1
|
Huo Q, Chen C, Liao J, Zeng Q, Nie G, Zhang B. Application of self-assembly palladium single-atom nanozyme over polyoxometalates in protection against neomycin-induced hearing loss by inhibiting ferroptosis. Biomaterials 2024; 311:122665. [PMID: 38875882 DOI: 10.1016/j.biomaterials.2024.122665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Deafness mainly results from irreversible impairment of hair cells (HCs), which may relate to oxidative stress, yet therapeutical solutions is lacked due to limited understanding on the exact molecular mechanism. Herein, mimicking the molecular structure of natural enzymes, a palladium (Pd) single-atom nanozyme (SAN) was fabricated, exhibiting superoxide dismutase and catalase activity, transforming reactive oxygen species (ROS) into O2 and H2O. We examined the involvement of Pd in neomycin-induced HCs loss in vitro and in vivo over zebrafish. Our results revealed that neomycin treatment induced apoptosis in HCs, resulting in substantial of ROS elevation in HEI-OC1 cells, decrease in mitochondrial membrane potential, and increase in lipid peroxidation and iron accumulation, ultimately leading to iron-mediated cell death. Noteworthy, Pd SAN treatment exhibited significant protective effects against HCs damage and impaired HCs function in zebrafish by inhibiting ferroptosis. Furthermore, the application of iron death inducer RSL3 resulted in notable exacerbation of neomycin-induced harm, which was mitigated by Pd administration. Our investigation demonstrates that antioxidants is promising for inhibiting ferroptosis and repairing of mitochondrial function in HCs and the enzyme-mimic SAN provides a good strategy for designing drugs alleviating neomycin-induced ototoxicity.
Collapse
Affiliation(s)
- Qin Huo
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China
| | - Chen Chen
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China
| | - Jiahao Liao
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China
| | - Qingdong Zeng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China.
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China.
| |
Collapse
|
2
|
Lee DS, Schrader A, Zou J, Ang WH, Warchol ME, Sheets L. Direct targeting of mitochondria by cisplatin leads to cytotoxicity in zebrafish lateral-line hair cells. iScience 2024; 27:110975. [PMID: 39398243 PMCID: PMC11466657 DOI: 10.1016/j.isci.2024.110975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Cisplatin is a chemotherapy drug that causes permanent hearing loss by injuring cochlear hair cells. Hair cell mitochondria have emerged as potential mediators of hair cell cytotoxicity. Using in vivo live imaging of hair cells in the zebrafish lateral-line organ expressing a genetically encoded indicator of cumulative mitochondrial activity, we first demonstrate that greater redox history increases susceptibility to cisplatin. Next, we conducted time-lapse imaging to understand dynamic changes in mitochondrial homeostasis and observe elevated mitochondrial and cytosolic calcium that surge prior to hair cell death. Furthermore, using a localized probe that fluoresces in the presence of cisplatin, we show that cisplatin directly accumulates in hair cell mitochondria, and this accumulation occurs before mitochondrial dysregulation and apoptosis. Our findings provide evidence that cisplatin directly targets hair cell mitochondria and support that the mitochondria are integral to cisplatin cytotoxicity in hair cells.
Collapse
Affiliation(s)
- David S. Lee
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Angela Schrader
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiaoxia Zou
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- NUS Graduate School – Integrated Science and Engineering Programme (ISEP), National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Mark E. Warchol
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lavinia Sheets
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Jiang W, Wang G, Bai F, Hu B, Xu Y, Xu X, Nie G, Zhu WG, Chen F, Pei XH. BRCA1 Promotes Repair of DNA Damage in Cochlear Hair Cells and Prevents Hearing Loss. J Neurosci 2024; 44:e0132242024. [PMID: 39227158 PMCID: PMC11484548 DOI: 10.1523/jneurosci.0132-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Cochlear hair cells (HCs) sense sound waves and allow us to hear. Loss of HCs will cause irreversible sensorineural hearing loss. It is well known that DNA damage repair plays a critical role in protecting cells in many organs. However, how HCs respond to DNA damage and how defective DNA damage repair contributes to hearing loss remain elusive. In this study, we showed that cisplatin induced DNA damage in outer hair cells (OHCs) and promoted OHC loss, leading to hearing loss in mice of either sex. Cisplatin induced the expression of Brca1, a DNA damage repair factor, in OHCs. Deficiency of Brca1 induced OHC and hearing loss, and further promoted cisplatin-induced DNA damage in OHCs, accelerating OHC loss. This study provides the first in vivo evidence demonstrating that cisplatin mainly induces DNA damage in OHCs and that BRCA1 promotes repair of DNA damage in OHCs and prevents hearing loss. Our findings not only demonstrate that DNA damage-inducing agent generates DNA damage in postmitotic HCs but also suggest that DNA repair factors, like BRCA1, protect postmitotic HCs from DNA damage-induced cell death and hearing loss.
Collapse
Affiliation(s)
- Weitao Jiang
- International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Otolaryngology, The First Affiliated Hospital, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Guanrun Wang
- International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Otolaryngology, The First Affiliated Hospital, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Feng Bai
- Department of Pathology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Bing Hu
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yang Xu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Hai Pei
- International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Otolaryngology, The First Affiliated Hospital, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
4
|
Lee DS, Schrader A, Zou J, Ang WH, Warchol M, Sheets L. Cisplatin drives mitochondrial dysregulation in sensory hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577846. [PMID: 38352581 PMCID: PMC10862698 DOI: 10.1101/2024.01.29.577846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2024]
Abstract
Cisplatin is a chemotherapy drug that causes permanent hearing loss by injuring cochlear hair cells. The mechanisms that initiate injury are not fully understood, but mitochondria have emerged as potential mediators of hair cell cytotoxicity. Using in vivo live imaging of hair cells in the zebrafish lateral-line organ expressing a genetically encoded indicator of cumulative mitochondrial activity, we first demonstrate that greater redox history increases susceptibility to cisplatin. Next, we conducted time-lapse imaging to understand dynamic changes in mitochondrial homeostasis and observe elevated mitochondrial and cytosolic calcium that surge prior to hair cell death. Furthermore, using a localized probe that fluoresces in the presence of cisplatin, we show that cisplatin directly accumulates in hair cell mitochondria, and this accumulation occurs before mitochondrial dysregulation and apoptosis. Our findings provide evidence that cisplatin directly targets hair cell mitochondria and support that the mitochondria are integral to cisplatin cytotoxicity in hair cells.
Collapse
|
5
|
Wilson MM, Danielian PS, Salus G, Ferretti R, Whittaker CA, Lees JA. BMI1 is required for melanocyte stem cell maintenance and hair pigmentation. Pigment Cell Melanoma Res 2023; 36:399-406. [PMID: 37132544 PMCID: PMC11344272 DOI: 10.1111/pcmr.13088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 01/31/2023] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
The epigenetic repressor BMI1 plays an integral role in promoting the self-renewal and proliferation of many adult stem cell populations, and also tumor types, primarily through silencing the Cdkn2a locus, which encodes the tumor suppressors p16Ink4a and p19Arf . However, in cutaneous melanoma, BMI1 drives epithelial-mesenchymal transition programs, and thus metastasis, while having little impact on proliferation or primary tumor growth. This raised questions about the requirement and role for BMI1 in melanocyte stem cell (McSC) biology. Here, we demonstrate that murine melanocyte-specific Bmi1 deletion causes premature hair greying and gradual loss of melanocyte lineage cells. Depilation enhances this hair greying defect, accelerating depletion of McSCs in early hair cycles, suggesting that BMI1 acts to protect McSCs against stress. RNA-seq of McSCs, harvested before onset of detectable phenotypic defects, revealed that Bmi1 deletion derepresses p16Ink4a and p19Arf , as observed in many other stem cell contexts. Additionally, BMI1 loss downregulated the glutathione S-transferase enzymes, Gsta1 and Gsta2, which can suppress oxidative stress. Accordingly, treatment with the antioxidant N-acetyl cysteine (NAC) partially rescued melanocyte expansion. Together, our data establish a critical function for BMI1 in McSC maintenance that reflects a partial role for suppression of oxidative stress, and likely transcriptional repression of Cdkn2a.
Collapse
Affiliation(s)
- Molly M. Wilson
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Paul S. Danielian
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts
| | - Griffin Salus
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts
| | - Roberta Ferretti
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts
| | - Charles A. Whittaker
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts
| | - Jacqueline A. Lees
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
6
|
Hong G, Fu X, Qi J, Shao B, Han X, Fang Y, Liu S, Cheng C, Zhu C, Gao J, Gao X, Chen J, Xia M, Xiong W, Chai R. Dock4 is required for the maintenance of cochlear hair cells and hearing function. FUNDAMENTAL RESEARCH 2023; 3:557-569. [PMID: 38933554 PMCID: PMC11197514 DOI: 10.1016/j.fmre.2022.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/27/2022] Open
Abstract
Auditory hair cells (HCs) are the mechanosensory receptors of the cochlea, and HC loss or malfunction can result from genetic defects. Dock4, a member of the Dock180-related protein superfamily, is a guanine nucleotide exchange factor for Rac1, and previous reports have shown that Dock4 mutations are associated with autism spectrum disorder, myelodysplastic syndromes, and tumorigenesis. Here, we found that Dock4 is highly expressed in the cochlear HCs of mice. However, the role of Dock4 in the inner ear has not yet been investigated. Taking advantage of the piggyBac transposon system, Dock4 knockdown (KD) mice were established to explore the role of Dock4 in the cochlea. Compared to wild-type controls, Dock4 KD mice showed significant hearing impairment from postnatal day 60. Dock4 KD mice showed hair bundle deficits and increased oxidative stress, which eventually led to HC apoptosis, late-onset HC loss, and progressive hearing loss. Furthermore, molecular mechanism studies showed that Rac1/β-catenin signaling was significantly downregulated in Dock4 KD cochleae and that this was the cause for the disorganized stereocilia and increased oxidative stress in HCs. Overall, our work demonstrates that the Dock4/Rac1/β-catenin signaling pathway plays a critical role in the maintenance of auditory HCs and hearing function.
Collapse
Affiliation(s)
- Guodong Hong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xiaolong Fu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Buwei Shao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xuan Han
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yuan Fang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Shuang Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100083, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Research Institute of Otolaryngology, Nanjing 210008, China
| | - Chengwen Zhu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Junyan Gao
- Jiangsu Rehabilitation Research Center for Hearing and Speech Impairment, Nanjing, Jiangsu 210004, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Research Institute of Otolaryngology, Nanjing 210008, China
| | - Jie Chen
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Research Institute of Otolaryngology, Nanjing 210008, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong 250000, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong 250022, China
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100083, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing 100101, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
7
|
Huang X, He X, Qiu R, Xie X, Zheng F, Chen F, Hu Z. Unfolded protein response inhibits KAT2B/MLKL-mediated necroptosis of hepatocytes by promoting BMI1 level to ubiquitinate KAT2B. Open Med (Wars) 2023; 18:20230718. [PMID: 37333449 PMCID: PMC10276622 DOI: 10.1515/med-2023-0718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/20/2023] Open
Abstract
Unfolded protein response (UPR) plays an important role in the pathogenesis of many liver diseases. BMI1 has a liver protection effect, but whether it participates in the regulation of hepatocyte death through UPR is not well defined. Herein, the endoplasmic reticulum stress model was established by inducing hepatocyte line (MIHA) with tunicamycin (TM, 5 µg/ml). Cell counting kit-8 assay and flow cytometry were used to evaluate the viability and apoptosis of hepatocytes. The expression levels of BMI1, KAT2B, and proteins related to UPR (p-eIF2α, eIF2α, ATF4, and ATF6), NF-κB (p65 and p-p65), apoptosis (cleaved caspase-3, bcl-2, and bax) and necroptosis (p-MLKL and MLKL) were determined by Western blot. The relationship between KAT2B and BMI1 was determined by co-immunoprecipitation and ubiquitination assay. The results showed that TM not only promoted UPR, apoptosis, and necroptosis in hepatocytes but also upregulated the expression levels of BMI1 and KAT2B and activated NF-κB pathway. BAY-117082 reversed the effects of TM on viability, apoptosis, NF-κB pathway, and BMI1 but strengthened the effects of TM on KAT2B/MLKL-mediated necroptosis. BMI1 promoted the ubiquitination of KAT2B, and BMI1 overexpression reversed the effects of TM on viability, apoptosis, and KAT2B/MLKL-mediated necroptosis. In summary, overexpression of BMI1 promotes the ubiquitination of KAT2B to block the MLKL-mediated necroptosis of hepatocytes.
Collapse
Affiliation(s)
- Xiaogang Huang
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Xiongzhi He
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Rongxian Qiu
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Xuemei Xie
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Fengfeng Zheng
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Feihua Chen
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Zhenting Hu
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian City, Fujian Province, 351100, China
| |
Collapse
|
8
|
Wong HTC, Lukasz D, Drerup CM, Kindt KS. In vivo investigation of mitochondria in lateral line afferent neurons and hair cells. Hear Res 2023; 431:108740. [PMID: 36948126 PMCID: PMC10079644 DOI: 10.1016/j.heares.2023.108740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
To process sensory stimuli, intense energy demands are placed on hair cells and primary afferents. Hair cells must both mechanotransduce and maintain pools of synaptic vesicles for neurotransmission. Furthermore, both hair cells and afferent neurons must continually maintain a polarized membrane to propagate sensory information. These processes are energy demanding and therefore both cell types are critically reliant on mitochondrial health and function for their activity and maintenance. Based on these demands, it is not surprising that deficits in mitochondrial health can negatively impact the auditory and vestibular systems. In this review, we reflect on how mitochondrial function and dysfunction are implicated in hair cell-mediated sensory system biology. Specifically, we focus on live imaging approaches that have been applied to study mitochondria using the zebrafish lateral-line system. We highlight the fluorescent dyes and genetically encoded biosensors that have been used to study mitochondria in lateral-line hair cells and afferent neurons. We then describe the impact this in vivo work has had on the field of mitochondrial biology as well as the relationship between mitochondria and sensory system development, function, and survival. Finally, we delineate the areas in need of further exploration. This includes in vivo analyses of mitochondrial dynamics and biogenesis, which will round out our understanding of mitochondrial biology in this sensitive sensory system.
Collapse
Affiliation(s)
- Hiu-Tung C Wong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daria Lukasz
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine M Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Martins LC, Silva MDS, Pinheiro EF, da Penha LKRL, Passos ADCF, de Moraes SAS, Batista EDJO, Herculano AM, Oliveira KRHM. COCHLEAR GLIAL CELLS MEDIATES GLUTAMATE UPTAKE THROUGH A SODIUM-INDEPENDENT TRANSPORTER. Hear Res 2023; 432:108753. [PMID: 37054532 DOI: 10.1016/j.heares.2023.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Since glutamate is the primary excitatory neurotransmitter in the mammalian cochlea, the mechanisms for the removal of glutamate from the synaptic and extrasynaptic spaces are critical for maintaining normal function of this region. Glial cells of inner ear are crucial for regulation of synaptic transmission throughout since it closely interacts with neurons along the entire auditory pathway, however little is known about the activity and expression of glutamate transporters in the cochlea. In this study, using primary cochlear glial cells cultures obtained from newborn Balb/C mice, we determined the activity of a sodium-dependent and sodium-independent glutamate uptake mechanisms by means of High Performance Liquid Chromatography. The sodium-independent glutamate transport has a prominent contribution in cochlear glial cells which is similar to what has been demonstrated in other sensory organs, but it is not found in tissues less susceptible to continuous glutamate-mediated injuries. Our results showed that xCG- system is expressed in CGCs and is the main responsible for sodium-independent glutamate uptake. The identification and characterization of the xCG- transporter in the cochlea suggests a possible role of this transporter in the control of extracellular glutamate concentrations and regulation of redox state, that may aid in the preservation of auditory function.
Collapse
Affiliation(s)
- Luana Carvalho Martins
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPa. Belém, PA CEP:66075-110, Brazil
| | - Mateus Dos Santos Silva
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPa. Belém, PA CEP:66075-110, Brazil
| | - Emerson Feio Pinheiro
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPa. Belém, PA CEP:66075-110, Brazil
| | | | | | | | | | - Anderson Manoel Herculano
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPa. Belém, PA CEP:66075-110, Brazil
| | | |
Collapse
|
10
|
Chen J, Gao D, Sun L, Yang J. Kölliker’s organ-supporting cells and cochlear auditory development. Front Mol Neurosci 2022; 15:1031989. [PMID: 36304996 PMCID: PMC9592740 DOI: 10.3389/fnmol.2022.1031989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The Kölliker’s organ is a transient cellular cluster structure in the development of the mammalian cochlea. It gradually degenerates from embryonic columnar cells to cuboidal cells in the internal sulcus at postnatal day 12 (P12)–P14, with the cochlea maturing when the degeneration of supporting cells in the Kölliker’s organ is complete, which is distinct from humans because it disappears at birth already. The supporting cells in the Kölliker’s organ play a key role during this critical period of auditory development. Spontaneous release of ATP induces an increase in intracellular Ca2+ levels in inner hair cells in a paracrine form via intercellular gap junction protein hemichannels. The Ca2+ further induces the release of the neurotransmitter glutamate from the synaptic vesicles of the inner hair cells, which subsequently excite afferent nerve fibers. In this way, the supporting cells in the Kölliker’s organ transmit temporal and spatial information relevant to cochlear development to the hair cells, promoting fine-tuned connections at the synapses in the auditory pathway, thus facilitating cochlear maturation and auditory acquisition. The Kölliker’s organ plays a crucial role in such a scenario. In this article, we review the morphological changes, biological functions, degeneration, possible trans-differentiation of cochlear hair cells, and potential molecular mechanisms of supporting cells in the Kölliker’s organ during the auditory development in mammals, as well as future research perspectives.
Collapse
Affiliation(s)
- Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| |
Collapse
|
11
|
Lukasz D, Beirl A, Kindt K. Chronic neurotransmission increases the susceptibility of lateral-line hair cells to ototoxic insults. eLife 2022; 11:77775. [PMID: 36047587 PMCID: PMC9473691 DOI: 10.7554/elife.77775] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
Sensory hair cells receive near constant stimulation by omnipresent auditory and vestibular stimuli. To detect and encode these stimuli, hair cells require steady ATP production, which can be accompanied by a buildup of mitochondrial byproducts called reactive oxygen species (ROS). ROS buildup is thought to sensitize hair cells to ototoxic insults, including the antibiotic neomycin. Work in neurons has shown that neurotransmission is a major driver of ATP production and ROS buildup. Therefore, we tested whether neurotransmission is a significant contributor to ROS buildup in hair cells. Using genetics and pharmacology, we disrupted two key aspects of neurotransmission in zebrafish hair cells: presynaptic calcium influx and the fusion of synaptic vesicles. We find that chronic block of neurotransmission enhances hair-cell survival when challenged with the ototoxin neomycin. This reduction in ototoxin susceptibility is accompanied by reduced mitochondrial activity, likely due to a reduced ATP demand. In addition, we show that mitochondrial oxidation and ROS buildup are reduced when neurotransmission is blocked. Mechanistically, we find that it is the synaptic vesicle cycle rather than presynaptic- or mitochondrial-calcium influx that contributes most significantly to this metabolic stress. Our results comprehensively indicate that, over time, neurotransmission causes ROS buildup that increases the susceptibility of hair cells to ototoxins.
Collapse
Affiliation(s)
- Daria Lukasz
- Section on Sensory Cell Development and Function, National Institutes of Health, Bethesda, United States
| | - Alisha Beirl
- Section on Sensory Cell Development and Function, National Institutes of Health, Bethesda, United States
| | - Katie Kindt
- Section on Sensory Cell Development and Function, National Institutes of Health, Bethesda, United States
| |
Collapse
|
12
|
Epigenetic Alterations under Oxidative Stress in Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6439097. [PMID: 36071870 PMCID: PMC9444469 DOI: 10.1155/2022/6439097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
Abstract
Epigenetic regulation of gene expression, including DNA methylation and histone modifications, provides finely tuned responses for cells that undergo cellular environment changes. Abundant evidences have demonstrated the detrimental role of oxidative stress in various human pathogenesis since oxidative stress results from the imbalance between reactive oxygen species (ROS) accumulation and antioxidant defense system. Stem cells can self-renew themselves and meanwhile have the potential to differentiate into many other cell types. As some studies have described the effects of oxidative stress on homeostasis and cell fate decision of stem cells, epigenetic alterations have emerged crucial for mediating the stem cell behaviours under oxidative stress. Here, we review recent findings on the oxidative effects on DNA and histone modifications in stem cells. We propose that epigenetic alterations and oxidative stress may influence each other in stem cells.
Collapse
|
13
|
Deng H, Li Y, Li J, Shen W, Chen Q, Weng S, He J, Xu X. Neomycin inhibits Megalocytivirus infection in fish by antagonizing the increase of intracellular reduced glutathione. FISH & SHELLFISH IMMUNOLOGY 2022; 127:148-154. [PMID: 35714896 DOI: 10.1016/j.fsi.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus that infects a number of marine and freshwater fishes, causing huge economic losses in aquaculture. The ISKNV infection leads to increase of reducing power in cells. As the antibiotic neomycin can promote the production of reactive oxygen species (ROS) in animal cells, in the current study, the potential therapeutic effect of neomycin on ISKNV infection was explored. We showed that neomycin could decrease the reducing power in cultured MFF-1 cells and inhibit ISKNV infection by antagonizing the shift of the cellular redox balance toward reduction. In vivo experiments further demonstrated that neomycin treatment significantly suppresses ISKNV infection in mandarin fish. Expression of the major capsid protein (MCP) and the proportion of infected cells in tissues were down-regulated after neomycin treatment. Furthermore, neomycin showed complex effects on expression of a set of antiviral related genes of the host. Taking together, the current study suggested that the viral-induced redox imbalance in the infected cells could be used as a target for suppressing ISKNV infection. Neomycin can be potentially utilized for therapeutic treatment of Megalocytivirus diseases by antagonizing intracellular redox changes.
Collapse
Affiliation(s)
- Hengwei Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Yeyu Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jinling Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Wenjie Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Qiankang Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
14
|
Huang J, Sun X, Wang H, Chen R, Yang Y, Hu J, Zhang Y, Gui F, Huang J, Yang L, Hong Y. Conditional overexpression of neuritin in supporting cells (SCs) mitigates hair cell (HC) damage and induces HC regeneration in the adult mouse cochlea after drug-induced ototoxicity. Hear Res 2022; 420:108515. [DOI: 10.1016/j.heares.2022.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/04/2022]
|
15
|
Zhang Y, Zhang S, Zhou H, Ma X, Wu L, Tian M, Li S, Qian X, Gao X, Chai R. Dync1li1 is required for the survival of mammalian cochlear hair cells by regulating the transportation of autophagosomes. PLoS Genet 2022; 18:e1010232. [PMID: 35727824 PMCID: PMC9249241 DOI: 10.1371/journal.pgen.1010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 07/01/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Dync1li1, a subunit of cytoplasmic dynein 1, is reported to play important roles in intracellular retrograde transport in many tissues. However, the roles of Dync1li1 in the mammalian cochlea remain uninvestigated. Here we first studied the expression pattern of Dync1li1 in the mouse cochlea and found that Dync1li1 is highly expressed in hair cells (HCs) in both neonatal and adult mice cochlea. Next, we used Dync1li1 knockout (KO) mice to investigate its effects on hearing and found that deletion of Dync1li1 leads to early onset of progressive HC loss via apoptosis and to subsequent hearing loss. Further studies revealed that loss of Dync1li1 destabilizes dynein and alters the normal function of dynein. In addition, Dync1li1 KO results in a thinner Golgi apparatus and the accumulation of LC3+ autophagic vacuoles, which triggers HC apoptosis. We also knocked down Dync1li1 in the OC1 cells and found that the number of autophagosomes were significantly increased while the number of autolysosomes were decreased, which suggested that Dync1li1 knockdown leads to impaired transportation of autophagosomes to lysosomes and therefore the accumulation of autophagosomes results in HC apoptosis. Our findings demonstrate that Dync1li1 plays important roles in HC survival through the regulation of autophagosome transportation. Hearing loss is one of the most common sensorial disorders globally. The main reason of hearing loss is the irreversible loss or malfunction of cochlear hair cells. Identifying new hearing loss-related genes and investigating their roles and mechanisms in HC survival are important for the prevention and treatment of hereditary hearing loss. Cytoplasmic dynein 1 is reported to play important roles in in ciliogenesis and protein transport in the mouse photoreceptors. Here, we described the expression pattern of Dyncili1 (a subunit of cytoplasmic dynein 1) in the mouse cochlea and used knockout mice to investigate its specific role in the hair cell of cochlea.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Han Zhou
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Mengyao Tian
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| |
Collapse
|
16
|
The Vascular Niche for Adult Cardiac Progenitor Cells. Antioxidants (Basel) 2022; 11:antiox11050882. [PMID: 35624750 PMCID: PMC9137669 DOI: 10.3390/antiox11050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Research on cardiac progenitor cell populations has generated expectations about their potential for cardiac regeneration capacity after acute myocardial infarction and during physiological aging; however, the endogenous capacity of the adult mammalian heart is limited. The modest efficacy of exogenous cell-based treatments can guide the development of new approaches that, alone or in combination, can be applied to boost clinical efficacy. The identification and manipulation of the adult stem cell environment, termed niche, will be critical for providing new evidence on adult stem cell populations and improving stem-cell-based therapies. Here, we review and discuss the state of our understanding of the interaction of adult cardiac progenitor cells with other cardiac cell populations, with a focus on the description of the B-CPC progenitor population (Bmi1+ cardiac progenitor cell), which is a strong candidate progenitor for all main cardiac cell lineages, both in the steady state and after cardiac damage. The set of all interactions should be able to define the vascular cardiac stem cell niche, which is associated with low oxidative stress domains in vasculature, and whose manipulation would offer new hope in the cardiac regeneration field.
Collapse
|
17
|
Wang W, Chen E, Ding X, Lu P, Chen J, Ma P, Lu L. N-acetylcysteine protect inner hair cells from cisplatin by alleviated celluar oxidative stress and apoptosis. Toxicol In Vitro 2022; 81:105354. [PMID: 35346799 DOI: 10.1016/j.tiv.2022.105354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
Cisplatin is a well-known platinum-based chemotherapy drug widely used to treat a variety of malignant tumors. However, cisplatin has serious side-effects include nephrotoxicity and ototoxicity, Cisplatin chemotherapy causes permanent hearing loss at least 40% of treated patients. Our results showed that 20 mM N-acetylcysteine (NAC) can completely protect 50 μM cisplatin-induced hair cell loss in rat cochlear culture and protects against cisplatin-induced hair cell loss in zebrafish in vivo. The fluorescence intensity of mitochondrial ROS significantly increased after the cultures were treated with 15 μM cisplatin for 48 h and was decreased in the group treated with 15 μM cisplatin add 20 mM NAC. In addition, the number of TUNEL positive hair cells was increased after the cultures were treated with 15 μM cisplatin for 48 h and there are null in cisplatin and NAC co-treated group.
Collapse
Affiliation(s)
- Weilong Wang
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Erfang Chen
- Department of Otolaryngology Head & Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xuerui Ding
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Peiheng Lu
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Jiawei Chen
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Pengwei Ma
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Lianjun Lu
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
18
|
Chen MK, Zhou JH, Wang P, Ye YL, Liu Y, Zhou JW, Chen ZJ, Yang JK, Liao DY, Liang ZJ, Xie X, Zhou QZ, Xue KY, Guo WB, Xia M, Bao JM, Yang C, Duan HF, Wang HY, Huang ZP, Qin ZK, Liu CD. BMI1 activates P-glycoprotein via transcription repression of miR-3682-3p and enhances chemoresistance of bladder cancer cell. Aging (Albany NY) 2021; 13:18310-18330. [PMID: 34270461 PMCID: PMC8351696 DOI: 10.18632/aging.203277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Chemoresistance is the most significant reason for the failure of cancer treatment following radical cystectomy. The response rate to the first-line chemotherapy of cisplatin and gemcitabine does not exceed 50%. In our previous research, elevated BMI1 (B-cell specific Moloney murine leukemia virus integration region 1) expression in bladder cancer conferred poor survival and was associated with chemoresistance. Herein, via analysis of The Cancer Genome Atlas database and validation of clinical samples, BMI1 was elevated in patients with bladder cancer resistant to cisplatin and gemcitabine, which conferred tumor relapse and progression. Consistently, BMI1 was markedly increased in the established cisplatin- and gemcitabine-resistant T24 cells (T24/DDP&GEM). Functionally, BMI1 overexpression dramatically promoted drug efflux, enhanced viability and decreased apoptosis of bladder cancer cells upon treatment with cisplatin or gemcitabine, whereas BMI1 downregulation reversed this effect. Mechanically, upon interaction with p53, BMI1 was recruited on the promoter of miR-3682-3p gene concomitant with an increase in the mono-ubiquitination of histone H2A lysine 119, leading to transcription repression of miR-3682-3p gene followed by derepression of ABCB1 (ATP binding cassette subfamily B member 1) gene. Moreover, suppression of P-glycoprotein by miR-3682-3p mimics or its inhibitor XR-9576, could significantly reverse chemoresistance of T24/DDP&GEM cells. These results provided a novel insight into a portion of the mechanism underlying BMI1-mediated chemoresistance in bladder cancer.
Collapse
Affiliation(s)
- Ming-Kun Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jun-Hao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Peng Wang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Yun-Lin Ye
- Department of Pathology, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yang Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jia-Wei Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Zi-Jian Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jian-Kun Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - De-Ying Liao
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Zhi-Jian Liang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Xiao Xie
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Qi-Zhao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Kang-Yi Xue
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Wen-Bin Guo
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Ming Xia
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Ji-Ming Bao
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Cheng Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Hai-Feng Duan
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Hong-Yi Wang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Zhi-Peng Huang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Zi-Ke Qin
- Department of Pathology, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Cun-Dong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| |
Collapse
|
19
|
Zhang S, Dong Y, Qiang R, Zhang Y, Zhang X, Chen Y, Jiang P, Ma X, Wu L, Ai J, Gao X, Wang P, Chen J, Chai R. Characterization of Strip1 Expression in Mouse Cochlear Hair Cells. Front Genet 2021; 12:625867. [PMID: 33889175 PMCID: PMC8056008 DOI: 10.3389/fgene.2021.625867] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Striatin-interacting protein 1 (Strip1) is a core component of the striatin interacting phosphatase and kinase (STRIPAK) complex, which is involved in embryogenesis and development, circadian rhythms, type 2 diabetes, and cancer progression. However, the expression and role of Strip1 in the mammalian cochlea remains unclear. Here we studied the expression and function of Strip1 in the mouse cochlea by using Strip1 knockout mice. We first found that the mRNA and protein expression of Strip1 increases as mice age starting from postnatal day (P) 3 and reaches its highest expression level at P30 and that the expression of Strip1 can be detected by immunofluorescent staining starting from P14 only in cochlear HCs, and not in supporting cells (SCs). Next, we crossed Strip1 heterozygous knockout (Strip +/−) mice to obtain Strip1 homozygous knockout (Strip1−/−) mice for studying the role of Strip1 in cochlear HCs. However, no Strip1−/− mice were obtained and the ratio of Strip +/− to Strip1+/+ mice per litter was about 2:1, which suggested that homozygous Strip1 knockout is embryonic lethal. We measured hearing function and counted the HC number in P30 and P60 Strip +/− mice and found that they had normal hearing ability and HC numbers compared to Strip1+/+ mice. Our study suggested that Strip1 probably play important roles in HC development and maturation, which needs further study in the future.
Collapse
Affiliation(s)
- Shasha Zhang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Ying Dong
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Ruiying Qiang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yuan Zhang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xiaoli Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yin Chen
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Pei Jiang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Jingru Ai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Pengjun Wang
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chen
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Hsp70/Bmi1-FoxO1-SOD Signaling Pathway Contributes to the Protective Effect of Sound Conditioning against Acute Acoustic Trauma in a Rat Model. Neural Plast 2020; 2020:8823785. [PMID: 33082778 PMCID: PMC7556106 DOI: 10.1155/2020/8823785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Sound conditioning (SC) is defined as “toughening” to lower levels of sound over time, which reduces a subsequent noise-induced threshold shift. Although the protective effect of SC in mammals is generally understood, the exact mechanisms involved have not yet been elucidated. To confirm the protective effect of SC against noise exposure (NE) and the stress-related signaling pathway of its rescue, we observed target molecule changes caused by SC of low frequency prior to NE as well as histology analysis in vivo and verified the suggested mechanisms in SGNs in vitro. Further, we investigated the potential role of Hsp70 and Bmi1 in SC by targeting SOD1 and SOD2 which are regulated by the FoxO1 signaling pathway based on mitochondrial function and reactive oxygen species (ROS) levels. Finally, we sought to identify the possible molecular mechanisms associated with the beneficial effects of SC against noise-induced trauma. Data from the rat model were evaluated by western blot, immunofluorescence, and RT-PCR. The results revealed that SC upregulated Hsp70, Bmi1, FoxO1, SOD1, and SOD2 expression in spiral ganglion neurons (SGNs). Moreover, the auditory brainstem responses (ABRs) and electron microscopy revealed that SC could protect against acute acoustic trauma (AAT) based on a significant reduction of hearing impairment and visible reduction in outer hair cell loss as well as ultrastructural changes in OHCs and SGNs. Collectively, these results suggested that the contribution of Bmi1 toward decreased sensitivity to noise-induced trauma following SC was triggered by Hsp70 induction and associated with enhancement of the antioxidant system and decreased mitochondrial superoxide accumulation. This contribution of Bmi1 was achieved by direct targeting of SOD1 and SOD2, which was regulated by FoxO1. Therefore, the Hsp70/Bmi1-FoxO1-SOD signaling pathway might contribute to the protective effect of SC against AAT in a rat model.
Collapse
|
21
|
Zhong Z, Fu X, Li H, Chen J, Wang M, Gao S, Zhang L, Cheng C, Zhang Y, Li P, Zhang S, Qian X, Shu Y, Chai R, Gao X. Citicoline Protects Auditory Hair Cells Against Neomycin-Induced Damage. Front Cell Dev Biol 2020; 8:712. [PMID: 32984303 PMCID: PMC7487320 DOI: 10.3389/fcell.2020.00712] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/13/2020] [Indexed: 01/07/2023] Open
Abstract
Aminoglycoside-induced hair cell (HC) loss is one of the most important causes of hearing loss. After entering the inner ear, aminoglycosides induce the production of high levels of reactive oxygen species (ROS) that subsequently activate apoptosis in HCs. Citicoline, a nucleoside derivative, plays a therapeutic role in central nervous system injury and in neurodegenerative disease models, including addictive disorders, stroke, head trauma, and cognitive impairment in the elderly, and has been widely used in the clinic as an FDA approved drug. However, its effect on auditory HCs remains unknown. Here, we used HC-like HEI-OC-1 cells and whole organ explant cultured mouse cochleae to explore the effect of citicoline on aminoglycoside-induced HC damage. Consistent with previous reports, both ROS levels and apoptosis were significantly increased in neomycin-induced cochlear HCs and HEI-OC-1 cells compared to undamaged controls. Interestingly, we found that co-treatment with citicoline significantly protected against neomycin-induced HC loss in both HEI-OC-1 cells and whole organ explant cultured cochleae. Furthermore, we demonstrated that citicoline could significantly reduce neomycin-induced mitochondrial dysfunction and inhibit neomycin-induced ROS accumulation and subsequent apoptosis. Thus, we conclude that citicoline can protect against neomycin-induced HC loss by inhibiting ROS aggregation and thus preventing apoptosis in HCs, and this suggests that citicoline might serve as a potential therapeutic drug in the clinic to protect HCs.
Collapse
Affiliation(s)
- Zhenhua Zhong
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaolong Fu
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
| | - He Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Chen
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Maohua Wang
- Department of Otolaryngology, Head and Neck Surgery, Xiangya School of Medicine, Central South University, Changsha, China
| | - Song Gao
- Department of Otolaryngology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Liyan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Cheng Cheng
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yuan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Peipei Li
- School of Life Sciences, Shandong University, Jinan, China
| | - Shasha Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Xiaoyun Qian
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institute of Biomedical Sciences, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Han H, Dong Y, Ma X. Dihydromyricetin Protects Against Gentamicin-Induced Ototoxicity via PGC-1α/SIRT3 Signaling in vitro. Front Cell Dev Biol 2020; 8:702. [PMID: 32850822 PMCID: PMC7399350 DOI: 10.3389/fcell.2020.00702] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside-induced ototoxicity can have a major impact on patients’ quality of life and social development problems. Oxidative stress affects normal physiologic functions and has been implicated in aminoglycoside-induced inner ear injury. Excessive accumulation of reactive oxygen species (ROS) damages DNA, lipids, and proteins in cells and induces their apoptosis. Dihydromyricetin (DHM) is a natural flavonol with a wide range of health benefits including anti-inflammatory, antitumor, and antioxidant effects; however, its effects and mechanism of action in auditory hair cells are not well understood. The present study investigated the antioxidant mechanism and anti-ototoxic potential of DHM using House Ear Institute-Organ of Corti (HEI-OC)1 auditory cells and cochlear explant cultures prepared from Kunming mice. We used gentamicin to establish aminoglycoside-induced ototoxicity models. Histological and physiological analyses were carried out to determine DHM’s pharmacological effects on gentamicin-induced ototoxicity. Results showed DHM contributes to protecting cells from apoptotic cell death by inhibiting ROS accumulation. Western blotting and quantitative RT-PCR analyses revealed that DHM exerted its otoprotective effects by up-regulating levels of peroxisome proliferator activated receptor γ-coactivator (PGC)-1α and Sirtuin (SIRT)3. And the role of PGC-1α and SIRT3 in the protective effects of DHM was evaluated by pharmacologic inhibition of these factors using SR-18292 and 3-(1H-1,2,3-triazol-4-yl) pyridine, respectively, which indicated DHM’s protective effect was dependent on activation of the PGC-1α/SIRT3 signaling. Our study is the first report to identify DHM as a potential otoprotective drug and provides a basis for the prevention and treatment of hearing loss caused by aminoglycoside antibiotic-induced oxidative damage to auditory hair cells.
Collapse
Affiliation(s)
- Hezhou Han
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiulan Ma
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Zhang S, Zhang Y, Dong Y, Guo L, Zhang Z, Shao B, Qi J, Zhou H, Zhu W, Yan X, Hong G, Zhang L, Zhang X, Tang M, Zhao C, Gao X, Chai R. Knockdown of Foxg1 in supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse cochlea. Cell Mol Life Sci 2020; 77:1401-1419. [PMID: 31485717 PMCID: PMC7113235 DOI: 10.1007/s00018-019-03291-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 08/08/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
Foxg1 is one of the forkhead box genes that are involved in morphogenesis, cell fate determination, and proliferation, and Foxg1 was previously reported to be required for morphogenesis of the mammalian inner ear. However, Foxg1 knock-out mice die at birth, and thus the role of Foxg1 in regulating hair cell (HC) regeneration after birth remains unclear. Here we used Sox2CreER/+ Foxg1loxp/loxp mice and Lgr5-EGFPCreER/+ Foxg1loxp/loxp mice to conditionally knock down Foxg1 specifically in Sox2+ SCs and Lgr5+ progenitors, respectively, in neonatal mice. We found that Foxg1 conditional knockdown (cKD) in Sox2+ SCs and Lgr5+ progenitors at postnatal day (P)1 both led to large numbers of extra HCs, especially extra inner HCs (IHCs) at P7, and these extra IHCs with normal hair bundles and synapses could survive at least to P30. The EdU assay failed to detect any EdU+ SCs, while the SC number was significantly decreased in Foxg1 cKD mice, and lineage tracing data showed that much more tdTomato+ HCs originated from Sox2+ SCs in Foxg1 cKD mice compared to the control mice. Moreover, the sphere-forming assay showed that Foxg1 cKD in Lgr5+ progenitors did not significantly change their sphere-forming ability. All these results suggest that Foxg1 cKD promotes HC regeneration and leads to large numbers of extra HCs probably by inducing direct trans-differentiation of SCs and progenitors to HCs. Real-time qPCR showed that cell cycle and Notch signaling pathways were significantly down-regulated in Foxg1 cKD mice cochlear SCs. Together, this study provides new evidence for the role of Foxg1 in regulating HC regeneration from SCs and progenitors in the neonatal mouse cochlea.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Ying Dong
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Lingna Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Zhong Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Buwei Shao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Jieyu Qi
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Han Zhou
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Weijie Zhu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Xiaoqian Yan
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Guodong Hong
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Liyan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Xiaoli Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Chunjie Zhao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China.
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Key Laboratory of Hearing Medicine of NHFPC, ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
24
|
Gao S, Cheng C, Wang M, Jiang P, Zhang L, Wang Y, Wu H, Zeng X, Wang H, Gao X, Ma Y, Chai R. Blebbistatin Inhibits Neomycin-Induced Apoptosis in Hair Cell-Like HEI-OC-1 Cells and in Cochlear Hair Cells. Front Cell Neurosci 2020; 13:590. [PMID: 32116554 PMCID: PMC7025583 DOI: 10.3389/fncel.2019.00590] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022] Open
Abstract
Aging, noise, and ototoxic drug-induced hair cell (HC) loss are the major causes of sensorineural hearing loss. Aminoglycoside antibiotics are commonly used in the clinic, but these often have ototoxic side effects due to the accumulation of oxygen-free radicals and the subsequent induction of HC apoptosis. Blebbistatin is a myosin II inhibitor that regulates microtubule assembly and myosin–actin interactions, and most research has focused on its ability to modulate cardiac or urinary bladder contractility. By regulating the cytoskeletal structure and reducing the accumulation of reactive oxygen species (ROS), blebbistatin can prevent apoptosis in many different types of cells. However, there are no reports on the effect of blebbistatin in HC apoptosis. In this study, we found that the presence of blebbistatin significantly inhibited neomycin-induced apoptosis in HC-like HEI-OC-1 cells. We also found that blebbistatin treatment significantly increased the mitochondrial membrane potential (MMP), decreased ROS accumulation, and inhibited pro-apoptotic gene expression in both HC-like HEI-OC-1 cells and explant-cultured cochlear HCs after neomycin exposure. Meanwhile, blebbistatin can protect the synaptic connections between HCs and cochlear spiral ganglion neurons. This study showed that blebbistatin could maintain mitochondrial function and reduce the ROS level and thus could maintain the viability of HCs after neomycin exposure and the neural function in the inner ear, suggesting that blebbistatin has potential clinic application in protecting against ototoxic drug-induced HC loss.
Collapse
Affiliation(s)
- Song Gao
- Department of Otolaryngology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China
| | - Maohua Wang
- Department of Otolaryngology, Head and Neck Surgery, XiangYa School of Medicine, Central South University, Changsha, China
| | - Pei Jiang
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Liyan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Ya Wang
- Department of Otolaryngology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Huihui Wu
- Department of Otolaryngology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Xuanfu Zeng
- Department of Otolaryngology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Hui Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China
| | - Yongming Ma
- Department of Otolaryngology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| |
Collapse
|
25
|
Zhang Y, Li W, He Z, Wang Y, Shao B, Cheng C, Zhang S, Tang M, Qian X, Kong W, Wang H, Chai R, Gao X. Pre-treatment With Fasudil Prevents Neomycin-Induced Hair Cell Damage by Reducing the Accumulation of Reactive Oxygen Species. Front Mol Neurosci 2019; 12:264. [PMID: 31780893 PMCID: PMC6851027 DOI: 10.3389/fnmol.2019.00264] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022] Open
Abstract
Ototoxic drug-induced hair cell (HC) damage is one of the main causes of sensorineural hearing loss, which is one of the most common sensory disorders in humans. Aminoglycoside antibiotics are common ototoxic drugs, and these can cause the accumulation of intracellular oxygen free radicals and lead to apoptosis in HCs. Fasudil is a Rho kinase inhibitor and vasodilator that has been widely used in the clinic and has been shown to have neuroprotective effects. However, the possible application of fasudil in protecting against aminoglycoside-induced HC loss and hearing loss has not been investigated. In this study, we investigated the ability of fasudil to protect against neomycin-induced HC loss both in vitro and in vivo. We found that fasudil significantly reduced the HC loss in cochlear whole-organ explant cultures and reduced the cell death of auditory HEI-OC1 cells after neomycin exposure in vitro. Moreover, we found that fasudil significantly prevented the HC loss and hearing loss of mice in the in vivo neomycin damage model. Furthermore, we found that fasudil could significantly inhibit the Rho signaling pathway in the auditory HEI-OC1 cells after neomycin exposure, thus further reducing the neomycin-induced accumulation of reactive oxygen species and subsequent apoptosis in HEI-OC1 cells. This study suggests that fasudil might contribute to the increased viability of HCs after neomycin exposure by inhibition of the Rho signaling pathway and suggests a new therapeutic target for the prevention of aminoglycoside-induced HC loss and hearing loss.
Collapse
Affiliation(s)
- Yanqiu Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Cancer Hospital, Xuzhou, China
| | - Wei Li
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zuhong He
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfeng Wang
- Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Shanghai Engineering Research Centre of Cochlear Implant, Fudan University, Shanghai, China
- Shanghai Fenyang Vision & Audition Center, Shanghai, China
| | - Buwei Shao
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Cheng Cheng
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Shasha Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Mingliang Tang
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xiaoyun Qian
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Shanghai Engineering Research Centre of Cochlear Implant, Fudan University, Shanghai, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| |
Collapse
|
26
|
Zhang Y, Chen D, Zhao L, Li W, Ni Y, Chen Y, Li H. Nfatc4 Deficiency Attenuates Ototoxicity by Suppressing Tnf-Mediated Hair Cell Apoptosis in the Mouse Cochlea. Front Immunol 2019; 10:1660. [PMID: 31379853 PMCID: PMC6650568 DOI: 10.3389/fimmu.2019.01660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The loss of sensory hair cells in the cochlea is the major cause of sensorineural hearing loss, and inflammatory processes and immune factors in response to cochlear damage have been shown to induce hair cell apoptosis. The expression and function of Nfatc4 in the cochlea remains unclear. In this study, we investigated the expression of Nfatc4 in the mouse cochlea and explored its function using Nfatc4−/− mice. We first showed that Nfatc4 was expressed in the cochlear hair cells. Cochlear hair cell development and hearing function were normal in Nfatc4−/− mice, suggesting that Nfatc4 is not critical for cochlear development. We then showed that when the hair cells were challenged by ototoxic drugs Nfatc4 was activated and translocated from the cytoplasm to the nucleus, and this was accompanied by increased expression of Tnf and its downstream targets and subsequent hair cell apoptosis. Finally, we demonstrated that Nfatc4-deficient hair cells showed lower sensitivity to damage induced by ototoxic drugs and noise exposure compared to wild type controls. The Tnf-mediated apoptosis pathway was attenuated in Nfatc4-deficient cochlear epithelium, and this might be the reason for the reduced sensitivity of Nfatc4-deficient hair cells to injury. These findings suggest that the amelioration of inflammation-mediated hair cell apoptosis by inhibition of Nfatc4 activation might have significant therapeutic value in preventing ototoxic drug or noise exposure-induced sensorineural hearing loss.
Collapse
Affiliation(s)
- Yanping Zhang
- State Key Laboratory of Medical Neurobiology, Department of Affiliated Eye and ENT Hospital, ENT Institute and Otorhinolaryngology, Institutes of Biomedical Sciences and the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Diyan Chen
- State Key Laboratory of Medical Neurobiology, Department of Affiliated Eye and ENT Hospital, ENT Institute and Otorhinolaryngology, Institutes of Biomedical Sciences and the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Liping Zhao
- State Key Laboratory of Medical Neurobiology, Department of Affiliated Eye and ENT Hospital, ENT Institute and Otorhinolaryngology, Institutes of Biomedical Sciences and the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Wen Li
- State Key Laboratory of Medical Neurobiology, Department of Affiliated Eye and ENT Hospital, ENT Institute and Otorhinolaryngology, Institutes of Biomedical Sciences and the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Yusu Ni
- State Key Laboratory of Medical Neurobiology, Department of Affiliated Eye and ENT Hospital, ENT Institute and Otorhinolaryngology, Institutes of Biomedical Sciences and the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Yan Chen
- State Key Laboratory of Medical Neurobiology, Department of Affiliated Eye and ENT Hospital, ENT Institute and Otorhinolaryngology, Institutes of Biomedical Sciences and the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Huawei Li
- State Key Laboratory of Medical Neurobiology, Department of Affiliated Eye and ENT Hospital, ENT Institute and Otorhinolaryngology, Institutes of Biomedical Sciences and the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Shanghai Engineering Research Centre of Cochlear Implant, Shanghai, China
| |
Collapse
|
27
|
Choi R, Kurtenbach S, Goldstein BJ. Loss of BMI1 in mature olfactory sensory neurons leads to increased olfactory basal cell proliferation. Int Forum Allergy Rhinol 2019; 9:993-999. [PMID: 31251849 DOI: 10.1002/alr.22366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Damage to olfactory sensory neurons (OSNs), situated within the neuroepithelium of the olfactory cleft, may be associated with anosmia. Although their direct contact with the nasal airspace make OSNs vulnerable to injury and death, multiple mechanisms maintain epithelium integrity and olfactory function. We hypothesized that BMI1, a polycomb protein found to be enriched in OSNs, may function in neuroprotection. Here, we explored BMI1 function in a mouse model. METHODS Utilizing a mouse genetic approach to delete Bmi1 selectively in mature OSNs, we investigated changes in OE homeostasis by performing immunohistochemical, biochemical, and functional assays. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunostaining, and electro-olfactograms were used to compare gene expression, cell composition, and olfactory function in OSN-specific BMI1 knockout mice (n = 3 to 5) and controls. Chromatin studies were also performed to identify protein-DNA interactions between BMI1 and its target genes (n = 3). RESULTS OSN-specific BMI1 knockout led to increased neuron death and basal cell activation. Chromatin studies suggested a mechanism of increased neurodegeneration due to de-repression of a pro-apoptosis gene, p19ARF. Despite the increased turnover, we found that olfactory neuroepithelium thickness and olfactory function remained intact. Our studies also revealed the presence of additional polycomb group proteins that may compensate for the loss of BMI1 in mature OSNs. CONCLUSION The olfactory neuroepithelium employs multiple mechanisms to maintain epithelial homeostasis. Our findings provide evidence that in a mouse model of BMI1 deletion, the overall integrity and function of the olfactory neuroepithelium are not compromised, despite increased neuronal turnover, reflecting a remarkable reparative capacity to sustain a critical sensory system.
Collapse
Affiliation(s)
- Rhea Choi
- Medical Scientist Training Program, Miller School of Medicine, University of Miami, Miami, FL.,Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL
| | - Sarah Kurtenbach
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Bradley J Goldstein
- Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL.,Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL.,Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
28
|
Ding X, Wang W, Chen J, Zhao Q, Lu P, Lu L. Salidroside protects inner ear hair cells and spiral ganglion neurons from manganese exposure by regulating ROS levels and inhibiting apoptosis. Toxicol Lett 2019; 310:51-60. [PMID: 30991096 DOI: 10.1016/j.toxlet.2019.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/24/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022]
Abstract
Manganese (Mn) is an essential cofactor for many enzymes and thus plays an important role in normal growth and development. However, persistent exposure to high Mn concentrations can result in deleterious effects on not only the central nervous system but also peripheral nerves, including nerves associated with the auditory system. Our initial research on cochlear organotypic cultures in vitro showed that N-acetylcysteine (NAC) clearly decreases Mn-induced losses in hair cells (HCs), auditory nerve fibers (ANFs) and spiral ganglion neurons (SGNs) in a concentration-dependent manner. Salidroside (SAL) (p-hydroxyphenethyl-b-d-glucoside; C14H20O7), which is extracted from Rhodiola rosea L, has many pharmacological actions and antioxidative, antiaging, neuroprotective and anticancer effects. We hypothesized that SAL could also protect HCs, ANFs and SGNs from Mn injury. Cochlear organotypic cultures were treated with 1 mM Mn alone or combined with SAL (1-1000 μM). The neurofilament staining results showed that HCs, ANFs and SGNs were seriously damaged at high concentrations (100-1000 μM) but less damaged at low concentrations (1-10 μM). SAL may protect against 1 mM Mn-induced HC loss and axonal degeneration, suggesting that SAL could be a promising drug for clinical applications.
Collapse
Affiliation(s)
- Xuerui Ding
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Weilong Wang
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jiawei Chen
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Qianqian Zhao
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Peiheng Lu
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Lianjun Lu
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
29
|
Guan M, Zhang Y, Huang Q, He L, Fang Q, Zhang J, Gao S, Fang J, Ma Y, Su K, Gao X. Fetal bovine serum inhibits neomycin-induced apoptosis of hair cell-like HEI-OC-1 cells by maintaining mitochondrial function. Am J Transl Res 2019; 11:1343-1358. [PMID: 30972166 PMCID: PMC6456536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Aging and exposure to noise or ototoxic drugs are major causes of hair cell death leading to human hearing loss, and many agents have been developed to protect hair cells from apoptosis. Fetal bovine serum (FBS) is a fundamental ingredient in the culture medium of hair cell-like House Ear Institute Organ of Corti 1 (HEI-OC-1) cells, but there have been no reports about the function of FBS in HEI-OC-1 cell apoptosis. In this study, we found that FBS deprivation alone significantly increased HEI-OC-1 cell apoptosis in the absence of neomycin exposure and that the presence of FBS significantly inhibited HEI-OC-1 cell apoptosis after neomycin exposure compared to FBS-deprived cells. Further, we found that the protective effect of FBS was dose dependent and more effective than the growth factors B27, N2, EGF, bFGF, IGF-1, and heparan sulfate. We also found that FBS deprivation significantly disrupted the expression level of mitochondrial proteins, increased pro-apoptotic gene expression, decreased the mitochondrial membrane potential, and increased reactive oxygen species accumulation in HEI-OC-1 cells after neomycin exposure. These findings indicate that FBS is involved in maintaining the level of mitochondrial proteins, maintaining the balance of oxidant gene expression, and preventing the accumulation of ROS, and thus FBS maintains normal mitochondrial function and inhibits apoptosis in HEI-OC-1 cells after neomycin exposure.
Collapse
Affiliation(s)
- Ming Guan
- Department of Otolaryngology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of MedicineHangzhou 310006, China
- Department of Otolaryngology, The Affiliated Hangzhou Hospital of Nanjing Medical UniversityHangzhou 310006, China
- Department of Otolaryngology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjing 210008, China
| | - Yuhua Zhang
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Qiusheng Huang
- Department of Otolaryngology, The Affiliated Hospital of Jiangsu UniversityZhenjiang 212002, China
| | - Li He
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Qiaojun Fang
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Jie Zhang
- Department of Pediatrics, Hangzhou Children’s HospitalHangzhou 310000, China
| | - Song Gao
- Department of Otolaryngology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang 212002, China
| | - Jia Fang
- Department of Otolaryngology, Head-Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200230, China
| | - Yongming Ma
- Department of Otolaryngology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang 212002, China
| | - Kaiming Su
- Department of Otolaryngology, Head-Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200230, China
| | - Xia Gao
- Department of Otolaryngology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjing 210008, China
- Department of Otolaryngology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, China
- Research Institution of OtorhinolaryngologyNo. 321 Zhongshan Road, Nanjing 210008, China
| |
Collapse
|
30
|
Sun W, Qiao W, Zhou B, Hu Z, Yan Q, Wu J, Wang R, Zhang Q, Miao D. Overexpression of Sirt1 in mesenchymal stem cells protects against bone loss in mice by FOXO3a deacetylation and oxidative stress inhibition. Metabolism 2018; 88:61-71. [PMID: 30318050 DOI: 10.1016/j.metabol.2018.06.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/23/2018] [Accepted: 06/17/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE B cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) deficiency (Bmi-1-/-) leads to an osteoporotic phenotype with a significant downregulation of Sirt1 protein expression. Sirtuin 1 (Sirt1) haploinsufficiency results in a bone loss by decreased bone formation; however, it is unclear whether Sirt1 overexpression in mesenchymal stem cells (MSCs) plays an anti-osteoporotic role. The aim of the study is to identify whether the overexpression of Sirt1 in MSCs could restore skeletal growth retardation and osteoporosis in Bmi-1 deficient mice. METHODS We used our new generated transgenic mouse model that overexpresses Sirt1 in its MSCs (Sirt1TG) to cross with Bmi-1-/- mice to generate Bmi-1-/- mice with Sirt1 overexpression in MSCs, and compared their skeletal metabolism with those of their Bmi-1-/- and wild-type (WT) littermates (6 mice for each genotype) at 4 weeks of age using imaging, histopathological, immunohistochemical, histomorphometric, cellular, and molecular methods. RESULTS The levels of expression for Sirt1 were noticeably higher in the skeletal tissue of Sirt1TG mice than in those of WT mice. In Comparison to WT mice, the body weight and size, skeletal size, bone volume, osteoblast number, alkaline phosphatase and type I collagen positive areas, osteogenic related gene expression levels were all significantly increased in the Sirt1TG mice. Overexpression of Sirt1 in Bmi-1-/- mouse MSCs resulted in a longer lifespan, improved skeletal growth and significantly increased bone mass by stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption in the Bmi-1-/- mice, although the defects were not completely restored. Furthermore, Sirt1 overexpression in MSCs reduced the acetylation level of FOXO3a (Forkhead box O3a), increasing levels of expression for FOXO3a and SOD2 (Superoxide dismutase 2) in bony tissue, enhanced osteogenesis and reduced osteogenic cell senescence. We also demonstrated that nicotinamide, a Sirt1 inhibitor, blocks the effect of overexpression of Sirt1 in MSCs on osteogenesis and osteogenic cell senescence. CONCLUSIONS Taken together, these results demonstrate that Sirt1 overexpression in MSCs increased the osteoblastic bone formation and partially restores the defects in skeletal growth and osteogenesis in Bmi-1-/- mice by FOXO3a deacetylation and oxidative stress inhibition. Our data support the proposal that Sirt1 is a target for promoting bone formation as an anabolic approach for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Wen Sun
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Wanxin Qiao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Bin Zhou
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Zixuan Hu
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Quanquan Yan
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China; Shanghai Lida Polytechnic Institute, Shanghai, China
| | - Jun Wu
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Rong Wang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
31
|
He Z, Fang Q, Li H, Shao B, Zhang Y, Zhang Y, Han X, Guo R, Cheng C, Guo L, Shi L, Li A, Yu C, Kong W, Zhao C, Gao X, Chai R. The role of FOXG1 in the postnatal development and survival of mouse cochlear hair cells. Neuropharmacology 2018; 144:43-57. [PMID: 30336149 DOI: 10.1016/j.neuropharm.2018.10.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 09/30/2018] [Accepted: 10/14/2018] [Indexed: 12/17/2022]
Abstract
The development of therapeutic interventions for hearing loss requires a detailed understanding of the genes and proteins involved in hearing. The FOXG1 protein plays an important role in early neural development and in a variety of neurodevelopmental disorders. Previous studies have shown that there are severe deformities in the inner ear in Foxg1 knockout mice, but due to the postnatal lethality of Foxg1 knockout mice, the role of FOXG1 in hair cell (HC) development and survival during the postnatal period has not been investigated. In this study, we took advantage of transgenic mice that have a specific knockout of Foxg1 in HCs, thus allowing us to explore the role of FOXG1 in postnatal HC development and survival. In the Foxg1 conditional knockout (CKO) HCs, an extra row of HCs appeared in the apical turn of the cochlea and some parts of the middle turn at postnatal day (P)1 and P7; however, these HCs gradually underwent apoptosis, and the HC number was significantly decreased by P21. Auditory brainstem response tests showed that the Foxg1 CKO mice had lost their hearing by P30. The RNA-Seq results and the qPCR verification both showed that the Wnt, Notch, IGF, EGF, and Hippo signaling pathways were down-regulated in the HCs of Foxg1 CKO mice. The significant down-regulation of the Notch signaling pathway might be the reason for the increased numbers of HCs in the cochleae of Foxg1 CKO mice at P1 and P7, while the down-regulation of the Wnt, IGF, and EGF signaling pathways might lead to subsequent HC apoptosis. Together, these results indicate that knockout of Foxg1 induces an extra row of HCs via Notch signaling inhibition and induces subsequent apoptosis of these HCs by inhibiting the Wnt, IGF, and EGF signaling pathways. This study thus provides new evidence for the function and mechanism of FOXG1 in HC development and survival in mice.
Collapse
Affiliation(s)
- Zuhong He
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiaojun Fang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - He Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Buwei Shao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yuhua Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiao Han
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Rongrong Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Cheng Cheng
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lingna Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lusen Shi
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Ao Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Chenjie Yu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China; Center of Depression, Beijing Institute for Brain Disorders, China.
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China; Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
| |
Collapse
|
32
|
Quinoxaline protects zebrafish lateral line hair cells from cisplatin and aminoglycosides damage. Sci Rep 2018; 8:15119. [PMID: 30310154 PMCID: PMC6181994 DOI: 10.1038/s41598-018-33520-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/01/2018] [Indexed: 01/13/2023] Open
Abstract
Hair cell (HC) death is the leading cause of hearing and balance disorders in humans. It can be triggered by multiple insults, including noise, aging, and treatment with certain therapeutic drugs. As society becomes more technologically advanced, the source of noise pollution and the use of drugs with ototoxic side effects are rapidly increasing, posing a threat to our hearing health. Although the underlying mechanism by which ototoxins affect auditory function varies, they share common intracellular byproducts, particularly generation of reactive oxygen species. Here, we described the therapeutic effect of the heterocyclic compound quinoxaline (Qx) against ototoxic insults in zebrafish HCs. Animals incubated with Qx were protected against the deleterious effects of cisplatin and gentamicin, and partially against neomycin. In the presence of Qx, there was a reduction in the number of TUNEL-positive HCs. Since Qx did not block the mechanotransduction channels, based on FM1-43 uptake and microphonic potentials, this implies that Qx’s otoprotective effect is at the intracellular level. Together, these results unravel a novel therapeutic role for Qx as an otoprotective drug against the deleterious side effects of cisplatin and aminoglycosides, offering an alternative option for patients treated with these compounds.
Collapse
|
33
|
Zhou M, Sun G, Zhang L, Zhang G, Yang Q, Yin H, Li H, Liu W, Bai X, Li J, Wang H. STK33 alleviates gentamicin-induced ototoxicity in cochlear hair cells and House Ear Institute-Organ of Corti 1 cells. J Cell Mol Med 2018; 22:5286-5299. [PMID: 30256516 PMCID: PMC6201369 DOI: 10.1111/jcmm.13792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
Abstract
Serine/threonine kinase 33 (STK33), a member of the calcium/calmodulin‐dependent kinase (CAMK), plays vital roles in a wide spectrum of cell processes. The present study was designed to investigate whether STK33 expressed in the mammalian cochlea and, if so, what effect STK33 exerted on aminoglycoside‐induced ototoxicity in House Ear Institute‐Organ of Corti 1 (HEI‐OC1) cells. Immunofluorescence staining and western blotting were performed to investigate STK33 expression in cochlear hair cells (HCs) and HEI‐OC1 cells with or without gentamicin treatment. CCK8, flow cytometry, immunofluorescence staining and western blotting were employed to detect the effects of STK33 knockdown, and/or U0126, and/or N‐acetyl‐L‐cysteine (NAC) on the sensitivity to gentamicin‐induced ototoxicity in HEI‐OC1 cells. We found that STK33 was expressed in both mice cochlear HCs and HEI‐OC1 cells, and the expression of STK33 was significantly decreased in cochlear HCs and HEI‐OC1 cells after gentamicin exposure. STK33 knockdown resulted in an increase in the cleaved caspase‐3 and Bax expressions as well as cell apoptosis after gentamicin damage in HEI‐OC1 cells. Mechanistic studies revealed that knockdown of STK33 led to activated mitochondrial apoptosis pathway as well as augmented reactive oxygen species (ROS) accumulation after gentamicin damage. Moreover, STK33 was involved in extracellular signal‐regulated kinase 1/2 pathway in primary culture of HCs and HEI‐OC1 cells in response to gentamicin insult. The findings from this work indicate that STK33 decreases the sensitivity to the apoptosis dependent on mitochondrial apoptotic pathway by regulating ROS generation after gentamicin treatment, which provides a new potential target for protection from the aminoglycoside‐induced ototoxicity.
Collapse
Affiliation(s)
- Meijuan Zhou
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| | - Gaoying Sun
- Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| | - Lili Zhang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Guodong Zhang
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Qianqian Yang
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Haiyan Yin
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Hongrui Li
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Wenwen Liu
- Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| | - Xiaohui Bai
- Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| | - Jianfeng Li
- Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| | - Haibo Wang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| |
Collapse
|
34
|
Li H, Song Y, He Z, Chen X, Wu X, Li X, Bai X, Liu W, Li B, Wang S, Han Y, Xu L, Zhang D, Li J, Chai R, Wang H, Fan Z. Meclofenamic Acid Reduces Reactive Oxygen Species Accumulation and Apoptosis, Inhibits Excessive Autophagy, and Protects Hair Cell-Like HEI-OC1 Cells From Cisplatin-Induced Damage. Front Cell Neurosci 2018; 12:139. [PMID: 29875633 PMCID: PMC5974247 DOI: 10.3389/fncel.2018.00139] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/02/2018] [Indexed: 01/10/2023] Open
Abstract
Hearing loss is the most common sensory disorder in humans, and a significant number of cases is due to the ototoxicity of drugs such as cisplatin that cause hair cell (HC) damage. Thus, there is great interest in finding agents and mechanisms that protect HCs from ototoxic drug damage. It has been proposed that epigenetic modifications are related to inner ear development and play a significant role in HC protection and HC regeneration; however, whether the m6A modification and the ethyl ester form of meclofenamic acid (MA2), which is a highly selective inhibitor of FTO (fatmass and obesity-associated enzyme, one of the primary human demethylases), can affect the process of HC apoptosis induced by ototoxic drugs remains largely unexplored. In this study, we took advantage of the HEI-OC1 cell line, which is a cochlear HC-like cell line, to investigate the role of epigenetic modifications in cisplatin-induced cell death. We found that cisplatin injury caused reactive oxygen species accumulation and increased apoptosis in HEI-OC1 cells, and the cisplatin injury was reduced by co-treatment with MA2 compared to the cisplatin-only group. Further investigation showed that MA2 attenuated cisplatin-induced oxidative stress and apoptosis in HEI-OC1 cells. We next found that the cisplatin-induced upregulation of autophagy was significantly inhibited after MA2 treatment, indicating that MA2 inhibited the cisplatin-induced excessive autophagy. Our findings show that MA2 has a protective effect and improves the viability of HEI-OC1 cells after cisplatin treatment, and they provide new insights into potential therapeutic targets for the amelioration of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- He Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongdong Song
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Zuhong He
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyun Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xianmin Wu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaofei Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China.,Institute of Eye and ENT, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaohui Bai
- Shandong Provincial Key Laboratory of Otology, Jinan, China.,Institute of Eye and ENT, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wenwen Liu
- Shandong Provincial Key Laboratory of Otology, Jinan, China.,Institute of Eye and ENT, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Boqin Li
- Institute of Eye and ENT, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Daogong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jianfeng Li
- Shandong Provincial Key Laboratory of Otology, Jinan, China.,Institute of Eye and ENT, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Renjie Chai
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China.,Institute of Eye and ENT, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhaomin Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
35
|
Qi M, Qiu Y, Zhou X, Tian K, Zhou K, Sun F, Yue B, Chen F, Zha D, Qiu J. Regional up-regulation of NOX2 contributes to the differential vulnerability of outer hair cells to neomycin. Biochem Biophys Res Commun 2018; 500:110-116. [PMID: 29571735 DOI: 10.1016/j.bbrc.2018.03.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 11/26/2022]
Abstract
In hearing loss induced by aminoglycoside antibiotics, the outer hair cells (OHCs) in the basal turn are always more susceptible than OHCs in the apical turn, while the underlying mechanisms remain unknown. In this study, we reported that NAPDH oxidase 2 (NOX2) played an important role in the OHCs damage preferentially in the basal turn. Normally, NOX2 was evenly expressed in OHCs among different turns, at a relatively low level. However, after neomycin treatment, NOX2 was dominantly induced in OHCs in the basal turn. In vivo and in vitro studies demonstrated that inhibition of NOX2 significantly alleviated neomycin-induced OHCs damages, as seen from both the cleaved caspase-3 and TUNEL staining. Moreover, gp91 ds-tat delivery and DHE staining results showed that NOX2-derived ROS was responsible for neomycin ototoxicity. Taken together, our study shows that regional up-expression of NOX2 and subsequent increase of ROS in OHCs of the basal turn is an important factor contributing to the vulnerability of OHCs there, which should shed light on the prevention of hearing loss induced by aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Meihao Qi
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Qiu
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xueying Zhou
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Keyong Tian
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ke Zhou
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Sun
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Yue
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fuquan Chen
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dingjun Zha
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jianhua Qiu
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
36
|
Guan M, Fang Q, He Z, Li Y, Qian F, Qian X, Lu L, Zhang X, Liu D, Qi J, Zhang S, Tang M, Gao X, Chai R. Inhibition of ARC decreases the survival of HEI-OC-1 cells after neomycin damage in vitro. Oncotarget 2018; 7:66647-66659. [PMID: 27556499 PMCID: PMC5341827 DOI: 10.18632/oncotarget.11336] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/10/2016] [Indexed: 12/17/2022] Open
Abstract
Hearing loss is a common sensory disorder mainly caused by the loss of hair cells (HCs). Noise, aging, and ototoxic drugs can all induce apoptosis in HCs. Apoptosis repressor with caspase recruitment domain(ARC) is a key factor in apoptosis that inhibits both intrinsic and extrinsic apoptosis pathways; however, there have been no reports on the role of ARC in HC loss in the inner ear. In this study, we used House Ear Institute Organ of Corti 1 (HEI-OC-1) cells, which is a cochlear hair-cell-like cell line, to investigate the role of ARC in aminoglycoside-induced HC loss. ARC was expressed in the cochlear HCs as well as in the HEI-OC-1 cells, but not in the supporting cells, and the expression level of ARC in HCs was decreased after neomycin injury in both cochlear HCs and HEI-OC-1 cells, suggesting that reduced levels of ARC might correlate with neomycin-induced HC loss. We inhibited ARC expression using siRNA and found that this significantly increased the sensitivity of HEI-OC-1 cells to neomycin toxicity. Finally, we found that ARC inhibition increased the expression of pro-apoptotic factors, decreased the mitochondrial membrane potential, and increased the level of reactive oxygen species (ROS) after neomycin injury, suggesting that ARC inhibits cell death and apoptosis in HEI-OC-1 cells by controlling mitochondrial function and ROS accumulation. Thus the endogenous anti-apoptotic factor ARC might be a new therapeutic target for the prevention of aminoglycoside-induced HC loss.
Collapse
Affiliation(s)
- Ming Guan
- Department of Otolaryngology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou 310006, China.,Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou 310006, China.,Department of Otolaryngology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Qiaojun Fang
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Zuhong He
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yong Li
- Department of Otolaryngology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou 310006, China.,Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Fuping Qian
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoyun Qian
- Department of Otolaryngology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China.,Department of Otolaryngology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ling Lu
- Department of Otolaryngology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China.,Department of Otolaryngology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xiaoli Zhang
- Department of Otolaryngology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Dingding Liu
- Department of Otolaryngology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jieyu Qi
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Shasha Zhang
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Mingliang Tang
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xia Gao
- Department of Otolaryngology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China.,Department of Otolaryngology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Renjie Chai
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
37
|
Herrero D, Tomé M, Cañón S, Cruz FM, Carmona RM, Fuster E, Roche E, Bernad A. Redox-dependent BMI1 activity drives in vivo adult cardiac progenitor cell differentiation. Cell Death Differ 2018; 25:809-822. [PMID: 29323265 DOI: 10.1038/s41418-017-0022-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 01/04/2023] Open
Abstract
Accumulation of reactive oxygen species (ROS) is associated with several cardiovascular pathologies and with cell cycle exit by neonanatal cardiomyocytes, a key limiting factor in the regenerative capacity of the adult mammalian heart. The polycomb complex component BMI1 is linked to adult progenitors and is an important partner in DNA repair and redox regulation. We found that high BMI1 expression is associated with an adult Sca1+ cardiac progenitor sub-population with low ROS levels. In homeostasis, BMI1 repressed cell fate genes, including a cardiogenic differentiation program. Oxidative damage nonetheless modified BMI1 activity in vivo by derepressing canonical target genes in favor of their antioxidant and anticlastogenic functions. This redox-mediated mechanism is not restricted to damage situations, however, and we report ROS-associated differentiation of cardiac progenitors in steady state. These findings demonstrate how redox status influences the cardiac progenitor response, and identify redox-mediated BMI1 regulation with implications in maintenance of cellular identity in vivo.
Collapse
Affiliation(s)
- Diego Herrero
- Department of Immunology and Oncology, Spanish National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - María Tomé
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain
| | - Susana Cañón
- Department of Immunology and Oncology, Spanish National Center for Biotechnology (CNB-CSIC), Madrid, Spain.,Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain
| | - Francisco M Cruz
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain
| | - Rosa María Carmona
- Department of Immunology and Oncology, Spanish National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Encarna Fuster
- Department of Applied Biology-Nutrition and Institute of Bioengineering, University Miguel Hernández, Institute for Health and Biomedical Research (ISABIAL-FISABIO Fundation), Alicante, Spain
| | - Enrique Roche
- CIBERobn (Physiopathology of Obesity and Nutrition CB12/03/30038), Carlos III Health Research Institute (ISCIII), Madrid, Spain.,Department of Applied Biology-Nutrition and Institute of Bioengineering, University Miguel Hernández, Institute for Health and Biomedical Research (ISABIAL-FISABIO Fundation), Alicante, Spain
| | - Antonio Bernad
- Department of Immunology and Oncology, Spanish National Center for Biotechnology (CNB-CSIC), Madrid, Spain. .,Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain.
| |
Collapse
|
38
|
Dibenedetto S, Niklison-Chirou M, Cabrera CP, Ellis M, Robson LG, Knopp P, Tedesco FS, Ragazzi M, Di Foggia V, Barnes MR, Radunovic A, Marino S. Enhanced Energetic State and Protection from Oxidative Stress in Human Myoblasts Overexpressing BMI1. Stem Cell Reports 2017; 9:528-542. [PMID: 28735850 PMCID: PMC5549966 DOI: 10.1016/j.stemcr.2017.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/17/2017] [Accepted: 06/17/2017] [Indexed: 12/28/2022] Open
Abstract
The Polycomb group gene BMI1 is essential for efficient muscle regeneration in a mouse model of Duchenne muscular dystrophy, and its enhanced expression in adult skeletal muscle satellite cells ameliorates the muscle strength in this model. Here, we show that the impact of mild BMI1 overexpression observed in mouse models is translatable to human cells. In human myoblasts, BMI1 overexpression increases mitochondrial activity, leading to an enhanced energetic state with increased ATP production and concomitant protection against DNA damage both in vitro and upon xenografting in a severe dystrophic mouse model. These preclinical data in mouse models and human cells provide a strong rationale for the development of pharmacological approaches to target BMI1-mediated mitochondrial regulation and protection from DNA damage to sustain the regenerative potential of the skeletal muscle in conditions of chronic muscle wasting.
Collapse
Affiliation(s)
- Silvia Dibenedetto
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Maria Niklison-Chirou
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Claudia P Cabrera
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Matthew Ellis
- Division of Neuropathology, the National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Lesley G Robson
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Paul Knopp
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, 21 University Street, London WC1X 0JS, UK
| | - Martina Ragazzi
- Department of Cell and Developmental Biology, University College London, 21 University Street, London WC1X 0JS, UK
| | - Valentina Di Foggia
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Michael R Barnes
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Aleksandar Radunovic
- Neuroscience and Trauma Centre, Barts Health NHS Trust, Whitechapel, London E1 1BB, UK
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK.
| |
Collapse
|
39
|
Wang W, Li D, Ding X, Zhao Q, Chen J, Tian K, Qiu Y, Lu L. N-Acetylcysteine protects inner ear hair cells and spiral ganglion neurons from manganese exposure by regulating ROS levels. Toxicol Lett 2017; 279:77-86. [PMID: 28778520 DOI: 10.1016/j.toxlet.2017.07.903] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
Abstract
Manganese (Mn) is an indispensable cofactor for many enzymes and a basic factor for many reproductive and metabolic pathways. However, exposure to high concentrations of Mn can result in deleterious effects on the central nervous system and peripheral nerves, including nerves associated with the auditory system. Based on our studies of cochlear organotypic cultures, Mn exposure induces a significant loss of hair cells (HCs), auditory nerve fibers (ANFs) and spiral ganglion neurons (SGNs) in a concentration-dependent manner. Additionally, N-acetylcysteine (NAC), a glutathione (GSH) provider and a direct scavenger of reactive oxygen species (ROS), clearly decreases Mn-induced ROS accumulation, caspase-3 activation and TUNEL staining, which indicate increased cell survival. Based on these results, Mn exposure exerts ototoxic and neurotoxic effects on the auditory system. Furthermore, 20mM NAC may prevent 1mM Mn-induced hair cell loss and axonal degeneration, indicating that NAC could be a promising drug for clinical applications.
Collapse
Affiliation(s)
- Weilong Wang
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Dan Li
- Department of Otorhinolaryngology, Hu County People's Hospital, Xi'an 710300, China
| | - Xuerui Ding
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Qianqian Zhao
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Jiawei Chen
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Keyong Tian
- Department of Otolaryngology Head & Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Qiu
- Department of Otolaryngology Head & Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lianjun Lu
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
40
|
Yu X, Liu W, Fan Z, Qian F, Zhang D, Han Y, Xu L, Sun G, Qi J, Zhang S, Tang M, Li J, Chai R, Wang H. c-Myb knockdown increases the neomycin-induced damage to hair-cell-like HEI-OC1 cells in vitro. Sci Rep 2017; 7:41094. [PMID: 28112219 PMCID: PMC5253735 DOI: 10.1038/srep41094] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022] Open
Abstract
c-Myb is a transcription factor that plays a key role in cell proliferation, differentiation, and apoptosis. It has been reported that c-Myb is expressed within the chicken otic placode, but whether c-Myb exists in the mammalian cochlea, and how it exerts its effects, has not been explored yet. Here, we investigated the expression of c-Myb in the postnatal mouse cochlea and HEI-OC1 cells and found that c-Myb was expressed in the hair cells (HCs) of mouse cochlea as well as in cultured HEI-OC1 cells. Next, we demonstrated that c-Myb expression was decreased in response to neomycin treatment in both cochlear HCs and HEI-OC1 cells, suggesting an otoprotective role for c-Myb. We then knocked down c-Myb expression with shRNA transfection in HEI-OC1 cells and found that c-Myb knockdown decreased cell viability, increased expression of pro-apoptotic factors, and enhanced cell apoptosis after neomycin insult. Mechanistic studies revealed that c-Myb knockdown increased cellular levels of reactive oxygen species and decreased Bcl-2 expression, both of which are likely to be responsible for the increased sensitivity of c-Myb knockdown cells to neomycin. This study provides evidence that c-Myb might serve as a new target for the prevention of aminoglycoside-induced HC loss.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Wenwen Liu
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Zhaomin Fan
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Fuping Qian
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Daogong Zhang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yuechen Han
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Xu
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Gaoying Sun
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Jieyu Qi
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Shasha Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Mingliang Tang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Jianfeng Li
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Renjie Chai
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Haibo Wang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| |
Collapse
|
41
|
Bassiouni M, Dos Santos A, Avci HX, Löwenheim H, Müller M. Bmi1 Loss in the Organ of Corti Results in p16ink4a Upregulation and Reduced Cell Proliferation of Otic Progenitors In Vitro. PLoS One 2016; 11:e0164579. [PMID: 27755610 PMCID: PMC5068820 DOI: 10.1371/journal.pone.0164579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022] Open
Abstract
The mature mammalian organ of Corti does not regenerate spontaneously after injury, mainly due to the absence of cell proliferation and the depletion of otic progenitors with age. The polycomb gene B lymphoma Mo-MLV insertion region 1 homolog (Bmi1) promotes proliferation and cell cycle progression in several stem cell populations. The cell cycle inhibitor p16ink4a has been previously identified as a downstream target of Bmi1. In this study, we show that Bmi1 is expressed in the developing inner ear. In the organ of Corti, Bmi1 expression is temporally regulated during embryonic and postnatal development. In contrast, p16ink4a expression is not detectable during the same period. Bmi1-deficient mice were used to investigate the role of Bmi1 in cochlear development and otosphere generation. In the absence of Bmi1, the postnatal organ of Corti displayed normal morphology at least until the end of the first postnatal week, suggesting that Bmi1 is not required for the embryonic or early postnatal development of the organ of Corti. However, Bmi1 loss resulted in the reduced sphere-forming capacity of the organ of Corti, accompanied by the decreased cell proliferation of otic progenitors in otosphere cultures. This reduced proliferative capacity was associated with the upregulation of p16ink4ain vitro. Viral vector-mediated overexpression of p16ink4a in wildtype otosphere cultures significantly reduced the number of generated otospheres in vitro. The findings strongly suggest a role for Bmi1 as a promoter of cell proliferation in otic progenitor cells, potentially through the repression of p16ink4a.
Collapse
Affiliation(s)
- Mohamed Bassiouni
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Aurélie Dos Santos
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hasan X. Avci
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Löwenheim
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marcus Müller
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
42
|
Chen Y, Li W, Li W, Chai R, Li H. Spatiotemporal expression of Ezh2 in the developing mouse cochlear sensory epithelium. Front Med 2016; 10:330-5. [PMID: 27465826 DOI: 10.1007/s11684-016-0459-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
The enhancer of zeste 2 polycomb repressive complex 2 subunit (Ezh2) is a histone-lysine Nmethyltransferase enzyme that participates in DNA methylation. Ezh2 has also been reported to play crucial roles in stem cell proliferation and differentiation. However, the detailed expression profile of Ezh2 during mouse cochlear development has not been investigated. Here, we examined the spatiotemporal expression of Ezh2 in the cochlea during embryonic and postnatal development. Ezh2 expression began to be observed in the whole otocyst nuclei at embryonic day 9.5 (E9.5). At E12.5, Ezh2 was expressed in the nuclei of the cochlear prosensory epithelium. At E13.5 and E15.5, Ezh2 was expressed from the apical to the basal turns in the nuclei of the differentiating cochlear epithelium. At postnatal day (P) 0 and 7, the Ezh2 expression was located in the nuclei of the cochlear epithelium in all three turns and could be clearly seen in outer and inner hair cells, supporting cells, the stria vascularis, and spiral ganglion cells. Ezh2 continued to be expressed in the cochlear epithelium of adult mice. Our results provide the basic Ezh2 expression pattern and might be useful for further investigating the detailed role of Ezh2 during cochlear development.
Collapse
Affiliation(s)
- Yan Chen
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Central Laboratory, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.,Key Laboratory of Hearing Medicine of the National Health and Family Planning Commission, Shanghai, 200031, China
| | - Wenyan Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Key Laboratory of Hearing Medicine of the National Health and Family Planning Commission, Shanghai, 200031, China
| | - Wen Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Central Laboratory, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.,Key Laboratory of Hearing Medicine of the National Health and Family Planning Commission, Shanghai, 200031, China
| | - Renjie Chai
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing, 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Huawei Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China. .,Key Laboratory of Hearing Medicine of the National Health and Family Planning Commission, Shanghai, 200031, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
43
|
He Z, Sun S, Waqas M, Zhang X, Qian F, Cheng C, Zhang M, Zhang S, Wang Y, Tang M, Li H, Chai R. Reduced TRMU expression increases the sensitivity of hair-cell-like HEI-OC-1 cells to neomycin damage in vitro. Sci Rep 2016; 6:29621. [PMID: 27405449 PMCID: PMC4942793 DOI: 10.1038/srep29621] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Aminoglycosides are ototoxic to the cochlear hair cells, and mitochondrial dysfunction is one of the major mechanisms behind ototoxic drug-induced hair cell death. TRMU (tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase) is a mitochondrial protein that participates in mitochondrial tRNA modifications, but the role of TRMU in aminoglycoside-induced ototoxicity remains to be elucidated. In this study, we took advantage of the HEI-OC-1 cell line to investigate the role of TRMU in aminoglycoside-induced cell death. We found that TRMU is expressed in both hair cells and HEI-OC-1 cells, and its expression is significantly decreased after 24 h neomycin treatment. We then downregulated TRMU expression with siRNA and found that cell death and apoptosis were significantly increased after neomycin injury. Furthermore, when we down-regulated TRMU expression, we observed significantly increased mitochondrial dysfunction and increased levels of reactive oxygen species (ROS) after neomycin injury, suggesting that TRMU regulates mitochondrial function and ROS levels. Lastly, the antioxidant N-acetylcysteine rescued the mitochondrial dysfunction and cell apoptosis that was induced by TRMU downregulation, suggesting that ROS accumulation contributed to the increased aminoglycosides sensitivity of HEI-OC-1 cells after TRMU downregulation. This study provides evidence that TRMU might be a new therapeutic target for the prevention of aminoglycoside-induced hair cell death.
Collapse
Affiliation(s)
- Zuhong He
- State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Shan Sun
- Department of Otorhinolaryngology, Hearing Research Institute, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Muhammad Waqas
- State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoli Zhang
- Department of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Fuping Qian
- State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Cheng Cheng
- State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Mingshu Zhang
- Medical School, Southeast University, Nanjing 210096, China
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yongming Wang
- Institutes of Life Sciences, Fudan University, Shanghai 200032, China
| | - Mingliang Tang
- State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Huawei Li
- Department of Otorhinolaryngology, Hearing Research Institute, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China.,Institutes of Life Sciences, Fudan University, Shanghai 200032, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
44
|
Lu X, Sun S, Qi J, Li W, Liu L, Zhang Y, Chen Y, Zhang S, Wang L, Miao D, Chai R, Li H. Bmi1 Regulates the Proliferation of Cochlear Supporting Cells Via the Canonical Wnt Signaling Pathway. Mol Neurobiol 2016; 54:1326-1339. [PMID: 26843109 DOI: 10.1007/s12035-016-9686-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/05/2016] [Indexed: 01/11/2023]
Abstract
Cochlear supporting cells (SCs), which include the cochlear progenitor cells, have been shown to be a promising resource for hair cell (HC) regeneration, but the mechanisms underlying the initiation and regulation of postnatal cochlear SC proliferation are not yet fully understood. Bmi1 is a member of the Polycomb protein family and has been reported to regulate the proliferation of stem cells and progenitor cells in multiple organs. In this study, we investigated the role of Bmi1 in regulating SC and progenitor cell proliferation in neonatal mice cochleae. We first showed that knockout of Bmi1 significantly inhibited the proliferation of SCs and Lgr5-positive progenitor cells after neomycin injury in neonatal mice in vitro, and we then showed that Bmi1 deficiency significantly reduced the sphere-forming ability of the organ of Corti and Lgr5-positive progenitor cells in neonatal mice. These results suggested that Bmi1 is required for the initiation of SC and progenitor cell proliferation in neonatal mice. Next, we found that DKK1 expression was significantly upregulated, while beta-catenin and Lgr5 expression were significantly downregulated in neonatal Bmi1-/- mice compared to wild-type controls. The observation that Bmi1 knockout downregulates Wnt signaling provides compelling evidence that Bmi1 is required for the Wnt signaling pathway. Furthermore, the exogenous Wnt agonist BIO overcame the downregulation of SC proliferation in Bmi1-/- mice, suggesting that Bmi1 knockout might inhibit the proliferation of SCs via downregulation of the canonical Wnt signaling pathway. Our findings demonstrate that Bmi1 plays an important role in regulating the proliferation of cochlear SCs and Lgr5-positive progenitor cells in neonatal mice through the Wnt signaling pathway, and this suggests that Bmi1 might be a new therapeutic target for HC regeneration.
Collapse
Affiliation(s)
- Xiaoling Lu
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Shan Sun
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Jieyu Qi
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Wenyan Li
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Liman Liu
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Yanping Zhang
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Yan Chen
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lei Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing, 210096, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Huawei Li
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
45
|
Loss of STAT1 protects hair cells from ototoxicity through modulation of STAT3, c-Jun, Akt, and autophagy factors. Cell Death Dis 2015; 6:e2019. [PMID: 26673664 PMCID: PMC4720895 DOI: 10.1038/cddis.2015.362] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 12/20/2022]
Abstract
Hair cell damage is a side effect of cisplatin and aminoglycoside use. The inhibition or attenuation of this process is a target of many investigations. There is growing evidence that STAT1 deficiency decreases cisplatin-mediated ototoxicity; however, the role of STAT function and the molecules that act in gentamicin-mediated toxicity have not been fully elucidated. We used mice lacking STAT1 to investigate the effect of STAT1 ablation in cultured organs treated with cisplatin and gentamicin. Here we show that ablation of STAT1 decreased cisplatin toxicity and attenuated gentamicin-mediated hair cell damage. More TUNEL-positive hair cells were observed in explants of wild-type mice than that of STAT1−/− mice. Although cisplatin increased serine phosphorylation of STAT1 in wild-type mice and diminished STAT3 expression in wild-type and STAT1−/− mice, gentamicin increased tyrosine phosphorylation of STAT3 in STAT1−/− mice. The early inflammatory response was manifested in the upregulation of TNF-α and IL-6 in cisplatin-treated explants of wild-type and STAT1−/− mice. Expression of the anti-inflammatory cytokine IL-10 was altered in cisplatin-treated explants, upregulated in wild-type explants, and downregulated in STAT1−/− explants. Cisplatin and gentamicin triggered the activation of c-Jun. Activation of Akt was observed in gentamicin-treated explants from STAT1−/− mice. Increased levels of the autophagy proteins Beclin-1 and LC3-II were observed in STAT1−/− explants. These data suggest that STAT1 is a central player in mediating ototoxicity. Gentamicin and cisplatin activate different downstream factors to trigger ototoxicity. Although cisplatin and gentamicin triggered inflammation and activated apoptotic factors, the absence of STAT1 allowed the cells to overcome the effects of these drugs.
Collapse
|