1
|
Ferreira A, Castanheira P, Escrevente C, Barral DC, Barona T. Membrane trafficking alterations in breast cancer progression. Front Cell Dev Biol 2024; 12:1350097. [PMID: 38533085 PMCID: PMC10963426 DOI: 10.3389/fcell.2024.1350097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 03/28/2024] Open
Abstract
Breast cancer (BC) is the most common type of cancer in women, and remains one of the major causes of death in women worldwide. It is now well established that alterations in membrane trafficking are implicated in BC progression. Indeed, membrane trafficking pathways regulate BC cell proliferation, migration, invasion, and metastasis. The 22 members of the ADP-ribosylation factor (ARF) and the >60 members of the rat sarcoma (RAS)-related in brain (RAB) families of small GTP-binding proteins (GTPases), which belong to the RAS superfamily, are master regulators of membrane trafficking pathways. ARF-like (ARL) subfamily members are involved in various processes, including vesicle budding and cargo selection. Moreover, ARFs regulate cytoskeleton organization and signal transduction. RABs are key regulators of all steps of membrane trafficking. Interestingly, the activity and/or expression of some of these proteins is found dysregulated in BC. Here, we review how the processes regulated by ARFs and RABs are subverted in BC, including secretion/exocytosis, endocytosis/recycling, autophagy/lysosome trafficking, cytoskeleton dynamics, integrin-mediated signaling, among others. Thus, we provide a comprehensive overview of the roles played by ARF and RAB family members, as well as their regulators in BC progression, aiming to lay the foundation for future research in this field. This research should focus on further dissecting the molecular mechanisms regulated by ARFs and RABs that are subverted in BC, and exploring their use as therapeutic targets or prognostic markers.
Collapse
|
2
|
Peng Y, Liu QZ, Xu D, Fu JY, Zhang LX, Qiu L, Lin JG. M 4IDP stimulates ROS elevation through inhibition of mevalonate pathway and pentose phosphate pathway to inhibit colon cancer cells. Biochem Pharmacol 2023; 217:115856. [PMID: 37838274 DOI: 10.1016/j.bcp.2023.115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Maintaining redox homeostasis is an essential feature of cancer cells, and disrupting this homeostasis to cause oxidative stress and induce cell death is an important strategy in cancer therapy. M4IDP, a zoledronic acid derivative, can cause the death of human colorectal cancer cells by increasing the level of intracellular reactive oxygen species (ROS). However, its potential molecular mechanism is unclear. Our in vitro studies showed that treatment with M4IDP promoted oxidative stress in HCT116 cells, as measured by the decreased ratios of GSH/GSSG and NADPH/NADP+ and increased level of MDA. M4IDP could cause the decrease of GSH content, the increase of GSSG content, the decrease of NADPH content and pentose phosphate pathway flux, the downregulation of G6PD expression, the upregulation of unprenylated Rap1A and total expression of RhoA and CDC42. The increase of ROS and cytotoxicity induced by M4IDP could be reversed by the supplementation of NADPH, the overexpression of G6PD and the supplementation of GGOH. In vivo studies showed that M4IDP inhibited tumor growth in the human colorectal cancer xenograft mouse model, which was accompanied with a decreased [18F]FDG uptake. Collectively, these results provide evidence that M4IDP can promote oxidation in colon cancer cells by inhibiting mevalonate pathway and pentose phosphate pathway and produce therapeutic effect. This study revealed for the first time a possible mechanism of bisphosphonate-induced increase of ROS in malignant tumor cells. This is helpful for the development of new molecular therapeutic targets and can provide new ideas for the combined therapy of bisphosphonates in tumors.
Collapse
Affiliation(s)
- Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qing-Zhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Dong Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Jia-Yu Fu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Li-Xia Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jian-Guo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
3
|
Petruk N, Sousa S, Croset M, Polari L, Zlatev H, Selander K, Mönkkönen J, Clézardin P, Määttä J. Liposome-encapsulated zoledronate increases inflammatory macrophage population in TNBC tumours. Eur J Pharm Sci 2023; 190:106571. [PMID: 37652236 DOI: 10.1016/j.ejps.2023.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Tumour associated macrophages (TAMs) are important players in breast tumour progression and metastasis. Clinical and preclinical evidence suggests a role for zoledronate (ZOL) in breast cancer metastasis prevention. Further, zoledronate is able to induce inflammatory activation of monocytes and macrophages, which can be favourable in cancer treatments. The inherent bone tropism of zoledronate limits its availability in soft tissues and tumours. In this study we utilised an orthotopic murine breast cancer model to evaluate the possibility to use liposomes (EMP-LIP) to target zoledronate to tumours to modify TAM activation. METHODS Triple-negative breast cancer 4T1 cells were inoculated in the 4th mammary fat pad of female Balb/c mice. Animals were divided according to the treatment: vehicle, ZOL, EMP-LIP and liposome encapsulated zoledronate (ZOL-LIP). Treatment was done intravenously (with tumour resection) and intraperitoneally (without tumour resection). Tumour growth was followed by bioluminescence in vivo imaging (IVIS) and calliper measurements. Tumour-infiltrating macrophages were assessed by immunohistochemical and immunofluorescence staining. Protein and RNA expression levels of inflammatory transcription factors and cytokines were measured by Western Blotting and Taqman RT-qPCR. RESULTS Liposome encapsulated zoledronate (ZOL-LIP) treatment suppressed migration of 4T1 cell in vitro. Tumour growth and expression of the angiogenic marker CD34 were reduced upon both ZOL and ZOL-LIP treatment in vivo. Long-term ZOL-LIP treatment resulted in shift towards M1-type macrophage polarization, increased CD4 T cell infiltration and activation of NF-κB indicating changes in intratumoural inflammation, whereas ZOL treatment showed similar but non-significant trends. Moreover, ZOL-LIP had a lower bisphosphonate accumulation in bone compared to free ZOL. CONCLUSION Results show that the decreased bisphosphonate accumulation in bone promotes the systemic anti-tumour effect of ZOL-LIP by increasing inflammatory response in TNBC tumours via M1-type macrophage activation.
Collapse
Affiliation(s)
- Nataliia Petruk
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sofia Sousa
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - Lauri Polari
- Institute of Biomedicine, University of Turku, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Hristo Zlatev
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Katri Selander
- Department of Oncology and Radiation Therapy, Oulu University Hospital, Oulu, Finland
| | - Jukka Mönkkönen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - Jorma Määttä
- Institute of Biomedicine, University of Turku, Turku, Finland; Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
4
|
Zhang J, Bai H, Bai M, Wang X, Li Z, Xue H, Wang J, Cui Y, Wang H, Wang Y, Zhou R, Zhu X, Xu M, Zhao X, Liu H. Bisphosphonate-incorporated coatings for orthopedic implants functionalization. Mater Today Bio 2023; 22:100737. [PMID: 37576870 PMCID: PMC10413202 DOI: 10.1016/j.mtbio.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Bisphosphonates (BPs), the stable analogs of pyrophosphate, are well-known inhibitors of osteoclastogenesis to prevent osteoporotic bone loss and improve implant osseointegration in patients suffering from osteoporosis. Compared to systemic administration, BPs-incorporated coatings enable the direct delivery of BPs to the local area, which will precisely enhance osseointegration and bone repair without the systemic side effects. However, an elaborate and comprehensive review of BP coatings of implants is lacking. Herein, the cellular level (e.g., osteoclasts, osteocytes, osteoblasts, osteoclast precursors, and bone mesenchymal stem cells) and molecular biological regulatory mechanism of BPs in regulating bone homeostasis are overviewed systematically. Moreover, the currently available methods (e.g., chemical reaction, porous carriers, and organic material films) of BP coatings construction are outlined and summarized in detail. As one of the key directions, the latest advances of BP-coated implants to enhance bone repair and osseointegration in basic experiments and clinical trials are presented and critically evaluated. Finally, the challenges and prospects of BP coatings are also purposed, and it will open a new chapter in clinical translation for BP-coated implants.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haotian Bai
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Miao Bai
- Department of Ocular Fundus Disease, Ophthalmology Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiaonan Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - ZuHao Li
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haowen Xue
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jincheng Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yutao Cui
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Hui Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yanbing Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Rongqi Zhou
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiujie Zhu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Mingwei Xu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xin Zhao
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - He Liu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
5
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Muehlebach ME, Holstein SA. Geranylgeranyl diphosphate synthase: Role in human health, disease and potential therapeutic target. Clin Transl Med 2023; 13:e1167. [PMID: 36650113 PMCID: PMC9845123 DOI: 10.1002/ctm2.1167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid biosynthesis pathway, is responsible for the production of geranylgeranyl pyrophosphate (GGPP). GGPP serves as a substrate for the post-translational modification (geranylgeranylation) of proteins, including those belonging to the Ras superfamily of small GTPases. These proteins play key roles in signalling pathways, cytoskeletal regulation and intracellular transport, and in the absence of the prenylation modification, cannot properly localise and function. Aberrant expression of GGDPS has been implicated in various human pathologies, including liver disease, type 2 diabetes, pulmonary disease and malignancy. Thus, this enzyme is of particular interest from a therapeutic perspective. Here, we review the physiological function of GGDPS as well as its role in pathophysiological processes. We discuss the current GGDPS inhibitors under development and the therapeutic implications of targeting this enzyme.
Collapse
Affiliation(s)
- Molly E. Muehlebach
- Cancer Research Doctoral ProgramUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sarah A. Holstein
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
7
|
Ureyen Ozdemir E, Adali E, Islimye Taskin M, Yavasoglu A, Aktug H, Oltulu F, Inceboz U. Effects of ranibizumab and zoledronic acid on endometriosis in a rat model. Arch Gynecol Obstet 2022; 306:1399-1405. [PMID: 35212768 DOI: 10.1007/s00404-021-06393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/30/2021] [Indexed: 11/02/2022]
Affiliation(s)
- Eda Ureyen Ozdemir
- Gynecology and Obstetrics, Balikesir University, Balikesir, Turkey. .,Gynecology and Obstetrics, Ankara City Hospital, Ankara, Turkey.
| | - Ertan Adali
- Gynecology and Obstetrics, Balikesir University, Balikesir, Turkey
| | | | | | - Huseyin Aktug
- Histology and Embryology, Ege University, Izmir, Turkey
| | - Fatih Oltulu
- Histology and Embryology, Ege University, Izmir, Turkey
| | - Umit Inceboz
- Gynecology and Obstetrics, Irenbe Gynecology and IVF Clinic, Izmir, Turkey
| |
Collapse
|
8
|
Sahid MNA, Liu S, Kiyoi T, Maeyama K, Mogi M. Inhibition of Histamine Release from RBL-2H3 Cells by Zoledronate Did Not Affect Rab27a/Doc2a Interaction. Biol Pharm Bull 2021; 44:1902-1906. [PMID: 34853276 DOI: 10.1248/bpb.b21-00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mast cell (MC) exocytosis is organized by prenylated protein, including Rab families. Among Rab proteins, Rab3a, Rab27a, and Rab11 are responsible for exocytosis arrangement. Rab3a and Rab27a are contributed to exocytosis by interacting with other exocytosis proteins. Zoledronate administration disrupted the Rab prenylation process that affected its interaction with other proteins, and finally, its function. The present study has investigated the effect of zoledronate on the histamine release (HR) from RBL-2H3 cells. The main focus is to answer the question of whether zoledronate affects Rab27a/Doc2a interaction. Histamine release on RBL-2H3 cells after zoledronate or clodronate administration was measured using HPLC-fluorometry. Dinitrophenylated bovine serum albumin (DNP-BSA) (20 ng/mL) or ionomycin (1 µM) are used as secretagogues. Calcium (Ca2+) influx observation was performed using Fura-2A/M. In situ proximity ligation assay (PLA) is used to investigate Rab27a/Doc2a interaction after bisphosphonates (BPs) treatment. Histamine concentration measurement with HPLC-fluorometry showed that zoledronate (30, 100 µM) inhibited HR from antigen-activated RBL-2H3 cells. Zoledronate showed less inhibition in cells activated with ionomycin. Intracellular Ca2+ concentration and Ca2+ flux rate from the extracellular compartment was not changed by zoledronate administration. No changes in Rab27a/Doc2a interaction after zoledronate treatment. Histamine release inhibition by zoledronate in DNP-BSA-activated RBL-2H3 cells is not related to the disruption of Rab27a/Doc2a interaction and is not involve the change in Ca2+ influx.
Collapse
Affiliation(s)
- Muhammad N A Sahid
- Department of Pharmacology, Graduate School of Medicine, Ehime University
| | - Shuang Liu
- Department of Pharmacology, Graduate School of Medicine, Ehime University
| | - Takeshi Kiyoi
- Advance Research Support Center (ADRES), Ehime University
| | - Kazutaka Maeyama
- Department of Pharmacology, Graduate School of Medicine, Ehime University
| | - Masaki Mogi
- Department of Pharmacology, Graduate School of Medicine, Ehime University
| |
Collapse
|
9
|
Ureyen Ozdemir E, Adali E, Islimye Taskin M, Yavasoglu A, Aktug H, Oltulu F, Inceboz U. Effects of ranibizumab and zoledronic acid on endometriosis in a rat model. Arch Gynecol Obstet 2021; 305:267-274. [PMID: 34081204 DOI: 10.1007/s00404-021-06104-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the histological efficacy of ranibizumab and zoledronic acid in an experimentally induced endometriosis model as compared with danazol, buserelin acetate and dienogest. METHODS Endometrial implants were introduced in 52 female Wistar albino rats, which were then randomly divided into six groups. The animals were, respectively, given dienogest, danazol, buserelin acetate, zoledronic acid, ranibizumab and 0.9% NaCl. After 4 weeks, the volumes and histopathological properties of the implants were evaluated and the implants were excised completely at the third laparotomy. A histopathological scoring system was used to evaluate the preservation of epithelia. Endometrial explants were evaluated immunohistochemically. RESULTS Among the groups, the histological score was significantly lower in the zoledronic acid and ranibizumab groups compared with the controls (p < 0.001). There were no significant differences regarding ellipsoidal volume levels between groups (p > 0.05). However, there was a statistically significant difference regarding cell numbers according to the degree of Bcl-2, NF-κB, and CD31 staining (p < 0.001). There was no statistically significant difference in Bcl-2, CD31, or NF-κB staining in the binary comparisons between the other groups (p > 0.05). For Bcl-2 staining, the staining rate of the group treated with zoledronic acid was significantly lower compared with the dienogest and danazol groups (p < 0.05). The staining rates of CD31 and NF-κB were significantly lower in the zoledronic acid and ranibizumab groups compared with the controls (p < 0.05). CONCLUSION According to these results, zoledronic acid and ranibizumab may be putative candidates for the treatment of endometriosis.
Collapse
Affiliation(s)
- Eda Ureyen Ozdemir
- Gynecology and Obstetrics, Balikesir University, Balikesir, Turkey. .,Gynecology and Obstetrics, Ankara City Hospital, Ankara, Turkey.
| | - Ertan Adali
- Gynecology and Obstetrics, Balikesir University, Balikesir, Turkey
| | | | | | - Huseyin Aktug
- Histology and Embryology, Ege University, Izmir, Turkey
| | - Fatih Oltulu
- Histology and Embryology, Ege University, Izmir, Turkey
| | - Umit Inceboz
- Gynecology and Obstetrics, Balikesir University, Balikesir, Turkey.,Irenbe Gynecology and IVF Center, Izmir, Turkey
| |
Collapse
|
10
|
Influence of anti-osteoporosis treatments on the incidence of COVID-19 in patients with non-inflammatory rheumatic conditions. Aging (Albany NY) 2020; 12:19923-19937. [PMID: 33080571 PMCID: PMC7655189 DOI: 10.18632/aging.104117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 19 (COVID-19) is currently a global pandemic that affects patients with other pathologies. Here, we investigated the influence of treatments for osteoporosis and other non-inflammatory rheumatic conditions, such as osteoarthritis and fibromyalgia, on COVID-19 incidence. To this end, we conducted a cross-sectional study of 2,102 patients being treated at the Rheumatology Service of Hospital del Mar (Barcelona, Spain). In our cohort, COVID-19 cumulative incidence from March 1 to May 3, 2020 was compared to population estimates for the same city. We used Poisson regression models to determine the adjusted relative risk ratios for COVID-19 associated with different treatments and comorbidities. Denosumab, zoledronate and calcium were negatively associated with COVID-19 incidence. Some analgesics, particularly pregabalin and most of the studied antidepressants, were positively associated with COVID-19 incidence, whereas duloxetine presented a negative association. Oral bisphosphonates, vitamin D, thiazide diuretics, anti-hypertensive drugs and chronic non-steroidal anti-inflammatory drugs had no effect on COVID-19 incidence in the studied population. Our results provide novel evidence to support the maintenance of the main anti-osteoporosis treatments in COVID-19 patients, which may be of particular relevance to elderly patients affected by the SARS-CoV-2 pandemic.
Collapse
|
11
|
Brufsky A, Marti JLG, Nasrazadani A, Lotze MT. Boning up: amino-bisphophonates as immunostimulants and endosomal disruptors of dendritic cell in SARS-CoV-2 infection. J Transl Med 2020; 18:261. [PMID: 32600410 PMCID: PMC7322393 DOI: 10.1186/s12967-020-02433-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/24/2020] [Indexed: 01/01/2023] Open
Abstract
Amino-bisphosphonates such as zoledronic acid (ZA) can possibly ameliorate or prevent severe COVID-19 disease by at least three distinct mechanisms: (1) as immunostimulants which could boost γδ T cell expansion, important in the acute response in the lung; (2) as DC modulators, limiting their ability to only partially activate T cells; and (3) as prenylation inhibitors of small GTPases in the endosomal pathway of the DC to prevent expulsion of lysosomes containing SARS-CoV-2 virions. Use of ZA or other amino-bisphosphonates as modulators of COVID-19 disease should be considered.
Collapse
Affiliation(s)
- Adam Brufsky
- UPMC Hillman Cancer Center, Magee Women’s Hospital, University of Pittsburgh, School of Medicine, Suite 4628, 300 Halket Street, Pittsburgh, PA 15213 USA
| | | | | | - Michael T. Lotze
- Department of Surgery, UPMC Hillman Cancer Center, Rm G.27A, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| |
Collapse
|
12
|
Park YE, Bava U, Lin JM, Cornish J, Naot D, Reid IR. Bone-Bound Bisphosphonates Inhibit Proliferation of Breast Cancer Cells. Calcif Tissue Int 2019; 105:497-505. [PMID: 31324954 DOI: 10.1007/s00223-019-00590-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/12/2019] [Indexed: 12/31/2022]
Abstract
Bisphosphonates are used in treating patients with breast cancer. In vitro studies have shown that bisphosphonates act directly on tumour cells, inhibiting cell proliferation and inducing apoptosis. In most such studies, drugs were added to culture media exposing cells to high bisphosphonate concentrations in solution. However, since bisphosphonates bind to bone hydroxyapatite with high affinity and remain bound for very long periods of time, these experimental systems are not an optimal model for the action of the drugs in vivo. The aim of this study was to determine whether bone-bound zoledronate has direct effects on adjacent breast cancer cells. Bone slices were pre-incubated with bisphosphonate solutions, washed, and seeded with cells of the breast cancer cell lines, MCF7 or MDA-MB-231. Proliferation was assessed by cell counts and thymidine incorporation for up to 72 h. Inhibition of the mevalonate pathway was tested by measuring the levels of unprenylated Rap1A, and apoptosis was examined by the presence of cleaved caspase-8 on western blots. The proliferation rate of breast cancer cells on zoledronate-treated bone was significantly lower compared to cells on control bone. Other bisphosphonates showed a similar inhibitory effect, with an order of potency similar to their clinical potencies. Unprenylated Rap1A accumulated in MCF7 cells on zoledronate-treated bone, suggesting zoledronate acted through the inhibition of the mevalonate pathway. Accumulation of cleaved caspase-8 in MDA-MB-231 cells on bisphosphonate-treated bone indicated increased apoptosis in the cells. In conclusion, bone-bound zoledronate inhibits breast cancer cell proliferation, an activity that may contribute to its clinical anti-tumour effects.
Collapse
Affiliation(s)
- Young-Eun Park
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Usha Bava
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jian-Ming Lin
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jillian Cornish
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Dorit Naot
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Ian R Reid
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
13
|
Nasulewicz-Goldeman A, Goldeman W, Mrówczyńska E, Wietrzyk J. Biological effects of aromatic bis[aminomethylidenebis(phosphonic)] acids in osteoclast precursors in vitro. Chem Biol Drug Des 2019; 94:1835-1848. [PMID: 31356729 DOI: 10.1111/cbdd.13597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
Nitrogen-containing bisphosphonates (N-BPs) inhibit bone resorption by preventing osteoclast activity. Most clinically used BPs are hydroxybisphosphonates with the exception of incadronate, which belongs to the class of aminomethylidenebisphosphonic acids. The aim of this study was to evaluate the antiproliferative activity of two previously reported aminobisphosphonates (WG8185B2 and WG9001B) in combination with doxorubicin and cisplatin toward J774E cells (a model of osteoclast precursors in vitro). WG8185B2 and WG9001B BPs enhanced the cytotoxic activity of doxorubicin and cisplatin, especially when applied 24 hr prior to cytostatics. The antiproliferative effect of studied BPs was related to the changes in cell cycle progression. WG8185B2 leads to significant accumulation of J774E cells in S phase, whereas WG9001B causes transient arrest in G2 /M phase, followed by an increase in the percentage of cells in S phase. Moreover, WG8185B2 and WG9001B BPs showed enhanced proapoptotic activity in osteoclast precursors, which was manifested by an increase in caspase-3 activity and percentage of apoptotic cells. In addition, both compounds influenced the motility of J774E cells. The exact molecular mechanism of action of examined BPs remains to be determined; however, results show an interesting biological activity of these compounds, which may be of interest in the context of antiresorptive therapy.
Collapse
Affiliation(s)
- Anna Nasulewicz-Goldeman
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Waldemar Goldeman
- Department of Organic Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Ewa Mrówczyńska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| |
Collapse
|
14
|
Prieto-Dominguez N, Parnell C, Teng Y. Drugging the Small GTPase Pathways in Cancer Treatment: Promises and Challenges. Cells 2019; 8:E255. [PMID: 30884855 PMCID: PMC6468615 DOI: 10.3390/cells8030255] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Small GTPases are a family of low molecular weight GTP-hydrolyzing enzymes that cycle between an inactive state when bound to GDP and an active state when associated to GTP. Small GTPases regulate key cellular processes (e.g., cell differentiation, proliferation, and motility) as well as subcellular events (e.g., vesicle trafficking), making them key participants in a great array of pathophysiological processes. Indeed, the dysfunction and deregulation of certain small GTPases, such as the members of the Ras and Arf subfamilies, have been related with the promotion and progression of cancer. Therefore, the development of inhibitors that target dysfunctional small GTPases could represent a potential therapeutic strategy for cancer treatment. This review covers the basic biochemical mechanisms and the diverse functions of small GTPases in cancer. We also discuss the strategies and challenges of inhibiting the activity of these enzymes and delve into new approaches that offer opportunities to target them in cancer therapy.
Collapse
Affiliation(s)
- Néstor Prieto-Dominguez
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Institute of Biomedicine (IBIOMED), University of León, León 24010, Spain.
| | | | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Department of Medical laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
15
|
Waller DD, Park J, Tsantrizos YS. Inhibition of farnesyl pyrophosphate (FPP) and/or geranylgeranyl pyrophosphate (GGPP) biosynthesis and its implication in the treatment of cancers. Crit Rev Biochem Mol Biol 2019; 54:41-60. [DOI: 10.1080/10409238.2019.1568964] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Jaeok Park
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Youla S. Tsantrizos
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
16
|
Zhao Z, Shen W, Zhu H, Lin L, Jiang G, Zhu Y, Song H, Wu L. Zoledronate inhibits fibroblasts' proliferation and activation via targeting TGF-β signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3021-3031. [PMID: 30271117 PMCID: PMC6147205 DOI: 10.2147/dddt.s168897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Previous preclinical and clinical studies have demonstrated that zoledronate might inhibit neointimal hyperplasia at least partly by inhibiting the proliferation, adhesion and migration of vascular smooth muscle cells (VSMCs). However, whether zoledronate influences fibroblasts’ proliferation and activation, which also play a key role in neointimal hyperplasia and vascular remodeling, remains largely unknown. In the present study, the effect of zoledronate on fibroblasts was investigated and the underlying molecular mechanisms were examined. Methods After treatment with zoledronate, changes in biological behaviors, including the morphology, proliferation, cell-cycle distribution and migration of fibroblasts (NIH3T3 cells), were observed. The expression of α-SMA, TGF-β1 and TGF-β2 and the level of Smad2/3 phosphorylation in cultured fibroblasts were examined by Western blot. In vivo expression of α-SMA and TGF-β1 was assessed by immunohistochemical staining. Results It was shown that the typical fibroblast cell morphology was altered after zoledronate exposure. Cultured fibroblasts treated with zoledronate displayed dose-dependent inhibition of cell proliferation due to cell-cycle arrest in the S phase. Cell migration activities were also dose dependently suppressed by zoledronate treatment. Expression of α-SMA in cultured fibroblasts was significantly reduced by zoledronate treatment. Further analysis showed decreased expression of TGF-β1 and α-SMA by periadventitial delivery of zoledronate in the rat carotid balloon-injury model. The expression of TGF-β1 and TGF-β2 and the phosphorylation of Smad2/3 in cultured fibroblasts were significantly inhibited by zoledronate treatment. Conclusion Our findings demonstrated that zoledronate can inhibit the proliferation, migration and activation of fibroblasts via the TGF-β signaling pathway and revealed a novel mechanism of zoledronate action against neointimal hyperplasia.
Collapse
Affiliation(s)
- Zichang Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China, .,Department of Ophthalmology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wei Shen
- Department of Ophthalmology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hanbin Zhu
- Company 11 of Student Brigade, Second Military Medical University, Shanghai, China
| | - Lin Lin
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China,
| | - Yongzhe Zhu
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Hongyuan Song
- Department of Ophthalmology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China,
| |
Collapse
|
17
|
Lacbay CM, Waller DD, Park J, Gómez Palou M, Vincent F, Huang XF, Ta V, Berghuis AM, Sebag M, Tsantrizos YS. Unraveling the Prenylation-Cancer Paradox in Multiple Myeloma with Novel Geranylgeranyl Pyrophosphate Synthase (GGPPS) Inhibitors. J Med Chem 2018; 61:6904-6917. [PMID: 30016091 DOI: 10.1021/acs.jmedchem.8b00886] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Post-translational prenylation of the small GTP-binding proteins (GTPases) is vital to a plethora of biological processes, including cellular proliferation. We have identified a new class of thienopyrimidine-based bisphosphonate (ThP-BP) inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS) that block protein prenylation in multiple myeloma (MM) cells leading to cellular apoptosis. These inhibitors are also effective in blocking the proliferation of other types of cancer cells. We confirmed intracellular target engagement, demonstrated the mechanism of action leading to apoptosis, and determined a direct correlation between apoptosis and intracellular inhibition of hGGPPS. Administration of a ThP-BP inhibitor to a MM mouse model confirmed in vivo downregulation of Rap1A geranylgeranylation and reduction of monoclonal immunoglobulins (M-protein, a biomarker of disease burden) in the serum. These results provide the first proof-of-principle that hGGPPS is a valuable therapeutic target in oncology and more specifically for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Cyrus M Lacbay
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada
| | - Daniel D Waller
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada
| | - Jaeok Park
- Department of Biochemistry , McGill University , Montreal , QC H3G 1Y6 , Canada
| | - Mònica Gómez Palou
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada
| | - Félix Vincent
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada
| | - Xian Fang Huang
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada
| | - Viviane Ta
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada
| | - Albert M Berghuis
- Department of Biochemistry , McGill University , Montreal , QC H3G 1Y6 , Canada
| | - Michael Sebag
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada.,Division of Hematology , McGill University Health Center , Montreal , QC H4A 3J1 , Canada
| | - Youla S Tsantrizos
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada.,Department of Biochemistry , McGill University , Montreal , QC H3G 1Y6 , Canada
| |
Collapse
|
18
|
Minegaki T, Koiki S, Douke Y, Yamane C, Suzuki A, Mori M, Tsujimoto M, Nishiguchi K. Augmentation of the cytotoxic effects of nitrogen-containing bisphosphonates in hypoxia. ACTA ACUST UNITED AC 2018; 70:1040-1047. [PMID: 29761837 DOI: 10.1111/jphp.12934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/16/2018] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Tumour hypoxia is a major obstacle in cancer therapy that leads to poor prognosis. Therefore, the development of cancer treatments that are effective in hypoxia is necessary. Nitrogen-containing bisphosphonates (N-BPs), which are used to treat bone disease, are cytotoxic to several cancer cells in normoxia. Therefore, we investigated the cytotoxicity of N-BPs in cancer cells in hypoxia. METHODS We studied the cytotoxicities of N-BPs, statins and anticancer drugs in human cancer cells under hypoxic conditions (1% O2 ). The expression levels of enzymes in the mevalonate pathway in hypoxia were measured by real-time reverse transcription polymerase chain reaction and Western blotting. KEY FINDINGS In hypoxia, cell growth inhibition by 5-fluorouracil and cisplatin was not changed as compared to that in normoxia; however, cell growth inhibition by N-BPs and via zoledronate-induced apoptosis was higher in hypoxia than that in normoxia. Furthermore, geranylgeraniol completely inhibited the growth inhibitory effects of zoledronate. Additionally, the mRNA and protein levels of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase significantly decreased in hypoxia. Moreover, simvastatin potentiated the growth inhibitory effect of zoledronate. CONCLUSIONS The cytotoxicity of N-BPs, but not 5-fluorouracil and cisplatin, is potentiated in hypoxia, through the loss of HMG-CoA reductase function. N-BPs may be effective against cancer in normoxia and hypoxia.
Collapse
Affiliation(s)
- Tetsuya Minegaki
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Saya Koiki
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yutaro Douke
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Chihiro Yamane
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ai Suzuki
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Misato Mori
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Masayuki Tsujimoto
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kohshi Nishiguchi
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
19
|
Kaźmierczak A, Kusy D, Niinivehmas SP, Gmach J, Joachimiak Ł, Pentikäinen OT, Gendaszewska-Darmach E, Błażewska KM. Identification of the Privileged Position in the Imidazo[1,2-a]pyridine Ring of Phosphonocarboxylates for Development of Rab Geranylgeranyl Transferase (RGGT) Inhibitors. J Med Chem 2017; 60:8781-8800. [PMID: 28953373 DOI: 10.1021/acs.jmedchem.7b00811] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Members of the Rab GTPase family are master regulators of vesicle trafficking. When disregulated, they are associated with a number of pathological states. The inhibition of RGGT, an enzyme responsible for post-translational geranylgeranylation of Rab GTPases represents one way to control the activity of these proteins. Because the number of molecules modulating RGGT is limited, we combined molecular modeling with biological assays to ascertain how modifications of phosphonocarboxylates, the first reported RGGT inhibitors, rationally improve understanding of their structure-activity relationship. We have identified the privileged position in the core scaffold of the imidazo[1,2-a]pyridine ring, which can be modified without compromising compounds' potency. Thus modified compounds are micromolar inhibitors of Rab11A prenylation, simultaneously being inactive against Rap1A/Rap1B modification, with the ability to inhibit proliferation of the HeLa cancer cell line. These findings were rationalized by molecular docking, which recognized interaction of phosphonic and carboxylic groups as decisive in phosphonocarboxylate localization in the RGGT binding site.
Collapse
Affiliation(s)
- Aleksandra Kaźmierczak
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology , Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Damian Kusy
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology , Żeromskiego Street 116, 90-924 Łódź, Poland
| | - Sanna P Niinivehmas
- Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä , P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | - Joanna Gmach
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology , Żeromskiego Street 116, 90-924 Łódź, Poland
| | - Łukasz Joachimiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology , Żeromskiego Street 116, 90-924 Łódź, Poland
| | - Olli T Pentikäinen
- Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä , P.O. Box 35, FI-40014 University of Jyväskylä, Finland.,Institute of Biomedicine, University of Turku , FI-20520 Turku, Finland
| | - Edyta Gendaszewska-Darmach
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology , Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology , Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
20
|
Qiu L, Yang H, Lv G, Li K, Liu G, Wang W, Wang S, Zhao X, Xie M, Lin J. Insights into the mevalonate pathway in the anticancer effect of a platinum complex on human gastric cancer cells. Eur J Pharmacol 2017; 810:120-127. [DOI: 10.1016/j.ejphar.2017.06.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 01/06/2023]
|
21
|
Abdullah MI, Abed MN, Richardson A. Inhibition of the mevalonate pathway augments the activity of pitavastatin against ovarian cancer cells. Sci Rep 2017; 7:8090. [PMID: 28808351 PMCID: PMC5556066 DOI: 10.1038/s41598-017-08649-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/11/2017] [Indexed: 11/29/2022] Open
Abstract
Only 40% of patients with advanced ovarian cancer survive more than 5 years. We have previously shown that pitavastatin induces regression of ovarian cancer xenografts in mice. To evaluate whether the response of ovarian cancer cells to pitavastatin is potentiated by farnesyl diphosphate synthase inhibitors or geranylgeraniol transferase I inhibitors, we evaluated combinations of pitavastatin with zoledronic acid, risedronate and GGTI-2133 in a panel of ovarian cancer cells. Pitavastatin (IC50 = 0.6–14 μM), zoledronic acid (IC50 = 21–57 μM), risedronate (IC50 > 100 μM) or GGTI-2133 (IC50 > 25 μM) inhibited the growth of ovarian cancer cell cultures. Combinations of pitavastatin with zoledronic acid displayed additive or synergistic effects in cell growth assays in 10 of 11 cell lines evaluated as well as in trypan blue exclusion, cellular ATP or caspase 3/7, 8 and 9 assays. Pitavastatin reduced levels of GGT-IIβ and the membrane localization of several small GTPases and this was potentiated by zoledronic acid. siRNA to GGT-Iβ and GGT-IIβ used in combination, but not when used individually, significantly increased the sensitivity of cells to pitavastatin. These data suggest that zoledronic acid, a drug already in clinical use, may be usefully combined with pitavastatin in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Marwan Ibrahim Abdullah
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornborrow Drive, Stoke-on-Trent, UK
| | - Mohammed Najim Abed
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornborrow Drive, Stoke-on-Trent, UK
| | - Alan Richardson
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornborrow Drive, Stoke-on-Trent, UK. .,School of Pharmacy, Keele University, Keele, United Kingdom.
| |
Collapse
|
22
|
Recent Advances in the Development of Mammalian Geranylgeranyl Diphosphate Synthase Inhibitors. Molecules 2017; 22:molecules22060886. [PMID: 28555000 PMCID: PMC5902023 DOI: 10.3390/molecules22060886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 11/17/2022] Open
Abstract
The enzyme geranylgeranyl diphosphate synthase (GGDPS) catalyzes the synthesis of the 20-carbon isoprenoid geranylgeranyl diphosphate (GGPP). GGPP is the isoprenoid donor for protein geranylgeranylation reactions catalyzed by the enzymes geranylgeranyl transferase (GGTase) I and II. Inhibitors of GGDPS result in diminution of protein geranylgeranylation through depletion of cellular GGPP levels, and there has been interest in GGDPS inhibitors as potential anti-cancer agents. Here we discuss recent advances in the development of GGDPS inhibitors, including insights gained by structure-function relationships, and review the preclinical data that support the continued development of this novel class of drugs.
Collapse
|
23
|
Agabiti SS, Li J, Wiemer AJ. Geranylgeranyl diphosphate synthase inhibition induces apoptosis that is dependent upon GGPP depletion, ERK phosphorylation and caspase activation. Cell Death Dis 2017; 8:e2678. [PMID: 28300835 PMCID: PMC5386513 DOI: 10.1038/cddis.2017.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/26/2017] [Accepted: 02/15/2017] [Indexed: 02/08/2023]
Abstract
Bisphosphonates are diphosphate analogs that inhibit the intermediate enzymes of the mevalonate pathway. Here, we compared the effects of a farnesyl diphosphate synthase inhibitor, zoledronate, and a geranylgeranyl diphosphate synthase (GGDPS) inhibitor, digeranyl bisphosphonate (DGBP), on lymphocytic leukemia cell proliferation and apoptosis. Both zoledronate and DGBP inhibited proliferation with DGBP doing so more potently. DGBP was markedly less toxic than zoledronate toward the viability of healthy human peripheral blood mononuclear cells. Addition of GGPP, but not farnesyl diphosphate (FPP), prevented the anti-proliferative effects of DGBP. Both GGPP and FPP partially rescued the effects of zoledronate. Co-treatment with DGBP and zoledronate was antagonistic. To further assess the effects of the bisphosphonates, we analyzed annexin V and propidium iodide staining via flow cytometry and found that DGBP induced apoptosis more potently than zoledronate. Western blots show that DGBP treatment altered expression and membrane affinity of some but not all geranylgeranylated small GTPases, activated caspases and increased ERK phosphorylation. Importantly, the anti-proliferative effects of DGBP were blocked by treatment with a caspase inhibitor and by treatment with a MEK inhibitor. Together, our findings indicate that DGBP is a more potent and selective compound than zoledronate in inducing apoptosis mediated through pathways that include caspases and MEK/ERK. These findings support the further development of GGDPS inhibitors as anticancer therapeutics.
Collapse
Affiliation(s)
- Sherry S Agabiti
- Department of Pharmaceutical Sciences, University of Connecticut, School of Pharmacy, Storrs, CT, USA
| | - Jin Li
- Department of Pharmaceutical Sciences, University of Connecticut, School of Pharmacy, Storrs, CT, USA
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, School of Pharmacy, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
24
|
Agabiti SS, Liang Y, Wiemer AJ. Molecular mechanisms linking geranylgeranyl diphosphate synthase to cell survival and proliferation. Mol Membr Biol 2016; 33:1-11. [PMID: 27537059 DOI: 10.1080/09687688.2016.1213432] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Geranylgeranyl diphosphate is a 20-carbon isoprenoid phospholipid whose lipid moiety can be post-translationally incorporated into proteins to promote membrane association. The process of geranylgeranylation has been implicated in anti-proliferative effects of clinical agents that inhibit enzymes of the mevalonate pathway (i.e. statins and nitrogenous bisphosphonates) as well as experimental agents that deplete geranylgeranyl diphosphate. Inhibitors of geranylgeranyl diphosphate synthase are an attractive way to block geranylgeranylation because they possess a calcium-chelating substructure to allow localization to bone and take advantage of a unique position of the enzyme within the biosynthetic pathway. Here, we describe recent advances in geranylgeranyl diphosphate synthase expression and inhibitor development with a particular focus on the molecular mechanisms that link geranylgeranyl diphosphate to cell proliferation via geranylgeranylated small GTPases.
Collapse
Affiliation(s)
- Sherry S Agabiti
- a Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT , USA
| | - Yilan Liang
- a Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT , USA
| | - Andrew J Wiemer
- a Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT , USA.,b Institute for Systems Genomics, University of Connecticut , Storrs , CT , USA
| |
Collapse
|
25
|
Jiang Y, Zhong B, Kawamura K, Morinaga T, Shingyoji M, Sekine I, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. Combination of a third generation bisphosphonate and replication-competent adenoviruses augments the cytotoxicity on mesothelioma. BMC Cancer 2016; 16:455. [PMID: 27405588 PMCID: PMC4942884 DOI: 10.1186/s12885-016-2483-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/04/2016] [Indexed: 02/07/2023] Open
Abstract
Background Approximately 80 % of mesothelioma specimens have the wild-type p53 gene, whereas they contain homozygous deletions in the INK4A/ARF locus that encodes p14ARF and the 16INK4A genes. Consequently, the majority of mesothelioma is defective of the p53 pathways. We examined whether zoledronic acid (ZOL), a third generation bisphosphonate, and adenoviruses with a deletion of the E1B-55kD gene (Ad-delE1B55), which augments p53 levels in the infected tumors, could produce combinatory anti-tumor effects on human mesothelioma cells bearing the wild-type p53 gene. Methods Cytotoxicity of ZOL and Ad-delE1B55 was assessed with a WST assay. Cell cycle changes were tested with flow cytometry. Expression levels of relevant molecules were examined with western blot analysis to investigate a possible mechanism of cytotoxicity. Furthermore, the expressions of Ad receptors on target cells and infectivity were estimated with flow cytometry. Viral replication was assayed with the tissue culture infection dose method. Results A combinatory use of ZOL and Ad-delE1B55 suppressed cell growth and increased sub-G1 or S-phase populations compared with a single agent, depending on cells tested. The combinatory treatment up-regulated p53 levels and subsequently enhanced the cleavage of caspase-3, 8, 9 and poly (ADP-ribose) polymerase, but expression of molecules involved in autophagy pathways were inconsistent. ZOL-treated cells also increased Ad infectivity with a dose-dependent manner and augmented Ad replication although the expression levels of integrin molecules, one of the Ad receptors, were down-regulated. Conclusions These findings indicated that ZOL and Ad-delE1B55 achieved combinatory anti-tumor effects through augmented apoptotic pathways or increased viral replication. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2483-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoko Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | | | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan. .,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
26
|
Komatsu Y, Ibi M, Chosa N, Kyakumoto S, Kamo M, Shibata T, Sugiyama Y, Ishisaki A. Zoledronic acid suppresses transforming growth factor-β-induced fibrogenesis by human gingival fibroblasts. Int J Mol Med 2016; 38:139-47. [PMID: 27176567 PMCID: PMC4899021 DOI: 10.3892/ijmm.2016.2582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/11/2016] [Indexed: 12/19/2022] Open
Abstract
Bisphosphonates (BPs) are analogues of pyro-phosphate that are known to prevent bone resorption by inhibiting osteoclast activity. Nitrogen-containing BPs, such as zoledronic acid (ZA), are widely used in the treatment of osteoporosis and bone metastasis. However, despite having benefits, ZA has been reported to induce BP-related osteonecrosis of the jaw (BRONJ) in cancer patients. The molecular pathological mechanisms responsible for the development of BRONJ, including necrotic bone exposure after tooth extraction, remain to be elucidated. In this study, we examined the effects of ZA on the transforming growth factor-β (TGF-β)-induced myofibroblast (MF) differentiation of human gingival fibroblasts (hGFs) and the migratory activity of hGFs, which are important for wound closure by fibrous tissue formation. The ZA maximum concentration in serum (Cmax) was found to be approximately 1.47 µM, which clinically, is found after the intravenous administration of 4 mg ZA, and ZA at this dose is considered appropriate for the treatment of cancer bone metastasis or bone diseases, such as Erdheim-Chester disease. At Cmax, ZA significantly suppressed i) the TGF-β-induced promotion of cell viability, ii) the TGF-β-induced expression of MF markers such as α-smooth muscle actin (α-SMA) and type I collagen, iii) the TGF-β-induced migratory activity of hGFs and iv) the expression level of TGF-β type I receptor on the surfaces of hGFs, as well as the TGF-β-induced phosphorylation of Smad2/3. Thus, ZA suppresses TGF-β-induced fibrous tissue formation by hGFs, possibly through the inhibition of Smad-dependent signal transduction. Our findings partly elucidate the molecular mechanisms underlying BRONJ and may prove to be beneficial to the identification of drug targets for the treatment of this symptom at the molecular level.
Collapse
Affiliation(s)
- Yuko Komatsu
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028‑3694, Japan
| | - Miho Ibi
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028‑3694, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028‑3694, Japan
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028‑3694, Japan
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028‑3694, Japan
| | - Toshiyuki Shibata
- Department of Oral and Maxillofacial Surgery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yoshiki Sugiyama
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Iwate 020-8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028‑3694, Japan
| |
Collapse
|
27
|
Tada Y, Hiroshima K, Shimada H, Shingyoji M, Suzuki T, Umezawa H, Sekine I, Takiguchi Y, Tatsumi K, Tagawa M. An intrapleural administration of zoledronic acid for inoperable malignant mesothelioma patients: a phase I clinical study protocol. SPRINGERPLUS 2016; 5:195. [PMID: 27026891 PMCID: PMC4769234 DOI: 10.1186/s40064-016-1893-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/17/2016] [Indexed: 12/17/2022]
Abstract
Background The third generation of bisphosphonates is clinically in use for patients of osteoporosis or malignancy-linked hypercalcemia. The agents can also produce anti-tumor effects on bone metastasis of several types of tumors. We recently found that one of the agents achieved cytotoxicity to mesothelioma in vitro and in an orthotopic animal model. Mesothelioma is resistant to a number of chemotherapeutic agents, and suppression of local tumor growth is beneficial to the patients since metastasis to extra-thoracic organs is relatively infrequent until a late stage. Methods/design We demonstrated in an orthotopic mouse model that an intrapleural but not intravenous injection of zoledronic acid, one of the third generation bisphosphonates, at a clinically equivalent dose suppressed the tumor growth. Nevertheless, a high concentration of zoledronic acid administrated in the pleural cavity produced pleural adhesion. We also showed that zoledronic acid produced synergistic cytotoxic effects with cisplatin, the first-line chemotherapeutic agent for mesothelioma. We then planned to conduct a phase I clinical study to investigate any adverse effects and a possible clinical benefits produced by an intrapleural administration of zoledronic acid to mesothelioma patients who became resistant to the first-line chemotherapeutic agents. The clinical trial is a dose escalation study starting with 0.4, 1, 4, 8 and 16 mg per person since safety of administration of zoledronic acid into the pleural cavity remains unknown. Each dose group consists of three persons and the protocol allows to repeat administration of the same dose into the pleural cavity at a 4-weeks interval. Discussion We will conduct a possible combinatory study of intrapleural administration of zoledronic acid and systemic administration of the first-line agent to a chemotherapy-naïve patient based on the maximum tolerance dose of zoledronic acid determined by the present clinical trial. We propose that administration of bisphosphonates in a closed cavity is a treatment strategy for tumors developed in the cavity probably through the direct cytotoxic activity. Trial registration: UMIN clinical trials registry, Japan. Register ID: UMIN8093.
Collapse
Affiliation(s)
- Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | | | - Toshio Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroki Umezawa
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717 Japan ; Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
28
|
Chakraborty D, Jain CK, Maity A, Ghosh S, Choudhury SR, Jha T, Majumder HK, Mondal NB. Chenopodium album metabolites act as dual topoisomerase inhibitors and induce apoptosis in the MCF7 cell line. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00502g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Desgalactotigonin and oleanolic acid 3-O-β-d-glucuronide were isolated from Chenopodium album and were evaluated for cytotoxic activity against various cancer cell lines.
Collapse
Affiliation(s)
- Debanjana Chakraborty
- Department of Chemistry
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata 700032
- India
| | - Chetan Kumar Jain
- Molecular Parasitology Laboratory
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata 700032
- India
| | - Arindam Maity
- Department of Chemistry
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata 700032
- India
| | - Shekhar Ghosh
- Department of Chemistry
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata 700032
- India
| | - Susanta Roy Choudhury
- Division of Research, Saroj Gupta Cancer Centre & Research Institute
- Kolkata - 700 063
- India
| | - Tarun Jha
- Department of Pharmaceutical Technology
- Division of Medicinal and Pharmaceutical Chemistry
- Kolkata-700 032
- India
| | - Hemanta K. Majumder
- Molecular Parasitology Laboratory
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata 700032
- India
| | - Nirup B. Mondal
- Department of Chemistry
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata 700032
- India
| |
Collapse
|
29
|
Xu C, Li H, Zhang L, Jia T, Duan L, Lu C. MicroRNA‑1915‑3p prevents the apoptosis of lung cancer cells by downregulating DRG2 and PBX2. Mol Med Rep 2015; 13:505-12. [PMID: 26572100 DOI: 10.3892/mmr.2015.4565] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 10/29/2015] [Indexed: 11/05/2022] Open
Abstract
Micro (mi)RNAs are short non‑coding RNA molecules, which post‑transcriptionally regulate gene expression and exert key roles in cell growth, differentiation and apoptosis. In the present study, the mechanism and the function of miR‑1915‑3p in the apoptotic regulation of lung cancer cell lines (NCI‑H441 and NCI‑H1650) were investigated. The expression analysis confirmed that the expression of miR‑1915‑3p was markedly decreased in the apoptotic cells. The overexpression of miR‑1915‑3p in the lung cancer cells prevented apoptosis induced by etoposide. Developmentally regulated GTP‑binding protein 2 (DRG2) and pre‑B cell leukemia homeobox 2 (PBX2) were identified as downstream targets of miR‑1915‑3p, which was shown to bind directly to the 3'‑untranslated region of DRG2 and PBX2, subsequently lowering their mRNA and protein expression levels. Co‑expression of miR‑1915‑3p and DRG2/PBX2 in the NCI‑H441 and NCI‑H1650 cells partly circumvented the effect of miR‑1915‑3p on apoptosis. The results in the present study revealed that miR‑1915‑3p functions as a silencer of apoptosis, which regulates lung cancer apoptosis via targeting DRG2/PBX2, and consequently this miRNA may be a putative therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Chengshan Xu
- Aviation Medicine Research Laboratory, Air Force General Hospital, PLA, Beijing 100142, P.R. China
| | - Hengheng Li
- Graduate Student Ministry of Education, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Ling Zhang
- Aviation Medicine Research Laboratory, Air Force General Hospital, PLA, Beijing 100142, P.R. China
| | - Tianjun Jia
- College of Medical Laboratory, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Lianning Duan
- Aviation Medicine Research Laboratory, Air Force General Hospital, PLA, Beijing 100142, P.R. China
| | - Chengrong Lu
- Aviation Medicine Research Laboratory, Air Force General Hospital, PLA, Beijing 100142, P.R. China
| |
Collapse
|