1
|
Coutinho LL, Femino EL, Gonzalez AL, Moffat RL, Heinz WF, Cheng RYS, Lockett SJ, Rangel MC, Ridnour LA, Wink DA. NOS2 and COX-2 Co-Expression Promotes Cancer Progression: A Potential Target for Developing Agents to Prevent or Treat Highly Aggressive Breast Cancer. Int J Mol Sci 2024; 25:6103. [PMID: 38892290 PMCID: PMC11173351 DOI: 10.3390/ijms25116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Nitric oxide (NO) and reactive nitrogen species (RNS) exert profound biological impacts dictated by their chemistry. Understanding their spatial distribution is essential for deciphering their roles in diverse biological processes. This review establishes a framework for the chemical biology of NO and RNS, exploring their dynamic reactions within the context of cancer. Concentration-dependent signaling reveals distinctive processes in cancer, with three levels of NO influencing oncogenic properties. In this context, NO plays a crucial role in cancer cell proliferation, metastasis, chemotherapy resistance, and immune suppression. Increased NOS2 expression correlates with poor survival across different tumors, including breast cancer. Additionally, NOS2 can crosstalk with the proinflammatory enzyme cyclooxygenase-2 (COX-2) to promote cancer progression. NOS2 and COX-2 co-expression establishes a positive feed-forward loop, driving immunosuppression and metastasis in estrogen receptor-negative (ER-) breast cancer. Spatial evaluation of NOS2 and COX-2 reveals orthogonal expression, suggesting the unique roles of these niches in the tumor microenvironment (TME). NOS2 and COX2 niche formation requires IFN-γ and cytokine-releasing cells. These niches contribute to poor clinical outcomes, emphasizing their role in cancer progression. Strategies to target these markers include direct inhibition, involving pan-inhibitors and selective inhibitors, as well as indirect approaches targeting their induction or downstream effectors. Compounds from cruciferous vegetables are potential candidates for NOS2 and COX-2 inhibition offering therapeutic applications. Thus, understanding the chemical biology of NO and RNS, their spatial distribution, and their implications in cancer progression provides valuable insights for developing targeted therapies and preventive strategies.
Collapse
Affiliation(s)
- Leandro L. Coutinho
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, SP, Brazil;
| | - Elise L. Femino
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Ana L. Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Rebecca L. Moffat
- Optical Microscopy and Analysis Laboratory, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - William F. Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (W.F.H.); (S.J.L.)
| | - Robert Y. S. Cheng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Stephen J. Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (W.F.H.); (S.J.L.)
| | - M. Cristina Rangel
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, SP, Brazil;
| | - Lisa A. Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - David A. Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| |
Collapse
|
2
|
Li L, Zhang W, Sun Y, Zhang W, Lu M, Wang J, Jin Y, Xi Q. A clinical prognostic model of oxidative stress-related genes linked to tumor immune cell infiltration and the prognosis of ovarian cancer patients. Heliyon 2024; 10:e28442. [PMID: 38560253 PMCID: PMC10981114 DOI: 10.1016/j.heliyon.2024.e28442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Background According to statistics, ovarian cancer (OV) is the most prevalent type of gynecologic malignancy and has the highest mortality rate of all gynecologic tumors. Although several studies have shown that oxidative stress (OS) contributes significantly to the onset and progression of cancer, the role of OS in OV needs to be investigated further. Thus, it is critical to comprehend the function of OS-related genes in OV. Methods In this study, all data related to the transcriptome and clinical status of the patients were retrieved from "The Cancer Genome Atlas" (TCGA) and "Gene Expression Omnibus" (GEO) databases. Using the unsupervised cluster analysis technique, all patients with OV were classified into two different subtypes (categories) based on the OS gene. All hub genes were screened using the weighted gene co-expression network analysis (WGCNA). Since the hub genes and the differentially expressed genes (DEGs) in both categories were found to intersect, the univariate Cox regression analysis was implemented. A multivariate Cox analysis was also performed to construct a novel clinical prognosis model, which was validated using data from the GEO cohort. In addition, the relationship between risk score and immune cell infiltration level was evaluated using CIBERSORT. Finally, qRT-PCR was used to confirm the expression of the genes used to construct the model. Results Two subtypes of OS were obtained. The findings indicated that OS-C1 had a better survival outcome than OS-C2. The results of WGCNA yielded 112 hub genes. For univariate COX regression analyses, 49 OS-related trait genes were obtained. Finally, a clinical prognostic model containing two genes was constructed. This model could differentiate between patients with OV having varying years of survival in the TCGA and GEO cohorts. The model risk score was verified as an independent prognostic indicator. According to the results of CIBERSORT, many tumor-infiltrating immune cells were found to be significantly related to the risk score. Furthermore, the results revealed that patients with low-risk OV in the CTLA4 treatment group had a high likelihood of benefiting from immunotherapy. qRT-PCR results also showed that the expression of MARVELD1 and VSIG4 was high in the OV samples. Conclusions Analysis of the results suggested that the newly developed model, which contained two characteristic OS-related genes, could successfully predict the survival outcomes of all patients with OV. The findings of this study could offer valuable information and insights into the refinement of personalized therapy and immunotherapy for OV in the future.
Collapse
Affiliation(s)
- Li Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Weiwei Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Yanjun Sun
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Weiling Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Gynecology, Nantong Geriatric Rehabilitation Hospital, Nantong, Jiangsu, 226001, China
| | - Mengmeng Lu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Obstetrics and Gynecology, Binhai County People's Hospital, Yancheng, Jiangsu, 224599, China
| | - Jiaqian Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Obstetrics and Gynecology, Qidong Maternal and Child Health Hospital, Nantong, Jiangsu, 226200, China
| | - Yunfeng Jin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Qinghua Xi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| |
Collapse
|
3
|
Panneerselvan P, Vasanthakumar K, Muthuswamy K, Krishnan V, Subramaniam S. Insights on the functional dualism of nitric oxide in the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189001. [PMID: 37858621 DOI: 10.1016/j.bbcan.2023.189001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Nitric oxide (NO), a gaseous radical, governs a variety of physiological and pathological processes, including cancer, pro-inflammatory signalling, and vasodilation. The family of nitric oxide synthases (NOS), which comprises the constitutive forms, nNOS and eNOS, and the inducible form, iNOS, produces NO enzymatically. Additionally, NO can be generated non-enzymatically from the nitrate-nitrite-NO pathway. The anti- and pro-oxidant properties of NO and its functional dualism in cancer is due to its highly reactive nature. Numerous malignancies have NOS expression, which interferes with the tumour microenvironment to modulate the tumour's growth in both favourable and unfavourable ways. NO regulates a number of mechanisms in the tumour microenvironment, including metabolism, cell cycle, DNA repair, angiogenesis, and apoptosis/necrosis, depending on its concentration and spatiotemporal profile. This review focuses on the bi-modal impact of nitric oxide on the alteration of a few cancer hallmarks.
Collapse
Affiliation(s)
- Prabha Panneerselvan
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Keerthana Vasanthakumar
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Karthi Muthuswamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Vasanth Krishnan
- Molecular Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Selvakumar Subramaniam
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
4
|
Samaja M, Malavalli A, Vandegriff KD. How Nitric Oxide Hindered the Search for Hemoglobin-Based Oxygen Carriers as Human Blood Substitutes. Int J Mol Sci 2023; 24:14902. [PMID: 37834350 PMCID: PMC10573492 DOI: 10.3390/ijms241914902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
The search for a clinically affordable substitute of human blood for transfusion is still an unmet need of modern society. More than 50 years of research on acellular hemoglobin (Hb)-based oxygen carriers (HBOC) have not yet produced a single formulation able to carry oxygen to hemorrhage-challenged tissues without compromising the body's functions. Of the several bottlenecks encountered, the high reactivity of acellular Hb with circulating nitric oxide (NO) is particularly arduous to overcome because of the NO-scavenging effect, which causes life-threatening side effects as vasoconstriction, inflammation, coagulopathies, and redox imbalance. The purpose of this manuscript is not to add a review of candidate HBOC formulations but to focus on the biochemical and physiological events that underly NO scavenging by acellular Hb. To this purpose, we examine the differential chemistry of the reaction of NO with erythrocyte and acellular Hb, the NO signaling paths in physiological and HBOC-challenged situations, and the protein engineering tools that are predicted to modulate the NO-scavenging effect. A better understanding of two mechanisms linked to the NO reactivity of acellular Hb, the nitrosylated Hb and the nitrite reductase hypotheses, may become essential to focus HBOC research toward clinical targets.
Collapse
Affiliation(s)
- Michele Samaja
- Department of Health Science, University of Milan, 20143 Milan, Italy
| | | | | |
Collapse
|
5
|
Lee SJ, Park SY, Bak S, Lee MW, Lim DJ, Kim HD, Kim DG, Kim SW. Synergistic Effect of Saccharin and Caffeine on Antiproliferative Activity in Human Ovarian Carcinoma Ovcar-3 Cells. Int J Mol Sci 2023; 24:14445. [PMID: 37833894 PMCID: PMC10572161 DOI: 10.3390/ijms241914445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The purpose of this study was to confirm the antiproliferative and apoptotic induction potential of a saccharin and caffeine combination in ovarian cancer cells. The cell line used was Ovcar-3, and the cell viability was measured through a WST-8 assay, while a Chou-Talalay assay was used to confirm the synergistic effect of saccharin and caffeine on the ovarian cancer cells. A clonogenic assay, annexin V-FITC/PI-PE double-staining, and RT-PCR were performed to confirm the expression of genes that induce colony formation, cell viability, and apoptosis in ovarian cancer cells treated with the saccharin-caffeine combination. It was demonstrated that both saccharin and caffeine decreased the viability of Ovcar-3 cells, and the cell viability decreased even more significantly when the cells were treated with the combination of saccharin and caffeine. The clonogenic assay results showed that the number of colonies decreased the most when saccharin and caffeine were combined, and the number of colonies also significantly decreased compared to the single-treatment groups. Based on flow cytometry analysis using annexin V-FITC/PI-PE double-staining, it was confirmed that the decrease in cell viability caused by the combination of saccharin and caffeine was correlated with the induction of apoptosis. The results of the RT-PCR confirmed that the combined treatment of saccharin and caffeine promoted cell apoptosis by regulating the expression of apoptosis-inducing genes. These results demonstrate that the combination of saccharin and caffeine more efficiently inhibits the proliferation of Ovcar-3 cells and induces apoptosis in vitro.
Collapse
Affiliation(s)
- Sun Ju Lee
- Department of Health and Safety Convergence Science, Graduate School, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea (D.J.L.)
- BK21 FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
| | - Sang-Yong Park
- Department of Health and Safety Convergence Science, Graduate School, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea (D.J.L.)
| | - Subin Bak
- Department of Health and Safety Convergence Science, Graduate School, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea (D.J.L.)
| | - Min-Woo Lee
- Department of Health and Safety Convergence Science, Graduate School, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea (D.J.L.)
| | - Dae Jin Lim
- Department of Health and Safety Convergence Science, Graduate School, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea (D.J.L.)
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Hyeong-Dong Kim
- Department of Health and Safety Convergence Science, Graduate School, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea (D.J.L.)
| | - Dong-Gil Kim
- Kyung-In Synthetic Corporation, 572 Gonghang-daero, Seoul 07947, Republic of Korea
| | - Suhng Wook Kim
- Department of Health and Safety Convergence Science, Graduate School, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea (D.J.L.)
- BK21 FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
- Graduate School of Particulate Matter Specialization, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Murali R, Balasubramaniam V, Srinivas S, Sundaram S, Venkatraman G, Warrier S, Dharmarajan A, Gandhirajan RK. Deregulated Metabolic Pathways in Ovarian Cancer: Cause and Consequence. Metabolites 2023; 13:metabo13040560. [PMID: 37110218 PMCID: PMC10141515 DOI: 10.3390/metabo13040560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ovarian cancers are tumors that originate from the different cells of the ovary and account for almost 4% of all the cancers in women globally. More than 30 types of tumors have been identified based on the cellular origins. Epithelial ovarian cancer (EOC) is the most common and lethal type of ovarian cancer which can be further divided into high-grade serous, low-grade serous, endometrioid, clear cell, and mucinous carcinoma. Ovarian carcinogenesis has been long attributed to endometriosis which is a chronic inflammation of the reproductive tract leading to progressive accumulation of mutations. Due to the advent of multi-omics datasets, the consequences of somatic mutations and their role in altered tumor metabolism has been well elucidated. Several oncogenes and tumor suppressor genes have been implicated in the progression of ovarian cancer. In this review, we highlight the genetic alterations undergone by the key oncogenes and tumor suppressor genes responsible for the development of ovarian cancer. We also summarize the role of these oncogenes and tumor suppressor genes and their association with a deregulated network of fatty acid, glycolysis, tricarboxylic acid and amino acid metabolism in ovarian cancers. Identification of genomic and metabolic circuits will be useful in clinical stratification of patients with complex etiologies and in identifying drug targets for personalized therapies against cancer.
Collapse
Affiliation(s)
- Roopak Murali
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Vaishnavi Balasubramaniam
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Satish Srinivas
- Department of Radiation Oncology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| |
Collapse
|
7
|
Matthiesen S, Christiansen B, Jahnke R, Zaeck LM, Karger A, Finke S, Franzke K, Knittler MR. TGF-β/IFN-γ Antagonism in Subversion and Self-Defense of Phase II Coxiella burnetii -Infected Dendritic Cells. Infect Immun 2023; 91:e0032322. [PMID: 36688662 PMCID: PMC9933720 DOI: 10.1128/iai.00323-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023] Open
Abstract
Dendritic cells (DCs) belong to the first line of innate defense and come into early contact with invading pathogens, including the zoonotic bacterium Coxiella burnetii, the causative agent of Q fever. However, the pathogen-host cell interactions in C. burnetii-infected DCs, particularly the role of mechanisms of immune subversion beyond virulent phase I lipopolysaccharide (LPS), as well as the contribution of cellular self-defense strategies, are not understood. Using phase II Coxiella-infected DCs, we show that impairment of DC maturation and MHC I downregulation is caused by autocrine release and action of immunosuppressive transforming growth factor-β (TGF-β). Our study demonstrates that IFN-γ reverses TGF-β impairment of maturation/MHC I presentation in infected DCs and activates bacterial elimination, predominantly by inducing iNOS/NO. Induced NO synthesis strongly affects bacterial growth and infectivity. Moreover, our studies hint that Coxiella-infected DCs might be able to protect themselves from mitotoxic NO by switching from oxidative phosphorylation to glycolysis, thus ensuring survival in self-defense against C. burnetii. Our results provide new insights into DC subversion by Coxiella and the IFN-γ-mediated targeting of C. burnetii during early steps in the innate immune response.
Collapse
Affiliation(s)
- Svea Matthiesen
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
| | - Bahne Christiansen
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
| | - Rico Jahnke
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
| | - Michael R. Knittler
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Isle of Riems, Germany
| |
Collapse
|
8
|
Avtandilyan N, Javrushyan H, Ginovyan M, Karapetyan A, Trchounian A. Anti-cancer effect of in vivo inhibition of nitric oxide synthase in a rat model of breast cancer. Mol Cell Biochem 2023; 478:261-275. [PMID: 35963913 DOI: 10.1007/s11010-022-04489-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/31/2022] [Indexed: 02/03/2023]
Abstract
Increased expression of nitric oxide synthase (NOS) is associated with different cancers such as cervical, breast, lung, brain, and spinal cord. Inhibition of NOS activity has been suggested as potential tool to prevent breast cancer. The anti-tumor therapeutic effect of L-nitro arginine methyl ester (L-NAME), NOS inhibitor, using in vivo models is currently under investigation. We hypothesized that L-NAME will show an anti-tumor effect by delaying a progression of breast cancer via a modulation of cell death and proliferation, and angiogenesis. We used a novel model of anti-cancer treatment by the administration of L-NAME (30 mg/kg in a day, intraperitoneal) injected every third day for five weeks to rat model of 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast tumor. Concentrations of nitrite anions, polyamines, malondialdehyde, NH4+ levels, and arginase activity in the blood were decreased in DMBA + L-NAME-treated rats compared with DMBA rats. The mortality rates, tumor number, weight, and volume, as well as the histopathological grade of breast cancer were also significantly reduced. In addition, L-NAME treatment showed a delay in tumor formation, and in body weight compared with rats administrated only with DMBA. In conclusion, our data show that L-NAME is a promising anti-cancer agent to treat breast cancer, which can lead to development of anti-tumor therapeutic tools in future.
Collapse
Affiliation(s)
- Nikolay Avtandilyan
- Research Institute of Biology, Yerevan State University, Yerevan, Armenia. .,Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, RA, Armenia.
| | - Hayarpi Javrushyan
- Research Institute of Biology, Yerevan State University, Yerevan, Armenia
| | - Mikayel Ginovyan
- Research Institute of Biology, Yerevan State University, Yerevan, Armenia
| | - Anna Karapetyan
- Department of Human and Animal Physiology, Yerevan State University, 0025, Yerevan, Armenia
| | - Armen Trchounian
- Research Institute of Biology, Yerevan State University, Yerevan, Armenia.,Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, RA, Armenia
| |
Collapse
|
9
|
Glutamine-dependent effects of nitric oxide on cancer cells subjected to hypoxia-reoxygenation. Nitric Oxide 2023; 130:22-35. [PMID: 36414197 DOI: 10.1016/j.niox.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Limited O2 availability can decrease essential processes in energy metabolism. However, cancers have developed distinct metabolic adaptations to these conditions. For example, glutaminolysis can maintain energy metabolism and hypoxia signaling. Additionally, it has been observed that nitric oxide (NO) possesses concentration-dependent, biphasic effects in cancer. NO has potent anti-tumor effects through modulating events such as angiogenesis and metastasis at low physiological concentrations and inducing cell death at higher concentrations. In this study, Ewing Sarcoma cells (A-673), MIA PaCa, and SKBR3 cells were treated with DetaNONOate (DetaNO) in a model of hypoxia (1% O2) and reoxygenation (21% O2). All 3 cell types showed NO-dependent inhibition of cellular O2 consumption which was enhanced as O2-tension decreased. L-Gln depletion suppressed the mitochondrial response to decreasing O2 tension in all 3 cell types and resulted in inhibition of Complex I activity. In A-673 cells the O2 tension dependent change in mitochondrial O2 consumption and increase in glycolysis was dependent on the presence of L-Gln. The response to hypoxia and Complex I activity were restored by α-ketoglutarate. NO exposure resulted in the A-673 cells showing greater sensitivity to decreasing O2 tension. Under conditions of L-Gln depletion, NO restored HIF-1α levels and the mitochondrial response to O2 tension possibly through the increase of 2-hydroxyglutarate. NO also resulted in suppression of cellular bioenergetics and further inhibition of Complex I which was not rescued by α-ketoglutarate. Taken together these data suggest that NO modulates the mitochondrial response to O2 differentially in the absence and presence of L-Gln. These data suggest a combination of metabolic strategies targeting glutaminolysis and Complex I in cancer cells.
Collapse
|
10
|
Regulation of pleiotropic physiological roles of nitric oxide signaling. Cell Signal 2023; 101:110496. [PMID: 36252791 DOI: 10.1016/j.cellsig.2022.110496] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Nitric Oxide (NO) is a highly diffusible, ubiquitous signaling molecule and a free radical that is naturally synthesized by our body. The pleiotropic effects of NO in biological systems are due to its reactivity with different molecules, such as molecular oxygen (O2), superoxide anion, DNA, lipids, and proteins. There are several contradictory findings in the literature pertaining to its role in oncology. NO is a Janus-faced molecule shown to have both tumor promoting and tumoricidal effects, which depend on its concentration, duration of exposure, and location. A high concentration is shown to have cytotoxic effects by triggering apoptosis, and at a low concentration, NO promotes angiogenesis, metastasis, and tumor progression. Upregulated NO synthesis has been implicated as a causal factor in several pathophysiological conditions including cancer. This dichotomous effect makes it highly challenging to discover its true potential in cancer biology. Understanding the mechanisms by which NO acts in different cancers helps to develop NO based therapeutic strategies for cancer treatment. This review addresses the physiological role of this molecule, with a focus on its bimodal action in various types of cancers.
Collapse
|
11
|
Lin Y, Zhou X, Ni Y, Zhao X, Liang X. Metabolic reprogramming of the tumor immune microenvironment in ovarian cancer: A novel orientation for immunotherapy. Front Immunol 2022; 13:1030831. [PMID: 36311734 PMCID: PMC9613923 DOI: 10.3389/fimmu.2022.1030831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic tumor, with the highest mortality rate. Numerous studies have been conducted on the treatment of ovarian cancer in the hopes of improving therapeutic outcomes. Immune cells have been revealed to play a dual function in the development of ovarian cancer, acting as both tumor promoters and tumor suppressors. Increasingly, the tumor immune microenvironment (TIME) has been proposed and confirmed to play a unique role in tumor development and treatment by altering immunosuppressive and cytotoxic responses in the vicinity of tumor cells through metabolic reprogramming. Furthermore, studies of immunometabolism have provided new insights into the understanding of the TIME. Targeting or activating metabolic processes of the TIME has the potential to be an antitumor therapy modality. In this review, we summarize the composition of the TIME of ovarian cancer and its metabolic reprogramming, its relationship with drug resistance in ovarian cancer, and recent research advances in immunotherapy.
Collapse
|
12
|
Aboouf MA, Guscetti F, von Büren N, Armbruster J, Ademi H, Ruetten M, Meléndez-Rodríguez F, Rülicke T, Seymer A, Jacobs RA, Schneider Gasser EM, Aragones J, Neumann D, Gassmann M, Thiersch M. Erythropoietin receptor regulates tumor mitochondrial biogenesis through iNOS and pAKT. Front Oncol 2022; 12:976961. [PMID: 36052260 PMCID: PMC9425774 DOI: 10.3389/fonc.2022.976961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Erythropoietin receptor (EPOR) is widely expressed in healthy and malignant tissues. In certain malignancies, EPOR stimulates tumor growth. In healthy tissues, EPOR controls processes other than erythropoiesis, including mitochondrial metabolism. We hypothesized that EPOR also controls the mitochondrial metabolism in cancer cells. To test this hypothesis, we generated EPOR-knockdown cancer cells to grow tumor xenografts in mice and analyzed tumor cellular respiration via high-resolution respirometry. Furthermore, we analyzed cellular respiratory control, mitochondrial content, and regulators of mitochondrial biogenesis in vivo and in vitro in different cancer cell lines. Our results show that EPOR controls tumor growth and mitochondrial biogenesis in tumors by controlling the levels of both, pAKT and inducible NO synthase (iNOS). Furthermore, we observed that the expression of EPOR is associated with the expression of the mitochondrial marker VDAC1 in tissue arrays of lung cancer patients, suggesting that EPOR indeed helps to regulate mitochondrial biogenesis in tumors of cancer patients. Thus, our data imply that EPOR not only stimulates tumor growth but also regulates tumor metabolism and is a target for direct intervention against progression.
Collapse
Affiliation(s)
- Mostafa A. Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Franco Guscetti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nadine von Büren
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Julia Armbruster
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Hyrije Ademi
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Maja Ruetten
- PathoVet AG, Pathology Diagnostic Laboratory, Tagelswangen, Switzerland
| | | | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alexander Seymer
- Department for Sociology and Social Geography, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Robert A. Jacobs
- Department of Human Physiology & Nutrition, University of Colorado Colorado Springs (UCCS), Colorado Springs, CO, United States
| | - Edith M. Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center of Neuroscience Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Julian Aragones
- Hospital Universitario Santa Cristina, Autonomous University of Madrid, Madrid, Spain
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- *Correspondence: Markus Thiersch,
| |
Collapse
|
13
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
14
|
Oxidative Stress and AKT-Associated Angiogenesis in a Zebrafish Model and Its Potential Application for Withanolides. Cells 2022; 11:cells11060961. [PMID: 35326412 PMCID: PMC8946239 DOI: 10.3390/cells11060961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and the AKT serine/threonine kinase (AKT) signaling pathway are essential regulators in cellular migration, metastasis, and angiogenesis. More than 300 withanolides were discovered from the plant family Solanaceae, exhibiting diverse functions. Notably, the relationship between oxidative stress, AKT signaling, and angiogenesis in withanolide treatments lacks comprehensive understanding. Here, we summarize connecting evidence related to oxidative stress, AKT signaling, and angiogenesis in the zebrafish model. A convenient vertebrate model monitored the in vivo effects of developmental and tumor xenograft angiogenesis using zebrafish embryos. The oxidative stress and AKT-signaling-modulating abilities of withanolides were highlighted in cancer treatments, which indicated that further assessments of their angiogenesis-modulating potential are necessary in the future. Moreover, targeting AKT for inhibiting AKT and its AKT signaling shows the potential for anti-migration and anti-angiogenesis purposes for future application to withanolides. This particularly holds for investigating the anti-angiogenetic effects mediated by the oxidative stress and AKT signaling pathways in withanolide-based cancer therapy in the future.
Collapse
|
15
|
Kelly NJ, Chan SY. Pulmonary Arterial Hypertension: Emerging Principles of Precision Medicine across Basic Science to Clinical Practice. Rev Cardiovasc Med 2022; 23:378. [PMID: 36875282 PMCID: PMC9980296 DOI: 10.31083/j.rcm2311378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an enigmatic and deadly vascular disease with no known cure. Recent years have seen rapid advances in our understanding of the molecular underpinnings of PAH, with an expanding knowledge of the molecular, cellular, and systems-level drivers of disease that are being translated into novel therapeutic modalities. Simultaneous advances in clinical technology have led to a growing list of tools with potential application to diagnosis and phenotyping. Guided by fundamental biology, these developments hold the potential to usher in a new era of personalized medicine in PAH with broad implications for patient management and great promise for improved outcomes.
Collapse
Affiliation(s)
- Neil J Kelly
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Kim M, Park SC, Lee DY. Glycyrrhizin as a Nitric Oxide Regulator in Cancer Chemotherapy. Cancers (Basel) 2021; 13:cancers13225762. [PMID: 34830916 PMCID: PMC8616433 DOI: 10.3390/cancers13225762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Glycyrrhizin (GL) has anti-cancer, anti-inflammatory, anti-viral, and anti-oxidant activity. In particular, GL reduces multidrug resistance (MDR) in cancer cells, which is a major obstacle to chemotherapy. Nitric oxide (NO) also plays an important role in MDR, and GL affects NO concentration in the tumor microenvironment. However, the effects of GL and NO interaction on MDR have not been reviewed. Here, we review the role of GL as an NO regulator in cancer cells and its subsequent anti-MDR effect and posit that GL is a promising MDR inhibitor for cancer chemotherapy. Abstract Chemotherapy is used widely for cancer treatment; however, the evolution of multidrug resistance (MDR) in many patients limits the therapeutic benefits of chemotherapy. It is important to overcome MDR for enhanced chemotherapy. ATP-dependent efflux of drugs out of cells is the main mechanism of MDR. Recent studies have suggested that nitric oxide (NO) can be used to overcome MDR by inhibiting the ATPase function of ATP-dependent pumps. Several attempts have been made to deliver NO to the tumor microenvironment (TME), however there are limitations in delivery. Glycyrrhizin (GL), an active compound of licorice, has been reported to both reduce the MDR effect by inhibiting ATP-dependent pumps and function as a regulator of NO production in the TME. In this review, we describe the potential role of GL as an NO regulator and MDR inhibitor that efficiently reduces the MDR effect in cancer chemotherapy.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Seok Chan Park
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
- Institute of Nano Science & Technology (INST), Hanyang University, Seoul 04763, Korea
- Elixir Pharmatech Inc., Seoul 04763, Korea
- Correspondence:
| |
Collapse
|
17
|
Insights into the Role of Oxidative Stress in Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8388258. [PMID: 34659640 PMCID: PMC8516553 DOI: 10.1155/2021/8388258] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Oxidative stress (OS) arises when the body is subjected to harmful endogenous or exogenous factors that overwhelm the antioxidant system. There is increasing evidence that OS is involved in a number of diseases, including ovarian cancer (OC). OC is the most lethal gynecological malignancy, and risk factors include genetic factors, age, infertility, nulliparity, microbial infections, obesity, smoking, etc. OS can promote the proliferation, metastasis, and therapy resistance of OC, while high levels of OS have cytotoxic effects and induce apoptosis in OC cells. This review focuses on the relationship between OS and the development of OC from four aspects: genetic alterations, signaling pathways, transcription factors, and the tumor microenvironment. Furthermore, strategies to target aberrant OS in OC are summarized and discussed, with a view to providing new ideas for clinical treatment.
Collapse
|
18
|
Nantasupha C, Thonusin C, Charoenkwan K, Chattipakorn S, Chattipakorn N. Metabolic reprogramming in epithelial ovarian cancer. Am J Transl Res 2021; 13:9950-9973. [PMID: 34650675 PMCID: PMC8507042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Cancer cells usually show adaptations to their metabolism that facilitate their growth, invasiveness, and metastasis. Therefore, reprogramming the energy metabolism is one of the current key foci of cancer research and treatment. Although aerobic glycolysis-the Warburg effect-has been thought to be the dominant energy metabolism in cancer, recent data indicate a different possibility, specifically that oxidative phosphorylation (OXPHOS) is the more likely form of energy metabolism in some cancer cells. Due to the heterogeneity of epithelial ovarian cancer, there are different metabolic preferences among cell types, study types (in vivo/in vitro), and invasiveness. Current knowledge acknowledges glycolysis to be the main energy provider in ovarian cancer growth, invasion, migration, and viability, so specific agents targeting the glycolysis or OXPHOS pathways have been used in previous studies to attenuate tumor progression and increase chemosensitization. However, chemoresistant cell lines exert various metabolic preferences. This review comprehensively summarizes the information from existing reports which could together provide an in-depth understanding and insights for the development of a novel targeted therapy which can be used as an adjunctive treatment to standard chemotherapy to decelerate tumor progression and decrease the epithelial ovarian cancer mortality rate.
Collapse
Affiliation(s)
- Chalaithorn Nantasupha
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
| | - Chanisa Thonusin
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai UniversityChiang Mai, Thailand
| | - Kittipat Charoenkwan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
| | - Siriporn Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai UniversityChiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai UniversityChiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai UniversityChiang Mai, Thailand
| |
Collapse
|
19
|
Pietkiewicz D, Klupczynska-Gabryszak A, Plewa S, Misiura M, Horala A, Miltyk W, Nowak-Markwitz E, Kokot ZJ, Matysiak J. Free Amino Acid Alterations in Patients with Gynecological and Breast Cancer: A Review. Pharmaceuticals (Basel) 2021; 14:ph14080731. [PMID: 34451829 PMCID: PMC8400482 DOI: 10.3390/ph14080731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Gynecological and breast cancers still remain a significant health problem worldwide. Diagnostic methods are not sensitive and specific enough to detect the disease at an early stage. During carcinogenesis and tumor progression, the cellular need for DNA and protein synthesis increases leading to changes in the levels of amino acids. An important role of amino acids in many biological pathways, including biosynthesis of proteins, nucleic acids, enzymes, etc., which serve as an energy source and maintain redox balance, has been highlighted in many research articles. The aim of this review is a detailed analysis of the literature on metabolomic studies of gynecology and breast cancers with particular emphasis on alterations in free amino acid profiles. The work includes a brief overview of the metabolomic methodology and types of biological samples used in the studies. Special attention was paid to the possible role of selected amino acids in the carcinogenesis, especially proline and amino acids related to its metabolism. There is a clear need for further research and multiple external validation studies to establish the role of amino acid profiling in diagnosing gynecological and breast cancers.
Collapse
Affiliation(s)
- Dagmara Pietkiewicz
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (D.P.); (A.K.-G.); (S.P.)
| | - Agnieszka Klupczynska-Gabryszak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (D.P.); (A.K.-G.); (S.P.)
| | - Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (D.P.); (A.K.-G.); (S.P.)
| | - Magdalena Misiura
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.M.); (W.M.)
| | - Agnieszka Horala
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.H.); (E.N.-M.)
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.M.); (W.M.)
| | - Ewa Nowak-Markwitz
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.H.); (E.N.-M.)
| | - Zenon J. Kokot
- Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland;
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (D.P.); (A.K.-G.); (S.P.)
- Correspondence:
| |
Collapse
|
20
|
Sahebnasagh A, Saghafi F, Negintaji S, Hu T, Shabani-Boroujeni M, Safdari M, Ghaleno HR, Miao L, Qi Y, Wang M, Liao P, Sureda A, Simal-Gándara J, Nabavi SM, Xiao J. Nitric Oxide and Immune Responses in Cancer: Searching for New Therapeutic Strategies. Curr Med Chem 2021; 29:1561-1595. [PMID: 34238142 DOI: 10.2174/0929867328666210707194543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
In recent years, there has been an increasing interest in understanding the mysterious functions of nitric oxide (NO) and how this pleiotropic signaling molecule contributes to tumorigenesis. This review attempts to expose and discuss the information available on the immunomodulatory role of NO in cancer and recent approaches to the role of NO donors in the area of immunotherapy. To address the goal, the following databases were searched to identify relevant literature concerning empirical evidence: The Cochrane Library, Pubmed, Medline, EMBASE from 1980 through March 2020. Valuable attempts have been made to develop distinctive NO-based cancer therapy. Although the data do not allow generalization, the evidence seems to indicate that low / moderate levels may favor tumorigenesis while higher levels would exert anti-tumor effects. In this sense, the use of NO donors could have an important therapeutic potential within immunotherapy, although there are still no clinical trials. The emerging understanding of NO-regulated immune responses in cancer may help unravel the recent features of this "double-edged sword" in cancer physiological and pathologic processes and its potential use as a therapeutic agent for cancer treatment. In short, in this review, we discuss the complex cellular mechanism in which NO, as a pleiotropic signaling molecule, participates in cancer pathophysiology. We also debate the dual role of NO in cancer and tumor progression, and clinical approaches for inducible nitric oxide synthase (iNOS) based therapy against cancer.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sina Negintaji
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tingyan Hu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mojtaba Shabani-Boroujeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Lingchao Miao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, United States
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road. Hong Kong, China
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Jesus Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| |
Collapse
|
21
|
Ren G, Zheng X, Sharma V, Letson J, Nestor-Kalinoski AL, Furuta S. Loss of Nitric Oxide Induces Fibrogenic Response in Organotypic 3D Co-Culture of Mammary Epithelia and Fibroblasts-An Indicator for Breast Carcinogenesis. Cancers (Basel) 2021; 13:cancers13112815. [PMID: 34198735 PMCID: PMC8201212 DOI: 10.3390/cancers13112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Fibrosis, which is often caused by chronic diseases and environmental substances, is closely associated with cancer. Thus, the development of a robust method allowing for deep studies of the linkage between fibrosis and cancer is essential. Here, we tested whether our novel three-dimensional (3D) co-culture of breast epithelia and fibroblasts would be a suitable model for that purpose. We compared the phenotypic effects of L-NAME, an inhibitor of nitric oxide (NO) production, on 3D mono- and co-cultures. We previously reported that prolonged NO depletion with L-NAME caused fibrosis and tumorigenesis in mouse mammary glands. Such in vivo effects of L-NAME were well recapitulated in 3D co-cultures, but not in 3D mono-cultures of epithelia and fibroblasts. These results support not only the essential roles of the presence of the stroma in cancer development, but also the utility of this co-culture in studying the causal relationship between fibrosis and cancer. Abstract Excessive myofibroblast activation, which leads to dysregulated collagen deposition and the stiffening of the extracellular matrix (ECM), plays pivotal roles in cancer initiation and progression. Cumulative evidence attests to the cancer-causing effects of a number of fibrogenic factors found in the environment, diseases and drugs. While identifying such factors largely depends on epidemiological studies, it would be of great importance to develop a robust in vitro method to demonstrate the causal relationship between fibrosis and cancer. Here, we tested whether our recently developed organotypic three-dimensional (3D) co-culture would be suitable for that purpose. This co-culture system utilizes the discontinuous ECM to separately culture mammary epithelia and fibroblasts in the discrete matrices to model the complexity of the mammary gland. We observed that pharmaceutical deprivation of nitric oxide (NO) in 3D co-cultures induced myofibroblast differentiation of the stroma as well as the occurrence of epithelial–mesenchymal transition (EMT) of the parenchyma. Such in vitro response to NO deprivation was unique to co-cultures and closely mimicked the phenotype of NO-depleted mammary glands exhibiting stromal desmoplasia and precancerous lesions undergoing EMT. These results suggest that this novel 3D co-culture system could be utilized in the deep mechanistic studies of the linkage between fibrosis and cancer.
Collapse
Affiliation(s)
- Gang Ren
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA; (G.R.); (X.Z.); (V.S.); (J.L.)
| | - Xunzhen Zheng
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA; (G.R.); (X.Z.); (V.S.); (J.L.)
| | - Vandana Sharma
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA; (G.R.); (X.Z.); (V.S.); (J.L.)
| | - Joshua Letson
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA; (G.R.); (X.Z.); (V.S.); (J.L.)
| | - Andrea L. Nestor-Kalinoski
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA;
| | - Saori Furuta
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA; (G.R.); (X.Z.); (V.S.); (J.L.)
- Correspondence:
| |
Collapse
|
22
|
Ahn HS, Ho JY, Yu J, Yeom J, Lee S, Hur SY, Jung Y, Kim K, Choi YJ. Plasma Protein Biomarkers Associated with Higher Ovarian Cancer Risk in BRCA1/2 Carriers. Cancers (Basel) 2021; 13:cancers13102300. [PMID: 34064977 PMCID: PMC8150736 DOI: 10.3390/cancers13102300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Most hereditary ovarian cancer is associated with BRCA1/2 variants, and risk-reducing salpingo-oophorectomy during the follow-up monitoring of ovarian cancer development in heathy women with the BRCA1/2 variant reduces ovarian cancer incidence. The aim of this study was to identify plasma protein biomarkers that can indicate an increased risk of developing ovarian cancer using a proteomic approach based on a population of genetic variants. Two identified biomarkers among differentially expressed proteins, SPARC and THBS1, had lower plasma concentrations in healthy BRCA1/2 variant carriers than in ovarian cancer patients with the BRCA1/2 variant; concentration of two proteins increased at the onset of ovarian cancer. These protein markers from non-invasive liquid biopsy sampling could be used to help women with the BRCA1/2 variant determine whether to undergo an oophorectomy that could potentially affect the quality of life. Abstract Ovarian cancer (OC) is the most lethal gynecologic malignancy and in-time diagnosis is limited because of the absence of effective biomarkers. Germline BRCA1/2 genetic alterations are risk factors for hereditary OC; risk-reducing salpingo-oophorectomy (RRSO) is pursued for disease prevention. However, not all healthy carriers develop the disease. Therefore, identifying predictive markers in the BRCA1/2 carrier population could help improve the identification of candidates for preventive RRSO. In this study, plasma samples from 20 OC patients (10 patients with BRCA1/2 wild type (wt) and 10 with the BRCA1/2 variant (var)) and 20 normal subjects (10 subjects with BRCA1/2wt and 10 with BRCA1/2var) were analyzed for potential biomarkers of hereditary OC. We applied a bottom-up proteomics approach, using nano-flow LC-MS to analyze depleted plasma proteome quantitatively, and potential plasma protein markers specific to the BRCA1/2 variant were identified from a comparative statistical analysis of the four groups. We obtained 1505 protein candidates from the 40 subjects, and SPARC and THBS1 were verified by enzyme-linked immunosorbent assay. Plasma SPARC and THBS1 concentrations in healthy BRCA1/2 carriers were found to be lower than in OC patients with BRCA1/2var. If plasma SPARC concentrations increase over 337.35 ng/mL or plasma THBS1 concentrations increase over 65.28 μg/mL in a healthy BRCA1/2 carrier, oophorectomy may be suggested.
Collapse
Affiliation(s)
- Hee-Sung Ahn
- Asan Medical Center, Asan Institute for Life Sciences, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
| | - Jung Yoon Ho
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.Y.H.); (S.L.); (S.Y.H.); (Y.J.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jiyoung Yu
- Asan Medical Center, Asan Institute for Life Sciences, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
| | - Sanha Lee
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.Y.H.); (S.L.); (S.Y.H.); (Y.J.)
| | - Soo Young Hur
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.Y.H.); (S.L.); (S.Y.H.); (Y.J.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yuyeon Jung
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.Y.H.); (S.L.); (S.Y.H.); (Y.J.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Kyunggon Kim
- Asan Medical Center, Asan Institute for Life Sciences, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
- Convergence Medicine Research Center, Asan Medical Center, Clinical Proteomics Core Laboratory, Seoul 05505, Korea
- Asan Medical Center, Bio-Medical Institute of Technology, Seoul 05505, Korea
- Correspondence: (K.K.); (Y.J.C.); Tel.: +82-2-1688-7575 (K.K.); +82-2-2258-2810 (Y.J.C.)
| | - Youn Jin Choi
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.Y.H.); (S.L.); (S.Y.H.); (Y.J.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: (K.K.); (Y.J.C.); Tel.: +82-2-1688-7575 (K.K.); +82-2-2258-2810 (Y.J.C.)
| |
Collapse
|
23
|
Sharma V, Fernando V, Letson J, Walia Y, Zheng X, Fackelman D, Furuta S. S-Nitrosylation in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22094600. [PMID: 33925645 PMCID: PMC8124305 DOI: 10.3390/ijms22094600] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
S-nitrosylation is a selective and reversible post-translational modification of protein thiols by nitric oxide (NO), which is a bioactive signaling molecule, to exert a variety of effects. These effects include the modulation of protein conformation, activity, stability, and protein-protein interactions. S-nitrosylation plays a central role in propagating NO signals within a cell, tissue, and tissue microenvironment, as the nitrosyl moiety can rapidly be transferred from one protein to another upon contact. This modification has also been reported to confer either tumor-suppressing or tumor-promoting effects and is portrayed as a process involved in every stage of cancer progression. In particular, S-nitrosylation has recently been found as an essential regulator of the tumor microenvironment (TME), the environment around a tumor governing the disease pathogenesis. This review aims to outline the effects of S-nitrosylation on different resident cells in the TME and the diverse outcomes in a context-dependent manner. Furthermore, we will discuss the therapeutic potentials of modulating S-nitrosylation levels in tumors.
Collapse
|
24
|
Gao W, Huang M, Chen X, Chen J, Zou Z, Li L, Ji K, Nie Z, Yang B, Wei Z, Xu P, Jia J, Zhang Q, Shen H, Wang Q, Li K, Zhu L, Wang M, Ye S, Zeng S, Lin Y, Rong Z, Xu Y, Zhu P, Zhang H, Hao B, Liu Q. The role of S-nitrosylation of PFKM in regulation of glycolysis in ovarian cancer cells. Cell Death Dis 2021; 12:408. [PMID: 33859186 PMCID: PMC8050300 DOI: 10.1038/s41419-021-03681-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
One of the malignant transformation hallmarks is metabolism reprogramming, which plays a critical role in the biosynthetic needs of unchecked proliferation, abrogating cell death programs, and immunologic escape. However, the mechanism of the metabolic switch is not fully understood. Here, we found that the S-nitrosoproteomic profile of endogenous nitrogen oxide in ovarian cancer cells targeted multiple components in metabolism processes. Phosphofructokinase (PFKM), one of the most important regulatory enzymes of glycolysis, was S-nitrosylated by nitric oxide synthase NOS1 at Cys351. S-nitrosylation at Cys351 stabilized the tetramer of PFKM, leading to resist negative feedback of downstream metabolic intermediates. The PFKM-C351S mutation decreased the proliferation rate of cultured cancer cells, and reduced tumor growth and metastasis in the mouse xenograft model. These findings indicated that S-nitrosylation at Cys351 of PFKM by NOS1 contributes to the metabolic reprogramming of ovarian cancer cells, highlighting a critical role of endogenous nitrogen oxide on metabolism regulations in tumor progression.
Collapse
Affiliation(s)
- Wenwen Gao
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mengqiu Huang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xi Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhiwei Zou
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Southern Hospital Zengcheng Branch, Southern Medical University, Guangzhou, 528308, China
| | - Linlin Li
- First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, 450001, China
| | - Kaiyuan Ji
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhirui Nie
- Guangzhou Panyu Central Hospital, Guangzhou, 511400, China
| | - Bingsheng Yang
- Pearl River Hospital, Southern Medical University, Guangzhou, 528308, China
| | - Zibo Wei
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Pengfei Xu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junshuang Jia
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qianbing Zhang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hongfen Shen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qianli Wang
- Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, 450003, China
| | - Keyi Li
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lingqun Zhu
- Guangzhou Concord Cancer Center, Guangzhou, 528308, China
| | - Meng Wang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuangyan Ye
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sisi Zeng
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Lin
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhili Rong
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yang Xu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Peng Zhu
- Central Lab of Shenzhen Pingshan People's Hospital, Shenzhen, 518118, P. R. China
| | - Hui Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
- Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China.
- Platform of Metabolomics, Center for Precision Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China.
| | - Bingtao Hao
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genoics, Henan Provincial People's Hospital Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China.
| | - Qiuzhen Liu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Pingshan General Hospital of Southern Medical University, Southern Medical University, Shenzhen, 518118, China.
| |
Collapse
|
25
|
Exploiting S-nitrosylation for cancer therapy: facts and perspectives. Biochem J 2021; 477:3649-3672. [PMID: 33017470 DOI: 10.1042/bcj20200064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
S-nitrosylation, the post-translational modification of cysteines by nitric oxide, has been implicated in several cellular processes and tissue homeostasis. As a result, alterations in the mechanisms controlling the levels of S-nitrosylated proteins have been found in pathological states. In the last few years, a role in cancer has been proposed, supported by the evidence that various oncoproteins undergo gain- or loss-of-function modifications upon S-nitrosylation. Here, we aim at providing insight into the current knowledge about the role of S-nitrosylation in different aspects of cancer biology and report the main anticancer strategies based on: (i) reducing S-nitrosylation-mediated oncogenic effects, (ii) boosting S-nitrosylation to stimulate cell death, (iii) exploiting S-nitrosylation through synthetic lethality.
Collapse
|
26
|
Bilbao M, Aikins JK, Ostrovsky O. Is routine omentectomy of grossly normal omentum helpful in surgery for ovarian cancer? A look at the tumor microenvironment and its clinical implications. Gynecol Oncol 2021; 161:78-82. [PMID: 33436287 DOI: 10.1016/j.ygyno.2020.12.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/22/2020] [Indexed: 01/06/2023]
Abstract
Ovarian cancer is uncommon in relation to other women's cancer, however, it is associated with a disproportionate number of deaths due to women's cancer. According to the National Institute of Health, only 1.2% of new cancer diagnoses in the United States are attributed to ovarian cancer, yet it is the fifth leading cause of cancer death in women and is responsible for 2.3% of all female cancer deaths. Ovarian cancer deaths are largely due to widely metastatic and chemoresistant disease that often presents at a late stage. The omentum is one of the most common sites for ovarian cancer metastasis. Recent research findings have highlighted the specific tumor microenvironment of the omentum and how it can be manipulated to prevent ovarian cancer proliferation, metastasis and chemoresistance. Debulking surgery has been the mainstay in the treatment for ovarian cancer. Total omentectomy is classically described as essential to this procedure. This article explores the known benefits of total omentectomy in the surgical treatment of epithelial ovarian cancer as well as the potential benefit contained within the omental tumor microenvironment when the omentum is macroscopically free of disease at the time of initial surgery.
Collapse
Affiliation(s)
- Michelle Bilbao
- MD Anderson Cancer Center at Cooper, Cooper University Healthcare, Division of Gynecologic Oncology, Camden, NJ, United States of America
| | - James K Aikins
- MD Anderson Cancer Center at Cooper, Cooper University Healthcare, Division of Gynecologic Oncology, Camden, NJ, United States of America
| | - Olga Ostrovsky
- Department of Surgery, Division of Surgical Research, Cooper University Healthcare, Camden, NJ, United States of America.
| |
Collapse
|
27
|
Fahmy UA, Fahmy O, Alhakamy NA. Optimized Icariin Cubosomes Exhibit Augmented Cytotoxicity against SKOV-3 Ovarian Cancer Cells. Pharmaceutics 2020; 13:E20. [PMID: 33374293 PMCID: PMC7823966 DOI: 10.3390/pharmaceutics13010020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Clinical application of icariin (ICA) is limited, despite its activity against cancer growth, because of the low solubility of ICA in an aqueous environment. Therefore, the present study attempted to develop and optimize ICA-loaded cubosome delivery and to explore its efficacy and possible mechanism of action against ovarian cancer. The optimization of the cubosome formulation was performed using the Box‒Behnken statistical design; during the characterization, the particle sizes were in the range of 73 to 183 nm and the entrapment efficiency was 78.3% to 97.3%. Optimized ICA-loaded cubosomes (ICA-Cubs) exhibited enhanced cytotoxicity and apoptotic potential, compared with ICA-raw, against ovarian cancer cell lines (SKOV-3 and Caov 3). The optimized ICA-Cubs showed a relatively non-cytotoxic effect on normal EA.hy926 endothelial cells. Further analysis of cell cycle arrest suggested a potential role in the pre-G1 and G2/M phases for ICA-Cubs in comparison with ICA-raw. ICA-Cubs increased the generation of reactive oxygen species (ROS) and the overexpression of p53 and caspase-3 in the SKOV-3 cell line. In conclusion, the cubosomal delivery of ICA might provide a prospective approach towards the superior control of ovarian cancer cell growth. Its improved efficacy compared with that of the free drug might be due to the improved solubility and cellular permeability of ICA.
Collapse
Affiliation(s)
- Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Omar Fahmy
- Department of Urology, University Putra Malaysia (UPM), Selangor 43400, Malaysia;
- Department of Urology, University Hospital of Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
28
|
Yu H, Cui LX, Huang N, Yang ZL. Recent developments in nitric oxide-releasing biomaterials for biomedical applications. Med Gas Res 2020; 9:184-191. [PMID: 31898603 PMCID: PMC7802421 DOI: 10.4103/2045-9912.273956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nitric oxide (NO) is an endogenous gas with several physiological activities. Owing to the NO physiological functions, such as inhibition of platelet aggregation and adhesion, vascular muscle relaxation, modulation of inflammation and immune response, antibacterial and anticancer activity, increasing attensions have been paid to the development of biomaterials with the ability to release this medical gas. Nowadays, numerous prodrugs have been developed to release NO in vivo. However, due to the low payloads and non-controlled delivery of the prodrug, the NO-releasing devices do not fulfil the expectations, which restricts their widespread application. Recently, several methods have been proposed to address the issue above, including physical and chemical methods and specific designs. This review aims to briefly introduce the latest achievements with recent 3 years involving coatings which mimic the vascular endothelium to treat atherosclerosis, nanocarriers which generate NO for a sustained anticancer treatment, and a framework which modifies the prodrug as a stable cardiovascular stent or as an anticancer targeted drug.
Collapse
Affiliation(s)
- Han Yu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Lin-Xian Cui
- Department of Cardiology, Sichuan Provincial People's Hospital & Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
| | - Nan Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Zhi-Lu Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| |
Collapse
|
29
|
Pereira PMR, Edwards KJ, Mandleywala K, Carter LM, Escorcia FE, Campesato LF, Cornejo M, Abma L, Mohsen AA, Iacobuzio-Donahue CA, Merghoub T, Lewis JS. iNOS Regulates the Therapeutic Response of Pancreatic Cancer Cells to Radiotherapy. Cancer Res 2020; 80:1681-1692. [PMID: 32086240 PMCID: PMC7165066 DOI: 10.1158/0008-5472.can-19-2991] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/30/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to radiotherapy, chemotherapy, or a combination of these modalities, and surgery remains the only curative intervention for localized disease. Although cancer-associated fibroblasts (CAF) are abundant in PDAC tumors, the effects of radiotherapy on CAFs and the response of PDAC cells to radiotherapy are unknown. Using patient samples and orthotopic PDAC biological models, we showed that radiotherapy increased inducible nitric oxide synthase (iNOS) in the tumor tissues. Mechanistic in vitro studies showed that, although undetectable in radiotherapy-activated tumor cells, iNOS expression and nitric oxide (NO) secretion were significantly increased in CAFs secretome following radiotherapy. Culture of PDAC cells with conditioned media from radiotherapy-activated CAFs increased iNOS/NO signaling in tumor cells through NF-κB, which, in turn, elevated the release of inflammatory cytokines by the tumor cells. Increased NO after radiotherapy in PDAC contributed to an acidic microenvironment that was detectable using the radiolabeled pH (low) insertion peptide (pHLIP). In murine orthotopic PDAC models, pancreatic tumor growth was delayed when iNOS inhibition was combined with radiotherapy. These data show the important role that iNOS/NO signaling plays in the effectiveness of radiotherapy to treat PDAC tumors. SIGNIFICANCE: A radiolabeled pH-targeted peptide can be used as a PET imaging tool to assess therapy response within PDAC and blocking iNOS/NO signaling may improve radiotherapy outcomes.
Collapse
Affiliation(s)
- Patricia M R Pereira
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kimberly J Edwards
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Komal Mandleywala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Freddy E Escorcia
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Luis Felipe Campesato
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mike Cornejo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lolkje Abma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Abu-Akeel Mohsen
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christine A Iacobuzio-Donahue
- The David M. Rubenstein Center for Pancreatic Cancer Research, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
30
|
Lee TL, Wang SG, Chan WL, Lee CH, Wu TS, Lin ML, Chen SS. Impairment of Membrane Lipid Homeostasis by Bichalcone Analog TSWU-BR4 Attenuates Function of GRP78 in Regulation of the Oxidative Balance and Invasion of Cancer Cells. Cells 2020; 9:cells9020371. [PMID: 32033487 PMCID: PMC7072528 DOI: 10.3390/cells9020371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
The specialized cholesterol/sphingolipid-rich membrane domains termed lipid rafts are highly dynamic in the cancer cells, which rapidly assemble effector molecules to form a sorting platform essential for oncogenic signaling transduction in response to extra- or intracellular stimuli. Density-based membrane flotation, subcellular fractionation, cell surface biotinylation, and co-immunoprecipitation analyses of bichalcone analog ((E)-1-(4-Hydroxy-3-((4-(4-((E)-3-(pyridin-3-yl)acryloyl)phenyl)piperazin-1-yl)methyl)phenyl)-3-(pyridin-3-yl)prop-2-en-1-one (TSWU-BR4)-treated cancer cells showed dissociation between GRP78 and p85α conferring the recruitment of PTEN to lipid raft membranes associated with p85α. Ectopic expression of GRP78 could overcome induction of lipid raft membrane-associated p85α–unphosphorylated PTEN complex formation and suppression of GRP78−PI3K−Akt−GTP-Rac1-mediated and GRP78-regulated PERK−Nrf2 antioxidant pathway and cancer cell invasion by TSWU-BR4. Using specific inducer, inhibitor, or short hairpin RNA for ASM demonstrated that induction of the lipid raft membrane localization and activation of ASM by TSWU-BR4 is responsible for perturbing homeostasis of cholesterol and ceramide levels in the lipid raft and ER membranes, leading to alteration of GRP78 membrane trafficking and subsequently inducing p85α–unphosphorylated PTEN complex formation, causing disruption of GRP78−PI3K−Akt−GTP-Rac1-mediated signal and ER membrane-associated GRP78-regulated oxidative stress balance, thus inhibiting cancer cell invasion. The involvement of the enrichment of ceramide to lipid raft membranes in inhibition of NF-κB-mediated MMP-2 expression was confirmed through attenuation of NF-κB activation using C2-ceramide, NF-κB specific inhibitors, ectopic expression of NF-κB p65, MMP-2 promoter-driven luciferase, and NF-κB-dependent reporter genes. In conclusion, localization of ASM in the lipid raft membranes by TSWU-BR4 is a key event for initiating formation of ceramide-enriched lipid raft membrane platforms, which causes delocalization of GRP78 from the lipid raft and ER membranes to the cytosol and formation of p85α–unphosphorylated PTEN complexes to attenuate the GRP78-regulated oxidative stress balance and GRP78−p85α−Akt−GTP-Rac1−NF-κB−MMP-2-mediated cancer cell invasion.
Collapse
Affiliation(s)
- Tsung-Lin Lee
- Department of Family Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan;
| | - Shyang-Guang Wang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan;
| | - Wen-Ling Chan
- Department of Bioinformatics and Medical Enginerring, Asia University, Taichung, Taiwan;
| | - Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan;
| | - Tian-Shung Wu
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
- Correspondence: (M.-L.L.); (S.-S.C.); Tel.: +886-4-22053366 (ext. 7211) (M.-L.L.); +886-4-22391647 (ext. 7057) (S.-S.C.)
| | - Shih-Shun Chen
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan;
- Correspondence: (M.-L.L.); (S.-S.C.); Tel.: +886-4-22053366 (ext. 7211) (M.-L.L.); +886-4-22391647 (ext. 7057) (S.-S.C.)
| |
Collapse
|
31
|
NOS1 expression promotes proliferation and invasion and enhances chemoresistance in ovarian cancer. Oncol Lett 2020; 19:2989-2995. [PMID: 32218855 DOI: 10.3892/ol.2020.11355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/03/2018] [Indexed: 01/16/2023] Open
Abstract
Nitric oxide (NO), an important chemical messenger, serves a dual role in tumor progression. Nitric oxide synthase isoform 1 (NOS1) was observed to be increasingly expressed in various types of cancer, and its expression has been associated with tumor progression. However, the level of NOS1 expression and the associated functions of NOS1 in human ovarian cancer remain undefined. Using gene expression profiles of ovarian cancer from the Gene Expression Omnibus (GEO) database, the present study revealed that NOS1 was increasingly expressed in ovarian cancer tissues. The present study investigated the level of NOS1 expression and its effects on in vitro cell function, including proliferation, migration and invasion as well as chemoresistance to cispatin (DDP) treatment in OVCAR3 cells. Reverse transcription-quantitative polymerase chain reaction demonstrated that the level of NOS1 mRNA expression varied in different ovarian cancer lines. However, immunoblotting indicated that the level of NOS1 protein expression was constitutively high in ovarian cancer cell lines. Treatment with NOS inhibitor NG-nitro-L-arginine methyl ester or transfection with NOS1 short hairpin RNA significantly inhibited cell proliferation, migration and invasion compared with the control, whereas the sensitivity of OVCAR3 cells to DDP treatment was increased. The results of the present study indicated that NOS1 promoted the function of ovarian cancer cells, including proliferation, invasion and chemoresistance, providing a potential target for ovarian cancer therapeutic.
Collapse
|
32
|
López-Sánchez LM, Aranda E, Rodríguez-Ariza A. Nitric oxide and tumor metabolic reprogramming. Biochem Pharmacol 2019; 176:113769. [PMID: 31862448 DOI: 10.1016/j.bcp.2019.113769] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) has been highlighted as an important agent in tumor processes. However, a complete understanding of the mechanisms by which this simple diatomic molecule contributes in tumorigenesis is lacking. Evidence is rapidly accumulating that metabolic reprogramming is a major new aspect of NO biology and this review is aimed to summarize recent research progress on this novel feature that expands the complex and multifaceted role of NO in cancer. Therefore, we discuss how NO may influence glucose and glutamine utilization by tumor cells, and its participation in the regulation of mitochondrial function and dynamics, that is an important mechanism through which cancer cells reprogram their metabolism to meet the biosynthetic needs of rapid proliferation. Finally, we also discuss the NO-related metabolic rewiring involved in the modification of the tumor microenvironment to support cancer invasion and the escape from immune system-mediated recognition. Protein S-nitrosylation appears as a common mechanism by which NO signaling reprograms metabolism. Hence, future research is needed on dysregulated S-nitrosylation/denitrosylation in cancer to comprehend the NO-induced metabolic changes in tumor cells and the role of NO in the metabolic crosstalk within tumor microenvironment.
Collapse
Affiliation(s)
- Laura M López-Sánchez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain
| | - Enrique Aranda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain; Unidad de Gestión Clínica de Oncología Médica, Hospital Reina Sofía, Universidad de Córdoba, Av. Menéndez Pidal s/n, E14004 Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain; Unidad de Gestión Clínica de Oncología Médica, Hospital Reina Sofía, Universidad de Córdoba, Av. Menéndez Pidal s/n, E14004 Córdoba, Spain.
| |
Collapse
|
33
|
Wang L, Tang W, Yang S, He P, Wang J, Gaedcke J, Ströbel P, Azizian A, Ried T, Gaida MM, Yfantis HG, Lee DH, Lal A, Van den Eynde BJ, Alexander HR, Ghadimi BM, Hanna N, Hussain SP. NO • /RUNX3/kynurenine metabolic signaling enhances disease aggressiveness in pancreatic cancer. Int J Cancer 2019; 146:3160-3169. [PMID: 31609478 DOI: 10.1002/ijc.32733] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/12/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy and is refractory to available treatments. Delineating the regulatory mechanisms of metabolic reprogramming, a key event in pancreatic cancer progression, may identify candidate targets with potential therapeutic significance. We hypothesized that inflammatory signaling pathways regulate metabolic adaptations in pancreatic cancer. Metabolic profiling of tumors from PDAC patients with a high- (>median, n = 31) and low-NOS2 (inducible nitric oxide synthase; <median, n = 32) mRNA expression was performed. Differentially abundant metabolites were analyzed and linked with patient survival. The functional role of the prognostically significant metabolite and the mechanism of its regulation by NOS2/NO• (nitric oxide)-mediated signaling pathway was elucidated. The level of kynurenine, a tryptophan metabolite, was associated with high NOS2 expression, and a higher level of kynurenine predicted poor survival in patients (n = 63, p = 0.01). Gene expression analysis in PDAC tumors (n = 63) showed a positive correlation between the expression of NOS2 and the tryptophan/kynurenine pathway genes, including indoleamine-2,3-dioxygenase 1 (IDO1) and several aryl hydrocarbon receptor (AHR)-target genes including NFE2L2 (NRF2), SERPINB2, IL1b, IL6 and IL8, which are implicated in pancreatic cancer. Consistently, treatment of pancreatic cancer cell lines with NO• donor induced IDO1, kynurenine production and the expression of AHR-target genes. Furthermore, kynurenine treatment enhanced spheroid growth and invasive potential of pancreatic cancer cell lines. Mechanistically, NO• -induced IDO1/Kynurenine/AHR signaling was mediated by RUNX3 transcription factor. Our findings identified a novel NO• /RUNX3/Kynurenine metabolic axis, which enhances disease aggressiveness in pancreatic cancer and may have potential translational significance in improving disease outcome.
Collapse
Affiliation(s)
- Limin Wang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, CCR, NCI, Bethesda, MD
| | - Wei Tang
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, CCR, NCI, Bethesda, MD
| | - Shouhui Yang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, CCR, NCI, Bethesda, MD
| | - Peijun He
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, CCR, NCI, Bethesda, MD
| | - Jian Wang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, CCR, NCI, Bethesda, MD
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medicine, Göttingen, Germany
| | - Philipp Ströbel
- Department of General, Visceral and Pediatric Surgery, University Medicine, Göttingen, Germany
| | - Azadeh Azizian
- Department of General, Visceral and Pediatric Surgery, University Medicine, Göttingen, Germany
| | - Thomas Ried
- Cancer Genomics Section, Genetics Branch, CCR, NCI, Bethesda, MD
| | | | - Harris G Yfantis
- Pathology and Laboratory Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, MD
| | - Dong H Lee
- Pathology and Laboratory Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, MD
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, CR, NCI, Bethesda, MD
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - B Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medicine, Göttingen, Germany
| | - Nader Hanna
- Division of Surgical Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - S Perwez Hussain
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, CCR, NCI, Bethesda, MD
| |
Collapse
|
34
|
rBMSC/Cav-1 F92A Mediates Oxidative Stress in PAH Rat by Regulating SelW/14-3-3 η and CA1/Kininogen Signal Transduction. Stem Cells Int 2019; 2019:6768571. [PMID: 31781243 PMCID: PMC6855026 DOI: 10.1155/2019/6768571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 08/21/2019] [Indexed: 01/22/2023] Open
Abstract
Background/Objectives Carbonic anhydrase 1 (CA1)/kininogen and selenoprotein W (SelW)/14-3-3η signal transduction orchestrate oxidative stress, which can also be regulated by nitric oxide (NO). The mutated caveolin-1 (Cav-1F92A) gene may enhance NO production. This study explored the effect of Cav-1F92A-modified rat bone marrow mesenchymal stem cells (rBMSC/Cav-1F92A) on oxidative stress regulation through CA1/kininogen and SelW/14-3-3η signal transduction in a rat model of monocrotaline- (MCT-) induced pulmonary arterial hypertension (PAH). Method PAH was induced in rats through the subcutaneous injection of MCT. Next, rBMSC/Vector (negative control), rBMSC/Cav-1, rBMSC/Cav-1F92A, or rBMSC/Cav-1F92A+L-NAME were administered to the rats. Changes in pulmonary hemodynamic and vascular morphometry and oxidative stress levels were evaluated. CA1/kininogen and SelW/14-3-3η signal transduction, endothelial nitric oxide synthase (eNOS) dimerization, and eNOS/NO/sGC/cGMP pathway changes were determined through real-time polymerase chain reaction, Western blot, or immunohistochemical analyses. Results In MCT-induced PAH rats, rBMSC/Cav-1F92A treatment reduced right ventricular systolic pressure, vascular stenosis, and oxidative stress; downregulated CA1/kininogen signal transduction; upregulated SelW/14-3-3η signal transduction; and reactivated the NO pathway. Conclusions In a rat model of MCT-induced PAH, rBMSC/Cav-1F92A reduced oxidative stress by regulating CA1/kininogen and SelW/14-3-3η signal transduction.
Collapse
|
35
|
Reduced Basal Nitric Oxide Production Induces Precancerous Mammary Lesions via ERBB2 and TGFβ. Sci Rep 2019; 9:6688. [PMID: 31040372 PMCID: PMC6491486 DOI: 10.1038/s41598-019-43239-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 04/18/2019] [Indexed: 02/08/2023] Open
Abstract
One third of newly diagnosed breast cancers in the US are early-stage lesions. The etiological understanding and treatment of these lesions have become major clinical challenges. Because breast cancer risk factors are often linked to aberrant nitric oxide (NO) production, we hypothesized that abnormal NO levels might contribute to the formation of early-stage breast lesions. We recently reported that the basal level of NO in the normal breast epithelia plays crucial roles in tissue homeostasis, whereas its reduction contributes to the malignant phenotype of cancer cells. Here, we show that the basal level of NO in breast cells plummets during cancer progression due to reduction of the NO synthase cofactor, BH4, under oxidative stress. Importantly, pharmacological deprivation of NO in prepubertal to pubertal animals stiffens the extracellular matrix and induces precancerous lesions in the mammary tissues. These lesions overexpress a fibrogenic cytokine, TGFβ, and an oncogene, ERBB2, accompanied by the occurrence of senescence and stem cell-like phenotype. Consistently, normalization of NO levels in precancerous and cancerous breast cells downmodulates TGFβ and ERBB2 and ameliorates their proliferative phenotype. This study sheds new light on the etiological basis of precancerous breast lesions and their potential prevention by manipulating the basal NO level.
Collapse
|
36
|
Zhang D, Li Z, Li T, Luo D, Feng X, Liu Y, Huang J. miR-517a promotes Warburg effect in HCC by directly targeting FBP1. Onco Targets Ther 2018; 11:8025-8032. [PMID: 30519044 PMCID: PMC6239112 DOI: 10.2147/ott.s172084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies worldwide. Our aim is to explore the expression and biological function of miR-517a in HCC. MATERIALS AND METHODS We performed qRT-PCR to detect the expression of miR-517a in clinical samples and cell lines. CKK-8 assay and colony formation assay were employed to detect the miR-517a regulated cell proliferation. Glucose uptake and lactate production were examined to determine the Warburg effect. We also performed ECAR assay using Seahorse system. Luciferase acitivy assay was used to examine the binding of FBP1 3'UTR by miR-517a. RESULTS miR-517a was upregulated in HCC samples in both genomic and mRNA levels. Moreover, overexpression of miR-517a promoted cell proliferation and Warburg effect. Mechanically, miR-517a could directly target the 3'-UTR of FBP1. In addition, restoring the expression of FBP1 inhibited cell growth. CONCLUSION We demonstrated that miR-517a acts as an oncogene to promote Warburg effect in HCC, favoring tumor growth, and miR-517a/FBP1 could be a novel target for HCC treatment.
Collapse
Affiliation(s)
- Delin Zhang
- Department of Hepatobiliary Surgery, Guizhou People's Hospital, Guiyang 550002, China,
| | - Zhu Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550002, China
| | - Tao Li
- Department of Hepatobiliary Surgery, Guizhou People's Hospital, Guiyang 550002, China,
| | - Dan Luo
- Department of Hepatobiliary Surgery, Guizhou People's Hospital, Guiyang 550002, China,
| | - Xinfu Feng
- Department of Hepatobiliary Surgery, Guizhou People's Hospital, Guiyang 550002, China,
| | - Yan Liu
- Department of Hepatobiliary Surgery, Guizhou People's Hospital, Guiyang 550002, China,
| | - Jianzhao Huang
- Department of Hepatobiliary Surgery, Guizhou People's Hospital, Guiyang 550002, China,
| |
Collapse
|
37
|
Chen X, Guo Y, Jia G, Liu G, Zhao H, Huang Z. Arginine promotes skeletal muscle fiber type transformation from fast-twitch to slow-twitch via Sirt1/AMPK pathway. J Nutr Biochem 2018; 61:155-162. [DOI: 10.1016/j.jnutbio.2018.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/25/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
|
38
|
Xu Y, Gao W, Zhang Y, Wu S, Liu Y, Deng X, Xie L, Yang J, Yu H, Su J, Sun L. ABT737 reverses cisplatin resistance by targeting glucose metabolism of human ovarian cancer cells. Int J Oncol 2018; 53:1055-1068. [PMID: 30015875 PMCID: PMC6065457 DOI: 10.3892/ijo.2018.4476] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
The poor prognosis and high mortality of patients with ovarian cancer result in part from their poor response to platinum-based chemotherapy. However, the precise mechanism behind cisplatin resistance is still not fully understood. In the present study, the authors explored the mechanism of resistance to cisplatin from the perspective of glucose metabolism in human ovarian cancer. The experiments using genetically matched ovarian cancer cell lines SKOV3 (cisplatin-sensitive) and SKOV3/DDP (cisplatin-resistant) in the present study provided some important findings. First, in comparison to SKOV3 cells, SKOV3/DDP cells exhibited decreased dependence on aerobic glycolysis and an increased demand for glucose. Secondly, the stable overexpression of Bcl-2 and ability to shift metabolism towards oxidative phosphorylation (OXPHOS) in SKOV3/DDP cells were associated with increased oxygen consumption. Furthermore, the metabolic characteristic of elevated OXPHOS primarily comprised most mitochondrial-derived reactive oxygen species (ROS) and, at least in part, contributed to the slight pro-oxidant state of SKOV3/DDP cells in turn. Thirdly, SKOV3/DDP cells reset the redox balance by overexpressing the key enzyme glucose 6-phosphate dehydrogenase (G6PD) of the pentose phosphate pathway to eliminate the cytotoxicity of highly elevated ROS. Furthermore, the inhibition of Bcl-2 reduced the OXPHOS and sensitivity of SKOV3/DDP cells to cisplatin in a selective manner. Furthermore, when combined with 2-deoxyglucose (2-DG), the anticancer effect of the Bcl-2 inhibitor ABT737 was greatly potentiated and hypoxia-inducible factor 1α (HIF-1α) appeared to be closely associated with Bcl-2 family members in the regulation of glucose metabolism. These results suggested that the special glucose metabolism in SKOV3/DDP cells might be selectively targeted by disrupting Bcl-2-dependent OXPHOS.
Collapse
Affiliation(s)
- Yunjie Xu
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weinan Gao
- School of Clinical Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yong Zhang
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shanshan Wu
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanan Liu
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xinyue Deng
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lili Xie
- Department of Oral Geriatrics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiayan Yang
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Huimei Yu
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Su
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liankun Sun
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
39
|
Wang H, Liu Y, Wang Z, Yang M, Gu Y. 808 nm-light-excited upconversion nanoprobe based on LRET for the ratiometric detection of nitric oxide in living cancer cells. NANOSCALE 2018; 10:10641-10649. [PMID: 29845132 DOI: 10.1039/c8nr03078b] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
NO (nitric oxide) has dual functions in cancer, promoting carcinogenesis in low concentrations and inducing tumor cell apoptosis at high concentrations. The dual-edged-sword functions of NO make it particularly appealing to develop a sensitive and specific chemical probe for its detection. However, most NO sensors suffer from poor Stokes shifts and are limited by ultraviolet (UV) or visible light excitation, which render it difficult to avoid the intrinsic background signal. In this study, an 808 nm laser-excited Nd3+-sensitized upconversion nanoprobe based on LRET (luminescence resonance energy-transfer) for NO detection was constructed for the first time. This probe was composed of Nd3+-sensitized core-shell upconversion nanoparticles (540 nm and 660 nm emission) as the energy donor and RhBs as the acceptor. In the presence of NO, RhBs was converted into Rhodamine B and its strong absorption subsequently quenched the 540 nm fluorescence of UCNPs, while the emission at 660 nm remained constant. The ratiometric detection of the fluorescence at 540 nm, as compared to 660 nm, can precisely respond to the difference in NO levels with a detection limit of 0.21 μM. Importantly, compared with conventional UCNPs excited at 980 nm, the 808 nm light excitation led to lower water absorption and deeper tissue penetration, thus avoiding overheating and allowing for long-term biological imaging. This strategy has been perfectly applied to detecting the NO levels in living cells to differentiate the tumor cells from normal cells based on varied intracellular NO concentration. Further, the nanosystem realized the real-time monitoring of NO during treatment with NO donor drugs, which could inspire the future application of this probe to guide NO therapy.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yi Liu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhaohui Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Man Yang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
40
|
Zhao H, Achreja A, Iessi E, Logozzi M, Mizzoni D, Di Raimo R, Nagrath D, Fais S. The key role of extracellular vesicles in the metastatic process. Biochim Biophys Acta Rev Cancer 2018; 1869:64-77. [PMID: 29175553 PMCID: PMC5800973 DOI: 10.1016/j.bbcan.2017.11.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/16/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs), including exosomes, have a key role in the paracrine communication between organs and compartments. EVs shuttle virtually all types of biomolecules such as proteins, lipids, nucleic acids, metabolites and even pharmacological compounds. Their ability to transfer their biomolecular cargo into target cells enables EVs to play a key role in intercellular communication that can regulate cellular functions such as proliferation, apoptosis and migration. This has led to the emergence of EVs as a key player in tumor growth and metastasis through the formation of "tumor niches" in target organs. Recent data have also been shown that EVs may transform the microenvironment of primary tumors thus favoring the selection of cancer cells with a metastatic behavior. The release of EVs from resident non-malignant cells may contribute to the metastatic processes as well. However, cancer EVs may induce malignant transformation in resident mesenchymal stem cells, suggesting that the metastatic process is not exclusively due to circulating tumor cells. In this review, we outline and discuss evidence-based roles of EVs in actively regulating multiple steps of the metastatic process and how we can leverage EVs to impair metastasis.
Collapse
Affiliation(s)
- Hongyun Zhao
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Abhinav Achreja
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Elisabetta Iessi
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy.
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy.
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy.
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy
| | - Deepak Nagrath
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
41
|
Cholia RP, Kumari S, Kumar S, Kaur M, Kaur M, Kumar R, Dhiman M, Mantha AK. An in vitro study ascertaining the role of H 2O 2 and glucose oxidase in modulation of antioxidant potential and cancer cell survival mechanisms in glioblastoma U-87 MG cells. Metab Brain Dis 2017; 32:1705-1716. [PMID: 28676971 DOI: 10.1007/s11011-017-0057-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022]
Abstract
Glial cells protect themselves from the elevated reactive oxygen species (ROS) via developing unusual mechanisms to maintain the genomic stability, and reprogramming of the cellular antioxidant system to cope with the adverse effects. In the present study non-cytotoxic dose of oxidants, H2O2 (100 μM) and GO (10 μU/ml) was used to induce moderate oxidative stress via generating ROS in human glioblastoma cell line U-87 MG cells, which showed a marked increase in the antioxidant capacity as studied by measuring the modulation in expression levels and activities of superoxide dismutase (SOD1 and SOD2) and catalase (CAT) enzymes, and the GSH content. However, pretreatment (3 h) of Curcumin and Quercetin (10 μM) followed by the treatment of oxidants enhanced the cell survival, and the levels/activities of the antioxidants studied. Oxidative stress also resulted in an increase in the nitrite levels in the culture supernatants, and further analysis by immunocytochemistry showed an increase in iNOS expression. In addition, phytochemical pretreatment decreased the nitrite level in the culture supernatants of oxidatively stressed U-87 MG cells. Elevated ROS also increased the expression of COX-2 and APE1 enzymes and pretreatment of Curcumin and Quercetin decreased COX-2 expression and increased APE1 expression in the oxidatively stressed U-87 MG cells. The immunocytochemistry also indicates for APE1 enhanced stress-dependent subcellular localization to the nuclear compartment, which advocates for enhanced DNA repair and redox functions of APE1 towards survival of U-87 MG cells. It can be concluded that intracellular oxidants activate the key enzymes involved in antioxidant mechanisms, NO-dependent survival mechanisms, and also in the DNA repair pathways for glial cell survival in oxidative-stress micro-environment.
Collapse
Affiliation(s)
- Ravi P Cholia
- Center for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151 001, India
| | - Sanju Kumari
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Saurabh Kumar
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Manpreet Kaur
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Manbir Kaur
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Raj Kumar
- Center for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Center for Biochemistry and Microbial Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil K Mantha
- Center for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151 001, India.
| |
Collapse
|
42
|
Salimian Rizi B, Achreja A, Nagrath D. Nitric Oxide: The Forgotten Child of Tumor Metabolism. Trends Cancer 2017; 3:659-672. [PMID: 28867169 PMCID: PMC5679229 DOI: 10.1016/j.trecan.2017.07.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) is a signaling molecule with pleiotropic physiological roles in normal cells and pathophysiological roles in cancer. NO synthetase expression and NO synthesis are linked to altered metabolism, neoplasticity, invasiveness, chemoresistance, immune evasion, and ultimately to poor prognosis of cancer patients. Exogenous NO in the microenvironment facilitates paracrine signaling, mediates immune responses, and triggers angiogenesis. NO regulates posttranslational protein modifications, S-nitrosation, and genome-wide epigenetic modifications that can have both tumor-promoting and tumor-suppressing effects. We review mechanisms that link NO to cancer hallmarks, with a perspective of co-targeting NO metabolism with first-line therapies for improved outcome. We highlight the need for quantitative flux analysis to study NO in tumors.
Collapse
Affiliation(s)
- Bahar Salimian Rizi
- Agilent Technologies, Lexington, Massachusetts, USA; These authors contributed equally to this work
| | - Abhinav Achreja
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA; These authors contributed equally to this work
| | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
43
|
Burke AJ, Garrido P, Johnson C, Sullivan FJ, Glynn SA. Inflammation and Nitrosative Stress Effects in Ovarian and Prostate Pathology and Carcinogenesis. Antioxid Redox Signal 2017; 26:1078-1090. [PMID: 28326819 DOI: 10.1089/ars.2017.7004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE Prostate and ovarian cancers are major contributors to cancer-related deaths worldwide. Recently, inflammation and nitrosative stress have been implicated in carcinogenesis, with the overexpression of NOS2 and concomitant release of nitric oxide (NO) associated with cancer initiation and progression. Recent Advances: An increasing body of evidence indicates an association between NOS2 expression and aggressive ovarian cancer. Research also indicates a role for NO in prostate disease pathology and prostate cancer. A therapeutic role for NOS2 inhibition and/or NO drugs exists for the treatment of both ovarian and prostate tumors. CRITICAL ISSUES Herein, we review the key molecular effects associated with NOS2 in ovarian and prostate cancer. NOS2 increases angiogenesis and tumor proliferation and correlates with aggressive type II ovarian tumors. NOS2 expressing tumors are sensitive to cisplatin chemotherapy, and NO may be used to sensitize cisplatin-resistant tumors to chemotherapy. NOS2 is highly expressed in prostate tumors compared to non-neoplastic prostate pathologies. NO may play a role in the development of androgen-independent prostate cancer via s-nitrosylation of the androgen receptor. Moreover, NOS2 inhibitors and NO donor drugs show therapeutic potential in ovarian and prostate cancer as single agents or dual drugs, by either inhibiting the effects of NOS2 or increasing NO levels to induce cytotoxic effects. FUTURE DIRECTIONS NOS2 and NO present new targets for the treatment of ovarian and prostate tumors. Furthermore, understanding NO-related tumor biology in these cancers presents a new means for improved patient stratification to the appropriate treatment regimen. Antioxid. Redox Signal. 26, 1078-1090.
Collapse
Affiliation(s)
- Amy J Burke
- 1 Prostate Cancer Institute, School of Medicine, National University of Ireland Galway , Galway, Ireland
| | - Pablo Garrido
- 1 Prostate Cancer Institute, School of Medicine, National University of Ireland Galway , Galway, Ireland .,2 Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway , Galway, Ireland
| | - Carol Johnson
- 1 Prostate Cancer Institute, School of Medicine, National University of Ireland Galway , Galway, Ireland .,2 Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway , Galway, Ireland
| | - Francis J Sullivan
- 1 Prostate Cancer Institute, School of Medicine, National University of Ireland Galway , Galway, Ireland
| | - Sharon A Glynn
- 1 Prostate Cancer Institute, School of Medicine, National University of Ireland Galway , Galway, Ireland .,2 Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway , Galway, Ireland .,3 Apoptosis Research Centre, Biomedical Sciences, National University of Ireland Galway , Galway, Ireland
| |
Collapse
|
44
|
Li L, Zhu L, Hao B, Gao W, Wang Q, Li K, Wang M, Huang M, Liu Z, Yang Q, Li X, Zhong Z, Huang W, Xiao G, Xu Y, Yao K, Liu Q. iNOS-derived nitric oxide promotes glycolysis by inducing pyruvate kinase M2 nuclear translocation in ovarian cancer. Oncotarget 2017; 8:33047-33063. [PMID: 28380434 PMCID: PMC5464849 DOI: 10.18632/oncotarget.16523] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/15/2017] [Indexed: 01/30/2023] Open
Abstract
Aerobic glycolysis is essential for tumor growth and survival. Activation of multiple carcinogenic signals contributes to metabolism reprogramming during malignant transformation of cancer. Recently nitric oxide has been noted to promote glycolysis but the mechanism remains elusive. We report here the dual role of nitric oxide in glycolysis: low/physiological nitric oxide (≤ 100 nM) promotes glycolysis for ATP production, oxidative defense and cell proliferation of ovary cancer cells, whereas excess nitric oxide (≥ 500 nM) inhibits it. Nitric oxide has a positive effect on glycolysis by inducing PKM2 nuclear translocation in an EGFR/ERK2 signaling-dependent manner. Moreover, iNOS induced by mild inflammatory stimulation increased glycolysis and cell proliferation by producing low doses of nitric oxide, while hyper inflammation induced iNOS inhibited it by producing excess nitric oxide. Finally, iNOS expression is abnormally increased in ovarian cancer tissues and is correlated with PKM2 expression. Overexpression of iNOS is associated with aggressive phenotype and poor survival outcome in ovarian cancer patients. Our study indicated that iNOS/NO play a dual role of in tumor glycolysis and progression, and established a bridge between iNOS/NO signaling pathway and EGFR/ERK2/PKM2 signaling pathway, suggesting that interfering glycolysis by targeting the iNOS/NO/PKM2 axis may be a valuable new therapeutic approach of treating ovarian cancer.
Collapse
Affiliation(s)
- Linlin Li
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Guangzhou 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Southern Medical University, Guangzhou 510515, China
| | - Lingqun Zhu
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Bingtao Hao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Guangzhou 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Southern Medical University, Guangzhou 510515, China
| | - Wenwen Gao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Qianli Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Keyi Li
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Meng Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Mengqiu Huang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Zhengjun Liu
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiaohong Yang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiqing Li
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China
| | - Zhuo Zhong
- Department of Oncology, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, China
| | - Wenhua Huang
- Department of Human Anatomy, Southern Medical University, Guangzhou 510515, China
| | - Guanghui Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yang Xu
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Guangzhou 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Southern Medical University, Guangzhou 510515, China
| | - Kaitai Yao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Qiuzhen Liu
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Guangzhou 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
45
|
Jin Z, Wen Y, Hu Y, Chen W, Zheng X, Guo W, Wang T, Qian Z, Su BL, He Q. MRI-guided and ultrasound-triggered release of NO by advanced nanomedicine. NANOSCALE 2017; 9:3637-3645. [PMID: 28247895 DOI: 10.1039/c7nr00231a] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nitric oxide (NO) has been well identified as a specific free radical molecule possessing wide-ranging therapeutic effects. Targeted delivery and controlled release of NO are highly desired to realize precision gas therapy, but are still challenging owing to the non-targetability and uncontrollability of NO itself. Herein, we propose a new concept of MRI-guided and ultrasound-triggered gas release for precision gas therapy. Based on this concept, we develop a novel ultrasound-responsive BNN-type NO-releasing molecule (NORM) and an advanced rattle-type nano-carrier of superparamagnetic iron oxide-encapsulated mesoporous silica nanoparticles (SPION@hMSN), and use them to construct a new intelligent nanomedicine (BNN6-SPION@hMSN) for the first time. The BNN6-SPION@hMSN nanomedicine exhibits excellent passive tumor-targeting capability, high MRI-guided tumor localization performance and a unique ultrasound-triggered NO release profile. The tumor-targeted, MRI-guided and ultrasound-triggered release profiles of the developed nanomedicine enable the tumor site-specific controlled release of NO in favor of high-efficacy and safe NO gas therapy of tumor.
Collapse
Affiliation(s)
- Zhaokui Jin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China.
| | - Yanyuan Wen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China.
| | - Yaxin Hu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China.
| | - Wenwen Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China.
| | - Xianfeng Zheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Weisheng Guo
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Tianfu Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China.
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Qianjun He
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China.
| |
Collapse
|
46
|
Zhao L, Yu C, Zhou S, Lau WB, Lau B, Luo Z, Lin Q, Yang H, Xuan Y, Yi T, Zhao X, Wei Y. Epigenetic repression of PDZ-LIM domain-containing protein 2 promotes ovarian cancer via NOS2-derived nitric oxide signaling. Oncotarget 2016; 7:1408-20. [PMID: 26593252 PMCID: PMC4811469 DOI: 10.18632/oncotarget.6368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/15/2015] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer constitutes one of the most lethal gynaecological malignancies worldwide and currently no satisfactory therapeutic approaches have been established. Therefore, elucidation of molecular mechanisms to develop targeted therapy of ovarian cancer is crucial. PDLIM2 is critical to promote ubiquitination of nuclear p65 and thus its role in inflammation has been highlighted recently. We demonstrate that PDLIM2 is decreased in both ovarian high-grade serous carcinoma and in various human ovarian cancer cell lines compared with normal ovary tissues and human ovarian surface epithelial cells (HOSE). Further functional analysis revealed that PDLIM2 is epigenetically repressed in ovarian cancer development and inhibition of PDLIM2 promoted ovarian cancer growth both in vivo and in vitro via NOS2-derived nitric oxide signaling, leading to recruitment of M2 type macrophages. These results suggest that PDLIM2 might be involved in ovarian cancer pathogenesis, which could serve as a promising therapeutic target for ovarian cancer patients.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Chengdu, China.,The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chuan Yu
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Chengdu, China.,The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shengtao Zhou
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Chengdu, China.,The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Bonnie Lau
- Department of Surgery, Emergency Medicine, Kaiser Permanente Santa Clara Medical Center, Santa Clara, CA, USA
| | - Zhongyue Luo
- College of Biological Sciences, Sichuan University, Chengdu, China
| | - Qiao Lin
- College of Biological Sciences, Sichuan University, Chengdu, China
| | - Huiliang Yang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Xuan
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Chengdu, China.,The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Yi
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Chengdu, China.,The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Chengdu, China.,The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Chengdu, China.,The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Fan TWM, Warmoes MO, Sun Q, Song H, Turchan-Cholewo J, Martin JT, Mahan A, Higashi RM, Lane AN. Distinctly perturbed metabolic networks underlie differential tumor tissue damages induced by immune modulator β-glucan in a two-case ex vivo non-small-cell lung cancer study. Cold Spring Harb Mol Case Stud 2016; 2:a000893. [PMID: 27551682 PMCID: PMC4990809 DOI: 10.1101/mcs.a000893] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer and stromal cell metabolism is important for understanding tumor development, which highly depends on the tumor microenvironment (TME). Cell or animal models cannot recapitulate the human TME. We have developed an ex vivo paired cancerous (CA) and noncancerous (NC) human lung tissue approach to explore cancer and stromal cell metabolism in the native human TME. This approach enabled full control of experimental parameters and acquisition of individual patient's target tissue response to therapeutic agents while eliminating interferences from genetic and physiological variations. In this two-case study of non-small-cell lung cancer, we performed stable isotope-resolved metabolomic (SIRM) experiments on paired CA and NC lung tissues treated with a macrophage activator β-glucan and (13)C6-glucose, followed by ion chromatography-Fourier transform mass spectrometry (IC-FTMS) and nuclear magnetic resonance (NMR) analyses of (13)C-labeling patterns of metabolites. We demonstrated that CA lung tissue slices were metabolically more active than their NC counterparts, which recapitulated the metabolic reprogramming in CA lung tissues observed in vivo. We showed β-glucan-enhanced glycolysis, Krebs cycle, pentose phosphate pathway, antioxidant production, and itaconate buildup in patient UK021 with chronic obstructive pulmonary disease (COPD) and an abundance of tumor-associated macrophages (TAMs) but not in UK049 with no COPD and much less macrophage infiltration. This metabolic response of UK021 tissues was accompanied by reduced mitotic index, increased necrosis, and enhaced inducible nitric oxide synthase (iNOS) expression. We surmise that the reprogrammed networks could reflect β-glucan M1 polarization of human macrophages. This case study presents a unique opportunity for investigating metabolic responses of human macrophages to immune modulators in their native microenvironment on an individual patient basis.
Collapse
Affiliation(s)
- Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Marc O Warmoes
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Qiushi Sun
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Huan Song
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Jadwiga Turchan-Cholewo
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Jeremiah T Martin
- Department of Surgery and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Angela Mahan
- Department of Surgery and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| |
Collapse
|
48
|
Sanhueza C, Araos J, Naranjo L, Barros E, Subiabre M, Toledo F, Gutiérrez J, Chiarello DI, Pardo F, Leiva A, Sobrevia L. Nitric oxide and pH modulation in gynaecological cancer. J Cell Mol Med 2016; 20:2223-2230. [PMID: 27469435 PMCID: PMC5134382 DOI: 10.1111/jcmm.12921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/05/2016] [Indexed: 01/09/2023] Open
Abstract
Nitric oxide plays several roles in cellular physiology, including control of the vascular tone and defence against pathogen infection. Neuronal, inducible and endothelial nitric oxide synthase (NOS) isoforms synthesize nitric oxide. Cells generate acid and base equivalents, whose physiological intracellular concentrations are kept due to membrane transport systems, including Na+/H+ exchangers and Na+/HCO3− transporters, thus maintaining a physiological pH at the intracellular (~7.0) and extracellular (~7.4) medium. In several pathologies, including cancer, cells are exposed to an extracellular acidic microenvironment, and the role for these membrane transport mechanisms in this phenomenon is likely. As altered NOS expression and activity is seen in cancer cells and because this gas promotes a glycolytic phenotype leading to extracellular acidosis in gynaecological cancer cells, a pro‐inflammatory microenvironment increasing inducible NOS expression in this cell type is feasible. However, whether abnormal control of intracellular and extracellular pH by cancer cells regards with their ability to synthesize or respond to nitric oxide is unknown. We, here, discuss a potential link between pH alterations, pH controlling membrane transport systems and NOS function. We propose a potential association between inducible NOS induction and Na+/H+ exchanger expression and activity in human ovary cancer. A potentiation between nitric oxide generation and the maintenance of a low extracellular pH (i.e. acidic) is proposed to establish a sequence of events in ovarian cancer cells, thus preserving a pro‐proliferative acidic tumour extracellular microenvironment. We suggest that pharmacological therapeutic targeting of Na+/H+ exchangers and inducible NOS may have benefits in human epithelial ovarian cancer.
Collapse
Affiliation(s)
- Carlos Sanhueza
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joaquín Araos
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luciano Naranjo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eric Barros
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Subiabre
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Jaime Gutiérrez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Cellular Signalling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| | - Delia I Chiarello
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain.,University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, Australia
| |
Collapse
|
49
|
Dia VP, Pangloli P, Jones L, McClure A, Patel A. Phytochemical concentrations and biological activities of Sorghum bicolor alcoholic extracts. Food Funct 2016; 7:3410-20. [PMID: 27406291 DOI: 10.1039/c6fo00757k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sorghum is an important cereal with reported health benefits. The objectives of this study were to measure the biological activities of alcoholic extracts of ten sorghum varieties and to determine the association between the color of the extracts and their biological activities. Variation on concentrations of bioactives among sorghum varieties was observed with ethanolic extracts giving higher concentrations than methanolic extracts. The color of the extracts significantly correlated with the concentrations of bioactives and with nitric oxide scavenging activity. Freeze-dried ethanol extract is more potent than freeze-dried methanol extract and caused cytotoxicity to A27801AP and PTX-10 OVCA with ED50 values of 0.69 and 1.29 mg mL(-1), respectively. Pre-treatment of OVCA with ethanol extract led to chemosensitization to paclitaxel and the proliferation and colony formation of OVCA cells were reduced by 14.7 to 44.6% and 36.4 to 40.1%, respectively. Sorghum is a potential source of colorants with health promoting properties. This is the first report on the capability of sorghum alcoholic extracts to cause cytotoxicity and chemosensitize ovarian cancer cells in vitro.
Collapse
Affiliation(s)
- Vermont P Dia
- Department of Food Science and Technology, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA.
| | | | | | | | | |
Collapse
|
50
|
Lane AN, Higashi RM, Fan TWM. Preclinical models for interrogating drug action in human cancers using Stable Isotope Resolved Metabolomics (SIRM). Metabolomics 2016; 12:118. [PMID: 27489532 PMCID: PMC4968890 DOI: 10.1007/s11306-016-1065-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIMS In this review we compare the advantages and disadvantages of different model biological systems for determining the metabolic functions of cells in complex environments, how they may change in different disease states, and respond to therapeutic interventions. BACKGROUND All preclinical drug-testing models have advantages and drawbacks. We compare and contrast established cell, organoid and animal models with ex vivo organ or tissue culture and in vivo human experiments in the context of metabolic readout of drug efficacy. As metabolism reports directly on the biochemical state of cells and tissues, it can be very sensitive to drugs and/or other environmental changes. This is especially so when metabolic activities are probed by stable isotope tracing methods, which can also provide detailed mechanistic information on drug action. We have developed and been applying Stable Isotope-Resolved Metabolomics (SIRM) to examine metabolic reprogramming of human lung cancer cells in monoculture, in mouse xenograft/explant models, and in lung cancer patients in situ (Lane et al. 2011; T. W. Fan et al. 2011; T. W-M. Fan et al. 2012; T. W. Fan et al. 2012; Xie et al. 2014b; Ren et al. 2014a; Sellers et al. 2015b). We are able to determine the influence of the tumor microenvironment using these models. We have now extended the range of models to fresh human tissue slices, similar to those originally described by O. Warburg (Warburg 1923), which retain the native tissue architecture and heterogeneity with a paired benign versus cancer design under defined cell culture conditions. This platform offers an unprecedented human tissue model for preclinical studies on metabolic reprogramming of human cancer cells in their tissue context, and response to drug treatment (Xie et al. 2014a). As the microenvironment of the target human tissue is retained and individual patient's response to drugs is obtained, this platform promises to transcend current limitations of drug selection for clinical trials or treatments. CONCLUSIONS AND FUTURE WORK Development of ex vivo human tissue and animal models with humanized organs including bone marrow and liver show considerable promise for analyzing drug responses that are more relevant to humans. Similarly using stable isotope tracer methods with these improved models in advanced stages of the drug development pipeline, in conjunction with tissue biopsy is expected significantly to reduce the high failure rate of experimental drugs in Phase II and III clinical trials.
Collapse
Affiliation(s)
- Andrew N Lane
- Center for Environmental and Systems Biochemistry, University of Kentucky
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, University of Kentucky
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, University of Kentucky
| |
Collapse
|