1 complex components LIN54 and FOXM1 reduce CHK1i-induced DNA replication stress markers and premature mitosis during Late S phase. Activation of a feedback loop between the MMB-FOXM1 complex and CDK1 is required for CHK1i-induced premature mitosis in Late S phase and subsequent replication catastrophe, indicating that dysregulation of the S to M transition is necessary for CHK1 inhibitor sensitivity. These findings provide mechanistic insights into small molecule inhibitors currently studied in clinical trials and provide rationale for combination therapies. Branigan et al., by using genome-wide CRISPR screens, identify the MMB-FOXM1 complex as being required for CHK1 inhibitor (CHK1i) sensitivity. Their study shows that CHK1i-induced premature activation of the G2/M transcriptional program by this complex triggers a breakdown in the separation of DNA synthesis and mitosis, leading to replication catastrophe.
Collapse
Affiliation(s)
- Timothy B Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amy E Schade
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Peter Deraska
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hembly G Rivas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Larissa Sambel
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hunter D Reavis
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Geoffrey I Shapiro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Zhang L, Mu C, Zhang T, Yang D, Wang C, Chen Q, Tang L, Fan L, Liu C, Shen J, Li H. Development of targeted therapy therapeutics to sensitize triple-negative breast cancer chemosensitivity utilizing bacteriophage phi29 derived packaging RNA. J Nanobiotechnology 2021; 19:13. [PMID: 33413427 PMCID: PMC7792131 DOI: 10.1186/s12951-020-00758-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/15/2020] [Indexed: 02/14/2023] Open
Abstract
Background To date, triple-negative breast cancer (TNBC) treatment options are limited because of the loss of target receptors and, as a result, are only managed with chemotherapy. What is worse is that TNBC is frequently developing resistance to chemotherapy. By using small interfering RNA (siRNA)-based therapeutics, our recent work demonstrated X-box-binding protein 1 (XBP1) was linked to human epidermal growth factor receptor 2 positive (HER2+) breast cancer development and chemoresistance. Given the instability, off-target effects, net negative charge, and hydrophobicity of siRNA in vivo utilization and clinical transformation, its use in treatment is hampered. Thus, the development of a siRNA-based drug delivery system (DDS) with ultra-stability and specificity is necessary to address the predicament of siRNA delivery. Results Here, we assembled RNase resistant RNA nanoparticles (NPs) based on the 3WJ structure from Phi29 DNA packaging motor. To improved targeted therapy and sensitize TNBC to chemotherapy, the RNA NPs were equipped with an epidermal growth factor receptor (EGFR) targeting aptamer and XBP1 siRNA. We found our RNA NPs could deplete XBP1 expression and suppress tumor growth after intravenous administration. Meanwhile, RNA NPs treatment could promote sensitization to chemotherapy and impede angiogenesis in vivo. Conclusions The results further demonstrate that our RNA NPs could serve as an effective and promising platform not only for siRNA delivery but also for chemotherapy-resistant TNBC therapy.![]()
Collapse
Affiliation(s)
- Long Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, People's Republic of China
| | - Chaofeng Mu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Tinghong Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China. .,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, People's Republic of China.
| | - Dejun Yang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, People's Republic of China
| | - Chenou Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Qiong Chen
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Lin Tang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Luhui Fan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Cong Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jianliang Shen
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China. .,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, People's Republic of China.
| | - Huaqiong Li
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China. .,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, People's Republic of China.
| |
Collapse
|
12
|
Zhang L, Mu C, Zhang T, Wang Y, Wang Y, Fan L, Liu C, Chen H, Shen J, Wei K, Li H. Systemic Delivery of Aptamer-Conjugated XBP1 siRNA Nanoparticles for Efficient Suppression of HER2+ Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32360-32371. [PMID: 32613835 DOI: 10.1021/acsami.0c07353] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
siRNA therapeutics as an emerging class of drug development is successfully coming to clinical utilization. The RNA-based therapy is widely utilized to explore the mechanism and cure a variety of gene-specific diseases. Tumor is an oncogene-driven disease; many genes are related to tumor progression and chemoresistance. Although human epidermal growth factor receptor 2 (HER2)-targeted monoclonal antibody therapy has dramatically improved the survival rate, chemotherapy remains essential to HER2-positive (HER2+) breast cancer patients. Recently, X-box binding protein 1 (XBP1) has been involved in triple-negative breast cancer (TNBC) chemoresistance and progression, but its function in HER2+ breast cancer is poorly explored. Here, we silenced XBP1 expression using RNase-resistant RNA nanoparticles (NPs). Intravenous injection of RNA NPs with HER2-specific aptamers resulted in strong binding to tumors but not to healthy tissues. XBP1 deletion by RNA NPs impaired angiogenesis and inhibited cell proliferation, significantly suppressed breast cancer growth, and promoted the sensitization of chemotherapy in an HER2+ breast cancer mouse model. Overall, these results reveal the function of XBP1 in HER2+ breast cancer development and chemoresistance and imply that targeting XBP1 by RNA NPs may offer an easy and promising strategy for a combination treatment of breast cancer in the future.
Collapse
Affiliation(s)
- Long Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325011, P. R. China
| | - Chaofeng Mu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, P. R. China
| | - Tinghong Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325011, P. R. China
| | - Yingying Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325011, P. R. China
| | - Yili Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325011, P. R. China
| | - Luhui Fan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, P. R. China
| | - Cong Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, P. R. China
| | - Hao Chen
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325011, P. R. China
| | - Jianliang Shen
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325011, P. R. China
| | - Kun Wei
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325011, P. R. China
| | - Huaqiong Li
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325011, P. R. China
| |
Collapse
|
13
|
Pavey S, Pinder A, Fernando W, D'Arcy N, Matigian N, Skalamera D, Lê Cao KA, Loo-Oey D, Hill MM, Stark M, Kimlin M, Burgess A, Cloonan N, Sturm RA, Gabrielli B. Multiple interaction nodes define the postreplication repair response to UV-induced DNA damage that is defective in melanomas and correlated with UV signature mutation load. Mol Oncol 2019; 14:22-41. [PMID: 31733171 PMCID: PMC6944116 DOI: 10.1002/1878-0261.12601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 01/25/2023] Open
Abstract
Ultraviolet radiation‐induced DNA mutations are a primary environmental driver of melanoma. The reason for this very high level of unrepaired DNA lesions leading to these mutations is still poorly understood. The primary DNA repair mechanism for UV‐induced lesions, that is, the nucleotide excision repair pathway, appears intact in most melanomas. We have previously reported a postreplication repair mechanism that is commonly defective in melanoma cell lines. Here we have used a genome‐wide approach to identify the components of this postreplication repair mechanism. We have used differential transcript polysome loading to identify transcripts that are associated with UV response, and then functionally assessed these to identify novel components of this repair and cell cycle checkpoint network. We have identified multiple interaction nodes, including global genomic nucleotide excision repair and homologous recombination repair, and previously unexpected MASTL pathway, as components of the response. Finally, we have used bioinformatics to assess the contribution of dysregulated expression of these pathways to the UV signature mutation load of a large melanoma cohort. We show that dysregulation of the pathway, especially the DNA damage repair components, are significant contributors to UV mutation load, and that dysregulation of the MASTL pathway appears to be a significant contributor to high UV signature mutation load.
Collapse
Affiliation(s)
- Sandra Pavey
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Alex Pinder
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Winnie Fernando
- Mater Research, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nicholas D'Arcy
- Mater Research, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nicholas Matigian
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia.,QFAB Bioinformatics, The University of Queensland, Brisbane, QLD, Australia
| | - Dubravka Skalamera
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia.,Mater Research, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kim-Anh Lê Cao
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Dorothy Loo-Oey
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Michelle M Hill
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Mitchell Stark
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Michael Kimlin
- University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | | | - Nicole Cloonan
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Richard A Sturm
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Brian Gabrielli
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia.,Mater Research, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
14
|
Surapaneni SK, Bashir S, Tikoo K. Gold nanoparticles-induced cytotoxicity in triple negative breast cancer involves different epigenetic alterations depending upon the surface charge. Sci Rep 2018; 8:12295. [PMID: 30115982 PMCID: PMC6095919 DOI: 10.1038/s41598-018-30541-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023] Open
Abstract
Gold nanoparticles (AuNPs) are used enormously in different cancers but very little is known regarding their molecular mechanism and surface charge role in the process of cell death. Here, we elucidate the molecular mechanism by which differentially charged AuNPs induce cytotoxicity in triple negative breast cancer (TNBC) cells. Cytotoxicity assay revealed that both negatively charged (citrate-capped) and positively charged (cysteamine-capped) AuNPs induced cell-death in a dose-dependent manner. We provide first evidence that AuNPs-induced oxidative stress alters Wnt signalling pathway in MDA-MB-231 and MDA-MB-468 cells. Although both differentially charged AuNPs induced cell death, the rate and mechanism involved in the process of cell death were different. Negatively charged AuNPs increased the expression of MKP-1, dephosphorylated and deacetylated histone H3 at Ser10 and K9/K14 residues respectively whereas, positively charged AuNPs decreased the expression of MKP-1, phosphorylated and acetylated histone H3 at Ser 10 and K9/K14 residues respectively. High-resolution transmission electron microscopy (HRTEM) studies revealed that AuNPs were localised in cytoplasm and mitochondria of MDA-MB-231 cells. Interestingly, AuNPs treatment makes MDA-MB-231 cells sensitive to 5-fluorouracil (5-FU) by decreasing the expression of thymidylate synthetase enzyme. This study highlights the role of surface charge (independent of size) in the mechanisms of toxicity and cell death.
Collapse
Affiliation(s)
- Sunil Kumar Surapaneni
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S, Nagar, India
| | - Shafiya Bashir
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S, Nagar, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S, Nagar, India.
| |
Collapse
|
15
|
Oo ZY, Stevenson AJ, Proctor M, Daignault SM, Walpole S, Lanagan C, Chen J, Škalamera D, Spoerri L, Ainger SA, Sturm RA, Haass NK, Gabrielli B. Endogenous Replication Stress Marks Melanomas Sensitive to CHEK1 Inhibitors In Vivo. Clin Cancer Res 2018. [PMID: 29535131 DOI: 10.1158/1078-0432.ccr-17-2701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Checkpoint kinase 1 inhibitors (CHEK1i) have single-agent activity in vitro and in vivo Here, we have investigated the molecular basis of this activity.Experimental Design: We have assessed a panel of melanoma cell lines for their sensitivity to the CHEK1i GNE-323 and GDC-0575 in vitro and in vivo The effects of these compounds on responses to DNA replication stress were analyzed in the hypersensitive cell lines.Results: A subset of melanoma cell lines is hypersensitive to CHEK1i-induced cell death in vitro, and the drug effectively inhibits tumor growth in vivo In the hypersensitive cell lines, GNE-323 triggers cell death without cells entering mitosis. CHEK1i treatment triggers strong RPA2 hyperphosphorylation and increased DNA damage in only hypersensitive cells. The increased replication stress was associated with a defective S-phase cell-cycle checkpoint. The number and intensity of pRPA2 Ser4/8 foci in untreated tumors appeared to be a marker of elevated replication stress correlated with sensitivity to CHEK1i.Conclusions: CHEK1i have single-agent activity in a subset of melanomas with elevated endogenous replication stress. CHEK1i treatment strongly increased this replication stress and DNA damage, and this correlated with increased cell death. The level of endogenous replication is marked by the pRPA2Ser4/8 foci in the untreated tumors, and may be a useful marker of replication stress in vivoClin Cancer Res; 24(12); 2901-12. ©2018 AACR.
Collapse
Affiliation(s)
- Zay Yar Oo
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia.,The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Alexander J Stevenson
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Martina Proctor
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Sheena M Daignault
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Sebastian Walpole
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Catherine Lanagan
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - James Chen
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Dubravka Škalamera
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Loredana Spoerri
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Stephen A Ainger
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Richard A Sturm
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Brian Gabrielli
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia. .,The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| |
Collapse
|
16
|
Gadhikar MA, Zhang J, Shen L, Rao X, Wang J, Zhao M, Kalu NN, Johnson FM, Byers LA, Heymach J, Hittelman WN, Udayakumar D, Pandita RK, Pandita TK, Pickering CR, Redwood AB, Piwnica-Worms H, Schlacher K, Frederick MJ, Myers JN. CDKN2A/p16 Deletion in Head and Neck Cancer Cells Is Associated with CDK2 Activation, Replication Stress, and Vulnerability to CHK1 Inhibition. Cancer Res 2017; 78:781-797. [PMID: 29229598 DOI: 10.1158/0008-5472.can-17-2802] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022]
Abstract
Checkpoint kinase inhibitors (CHKi) exhibit striking single-agent activity in certain tumors, but the mechanisms accounting for hypersensitivity are poorly understood. We screened a panel of 49 established human head and neck squamous cell carcinoma (HNSCC) cell lines and report that nearly 20% are hypersensitive to CHKi monotherapy. Hypersensitive cells underwent early S-phase arrest at drug doses sufficient to inhibit greater than 90% of CHK1 activity. Reduced rate of DNA replication fork progression and chromosomal shattering were also observed, suggesting replication stress as a root causative factor in CHKi hypersensitivity. To explore genomic underpinnings of CHKi hypersensitivity, comparative genomic analysis was performed between hypersensitive cells and cells categorized as least sensitive because they showed drug IC50 value greater than the cell panel median and lacked early S-phase arrest. Novel association between CDKN2A/p16 copy number loss, CDK2 activation, replication stress, and hypersensitivity of HNSCC cells to CHKi monotherapy was found. Restoring p16 in cell lines harboring CDKN2A/p16 genomic deletions alleviated CDK2 activation and replication stress, attenuating CHKi hypersensitivity. Taken together, our results suggest a biomarker-driven strategy for selecting HNSCC patients who may benefit the most from CHKi therapy.Significance: These results suggest a biomarker-driven strategy for selecting HNSCC patients who may benefit the most from therapy with CHK inhibitors. Cancer Res; 78(3); 781-97. ©2017 AACR.
Collapse
Affiliation(s)
- Mayur A Gadhikar
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiexin Zhang
- Department of Biostatistics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Shen
- Department of Biostatistics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiayu Rao
- Department of Biostatistics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Biostatistics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mei Zhao
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nene N Kalu
- Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Faye M Johnson
- Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren A Byers
- Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John Heymach
- Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Walter N Hittelman
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Durga Udayakumar
- Department of Radiation Oncology, Institute for Academic Medicine, Houston Methodist, Houston, Texas
| | - Raj K Pandita
- Department of Radiation Oncology, Institute for Academic Medicine, Houston Methodist, Houston, Texas
| | - Tej K Pandita
- Department of Radiation Oncology, Institute for Academic Medicine, Houston Methodist, Houston, Texas
| | - Curtis R Pickering
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abena B Redwood
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Katharina Schlacher
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mitchell J Frederick
- Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, Texas.
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
17
|
Mlakar V, Jurkovic Mlakar S, Lopez G, Maris JM, Ansari M, Gumy-Pause F. 11q deletion in neuroblastoma: a review of biological and clinical implications. Mol Cancer 2017; 16:114. [PMID: 28662712 PMCID: PMC5492892 DOI: 10.1186/s12943-017-0686-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/25/2017] [Indexed: 12/12/2022] Open
Abstract
Deletion of the long arm of chromosome 11 (11q deletion) is one of the most frequent events that occur during the development of aggressive neuroblastoma. Clinically, 11q deletion is associated with higher disease stage and decreased survival probability. During the last 25 years, extensive efforts have been invested to identify the precise frequency of 11q aberrations in neuroblastoma, the recurrently involved genes, and to understand the molecular mechanisms of 11q deletion, but definitive answers are still unclear. In this review, it is our intent to compile and review the evidence acquired to date on 11q deletion in neuroblastoma.
Collapse
Affiliation(s)
- Vid Mlakar
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Simona Jurkovic Mlakar
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Gonzalo Lopez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Ansari
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland.,Department of Pediatrics, Onco-Hematology Unit, Geneva University Hospitals, Rue Willy-Donzé 6, 1205, Geneva, Switzerland
| | - Fabienne Gumy-Pause
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland. .,Department of Pediatrics, Onco-Hematology Unit, Geneva University Hospitals, Rue Willy-Donzé 6, 1205, Geneva, Switzerland.
| |
Collapse
|
18
|
Tatsumi R, Ishimi Y. An MCM4 mutation detected in cancer cells affects MCM4/6/7 complex formation. J Biochem 2017; 161:259-268. [PMID: 27794528 DOI: 10.1093/jb/mvw065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/20/2016] [Indexed: 02/01/2023] Open
Abstract
An MCM4 mutation detected in human cancer cells from endometrium was characterized. The mutation of G486D is located within MCM-box and the glycine at 486 in human MCM4 is conserved in Saccharomyces cerevisiae MCM4 and Sulfolobus solfataricus MCM. This MCM4 mutation affected human MCM4/6/7 complex formation, since the complex containing the mutant MCM4 protein is unstable and the mutant MCM4 protein is tend to be degraded. It is likely that the MCM4 mutation affects the interaction with MCM7 to destabilize the MCM4/6/7 complex. Cells with abnormal nuclear morphology were detected when the mutant MCM4 was expressed in HeLa cells, suggesting that DNA replication was perturbed in the presence of the mutant MCM4. Role of the conserved amino acid in MCM4 function is discussed.
Collapse
|
19
|
Singh S, Vaughan CA, Frum RA, Grossman SR, Deb S, Palit Deb S. Mutant p53 establishes targetable tumor dependency by promoting unscheduled replication. J Clin Invest 2017; 127:1839-1855. [PMID: 28394262 DOI: 10.1172/jci87724] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 02/16/2017] [Indexed: 01/09/2023] Open
Abstract
Gain-of-function (GOF) p53 mutations are observed frequently in most intractable human cancers and establish dependency for tumor maintenance and progression. While some of the genes induced by GOF p53 have been implicated in more rapid cell proliferation compared with p53-null cancer cells, the mechanism for dependency of tumor growth on mutant p53 is unknown. This report reveals a therapeutically targetable mechanism for GOF p53 dependency. We have shown that GOF p53 increases DNA replication origin firing, stabilizes replication forks, and promotes micronuclei formation, thus facilitating the proliferation of cells with genomic abnormalities. In contrast, absence or depletion of GOF p53 leads to decreased origin firing and a higher frequency of fork collapse in isogenic cells, explaining their poorer proliferation rate. Following genome-wide analyses utilizing ChIP-Seq and RNA-Seq, GOF p53-induced origin firing, micronuclei formation, and fork protection were traced to the ability of GOF p53 to transactivate cyclin A and CHK1. Highlighting the therapeutic potential of CHK1's role in GOF p53 dependency, experiments in cell culture and mouse xenografts demonstrated that inhibition of CHK1 selectively blocked proliferation of cells and tumors expressing GOF p53. Our data suggest the possibility that checkpoint inhibitors could efficiently and selectively target cancers expressing GOF p53 alleles.
Collapse
|
20
|
Sakurikar N, Thompson R, Montano R, Eastman A. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget 2016; 7:1380-94. [PMID: 26595527 PMCID: PMC4811467 DOI: 10.18632/oncotarget.6364] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022] Open
Abstract
DNA damage activates Checkpoint kinase 1 (Chk1) to halt cell cycle progression thereby preventing further DNA replication and mitosis until the damage has been repaired. Consequently, Chk1 inhibitors have emerged as promising anticancer therapeutics in combination with DNA damaging drugs, but their single agent activity also provides a novel approach that may be particularly effective in a subset of patients. From analysis of a large panel of cell lines, we demonstrate that 15% are very sensitive to the Chk1 inhibitor MK-8776. Upon inhibition of Chk1, sensitive cells rapidly accumulate DNA double-strand breaks in S phase in a CDK2- and cyclin A-dependent manner. In contrast, resistant cells can continue to grow for at least 7 days despite continued inhibition of Chk1. Resistance can be circumvented by inhibiting Wee1 kinase and thereby directly activating CDK2. Hence, sensitivity to Chk1 inhibition is regulated upstream of CDK2 and correlates with accumulation of CDC25A. We conclude that cells poorly tolerate CDK2 activity in S phase and that a major function of Chk1 is to ensure it remains inactive. Indeed, inhibitors of CDK1 and CDK2 arrest cells in G1 or G2, respectively, but do not prevent progression through S phase demonstrating that neither kinase is required for S phase progression. Inappropriate activation of CDK2 in S phase underlies the sensitivity of a subset of cell lines to Chk1 inhibitors, and this may provide a novel therapeutic opportunity for appropriately stratified patients.
Collapse
Affiliation(s)
- Nandini Sakurikar
- Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Ruth Thompson
- Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Ryan Montano
- Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alan Eastman
- Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
21
|
Cellular responses to replication stress: Implications in cancer biology and therapy. DNA Repair (Amst) 2016; 49:9-20. [PMID: 27908669 DOI: 10.1016/j.dnarep.2016.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
Abstract
DNA replication is essential for cell proliferation. Any obstacles during replication cause replication stress, which may lead to genomic instability and cancer formation. In this review, we summarize the physiological DNA replication process and the normal cellular response to replication stress. We also outline specialized therapies in clinical trials based on current knowledge and future perspectives in the field.
Collapse
|
22
|
Cui X, Jing X, Wu X, Wang Z, Li Q. Potential effect of smoking on semen quality through DNA damage and the downregulation of Chk1 in sperm. Mol Med Rep 2016; 14:753-61. [PMID: 27221653 PMCID: PMC4918538 DOI: 10.3892/mmr.2016.5318] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 04/21/2016] [Indexed: 12/19/2022] Open
Abstract
Previous studies have found that smoking is associated with decreased male fertility via altering the quality of semen. However, the mechanism by which cigarette smoking affects semen quality remains to be fully elucidated. Heavy smoking-induced DNA damage has been reported to correlate with abnormal spermatozoa and male infertility. It has been reported that, in response to DNA damage, activation of the checkpoint kinase 1 (Chk1) facilitates S and G2 checkpoint arrest. The aim of the present study was to investigate the expression levels of Chk1 in sperm cells of smoking and non-smoking men, and to further examine the correlation between DNA fragmentation rates and the expression levels of Chk1 with smoking. The present study was performed on a cohort of 841 smoking men and 287 non-smoking men. In the investigation, sperm concentration, motility, viability, seminal plasma zinc concentration, acrosin activity and sperm DNA fragmentation were examined. The gene and protein expression levels of Chk1 were detected using reverse transcription quantitative-polymerase chain reaction and western blot analyses, respectively. It was observed that the progressive motility of the sperm was significantly decreased in the moderate and heavy smoking groups, whereas no significant changes were observed in the mild smoking group. The sperm in the medium-term smoking group had significantly decreased progressive motility, and the semen concentration, sperm count and progressive motility vitality were markedly decreased in the long-term smoking group. Compared with the non-smoking group, the abnormal head rates in the heavy smoking group and long-term smoking group were significantly increased. The sperm viability and seminal plasma zinc concentration were markedly increased in the smoking group. Increased DNA fragmentation rates were found in the smoking group. The expression of Chk1 was significantly decreased in the smoking group, compared with the non-smoking group. Progressive motility and sperm concentration showed a nonlinear association with the relative mRNA expression of Chk1. However, an inverse association was found between DNA fragmentation rates and the progressive motility and sperm concentration. These data suggested that the decrease of semen quality caused by cigarette smoking was not only correlated with sperm DNA fragmentation rates, but was also correlated with a decline in the expressive level of Chk1. The expression of Chk1 was associated with DNA damage and apoptosis, the reduction of which may lead to decreased sperm repair and increased sperm apoptosis, with a subsequent effect on semen quality.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital, Taiyuan, Shanxi 030000, P.R. China
| | - Xueqing Wu
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Zhenqiang Wang
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Qiang Li
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
23
|
Gemble S, Buhagiar-Labarchède G, Onclercq-Delic R, Biard D, Lambert S, Amor-Guéret M. A balanced pyrimidine pool is required for optimal Chk1 activation to prevent ultrafine anaphase bridge formation. J Cell Sci 2016; 129:3167-77. [DOI: 10.1242/jcs.187781] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/27/2016] [Indexed: 01/05/2023] Open
Abstract
Cytidine deaminase (CDA) deficiency induces an excess of cellular dCTP, which reduces basal PARP-1 activity, thereby compromising complete DNA replication, leading to ultrafine anaphase bridge (UFB) formation. CDA dysfunction has pathological implications, notably in cancer and in Bloom syndrome. It remains unknown how reduced levels of PARP-1 activity and pyrimidine pool imbalance lead to the accumulation of unreplicated DNA during mitosis. We report that a decrease in PARP-1 activity in CDA-deficient cells impairs DNA damage-induced Chk1 activation, and, thus, the downstream checkpoints. Chemical inhibition of the ATR-Chk1 pathway leads to UFB accumulation, and we found that this pathway was compromised in CDA-deficient cells. Our data demonstrate that ATR-Chk1 acts downstream from PARP-1, preventing the accumulation of unreplicated DNA in mitosis, and, thus, UFB formation. Finally, delaying entry into mitosis is sufficient to prevent UFB formation in both CDA-deficient and CDA-proficient cells, suggesting that both physiological and pathological UFBs are derived from unreplicated DNA. Our findings demonstrate an unsuspected requirement for a balanced nucleotide pool for optimal Chk1 activation both in unchallenged cells and in response to genotoxic stress.
Collapse
Affiliation(s)
- Simon Gemble
- Institut Curie, PSL Research University, UMR 3348, Unité Stress Génotoxiques et Cancer, Centre de Recherche, Orsay, France
- CNRS UMR 3348, Centre Universitaire, Bât. 110. 91405, Orsay, France
- Université Paris Sud, Université Paris Saclay, UMR3348, Centre Universitaire d'Orsay, France
| | - Géraldine Buhagiar-Labarchède
- Institut Curie, PSL Research University, UMR 3348, Unité Stress Génotoxiques et Cancer, Centre de Recherche, Orsay, France
- CNRS UMR 3348, Centre Universitaire, Bât. 110. 91405, Orsay, France
- Université Paris Sud, Université Paris Saclay, UMR3348, Centre Universitaire d'Orsay, France
| | - Rosine Onclercq-Delic
- Institut Curie, PSL Research University, UMR 3348, Unité Stress Génotoxiques et Cancer, Centre de Recherche, Orsay, France
- CNRS UMR 3348, Centre Universitaire, Bât. 110. 91405, Orsay, France
- Université Paris Sud, Université Paris Saclay, UMR3348, Centre Universitaire d'Orsay, France
| | - Denis Biard
- CEA, DSV, iMETI, SEPIA, 18, route du Panorama. Bât. 60, BP6, 92265 Fontenay-aux-Roses Cedex, France
| | - Sarah Lambert
- Institut Curie, PSL Research University, UMR 3348, Unité Stress Génotoxiques et Cancer, Centre de Recherche, Orsay, France
- CNRS UMR 3348, Centre Universitaire, Bât. 110. 91405, Orsay, France
- Université Paris Sud, Université Paris Saclay, UMR3348, Centre Universitaire d'Orsay, France
| | - Mounira Amor-Guéret
- Institut Curie, PSL Research University, UMR 3348, Unité Stress Génotoxiques et Cancer, Centre de Recherche, Orsay, France
- CNRS UMR 3348, Centre Universitaire, Bât. 110. 91405, Orsay, France
- Université Paris Sud, Université Paris Saclay, UMR3348, Centre Universitaire d'Orsay, France
| |
Collapse
|
24
|
Koh SB, Courtin A, Boyce RJ, Boyle RG, Richards FM, Jodrell DI. CHK1 Inhibition Synergizes with Gemcitabine Initially by Destabilizing the DNA Replication Apparatus. Cancer Res 2015; 75:3583-95. [PMID: 26141863 DOI: 10.1158/0008-5472.can-14-3347] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 06/01/2015] [Indexed: 11/16/2022]
Abstract
Combining cell-cycle checkpoint kinase inhibitors with the DNA-damaging chemotherapeutic agent gemcitabine offers clinical appeal, with a mechanistic rationale based chiefly on abrogation of gemcitabine-induced G2-M checkpoint activation. However, evidence supporting this mechanistic rationale from chemosensitization studies has not been consistent. Here we report a systematic definition of how pancreatic cancer cells harboring mutant p53 respond to this combination therapy, by combining mathematical models with large-scale quantitative biologic analyses of single cells and cell populations. Notably, we uncovered a dynamic range of mechanistic effects at different ratios of gemcitabine and CHK1 inhibitors. Remarkably, effective synergy was attained even where cells exhibited an apparently functional G2-M surveillance mechanism, as exemplified by a lack of both overt premature CDK1 activation and S-phase mitotic entry. Consistent with these findings, S-G2 duration was extended in treated cells, leading to a definable set of lineage-dependent catastrophic fates. At synergistic drug concentrations, global replication stress was a distinct indicator of chemosensitization as characterized molecularly by an accumulation of S-phase cells with high levels of hyperphosphorylated RPA-loaded single-stranded DNA. In a fraction of these cells, persistent genomic damage was observed, including chromosomal fragmentation with a loss of centromeric regions that prevented proper kinetochore-microtubule attachment. Together, our results suggested a "foot-in-the-door" mechanism for drug synergy where cells were destroyed not by frank G2-M phase abrogation but rather by initiating a cumulative genotoxicity that deregulated DNA synthesis.
Collapse
Affiliation(s)
- Siang-Boon Koh
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Aurélie Courtin
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Frances M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Zhu M, Zhao H, Liao J, Xu X. HERC2/USP20 coordinates CHK1 activation by modulating CLASPIN stability. Nucleic Acids Res 2014; 42:13074-81. [PMID: 25326330 PMCID: PMC4245974 DOI: 10.1093/nar/gku978] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/21/2014] [Accepted: 10/06/2014] [Indexed: 12/11/2022] Open
Abstract
CLASPIN is an essential mediator in the DNA replication checkpoint, responsible for ATR (ataxia telangiectasia and Rad3-related protein)-dependent activation of CHK1 (checkpoint kinase 1). Here we found a dynamic signaling pathway that regulates CLASPIN turn over. Under unperturbed conditions, the E3 ubiquitin ligase HERC2 regulates the stability of the deubiquitinating enzyme USP20 by promoting ubiquitination-mediated proteasomal degradation. Under replication stress, ATR-mediated phosphorylation of USP20 results in the disassociation of HERC2 from USP20. USP20 in turn deubiquitinates K48-linked-polyubiquitinated CLASPIN, stabilizing CLASPIN and ultimately promoting CHK1 phosphorylation and CHK1-directed checkpoint activation. Inhibition of USP20 expression promotes chromosome instability and xenograft tumor growth. Taken together, our findings demonstrated a novel function of HERC2/USP20 in coordinating CHK1 activation by modulating CLASPIN stability, which ultimately promotes genome stability and suppresses tumor growth.
Collapse
Affiliation(s)
- Min Zhu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hongchang Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ji Liao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|