1
|
Wu Y, Lyu Z, Hu F, Yang L, Yang K, Chen M, Wang Y. A chondroitin sulphate hydrogel with sustained release of SDF-1α for extensive cartilage defect repair through induction of cell homing and promotion of chondrogenesis. J Mater Chem B 2024; 12:8672-8687. [PMID: 39115288 DOI: 10.1039/d4tb00624k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Articular cartilage damage represents a prevalent clinical disease in orthopedics, with its regeneration and repair constituting a central focus in ongoing research endeavors. While hydrogel technology has achieved notable progress in the field of cartilage regeneration, addressing the repair of larger cartilage defects remains a significant and formidable challenge. In pursuit of achieving the repair of extensive cartilage defects, this study designed a polydopamine-modified chondroitin sulfate hydrogel loaded with SDF-1α (P-SCMA). This hydrogel, capable of directly providing glycosaminoglycans (GAGs), served as a platform for carrying growth factors and attracting mesenchymal stem cells for the in situ reconstruction of extensive cartilage defects. The results indicate that the P-SCMA hydrogel is capable of not only directly providing GAGs but also sustainably releasing SDF-1α. In the early stages, it promotes cell adhesion and proliferation and induces cell homing, while in the later stages, it further induces chondrogenesis by inhibiting the Wnt/β-catenin pathway. This bioactive hydrogel, which possesses the functions of providing GAGs, promoting cell proliferation, inducing cell homing and chondrogenesis, is capable of promoting cartilage repair in multiple ways, providing new perspectives for the repair of extensive cartilage defects.
Collapse
Affiliation(s)
- Yuezhou Wu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Fei Hu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Linjun Yang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Ke Yang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Mo Chen
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - You Wang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
2
|
Wu J, Hassan SSU, Zhang X, Li T, Rehman A, Yan S, Jin H. Discovery of potent anti-MRSA components from Dalbergia odorifera through UPLC-Q-TOF-MS and targeting PBP2a protein through in-depth transcriptomic, in vitro, and in-silico studies. J Pharm Anal 2024; 14:100938. [PMID: 39253294 PMCID: PMC11381741 DOI: 10.1016/j.jpha.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 09/11/2024] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Jiajia Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Abdur Rehman
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shikai Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huizi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Chen C, Huang L, Chen Y, Jin J, Xu Z, Liu F, Li K, Sun Y. Hydrolyzed egg yolk peptide prevented osteoporosis by regulating Wnt/β-catenin signaling pathway in ovariectomized rats. Sci Rep 2024; 14:10227. [PMID: 38702443 PMCID: PMC11068896 DOI: 10.1038/s41598-024-60514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
Hydrolyzed egg yolk peptide (YPEP) was shown to increase bone mineral density in ovariectomized rats. However, the underlying mechanism of YPEP on osteoporosis has not been explored. Recent studies have shown that Wnt/β-catenin signaling pathway and gut microbiota may be involved in the regulation of bone metabolism and the progression of osteoporosis. The present study aimed to explore the preventive effect of the YPEP supplementation on osteoporosis in ovariectomized (OVX) rats and to verify whether YPEP can improve osteoporosis by regulating Wnt/β-catenin signaling pathway and gut microbiota. The experiment included five groups: sham surgery group (SHAM), ovariectomy group (OVX), 17-β estradiol group (E2: 25 µg /kg/d 17β-estradiol), OVX with low-dose YPEP group (LYPEP: 10 mg /kg/d YPEP) and OVX with high-dose YPEP group (HYPEP: 40 mg /kg/d YPEP). In this study, all the bone samples used were femurs. Micro-CT analysis revealed improvements in both bone mineral density (BMD) and microstructure by YPEP treatment. The three-point mechanical bending test indicated an enhancement in the biomechanical properties of the YPEP groups. The serum levels of bone alkaline phosphatase (BALP), bone gla protein (BGP), calcium (Ca), and phosphorus (P) were markedly higher in the YPEP groups than in the OVX group. The LYPEP group had markedly lower levels of alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) and C-terminal telopeptide of type I collagen (CTX-I) than the OVX group. The YPEP groups had significantly higher protein levels of the Wnt3a, β-catenin, LRP5, RUNX2 and OPG of the Wnt/β-catenin signaling pathway compared with the OVX group. Compared to the OVX group, the ratio of OPG/RANKL was markedly higher in the LYPEP group. At the genus level, there was a significantly increase in relative abundance of Lachnospiraceae_NK4A136_group and a decrease in Escherichia_Shigella in YPEP groups, compared with the OVX group. However, in the correlation analysis, there was no correlation between these two bacteria and bone metabolism and microstructure indexes. These findings demonstrate that YPEP has the potential to improve osteoporosis, and the mechanism may be associated with its modulating effect on Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Chuanjing Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Ludi Huang
- School of Public Health, Qingdao University, Qingdao, China
| | | | - Jin Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Ze Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Fei Liu
- Fine Biotechnological R&D Center, Guangzhou, China
| | - Kelei Li
- School of Public Health, Qingdao University, Qingdao, China.
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, China.
| | - Yongye Sun
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Yang M, Gao Z, Cheng S, Wang Z, Ei-Seedi H, Du M. Novel Peptide Derived from Gadus morhua Stimulates Osteoblastic Differentiation and Mineralization through Wnt/β-Catenin and BMP Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9691-9702. [PMID: 38639219 DOI: 10.1021/acs.jafc.3c06700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Marine biodiversity offers a wide array of active ingredient resources. Gadus morhua peptides (GMPs) showed excellent osteoprotective effects in ovariectomized mice. However, the potential osteogenesis mechanisms of key osteogenic peptides in GMP were seldom reported. In this study, a novel osteogenic peptide (GETNPADSKPGSIR, P-GM-2) was screened from GMP. P-GM-2 has a high stability coefficient and a strong interaction with epidermal growth factor receptor. Cell culture experiments showed that P-GM-2 stimulated the expression of osteogenic differentiation markers to promote osteoblast proliferation, differentiation, and mineralization. Additionally, P-GM-2 phosphorylates GSK-3β, leading to the stabilization of β-catenin and its translocation to the nucleus, thus initiating the activation of the Wnt/β-catenin signaling pathway. Meanwhile, P-GM-2 could also regulate the osteogenic differentiation of preosteoblasts by triggering the BMP/Smad and mitogen-activated protein kinase signaling pathways. Further validation with specific inhibitors (ICG001 and Noggin) demonstrated that the osteogenic activity of P-GM-2 was revealed by the activation of the BMP and Wnt/β-catenin pathways. In summary, these results provide theoretical and practical insights into P-GM-2 as an effective antiosteoporosis active ingredient.
Collapse
Affiliation(s)
- Meilian Yang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Zengli Gao
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot 011500, P. R. China
| | - Shuzhen Cheng
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Zhenyu Wang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Hesham Ei-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala Biomedical Center, Uppsala University, Uppsala 75 123, Sweden
| | - Ming Du
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Yun HM, Kim E, Kwon YJ, Park KR. Vanillin Promotes Osteoblast Differentiation, Mineral Apposition, and Antioxidant Effects in Pre-Osteoblasts. Pharmaceutics 2024; 16:485. [PMID: 38675146 PMCID: PMC11054936 DOI: 10.3390/pharmaceutics16040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Antioxidant vanillin (4-hydroxy-3-methoxybenzaldehyde) is used as a flavoring in foods, beverages, and pharmaceuticals. Vanillin possesses various biological effects, such as antioxidant, anti-inflammatory, antibacterial, and anticancer properties. This study aimed to investigate the biological activities of vanillin purified from Adenophora triphylla var. japonica Hara on bone-forming processes. Vanillin treatment induced mineralization as a marker for mature osteoblasts, after stimulating alkaline phosphatase (ALP) staining and activity. The bone-forming processes of vanillin are mainly mediated by the upregulation of the bone morphogenetic protein 2 (BMP2), phospho-Smad1/5/8, and runt-related transcription factor 2 (RUNX2) pathway during the differentiation of osteogenic cells. Moreover, vanillin promoted osteoblast-mediated bone-forming phenotypes by inducing migration and F-actin polymerization. Furthermore, we validated that vanillin-mediated bone-forming processes were attenuated by noggin and DKK1. Finally, we demonstrated that vanillin-mediated antioxidant effects prevent the death of osteoblasts during bone-forming processes. Overall, vanillin has bone-forming properties through the BMP2-mediated biological mechanism, indicating it as a bone-protective compound for bone health and bone diseases such as periodontitis and osteoporosis.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eonmi Kim
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea; (E.K.); (Y.-J.K.)
| | - Yoon-Ju Kwon
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea; (E.K.); (Y.-J.K.)
| | - Kyung-Ran Park
- Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| |
Collapse
|
6
|
Yun HM, Cho MH, Jeong H, Kim SH, Jeong YH, Park KR. Osteogenic Activities of Trifolirhizin as a Bioactive Compound for the Differentiation of Osteogenic Cells. Int J Mol Sci 2023; 24:17103. [PMID: 38069425 PMCID: PMC10706948 DOI: 10.3390/ijms242317103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plant extracts are widely used as traditional medicines. Sophora flavescens Aiton-derived natural compounds exert various beneficial effects, such as anti-inflammatory, anticancer, antioxidant, and antiregenerative activities, through their bioactive compounds, including flavonoids and alkaloids. In the present study, we investigated the biological effects of an S. flavescens-derived flavonoid, trifolirhizin (trifol), on the stimulation of osteogenic processes during osteoblast differentiation. Trifol (>98% purity) was successfully isolated from the root of S. flavescens and characterized. Trifol did not exhibit cellular toxicity in osteogenic cells, but promoted alkaline phosphatase (ALP) staining and activity, with enhanced expression of the osteoblast differentiation markers, including Alp, ColI, and Bsp. Trifol induced nuclear runt-related transcription factor 2 (RUNX2) expression during the differentiation of osteogenic cells, and concomitantly stimulated the major osteogenic signaling proteins, including GSK3β, β-catenin, and Smad1/5/8. Among the mitogen-activated protein kinases (MAPKs), Trifol activated JNK, but not ERK1/2 and p38. Trifol also increased the osteoblast-mediated bone-forming phenotypes, including transmigration, F-actin polymerization, and mineral apposition, during osteoblast differentiation. Overall, trifol exhibits bioactive activities related to osteogenic processes via differentiation, migration, and mineralization. Collectively, these results suggest that trifol may serve as an effective phytomedicine for bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mi Hyeon Cho
- Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea; (M.H.C.); (H.J.)
| | - Hoibin Jeong
- Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea; (M.H.C.); (H.J.)
| | - Soo Hyun Kim
- National Development Institute for Korean Medicine, Gyeongsan 38540, Republic of Korea; (S.H.K.); (Y.H.J.)
| | - Yun Hee Jeong
- National Development Institute for Korean Medicine, Gyeongsan 38540, Republic of Korea; (S.H.K.); (Y.H.J.)
| | - Kyung-Ran Park
- Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| |
Collapse
|
7
|
Tong X, Zhang Y, Zhao Y, Li Y, Li T, Zou H, Yuan Y, Bian J, Liu Z, Gu J. Vitamin D Alleviates Cadmium-Induced Inhibition of Chicken Bone Marrow Stromal Cells' Osteogenic Differentiation In Vitro. Animals (Basel) 2023; 13:2544. [PMID: 37570352 PMCID: PMC10417335 DOI: 10.3390/ani13152544] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Vitamin D is a lipid soluble vitamin that is mostly used to treat bone metabolism-related diseases. In this study, the effect of Cd toxicity in vitro on osteogenic differentiation derived from BMSCs and the alleviating effect of lα, 25-(OH)2D3 were investigated. Cell index in real time was monitored using a Real-time cell analyzer (RTCA) system. The activity of alkaline phosphatase (ALP), and the calcified nodules and the distribution of Runx2 protein were detected using ALP staining, alizarin red staining, and immunofluorescence, respectively. Furthermore, the mitochondrial membrane potential and the apoptotic rate of BMSCs, the mRNA levels of RUNX2 and type Ⅰ collagen alpha2 (COL1A2) genes, and the protein expression of Col1 and Runx2 were detected using flow cytometry, qRT-PCR and western blot, respectively. The proliferation of BMSCs and osteogenic differentiation were enhanced after treatment with different concentrations of lα, 25-(OH)2D3 compared with the control group. However, 5 μmol/L Cd inhibited the proliferation of BMSCs. In addition, 10 nmol/L lα,25-(OH)2D3 attenuated the toxicity and the apoptosis of BMSCs treated by Cd, and also promoted the osteogenic differentiation including the activity of ALP, and the protein expression of Col1 and Runx2. lα, 25-(OH)2D3 can alleviate cadmium-induced osteogenic toxicity in White Leghorn chickens in vitro.
Collapse
Affiliation(s)
- Xishuai Tong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Ying Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China;
| | - Yutian Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Yawen Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Tan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Hui Zou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Yan Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Jianchun Bian
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Zongping Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Jianhong Gu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| |
Collapse
|
8
|
Yu R, Yuan Y, Liu Z, Liu L, Xu Z, Zhao Y, Jia C, Zhang P, Li H, Liu Y, Wang Y, Li W, Nie L, Sun X, Li Y, Liu B, Liu H. Selenomethionine against titanium particle-induced osteolysis by regulating the ROS-dependent NLRP3 inflammasome activation via the β-catenin signaling pathway. Front Immunol 2023; 14:1171150. [PMID: 37545495 PMCID: PMC10397397 DOI: 10.3389/fimmu.2023.1171150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/22/2023] [Indexed: 08/08/2023] Open
Abstract
Wear debris-induced osteolysis, especially titanium (Ti) particles-induced osteolysis, is the most common cause of arthroplasty failure with no effective therapy. Previous studies have suggested that inflammation and impaired osteogenesis are associated with Ti particles -induced osteolysis. Selenium (Se) is an essential trace element in the human body, which forms selenomethionine (Se-Met) in nature, and selenoproteins has strong anti-inflammatory and antioxidant stress effects. In this study, the effects of Se-Met on Ti particles-induced osteolysis were observed and the potential mechanism was explored. We found that exogenous Se-Met relieved osteolysis induced by Ti particles in two animal models and MC3T3-E1 cells. We found that the addition of Se-Met effectively inhibited Ti particle-induced inflammation by regulating reactive oxygen species-dependent (ROS-dependent) NOD-like receptor protein 3 (NLRP3) inflammasome activation. These therapeutic effects were abrogated in MC3T3-E1 cells that had received a β-catenin antagonist, suggesting that Se-Met alleviates inflammatory osteolysis via the β-catenin signaling pathway. Collectively, these findings indicated that Se-Met may serve as a potential therapeutic agent for treating Ti particle-induced osteolysis.
Collapse
Affiliation(s)
- Ruixuan Yu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yongjian Yuan
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhicheng Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The First Clinical Medical School, Shandong University, Jinan, Shandong, China
| | - Long Liu
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhaoning Xu
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, China
| | - Yunpeng Zhao
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chunwang Jia
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Pengfei Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hang Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuhao Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yi Wang
- Department of Plastic and Burns Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
- Emergency Medicine Center, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Weiwei Li
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lin Nie
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xuecheng Sun
- Department of Orthopedic Trauma, Weifang People’s Hospital, Weifang, Shandong, China
| | - Yuhua Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ben Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Haichun Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
9
|
Cho SH, Kim HS, Jung HY, Park JI, Jang YJ, Ahn J, Kim KN. Effect of Ishophloroglucin A Isolated from Ishige okamurae on In Vitro Osteoclastogenesis and Osteoblastogenesis. Mar Drugs 2023; 21:377. [PMID: 37504908 PMCID: PMC10381815 DOI: 10.3390/md21070377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
The balance between bone-resorbing osteoclasts and bone-forming osteoblasts is essential for the bone remodeling process. This study aimed to investigate the effect of Ishophloroglucin A (IPA) isolated from Ishige okamurae on the function of osteoclasts and osteoblasts in vitro. First, we demonstrated the effect of IPA on osteoclastogenesis in receptor activator of nuclear factor κB ligand (RANKL)-induced RAW 264.7 cells. IPA inhibited the tartrate-resistant acid phosphatase (TRAP) activity and osteoclast differentiation in RANKL-induced RAW 264.7 cells. Moreover, it inhibited the RANKL-induced osteoclast-related factors, such as TRAP, matrix metalloproteinase-9 (MMP-9), and calcitonin receptor (CTR), and transcription factors, such as nuclear factor of activated T cells 1 (NFATc1) and c-Fos. IPA significantly suppressed RANKL-activated extracellular signal-regulated kinase (ERK), and NF-κB in RAW 264.7 cells. Our data indicated that the ERK and NF-κB pathways were associated with the osteoclastogenesis inhibitory activity of IPA. Next, we demonstrated the effect of IPA on osteoblastogenesis in MG-63 cells. IPA significantly promoted alkaline phosphatase (ALP) activity in MG-63 cells, along with the osteoblast differentiation-related markers bone morphogenetic protein 2 (BMP2), type 1 collage (COL1), p-Smad1/5/8, and Runx2, by activating the MAPK signaling pathways. Taken together, the study indicated that IPA could be effective in treating bone diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Su-Hyeon Cho
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Republic of Korea
- Department of Medical Biomaterials Engineering, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Hye-Yeon Jung
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| | - Jae-Il Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| | - You-Jee Jang
- Department of Biomedical Laboratory Science, Honam University, Gwangju 62399, Republic of Korea
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Republic of Korea
- Department of Bio-Analysis Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
10
|
Luo Z, Lu Y, Shi Y, Jiang M, Shan X, Li X, Zhang J, Qin B, Liu X, Guo X, Huang J, Liu Y, Wang S, Li Q, Luo L, You J. Neutrophil hitchhiking for drug delivery to the bone marrow. NATURE NANOTECHNOLOGY 2023:10.1038/s41565-023-01374-7. [PMID: 37081080 DOI: 10.1038/s41565-023-01374-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
Pharmaceuticals have been developed for the treatment of a wide range of bone diseases and disorders, but suffer from problematic delivery to the bone marrow. Neutrophils are naturally trafficked to the bone marrow and can cross the bone marrow-blood barrier. Here we report the use of neutrophils for the targeted delivery of free drugs and drug nanoparticles to the bone marrow. We demonstrate how drug-loaded poly(lactic-co-glycolic acid) nanoparticles are taken up by neutrophils and are then transported across the bone marrow-blood barrier to boost drug concentrations in the bone marrow. We demonstrate application of this principle to two models. In a bone metastasis cancer model, neutrophil delivery is shown to deliver cabazitaxel and significantly inhibit tumour growth. In an induced osteoporosis model, neutrophil delivery of teriparatide is shown to significantly increase bone mineral density and alleviate osteoporosis indicators.
Collapse
Affiliation(s)
- Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Xinyu Shan
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Yu Liu
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Qingpo Li
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China.
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China.
| |
Collapse
|
11
|
T-2 toxin inhibits osteoblastic differentiation and mineralization involving mutual regulation between Wnt signaling pathway and autophagy. Chem Biol Interact 2023; 369:110266. [PMID: 36402210 DOI: 10.1016/j.cbi.2022.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Mycotoxins are most frequent contaminants in environment and agricultural production globally. The T-2 toxin of Fusarium species is the most toxic type of A trichothecene mycotoxins. T-2 toxin can accumulate in bone and cause bone development disorders. Osteoblast is the functional cell responsible for bone formation. Whereas, the mechanism of T-2 toxin toxicity on osteoblast remains unknown. In present study, MC3T3-E1 cells were treated with 0, 2, 4, and 8 nM T-2 toxin for 24h to explore the effect of T-2 toxin on the differentiation and mineralization of osteoblasts. Subsequently, autophagy and Wnt intervention agents were used to explore the roles of autophagy and Wnt signaling pathway in T-2 toxin-induced osteoblastic differentiation and mineralization disorders, respectively. The results showed that 2 nM of T-2 toxin had no significant effect on cell vitality, but 4 and 8 nM of T-2 significantly inhibited cell viability. All doses of T-2 toxin inhibited both osteoblastic differentiation and mineralization, as assessed by alkaline phosphatase staining, Alizarin red S staining, and protein expressions of osteogenic proteins. In addition, the activation of Wnt signaling pathway mitigated T-2 toxin-induced osteoblast impairment, while the inhibition of autophagy exacerbated it. Our results also indicated that there was a positive feedback loop between the Wnt signaling pathway and autophagy.
Collapse
|
12
|
Flavonoids from Dalbergia cochinchinensis: Impact on osteoclastogenesis. J Dent Sci 2023; 18:112-119. [PMID: 36643234 PMCID: PMC9831843 DOI: 10.1016/j.jds.2022.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose Dalbergia cochinchinensi has been widely used in traditional medicine because of its flavonoids. This study examined which components in D. cochinchinensis were capable of reducing or even stimulating the formation of bone-resorbing osteoclasts. Materials and methods We have isolated subfamilies of chalcones (isoliquiritigenin, butein), flavones (7-hydroxy-6-methoxyflavone) and neoflavanoids (5-methoxylatifolin), and performed an in vitro bioassay on osteoclastogenesis. The flavonoids were tested for their potential to change the expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin K (CTSK) in murine bone marrow cultures being exposed to RANKL, M-CSF and TGF-β1 using RT-PCR, histochemistry and immunoassay. Results We could confirm that isoliquiritigenin and butein significantly lower the expression of TRAP and CTSK in this setting. Moreover, histochemistry supported the decrease of TRAP by the chalcones. We further observed a trend towards an increase of osteoclastogenesis in the presence of 5-methoxylatifolin and 7-hydroxy-6-methoxyflavone, particular in bone marrow cultures being exposed to RANKL and M-CSF. Consistently, the anti-inflammatory activity was restricted to isoliquiritigenin and butein in murine RAW 264.7 inflammatory macrophages stimulated by lipopolysaccharide (LPS). With respect to osteoblastogenesis, neither of the flavonoids but butyrate, a short chain fatty acid, increased the osteogenic differentiation marker alkaline phosphatase activity in ST2 murine mesenchymal cells. Conclusion We have identified two flavonoids from D. cochinchinensis with a potential pro-osteoclastogenic activity and confirm the anti-osteoclastogenic activity of isoliquiritigenin and butein.
Collapse
|
13
|
Trifloroside Induces Bioactive Effects on Differentiation, Adhesion, Migration, and Mineralization in Pre-Osteoblast MC3T3E-1 Cells. Cells 2022; 11:cells11233887. [PMID: 36497145 PMCID: PMC9738977 DOI: 10.3390/cells11233887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Gentianae Scabrae Radix is used in traditional medicine and is known to possess bioactive compounds, including secoiridoid glycosides, flavonoids, lignans, and triterpenes. Trifloroside (TriFs) is a secoiridoid glycoside known for its antioxidant activity; however, its other effects have not been studied. In the present study, we investigated the biological effects of TriFs isolated from the roots of Gentianae Scabrae Radix using pre-osteoblast MC3T3E-1 cells. No cellular toxicity was observed with 1 μM TriFs, whereas 5-100 μM TriFs showed a gradual increase in cell viability. Alkaline phosphatase staining and microscopic observations revealed that 1-10 μM TriFs stimulated osteogenic activity during early osteoblast differentiation. Trifloroside also increased mineral apposition during osteoblast maturation. Biochemical analyses revealed that TriFs promoted nuclear RUNX2 expression and localization by stimulating the major osteogenic BMP2-Smad1/5/8-RUNX2 pathway. Trifloroside also increased p-GSK3β, β-catenin, p-JNK, and p-p38, but not Wnt3a, p-AKT, and p-ERK. Moreover, TriFs increased the MMP13 levels and promoted cell migration and adhesion. In contrast, TriFs-induced osteoblast differentiation and maturation had negligible effects on autophagy and necrosis. Our findings suggest that TriFs induces osteogenic effects through differentiation, adhesion, migration, and mineral apposition. Therefore, TriFs is suggested as a potential drug target in osteoblast-mediated bone diseases.
Collapse
|
14
|
Yun HM, Park JE, Lee JY, Park KR. Latifolin, a Natural Flavonoid, Isolated from the Heartwood of Dalbergia odorifera Induces Bioactivities through Apoptosis, Autophagy, and Necroptosis in Human Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:13629. [PMID: 36362414 PMCID: PMC9655104 DOI: 10.3390/ijms232113629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 08/13/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant neoplasm with frequent metastasis and high mortality in the oral cavity. Plant-derived natural compounds are actively progressing as a trend for cancer treatment. Latifolin (Latif), is a natural flavonoid isolated from the heartwood of Dalbergia odorifera T. Chen (D. odorifera) has been known to have beneficial effects on anti-aging, anti-carcinogenic, anti-inflammatory, and cardio-protective activities. However, the anti-cancer effects of Latif are unknown in OSCC. Herein, as a result of analysis in terms of the aggressive features of OSCCs, we found that Latif significantly inhibited the cell proliferation of human YD-8 and YD-10B OSCCs, and caused the anti-metastatic activities by effectively blocking cell migration, invasion, and adhesion via the inactivation of focal adhesion kinase (FAK)/non-receptor tyrosine kinase (Src). Moreover, we found that Latif induced apoptotic cell death to suppress the cell survival and proliferation of YD-10B OSCCs by targeting PI3K/AKT/mTOR/p70S6K signaling. Finally, we analyzed in terms of autophagy and necroptosis, which are other mechanisms of programmed cell death and survival compared to apoptosis in YD-10B OSCCs. We found that Latif suppressed autophagic-related proteins and autophagosome formation, and also Latif inhibited necroptosis by dephosphorylating necroptosis-regulatory proteins (RIP1, RIP3, and MLKL). Given these findings, our results provided new evidence for Latif's biological effect and mechanism in YD-10B OSCCs, suggesting that Latif may be a new candidate for patients with OSCCs.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Ji Eun Park
- National Development Institute for Korean Medicine, Gyeongsan 38540, Korea
| | - Joon Yeop Lee
- National Development Institute for Korean Medicine, Gyeongsan 38540, Korea
| | - Kyung-Ran Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Korea
| |
Collapse
|
15
|
Yun HM, Lee JY, Kim B, Park KR. Suffruticosol B Is an Osteogenic Inducer through Osteoblast Differentiation, Autophagy, Adhesion, and Migration. Int J Mol Sci 2022; 23:ijms232113559. [PMID: 36362346 PMCID: PMC9658763 DOI: 10.3390/ijms232113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Suffruticosol B (Suf-B) is a stilbene found in Paeonia suffruticosa ANDR., which has been traditionally used in medicine. Stilbenes and their derivatives possess various pharmacological effects, such as anticancer, anti-inflammatory, and anti-osteoporotic activities. This study aimed to explore the bone-forming activities and mechanisms of Suf-B in pre-osteoblasts. Herein, >99.9% pure Suf-B was isolated from P. suffruticosa methanolic extracts. High concentrations of Suf-B were cytotoxic, whereas low concentrations did not affect cytotoxicity in pre-osteoblasts. Under zero levels of cytotoxicity, Suf-B exhibited bone-forming abilities by enhancing alkaline phosphatase enzyme activities, bone matrix calcification, and expression levels with non-collagenous proteins. Suf-B induces intracellular signal transduction, leading to nuclear RUNX2 expression. Suf-B-stimulated differentiation showed increases in autophagy proteins and autophagosomes, as well as enhancement of osteoblast adhesion and transmigration on the ECM. These results indicate that Suf-B has osteogenic qualities related to differentiation, autophagy, adhesion, and migration. This also suggests that Suf-B could have a therapeutic effect as a phytomedicine in skeletal disorders.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Joon Yeop Lee
- National Development Institute for Korean Medicine, Gyeongsan 38540, Korea
| | - Bomi Kim
- National Development Institute for Korean Medicine, Gyeongsan 38540, Korea
| | - Kyung-Ran Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Korea
- Correspondence: ; Tel.: +82-62-712-4412; Fax: +82-62-372-4102
| |
Collapse
|
16
|
Pham TV, Ngo HPT, Thi Thanh Dang N, Khoa Nguyen H, Thi Nhu Hoang H, Pham T. Volatile Constituents and Anti-Osteoporotic Activity of the n-Hexane Extract From Homalomena gigantea Rhizome. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221125433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This study analyzed the chemical composition and anti-osteoporosis activity of the n-hexane extract of Homalomena gigantea rhizome. Sixty compounds, representing 92.0% of the extract, were identified by gas chromatography-mass spectrometry. Linalool (15.3%), oplopanone (9.8%), ( Ε)-α-atlantone (5.6%), khusinol acetate (5.4%), bullatantriol (4.3%), and β-sitosterol (3.8%) were the main constituents. The anti-osteoporotic activity of the n-hexane extract was determined by measuring alkaline phosphatase (ALP) activity, collagen content, and the mineralization of MC3T3-E1 cells. At concentrations of 4.0 and 20.0 µg/mL, the n-hexane extract increased ALP activity by 8.2% and 23.7%, and increased collagen secretion by MC3T3-E1 cells by 114.9% and 112.4%, respectively. At 4 µg/mL, the extract significantly promoted the mineralization of MC3T3-E1 cells by as much as 133.2% compared to the negative control. These results suggested that H. gigantea rhizome contains a natural anti-osteoporotic compound.
Collapse
Affiliation(s)
- Ty Viet Pham
- University of Education, Hue University, Hue, Vietnam
| | | | | | - Hien Khoa Nguyen
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Hanoi, Vietnam
- Vietnam Academy of Science and Technology, Hue City, Vietnam
| | - Hanh Thi Nhu Hoang
- University of Agriculture and Forestry, Hue University, Hue City, Vietnam
| | - Thanh Pham
- University of Education, Hue University, Hue, Vietnam
| |
Collapse
|
17
|
Effects of Triterpene Soyasapogenol B from Arachis hypogaea (Peanut) on Differentiation, Mineralization, Autophagy, and Necroptosis in Pre-Osteoblasts. Int J Mol Sci 2022; 23:ijms23158297. [PMID: 35955423 PMCID: PMC9368047 DOI: 10.3390/ijms23158297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Triterpenes are a diverse group of natural compounds found in plants. Soyasapogenol B (SoyB) from Arachis hypogaea (peanut) has various pharmacological properties. This study aimed to elucidate the pharmacological properties and mechanisms of SoyB in bone-forming cells. In the present study, 1–20 μM of SoyB showed no cell proliferation effects, whereas 30–100 μM of SoyB increased cell proliferation in MC3T3-E1 cells. Next, osteoblast differentiation was analyzed, and it was found that SoyB enhanced ALP staining and activity and bone mineralization. SoyB also induced RUNX2 expression in the nucleus with the increased phosphorylation of Smad1/5/8 and JNK2 during osteoblast differentiation. In addition, SoyB-mediated osteoblast differentiation was not associated with autophagy and necroptosis. Furthermore, SoyB increased the rate of cell migration and adhesion with the upregulation of MMP13 levels during osteoblast differentiation. The findings of this study provide new evidence that SoyB possesses biological effects in bone-forming cells and suggest a potentially beneficial role for peanut-based foods.
Collapse
|
18
|
Jiawei Yanghe Decoction Regulates Bone-Lipid Balance through the BMP-SMAD Signaling Pathway to Promote Osteogenic Differentiation of Bone Mesenchymal Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2885419. [PMID: 35769158 PMCID: PMC9236768 DOI: 10.1155/2022/2885419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
Abstract
Background The Jiawei Yanghe decoction (JWYHD) is a traditional Chinese medicine formula for the treatment of osteoporosis, but its therapeutic mechanism has not been fully elucidated, and the therapeutic target of the intervention disease needs to be further verified. The dysfunction of bone mesenchymal stem cells (BMSCs) is considered to be an important pathogenesis of postmenopausal osteoporosis (PMOP). The purpose of this study was to explore how JWYHD regulates BMSC differentiation through the BMP-SMAD signal pathway. Methods In the in vivo study, we used an ovariectomized PMOP rat (n = 36, 2-month-old, 200 ± 20 g) model and femur micro-CT analysis to study the effect of JWYHD on bone loss in rats. By immunofluorescence, the translocation expression of BMP2, a key protein in the pathway, was detected. Serum bone metabolism was detected by an enzyme-linked immunosorbent assay (ELISA). Alkaline phosphatase (ALP) activity was detected by alkaline phosphatase staining (ALPS), osteogenesis and matrix mineralization were detected by alizarin red staining (ARS), the adipogenic ability of BMSCs was detected by oil red staining (ORS), and CFU is used to detect the ability of cells to form colonies. The expression of related proteins was detected by western blotting. Results In vivo and in vitro, the OP phenotypes of SD rats induced by ovariectomy (OVX) included impaired bone mineral density and microstructure, abnormal bone metabolism, and impaired MSC differentiation potential. JWYHD treatment reversed this trend and restored the differentiation potential of MSCs. JWYHD medicated serum and direct intervention of drugs activated the BMP-SMAD signaling pathway, promoted the osteogenic differentiation of BMSCs, and inhibited their adipogenic differentiation. Conclusions Our data identified that JWYHD is an effective alternative drug for the treatment of PMOP that functions to stimulate the differentiation of BMSCs into osteoblasts in the BMP-SMAD signaling-dependent mechanism.
Collapse
|
19
|
Park KR, Kwon YJ, Jeong YH, Hong JT, Yun HM. Thelephoric acid, p-terphenyl, induces bone-forming activities in pre-osteoblasts. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Li T, Hou X, Huang Y, Wang C, Chen H, Yan C. In vitro and in silico anti-osteoporosis activities and underlying mechanisms of a fructan, ABW90-1, from Achyranthes bidentate. Carbohydr Polym 2022; 276:118730. [PMID: 34823766 DOI: 10.1016/j.carbpol.2021.118730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022]
Abstract
Achyranthes bidentata is a traditional Chinese medicine used to treat osteoporosis. AB90, a crude saccharide from A. bidentata, showed excellent osteoprotective effects in ovariectomized rats, and ABW90-1, an oligosaccharide purified from AB90, stimulated significant differentiation of osteoblasts. However, the osteogenic effects and underlying mechanisms of ABW90-1 have remained unknown. In the present study, we found that ABW90-1 significantly promoted ALP activity, mineralization, and the expression of osteogenic markers in MC3T3-E1 cells. ABW90-1 showed strong binding with the WNT signaling complex and BMP2 based on number of interactions, hydrogen bond length, and binding energy in silico. ABW90-1 significantly increased the expression of active-β-catenin, p-GSK-3β, LEF-1, BMP2, and p-SMAD1. Importantly, the osteogenic effects of ABW90-1 were partially suppressed by DKK-1 and Noggin, which are specific inhibitors of the WNT and BMP signaling pathways, respectively. Collectively, these findings suggest that ABW90-1 has osteogenic effects through crosstalk between WNT/β-catenin and BMP2/SMAD1 signaling pathways.
Collapse
Affiliation(s)
- Tianyu Li
- Clinical Pharmacy of the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510060, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xin Hou
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yihua Huang
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Changsheng Wang
- Clinical Pharmacy of the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510060, China
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunyan Yan
- Clinical Pharmacy of the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510060, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
21
|
Liu J, Qi X, Wang XH, Miao HS, Xue ZC, Zhang LL, Zhao SH, Wu LH, Gao GY, Lou MQ, Yi CQ. Downregulation of the LncRNA MEG3 Promotes Osteogenic Differentiation of BMSCs and Bone Repairing by Activating Wnt/β-Catenin Signaling Pathway. J Clin Med 2022; 11:jcm11020395. [PMID: 35054086 PMCID: PMC8781453 DOI: 10.3390/jcm11020395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/25/2021] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Previous studies have demonstrated that long non-coding RNA maternally expressed gene 3 (MEG3) emerged as a key regulator in development and tumorigenesis. This study aims to investigate the function and mechanism of MEG3 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and explores the use of MEG3 in skull defects bone repairing. Methods: Endogenous expression of MEG3 during BMSCs osteogenic differentiation was detected by quantitative real-time polymerase chain reaction (qPCR). MEG3 was knockdown in BMSCs by lentiviral transduction. The proliferation, osteogenic-related genes and proteins expression of MEG3 knockdown BMSCs were assessed by Cell Counting Kit-8 (CCK-8) assay, qPCR, alizarin red and alkaline phosphatase staining. Western blot was used to detect β-catenin expression in MEG3 knockdown BMSCs. Dickkopf 1 (DKK1) was used to block wnt/β-catenin pathway. The osteogenic-related genes and proteins expression of MEG3 knockdown BMSCs after wnt/β-catenin inhibition were assessed by qPCR, alizarin red and alkaline phosphatase staining. MEG3 knockdown BMSCs scaffold with PHMG were implanted in a critical-sized skull defects of rat model. Micro-computed tomography(micro-CT), hematoxylin and eosin staining and immunohistochemistry were performed to evaluate the bone repairing. Results: Endogenous expression of MEG3 was increased during osteogenic differentiation of BMSCs. Downregulation of MEG3 could promote osteogenic differentiation of BMSCs in vitro. Notably, a further mechanism study revealed that MEG3 knockdown could activate Wnt/β-catenin signaling pathway in BMSCs. Wnt/β-catenin inhibition would impair MEG3-induced osteogenic differentiation of BMSCs. By using poly (3-hydroxybutyrate-co-3-hydroxyhexanoate, PHBHHx)-mesoporous bioactive glass (PHMG) scaffold with MEG3 knockdown BMSCs, we found that downregulation of MEG3 in BMSCs could accelerate bone repairing in a critical-sized skull defects rat model. Conclusions: Our study reveals the important role of MEG3 during osteogenic differentiation and bone regeneration. Thus, MEG3 engineered BMSCs may be effective potential therapeutic targets for skull defects.
Collapse
Affiliation(s)
- Juan Liu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; (J.L.); (H.-S.M.); (S.-H.Z.); (G.-Y.G.)
| | - Xin Qi
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Huinan Town, Pudong, Shanghai 201399, China; (X.Q.); (L.-H.W.)
| | - Xiao-Hong Wang
- Department of Operating Room, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Huinan Town, Pudong, Shanghai 201399, China;
| | - Hong-Sheng Miao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; (J.L.); (H.-S.M.); (S.-H.Z.); (G.-Y.G.)
| | - Zi-Chao Xue
- Department of Orthopaedics, Qingdao Municipal Hospital, Qingdao 266001, China;
| | - Le-Le Zhang
- Department of Nursing, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Huinan Town, Pudong, Shanghai 201399, China;
| | - San-Hu Zhao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; (J.L.); (H.-S.M.); (S.-H.Z.); (G.-Y.G.)
| | - Liang-Hao Wu
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Huinan Town, Pudong, Shanghai 201399, China; (X.Q.); (L.-H.W.)
| | - Guo-Yi Gao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; (J.L.); (H.-S.M.); (S.-H.Z.); (G.-Y.G.)
| | - Mei-Qing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; (J.L.); (H.-S.M.); (S.-H.Z.); (G.-Y.G.)
- Correspondence: (M.-Q.L.); (C.-Q.Y.)
| | - Cheng-Qing Yi
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Huinan Town, Pudong, Shanghai 201399, China; (X.Q.); (L.-H.W.)
- Correspondence: (M.-Q.L.); (C.-Q.Y.)
| |
Collapse
|
22
|
Oh Y, Ahn CB, Marasinghe MPCK, Je JY. Insertion of gallic acid onto chitosan promotes the differentiation of osteoblasts from murine bone marrow-derived mesenchymal stem cells. Int J Biol Macromol 2021; 183:1410-1418. [PMID: 34022306 DOI: 10.1016/j.ijbiomac.2021.05.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
Chitosan, a naturally occurring biodegradable and biocompatible polymer, has found use as a food additive, nutraceuticals, and functional foods in recent years. In this study, gallic acid-g-chitosan (GAC) was prepared by the insertion of GA onto plain chitosan (PC) via free radical-mediated grafting and its osteogenic effects were investigated in murine bone marrow-derived mesenchymal stem cells (mBMMSCs). Structural characterization of PC and GAC was performed using 1H NMR and FT-IR spectroscopy. The amount of GA successfully grafted onto PC was 111 mg GA/g GAC via the Folin-Ciocalteu's method. While PC and GAC promoted the increase in alkaline phosphatase activity and mineralization, GAC increased these factors significantly more than PC, indicating that the grafting of GA onto chitosan increased its osteogenic potential. Mechanistic study revealed that GAC activated Wnt1 and Wnt3a mRNA and protein expression as well as increased the translocation of β-catenin into the nucleus and upregulated the expression of β-catenin targeted genes including Runx2, osterix, type I collagen and cyclin D1. In addition, DKK-1, a Wnt antagonist, decreased GAC-mediated osteoblast differentiation in mBMMSCs through blocking the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yunok Oh
- Convergence Research Center for Smart Healthcare, Kyungsung University, Busan 48434, Republic of Korea
| | - Chang-Bum Ahn
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - M P C K Marasinghe
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Jae-Young Je
- Department of Marine-Bio Convergence Science, Pukyong National University, Busan 48547, Republic of Korea.
| |
Collapse
|
23
|
Park KR, Lee JY, Cho M, Yun HM. Ziyuglycoside I Upregulates RUNX2 through ERK1/2 in Promoting Osteoblast Differentiation and Bone Mineralization. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:883-900. [PMID: 33829967 DOI: 10.1142/s0192415x21500427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sanguisorba officinalis L. (Rosaceae) is a perennial herbaceous plant and its roots have been used as an important traditional medicine for over 2000 years. Ziyuglycoside I (Ziyu), an active compound isolated from the roots of S. officinalis L., has shown biological effects such as anti-oxidant, antiviral, and antiwrinkle activities. This study aimed to elucidate the underlying mechanisms of action of Ziyu on cytotoxicity, migration, and differentiation of pre-osteoblasts. Herein, at concentrations ranging from 1 to 100 [Formula: see text]M, Ziyu was not cytotoxic against pre-osteoblasts. Alkaline phosphatase activity assay and staining, and migration assay showed that Ziyu increased cell migration and promoted early osteoblast differentiation, followed by the enhancement of mineralized nodule formation in a dose-dependent manner, as indicated by Alizarin Red S staining. In addition, Ziyu increased the protein levels of runt-related transcription factor 2 (RUNX2) during osteoblast differentiation, whereas it did not affect the phosphorylation of Smad1/5/8 and GSK3b and expression of [Formula: see text]-catenin. Ziyu also activated ERK1/2 and mitogen-activated protein kinase during osteoblast differentiation, and ERK1/2 inhibitor attenuated Ziyu-mediated RUNX2 expression and nuclear accumulation. Furthermore, Ziyu-mediated early and late osteoblast differentiation was significantly suppressed by the inhibition of ERK1/2, which was accompanied by attenuation in the mRNA levels of osteoblast-related genes including bone sialoprotein, osteopontin, and osteocalcin. Taken together, the findings of this study provide evidence that Ziyu promotes cell migration, osteoblast differentiation, and bone mineralization and suggest a potential role for Ziyu in the treatment of bone diseases.
Collapse
Affiliation(s)
- Kyung-Ran Park
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Joon Yeop Lee
- National Institute for Korean Medicine Development, Gyeongsan 38540, Republic of Korea
| | - MyoungLae Cho
- National Institute for Korean Medicine Development, Gyeongsan 38540, Republic of Korea
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02453, Republic of Korea
| |
Collapse
|
24
|
Gao Y, Ji Y, Li W, Luo J, Wang F, Zhang X, Niu Z, Zhou L, Yan L. Endophytic Fungi from Dalbergia odorifera T. Chen Producing Naringenin Inhibit the Growth of Staphylococcus aureus by Interfering with Cell Membrane, DNA, and Protein. J Med Food 2021; 24:116-123. [PMID: 33523769 DOI: 10.1089/jmf.2020.4686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study focused on the antibacterial effects of the endophytic fungi producing naringenin from Dalbergia odorifera T. Chen against Staphylococcus aureus. The antibacterial activity was measured by the inhibition diameters, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The time-killing curve was also used to evaluate its antibacterial efficacy. The results of antibacterial activity determinations showed that endophytic fungi secondary metabolites can inhibit the growth of five pathogenic bacteria (S. aureus, Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, and Bacillus subtilis) and the most sensitive strain was S. aureus that had the MIC and MBC values of 0.13 and 0.50 mg/mL, respectively. The membrane permeability study was measured by a DNA leakage assay and electrical conductivity assay. Furthermore, the whole-cell protein lysates and DNA fragmentation assay was evaluated. The morphology of S. aureus treated with the endophytic fungi products was observed by scanning electron microscopy (SEM). The probable antibacterial mechanism of endophytic fungi secondary metabolites was the increased membrane permeability that leads to leaks of nucleic acids and proteins. SEM results further confirmed that the extracts can interfere with the integrity of S. aureus cell membrane and further inhibit the growth of bacteria, resulting in the death of bacteria. This study provides a new perspective for the antibacterial functions of endophytic fungi secondary metabolites for biomedical applications.
Collapse
Affiliation(s)
- Yuan Gao
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China.,Post-Doctoral Research Center of Traditional Chinese Medicine, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Yubin Ji
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China.,Post-Doctoral Research Center of Traditional Chinese Medicine, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China.,Post-Doctoral Research Center of Traditional Chinese Medicine, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Jianghan Luo
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Fuling Wang
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Xiaomeng Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Zhihui Niu
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Lulu Zhou
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Lijun Yan
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| |
Collapse
|
25
|
Chen Y, Zhou F, Liu H, Li J, Che H, Shen J, Luo E. SIRT1, a promising regulator of bone homeostasis. Life Sci 2021; 269:119041. [PMID: 33453243 DOI: 10.1016/j.lfs.2021.119041] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, epigenetically regulates various cell metabolisms, including inflammation, tumorigenesis, and bone metabolism. Many clinical studies have found the potential of SIRT1 in predicting and treating bone-related disorders, such as osteoporosis and osteonecrosis, suggesting that SIRT1 might be a regulator of bone homeostasis. In order to identify the mechanisms that underlie the pivotal role of SIRT1 in bone homeostasis, many studies revealed that SIRT1 could maintain the balance between bone formation and absorption via regulating the ratio of osteoblasts to osteoclasts. SIRT1 controls the differentiation of mesenchymal stem cells (MSCs) and bone marrow-derived macrophages, increasing osteogenesis and reducing osteoclastogenesis. Besides, SIRT1 can enhance bone-forming cells' viability, including MSCs and osteoblasts under adverse conditions by resisting senescence, suppressing apoptosis, and promoting autophagy in favor of osteogenesis. Furthermore, the effect on bone vasculature homeostasis enables SIRT1 to become a valuable strategy for ischemic osteonecrosis and senile osteoporosis. The review systemically discusses SIRT1 pathways and the critical role in bone homeostasis and assesses whether SIRT1 is a potential target for manipulation and therapy, to lay a solid foundation for further researches in the future.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA
| | - Jiaxuan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Huiling Che
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiaqi Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - En Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
26
|
Park KR, Leem HH, Cho M, Kang SW, Yun HM. Effects of the amide alkaloid piperyline on apoptosis, autophagy, and differentiation of pre-osteoblasts. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153347. [PMID: 32992084 DOI: 10.1016/j.phymed.2020.153347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Amide alkaloidsare typical constituents in plants of the Piperaceae family. Most of the pharmacological properties of Piper nigrum L. are attributed to the major amide alkaloid, piperine. Piperyline (PIPE) is a further amide alkaloid that has been isolated from P. nigrum. HYPOTHESIS/PURPOSE This study was performed to examine the biological effects of PIPE on pre-osteoblasts and elucidate the underlying mechanisms. STUDY DESIGN We investigated the effects of PIPE in MC3T3E-1 cells, which are widely used for studying osteoblast behavior in in vitro cell systems. METHODS We evaluated cell viability based on the MTT assay, apoptosis by TUNEL staining, adhesion and migration by cell adhesion and migration assays, and osteoblast differentiation by alkaline phosphatase activity and staining. Western blot and immunocytochemical analyses were used to investigate cell signaling pathways. RESULTS We found that at concentrations ranging from 1 to 30 μM, PIPE inhibited cell growth and induced apoptosis in pre-osteoblasts, which was accompanied by the upregulation of apoptotic proteins but downregulation of anti-apoptotic proteins. In contrast, PIPE had no appreciable effect on the autophagy pathway. Nevertheless, PIPE reduced cell adhesion and migration via the inactivation of non-receptor tyrosine kinase (Src)/focal adhesion kinase (FAK) and mitogen-activated protein kinases, and also promoted the downregulation of matrix metalloproteinase 2 and 9 levels. Furthermore, at concentrations of 10 and 30 μM, PIPE suppressed osteoblast differentiation, as indicated by reductions in alkaline phosphatase staining and activity. In addition, PIPE reduced the protein levels of phospho-Smad1/5/8 and runt-related transcription factor 2, and the mRNA levels of osteopontin, alkaline phosphatase, and osteocalcin. CONCLUSION The findings of this study indicate that PIPE has biological effects associated with cell adhesion, migration, proliferation, and osteoblast differentiation, and suggest a potential role for this alkaloid in the treatment of bone diseases.
Collapse
Affiliation(s)
- Kyung-Ran Park
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung HeeUniversity,26, Kyungheedae-ro, Dongdaemun-gu,Seoul02453, South Korea
| | - Hyun Hee Leem
- National Development Institute of Korean Medicine, Gyeongsan38540, South Korea
| | - MyoungLae Cho
- National Development Institute of Korean Medicine, Gyeongsan38540, South Korea
| | - Sang Wook Kang
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung HeeUniversity,26, Kyungheedae-ro, Dongdaemun-gu,Seoul02453, South Korea.
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung HeeUniversity,26, Kyungheedae-ro, Dongdaemun-gu,Seoul02453, South Korea.
| |
Collapse
|
27
|
6,4'-dihydroxy-7-methoxyflavanone protects against H 2O 2-induced cellular senescence by inducing SIRT1 and inhibiting phosphatidylinositol 3-kinase/Akt pathway activation. Mol Cell Biochem 2020; 476:863-872. [PMID: 33111210 DOI: 10.1007/s11010-020-03951-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
6, 4'-Dihydroxy-7-methoxyflavanone (DMF) has been shown to possess anti-inflammatory, anti-oxidative, and neuroprotective activities. However, its effect on oxidative stress-induced aging remains undemonstrated. This study aimed at investigating the anti-senescence effect of DMF on hydrogen peroxide (H2O2)-induced premature senescence, and associated molecular mechanisms in human dermal fibroblasts (HDFs). The cells were DMF pretreated with small interfering RNA (siRNAs) of control or sirtuin 1 (SIRT1) before H2O2 exposure, and western blot analysis, senescence-associated β-galactosidase (SA-β-gal) activity, cell counting, gene silencing, and SIRT1 activity assay were performed. Pretreatment with DMF inhibited H2O2-induced senescence phenotypes, which showed decreased SA-β-gal activity and increased cell growth in comparison with H2O2-treated HDFs. Meanwhile, the decreases in ac-p53, p21Cip1/WAF1, and p16Ink4a and the increases in pRb and cyclin D1 were observed. DMF was also found to induce SIRT1 expression and activity level concentration- and time-dependently. Moreover, SIRT1 inhibition abrogated DMF senescence prevention. Additionally, Akt and ERK were activated with different kinetics after H2O2 exposure, and Akt activity inhibition attenuated SA-β-gal activity augmentation. We also found that DMF inhibited H2O2-induced Akt phosphorylation. This study indicates that DMF effectively protects against oxidative stress-induced premature senescence through SIRT1 expression up-regulation and Akt pathway inhibition in HDFs. These results suggest that DMF can be a potential therapeutic molecule for age-related diseases, or a protective agent against the aging process.
Collapse
|
28
|
Oh Y, Ahn CB, Je JY. Blue Mussel-Derived Peptides PIISVYWK and FSVVPSPK Trigger Wnt/β-Catenin Signaling-Mediated Osteogenesis in Human Bone Marrow Mesenchymal Stem Cells. Mar Drugs 2020; 18:md18100510. [PMID: 33050263 PMCID: PMC7599581 DOI: 10.3390/md18100510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023] Open
Abstract
Marine-derived bioactive peptides have shown potential bone health promoting effects. Although various marine-derived bioactive peptides have potential nutraceutical or pharmaceutical properties, only a few of them are commercially available. This study presented an osteogenic mechanism of blue mussel-derived peptides PIISVYWK and FSVVPSPK as potential bone health promoting agents in human bone marrow-derived mesenchymal stem cells (hBMMSCs). Alkaline phosphatase (ALP) activity and mineralization were stimulated using PIISVYWK and FSVVPSPK as early and late markers of osteogenesis in a concentration-dependent manner. Western blot and RT-qPCR results revealed that PIISVYWK and FSVVPSPK increased osteoblast differentiation of hBMMSCs by activating canonical Wnt/β-catenin signaling-related proteins and mRNAs. Immunofluorescence images confirmed nuclear translocation of β-catenin in osteogenic differentiation. Treatment with the pharmacological inhibitor DKK-1 blocked PIISVYWK- and FSVVPSPK-induced ALP activity and mineralization, as well as mRNA expression of the canonical Wnt/β-catenin signaling pathway in hBMMSC differentiation into osteoblasts. These findings suggested that PIISVYWK and FSVVPSPK promoted the canonical Wnt/β-catenin signaling pathway in osteogenesis of hBMMSCs. Blue mussel-derived PIISVYWK and FSVVPSPK might help develop peptide-based therapeutic agents for bone-related diseases.
Collapse
Affiliation(s)
- Yunok Oh
- Institute of Marine Life Sciences, Pukyong National University, Busan 48613, Korea;
| | - Chang-Bum Ahn
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea;
| | - Jae-Young Je
- Department of Marine-Bio Convergence Science, Pukyong National University, Busan 48547, Korea
- Correspondence: ; Tel.: +82-51-629-6871
| |
Collapse
|
29
|
Oh Y, Ahn CB, Je JY. Ark shell protein-derived bioactive peptides promote osteoblastic differentiation through upregulation of the canonical Wnt/β-catenin signaling in human bone marrow-derived mesenchymal stem cells. J Food Biochem 2020; 44:e13440. [PMID: 32808363 DOI: 10.1111/jfbc.13440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 01/13/2023]
Abstract
In this study, the stimulating effect of ark shell protein-derived peptides AWLNH and PHDL on osteoblast differentiation in human bone marrow-derived mesenchymal stem cells (hBMMSCs) and its molecular mechanism was investigated. The hBMMSCs were cultured with two peptides and osteogenic markers were analyzed. Results showed that enhanced ALP activity and calcification were detected in the presence of AWLNH and PHDL. Based on western blotting, RT-qPCR, and immunostaining analysis, AWLNH and PHDL are specific for osteoblast differentiation of hBMMSCs through activating the canonical Wnt/β-catenin signaling pathway followed by activating Runx2, osterix, and type I collagen. Loss-of-function assay with DKK-1, a Wnt antagonist, showed that the canonical Wnt/β-catenin signaling was essential for AWLNH and PHDL-induced osteogenesis in hBMMSCs. These findings suggested that AWLNH and PHDL can stimulate osteoblast differentiation of hBMMSCs via upregulating the canonical Wnt/β-catenin signaling and may be useful for a potential nutraceuticals or pharmaceuticals to treat osteoporosis. PRACTICAL APPLICATIONS: Ark shell is a popular foodstuff in Korea. However, biological effects of its protein and peptide have not been explored in many ways. This study demonstrated that ark shell protein-derived peptides promoted osteoblast differentiation in hBMMSCs through upregulating the canonical Wnt/β-catenin signaling. The results of this study could be a basis to promote its application as functional foods and/or nutraceuticals.
Collapse
Affiliation(s)
- Yunok Oh
- Institute of Marine Life Sciences, Pukyong National University, Busan, Republic of Korea
| | - Chang-Bum Ahn
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Young Je
- Department of Marine-Bio Convergence Science, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
30
|
Ma X, Yang J, Liu T, Li J, Lan Y, Wang Y, Wang A, Tian Y, Li Y. Gukang Capsule Promotes Fracture Healing by Activating BMP/SMAD and Wnt/ β-Catenin Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7184502. [PMID: 33062020 PMCID: PMC7545469 DOI: 10.1155/2020/7184502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/02/2020] [Accepted: 08/03/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Gukang capsule (GKC) is a traditional Chinese medicine formulation which has been used extensively in the clinical treatment of bone fractures. However, the mechanisms underlying its effects on fracture healing remain unclear. METHODS In this study we used a rabbit radius fracture model, and we measured the serum content of bone alkaline phosphatase (ALP), calcium, and phosphorus and examined pathology of the fracture site as indicators of the fracture healing effects of GKC. SaOS-2 human osteosarcoma cells were used to measure (i) ALP activity, (ii) ornithine transcarbamylase (OTC), calcium, and mineralization levels, (iii) the expression of osteogenic-related genes, that is, runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), collagen I (COL-I), osteopontin (OPN), OTC, and osterix (Osx), and (iv) the expression of key proteins in the Wnt/β-catenin and BMP/SMAD signaling pathways to study the mechanisms by which GKC promotes fracture healing. RESULTS We found that GKC effectively promotes radius fracture healing in rabbits and enhances ALP activity, increases OTC and calcium levels, and stimulates the formation of mineralized nodules in SaOS-2 cells. Moreover, COL-I, OTC, Osx, BMP2, and OPN expression levels were higher in SaOS-2 cells treated with GKC than control cells. GKC upregulates glycogen synthase kinase 3β (GSK3β) phosphorylation and Smad1/5 and β-catenin protein levels, thereby activating Wnt/β-catenin and BMP/Smad signaling pathways. Inhibitors of the Wnt/β-catenin and BMP/Smad signaling pathways (DKK1 and Noggin, respectively) suppress the osteogenic effects of GKC. CONCLUSIONS GKC promotes fracture healing by activating the Wnt/β-catenin and BMP/Smad signaling pathways and increasing osteoprotegerin (OPG) secretion by osteoblasts (OBs), which prevents receptor activator of nuclear factor kappa B ligand (RANKL) binding to RANK.
Collapse
Affiliation(s)
- Xue Ma
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Applications of Ethnic Medicines and TCM (Ministry of Education), Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Jian Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Applications of Ethnic Medicines and TCM (Ministry of Education), Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Ting Liu
- Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang 550004, China
| | - Jing Li
- Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang 550004, China
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yanyu Lan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Applications of Ethnic Medicines and TCM (Ministry of Education), Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yonglin Wang
- Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang 550004, China
| | - Aimin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Applications of Ethnic Medicines and TCM (Ministry of Education), Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Ye Tian
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Applications of Ethnic Medicines and TCM (Ministry of Education), Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| |
Collapse
|
31
|
Kuang Z, Bai J, Ni L, Hang K, Xu J, Ying L, Xue D, Pan Z. Withanolide B promotes osteogenic differentiation of human bone marrow mesenchymal stem cells via ERK1/2 and Wnt/β-catenin signaling pathways. Int Immunopharmacol 2020; 88:106960. [PMID: 32919219 DOI: 10.1016/j.intimp.2020.106960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND The treatment of bone defects has always been a problem for clinicians. In recent years, research on human bone mesenchymal stem cells (hBMSCs) has found that promoting their osteogenic differentiation could be a useful therapeutic strategy for bone healing. Previous studies have been reported that Withania somnifera Dunal inhibits osteoclastogenesis by inhibiting the NF-κB signaling pathway. Withanolide B is an active component of W. somnifera Dunal, but its role in osteogenic differentiation of hBMSCs remains unknown. Here, we performed a preliminary study on the role of Withanolide B in promoting osteogenic differentiation and its possible mechanism. METHODS We investigated the effect of Withanolide B on osteogenic differentiation of hBMSCs in vitro and in vivo. The effect of Withanolide B on the activity of hBMSCs was verified by CCK-8 assay and quantitative Real-time polymerase chain reaction (qPCR) and Western blotting analysis were used to verify the effect of Withanolide B on osteogenic differentiation-specific genes and proteins. The effect of Withanolide B on ALP activity and mineral deposition was verified by ALP and ARS staining. We then used a rat tibial osteotomy model to observe the effect of Withanolide B on bone healing. RESULTS Withanolide B is noncytotoxic to hBMSCs and can effectively promote their osteogenic differentiation. Moreover, we found that Withanolide B can regulate the osteogenic differentiation of hBMSCs through the ERK1/2 and Wnt/β-catenin signaling pathways. When inhibitors of the ERK1/2 and Wnt/β-catenin signaling pathways were used, the enhancement of osteogenic differentiation induced by Withanolide B was attenuated. Withanolide B also effectively promoted bone healing in the rat tibial osteotomy model. CONCLUSIONS Our results suggest that Withanolide B can promote the osteogenic differentiation of hBMSCs through the ERK1/2 and Wnt/β-catenin signaling pathways and can effectively promote bone defect healing.
Collapse
Affiliation(s)
- Zhihui Kuang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jinwu Bai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Licheng Ni
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Kai Hang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jianxiang Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Li Ying
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Deting Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China.
| | - Zhijun Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China.
| |
Collapse
|
32
|
Liu J, Wang H, Ren W, Zhou Y, Ye Z, Tan WS. β-mercaptoethanol promotes osteogenesis of human mesenchymal stem cells via sirt1-ERK pathway. Cytotechnology 2020; 72:695-706. [PMID: 32691200 DOI: 10.1007/s10616-020-00412-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUMSCs) hold strong self-renewal capacity and low immunogenicity, which have attracted attention as potential candidates for bone repair and regeneration. However, insufficient osteogenic differentiation markedly hinders the clinical applications of hUMSCs. In the present study, the effect of β-mercaptoethanol (BME), a small molecule antioxidant which has been identified to regulate cell proliferation and differentiation, on osteogenic differentiation of hUMSCs and underlying signaling mechanism were investigated. The results indicated that under osteogenic induction conditions, BME treatment increased the alkaline phosphatase (ALP) activity and promoted calcium mineralization in hUMSCs. The gene and protein expression of osteogenesis-related markers such as ALP, osteopontin (OPN), osteocalcin (OCN) and collagen type I (COLI) were also significantly up-regulated. Besides, BME promoted the protein expression of silent information regulator type 1 (sirt1) and stimulated the activation of extracellular signal-related kinase (ERK), contributing to increased Runx2 expression. Furthermore, blocking the expression of sirt1 attenuated BME-enhanced ERK phosphorylation and osteogenic differentiation of hUMSCs. These results indicated that BME accelerated osteogenic differentiation of hUMSCs by activating the sirt1-ERK signaling pathway, thereby providing insights into the development of MSCs-based bone regeneration strategies.
Collapse
Affiliation(s)
- Jiaxing Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China
| | - Hui Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China
| | - Wenxia Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China.
| | - Zhaoyang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China
| |
Collapse
|
33
|
Lim SH, Li BS, Zhu RZ, Seo JH, Choi BM. Latifolin Inhibits Oxidative Stress-Induced Senescence via Upregulation of SIRT1 in Human Dermal Fibroblasts. Biol Pharm Bull 2020; 43:1104-1110. [DOI: 10.1248/bpb.b20-00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Seok-Hee Lim
- Department of Biochemistry, Wonkwang University School of Medicine
| | - Bing Si Li
- Department of Biochemistry, Wonkwang University School of Medicine
| | - Ri Zhe Zhu
- Department of Biochemistry, Wonkwang University School of Medicine
| | - Jae-Ho Seo
- Department of Biochemistry, Wonkwang University School of Medicine
| | - Byung-Min Choi
- Department of Biochemistry, Wonkwang University School of Medicine
| |
Collapse
|
34
|
Shen YS, Chen XJ, Wuri SN, Yang F, Pang FX, Xu LL, He W, Wei QS. Polydatin improves osteogenic differentiation of human bone mesenchymal stem cells by stimulating TAZ expression via BMP2-Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2020; 11:204. [PMID: 32460844 PMCID: PMC7251742 DOI: 10.1186/s13287-020-01705-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Polydatin (PD), extracted from Polygonum cuspidatum, has shown potential therapeutic applications due to its antiosteoporotic and anti-inflammatory activities. Our previous study suggested that PD promotes the osteogenesis of human bone marrow stromal cells (hBMSCs) via the BMP2-Wnt/β-catenin pathway. The aim of our present study was to further explore the role of PD-mediated regulation of Tafazzin (TAZ), a transcriptional coactivator with a PDZ-binding motif, in osteogenesis. MATERIALS AND METHODS hBMSCs were isolated and treated with PD at various concentrations. Alizarin red staining and RT-qPCR were performed to identify calcium complex deposition in hBMSCs as well as the expression of specific osteoblast-related markers, respectively, in each group. Next, TAZ-silenced hBMSCs were generated by lentivirus-produced TAZ shRNA. After treatment with PD, the osteogenic abilities of the TAZ-silenced and control hBMSCs were estimated by ALP activity assay, and expression of the TAZ protein was detected by Western blot analysis and immunofluorescence staining. In vitro, an ovariectomized (OVX) mouse model was established and used to evaluate the effect of PD on bone destruction by micro-CT, immunohistochemistry, and ELISA. RESULTS In vitro, 30 μM PD significantly improved the proliferation and calcium deposition of hBMSCs and markedly stimulated the expression of the mRNAs RUNX2, Osteopontin, DLX5, β-catenin, TAZ, and Osteocalcin (OCN). Osteogenic differentiation induced by PD was blocked by lentivirus-mediated TAZ shRNA. Furthermore, Noggin (a regulator of bone morphogenic protein 2 (BMP2)) and DKK1 (an inhibitor of the Wnt/β-catenin pathway) were found to inhibit the increase in TAZ expression induced by PD. In vivo, PD prevented estrogen deficiency-induced bone loss in the OVX mouse model. CONCLUSION Taken together, our findings suggest that PD improved the osteogenic differentiation of hBMSCs and maintained the bone matrix in the OVX mouse model through the activation of TAZ, a potential target gene of the BMP2-Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ying-Shan Shen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiao-Jun Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Sha-Na Wuri
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fan Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Feng-Xiang Pang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liang-Liang Xu
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- Hip Preserving Ward, No. 3 Orthopaedic Region, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- No. 3 Orthopaedic Region and Institute of the Hip Joint, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qiu-Shi Wei
- Hip Preserving Ward, No. 3 Orthopaedic Region, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- No. 3 Orthopaedic Region and Institute of the Hip Joint, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Institute of orthopedics of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
35
|
Blagodatski A, Klimenko A, Jia L, Katanaev VL. Small Molecule Wnt Pathway Modulators from Natural Sources: History, State of the Art and Perspectives. Cells 2020; 9:cells9030589. [PMID: 32131438 PMCID: PMC7140537 DOI: 10.3390/cells9030589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt signaling is one of the major pathways known to regulate embryonic development, tissue renewal and regeneration in multicellular organisms. Dysregulations of the pathway are a common cause of several types of cancer and other diseases, such as osteoporosis and rheumatoid arthritis. This makes Wnt signaling an important therapeutic target. Small molecule activators and inhibitors of signaling pathways are important biomedical tools which allow one to harness signaling processes in the organism for therapeutic purposes in affordable and specific ways. Natural products are a well known source of biologically active small molecules with therapeutic potential. In this article, we provide an up-to-date overview of existing small molecule modulators of the Wnt pathway derived from natural products. In the first part of the review, we focus on Wnt pathway activators, which can be used for regenerative therapy in various tissues such as skin, bone, cartilage and the nervous system. The second part describes inhibitors of the pathway, which are desired agents for targeted therapies against different cancers. In each part, we pay specific attention to the mechanisms of action of the natural products, to the models on which they were investigated, and to the potential of different taxa to yield bioactive molecules capable of regulating the Wnt signaling.
Collapse
Affiliation(s)
- Artem Blagodatski
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Correspondence: (A.B.); (V.L.K.)
| | - Antonina Klimenko
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Vladimir L. Katanaev
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Correspondence: (A.B.); (V.L.K.)
| |
Collapse
|
36
|
Zhao X, Wang C, Meng H, Yu Z, Yang M, Wei J. Dalbergia odorifera: A review of its traditional uses, phytochemistry, pharmacology, and quality control. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112328. [PMID: 31654799 DOI: 10.1016/j.jep.2019.112328] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dalbergia odorifera, a traditional herbal medicine, has long been used in China for dissipating blood stasis, regulating the flow of qi, and relieving pain. AIM OF THIS REVIEW This review aims to provide comprehensive and up-to-date information about the traditional uses, phytochemistry, pharmacology, and quality control of D. odorifera. Additionally, perspectives for possible future investigations on D. odorifera are also discussed. MATERIALS AND METHODS Information on D. odorifera was obtained from a library database and electronic searches (e.g., Elsevier, Springer, ScienceDirect, Wiley, Web of Science, PubMed, Google Scholar, China Knowledge Resource Integrated). RESULTS According to classical Chinese herbal texts and the Chinese Pharmacopoeia, D. odorifera promotes blood circulation, relieves pain, and eliminates blood stasis, and it can be used to treat cardio-cerebrovascular diseases in traditional Chinese medicine prescriptions. The chemical constituents of D. odorifera have been well studied, with approximately 175 metabolites having been identified, including flavonoids, phenols, arylbenzofurans, and quinones. The species also contains well-studied volatile oil. Its flavonoids and volatile oil are generally considered to be essential for its pharmacological activity. Modern pharmacology research has confirmed that isolated components and crude extracts of D. odorifera possess wide-ranging pharmacological effects, including anti-inflammatory, anti-angina, anti-oxidative, and other activities. Additionally, there are few quality control studies on D. odorifera. CONCLUSIONS To date, significant progress has been made in D. odorifera phytochemistry and pharmacology. Thus, modern pharmacological research has provided some evidence for local or traditional uses. D. odorifera also showed therapeutic potential in cardiovascular and coronary heart diseases. However, the present findings are insufficient to explain its mechanisms of action. Additionally, the mechanism of heartwood formation, artificial induction technology for heartwood production, and quality control of D. odorifera require further detailed research.
Collapse
Affiliation(s)
- Xiangsheng Zhao
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Canhong Wang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Hui Meng
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Zhangxin Yu
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Meihua Yang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
37
|
Li N, Liu L, Liu Y, Luo S, Song Y, Fang B. miR-144-3p Suppresses Osteogenic Differentiation of BMSCs from Patients with Aplastic Anemia through Repression of TET2. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:619-626. [PMID: 31945725 PMCID: PMC6965517 DOI: 10.1016/j.omtn.2019.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022]
Abstract
Reduced osteogenic capacity of bone marrow mesenchymal stem cells (BMSCs) has been causally linked to the development of aplastic anemia. In this work, we aimed to identify novel microRNAs (miRNAs) that participate in the regulation of differentiation of BMSCs from patients with aplastic anemia. We show that miR-144-3p is significantly upregulated in BMSCs from patients with aplastic anemia relative to control equivalents. Depletion of miR-144-3p significantly enhances osteogenic differentiation of BMSCs from patients with aplastic anemia after culturing in osteogenesis-inducing medium. Conversely, overexpression of miR-144-3p blocks osteogenic differentiation of BMSCs. Mechanistically, miR-144-3p negatively regulates the expression of ten-eleven translocation 2 (TET2) in BMSCs. Reduced TET2 expression is associated with a significant decrease in global 5-hydroxymethyl-cytosine (5hmC) levels and osteogenic gene expression. Knockdown of miR-144-3p elevates the expression of TET2 and total 5hmC levels in BMSCs. Silencing of TET2 inhibits the osteogenic differentiation of BMSCs. Overexpression of TET2 reverses miR-144-3p-mediated inhibition of osteogenesis. In addition, there is a significant negative correlation between the expression of miR-144-3p and TET2 in BMSCs from patients with aplastic anemia. Overall, miR-144-3p impairs the osteogenic capacity of BMSCs from patients with aplastic anemia through repression of TET2. Therefore, the targeting of miR-144-3p may be a therapeutic strategy against aplastic anemia.
Collapse
Affiliation(s)
- Ning Li
- Department of Oncology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lina Liu
- Henan Institute of Haematology, Department of Hematology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuzhang Liu
- Henan Institute of Haematology, Department of Hematology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Suxia Luo
- Department of Oncology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yongping Song
- Henan Institute of Haematology, Department of Hematology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| | - Baijun Fang
- Henan Institute of Haematology, Department of Hematology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
38
|
Hang K, Ye C, Xu J, Chen E, Wang C, Zhang W, Ni L, Kuang Z, Ying L, Xue D, Pan Z. Apelin enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly through Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2019; 10:189. [PMID: 31238979 PMCID: PMC6593611 DOI: 10.1186/s13287-019-1286-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Management of fracture healing with a large bone defect remains a tricky subject in orthopedic trauma. Enhancing osteogenesis of human bone marrow-derived mesenchymal stem cells (hBMSCs) is one of the useful therapeutic strategies for fracture healing. Previous studies have revealed that Apelin may play an important role in bone metabolism. However, its function in the osteogenesis of hBMSCs remains unclear. Therefore, in this study, we investigated the effects and mechanism of Apelin on osteogenic differentiation. METHODS We investigated the osteogenesis effects of hBMSCs by both exogenous Apelin protein and overexpression Apelin in vitro. Cell proliferation assay was used to assess the effect of Apelin on the proliferation of hBMSCs. ALP staining and Alizarin Red staining were used to evaluate ALP activity and mineral deposition respectively. qPCR and Western blotting analysis were used to detect the expression of target genes and proteins. In vivo, a rat tibial osteotomy model was established; radiographic analysis and histological evaluation were used to confirm the therapeutic effects of Apelin in fracture healing. Statistical significance was determined by two-tailed Student's t test when 2 groups were compared. When more than 2 groups were compared, one-way ANOVA followed by Bonferroni's post-hoc test was used. And two-way ANOVA, followed by Bonferroni multiple comparisons post-hoc test, was performed when the treatment groups at different time points were compared. RESULTS The addition of exogenous Apelin protein or overexpression of Apelin promoted osteoblast differentiation of hBMSCs in vitro. Increased mineral deposits were observed after treatment with extracellular Apelin protein or after the upregulation of Apelin. Moreover, β-catenin levels were upregulated by Apelin. The enhancement of osteogenic differentiation induced by Apelin was attenuated by specific Wnt/β-catenin signaling pathway inhibitors. In a rat tibial osteotomy model, local injection of exogenous Apelin protein improved bone healing, as demonstrated by imaging and histological analyses. CONCLUSIONS Taken together, these findings indicate that Apelin regulates osteogenic differentiation of hMSCs partly via the Wnt/β-catenin signaling pathway and effectively promotes fracture healing.
Collapse
Affiliation(s)
- Kai Hang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Chenyi Ye
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Jianxiang Xu
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Erman Chen
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Cong Wang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Wei Zhang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Lic Ni
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Zhih Kuang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Li Ying
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Deting Xue
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China. .,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.
| | - Zhijun Pan
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China. .,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
39
|
Qu R, Chen X, Yuan Y, Wang W, Qiu C, Liu L, Li P, Zhang Z, Vasilev K, Liu L, Hayball J, Zhao Y, Li Y, Li W. Ghrelin Fights Against Titanium Particle-Induced Inflammatory Osteolysis Through Activation of β-Catenin Signaling Pathway. Inflammation 2019; 42:1652-1665. [DOI: 10.1007/s10753-019-01026-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Man X, Yang L, Liu S, Yang L, Li M, Fu Q. Arbutin promotes MC3T3‑E1 mouse osteoblast precursor cell proliferation and differentiation via the Wnt/β‑catenin signaling pathway. Mol Med Rep 2019; 19:4637-4644. [PMID: 30957189 PMCID: PMC6522801 DOI: 10.3892/mmr.2019.10125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/26/2019] [Indexed: 12/17/2022] Open
Abstract
Arbutin is a natural compound extracted from various plants, including bearberry leaves, that exerts multiple effects including skin whitening, anti‑inflammatory and oxidative stress‑protective properties. However, the effects of arbutin on osteoblasts remain unknown. The aim of the present study was to investigate the function and the mechanisms of arbutin on the proliferation and differentiation of MC3T3‑E1 mouse osteoblast precursor cells in vitro. The proliferation of MC3T3‑E1 cells treated with arbutin was assessed using a Cell Counting Kit‑8 assay and a 5‑ethynyl‑2'‑deoxyuridine labeling assay. Additionally, cell cycle and apoptosis were examined using flow cytometry analysis. The effects of arbutin on osteoblast differentiation were investigated using alkaline phosphatase (ALP) staining and by examining the mRNA expression levels of collagen type I α1 chain (COL1A1), bone γ‑carboxyglutamate protein (BGLAP) and Sp7 transcription factor (SP7). To further investigate the molecular mechanism underlying arbutin function in promoting osteogenesis, the mRNA and protein expression levels of runt‑related transcription factor 2 (RUNX2) and β‑catenin were analyzed by reverse transcription‑quantitative polymerase chain reaction and western blotting. Arbutin significantly promoted MC3T3‑E1 cell proliferation and increased the ratio of cells in S‑phase. Treatment with arbutin increased ALP activity and the mRNA expression levels of COL1A1, BGLAP and SP7 in MC3T3‑E1 cells. Furthermore, the protein and the mRNA expression levels of RUNX2 and β‑catenin increased significantly following treatment with arbutin. Collectively, the present findings suggested that arbutin was able to promote proliferation and differentiation of MC3T3‑E1 cells via the Wnt/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Xiangji Man
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Liyu Yang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Shengye Liu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Lei Yang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Mingyang Li
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Qin Fu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
41
|
Wu L, Wei Q, Lv Y, Xue J, Zhang B, Sun Q, Xiao T, Huang R, Wang P, Dai X, Xia H, Li J, Yang X, Liu Q. Wnt/β-Catenin Pathway Is Involved in Cadmium-Induced Inhibition of Osteoblast Differentiation of Bone Marrow Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20061519. [PMID: 30917596 PMCID: PMC6471709 DOI: 10.3390/ijms20061519] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
Cadmium is a common environmental pollutant that causes bone damage. However, the effects of cadmium on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) and its mechanism of action in this process are unclear. Here, we determined the effects of cadmium chloride (CdCl₂) on the osteogenic differentiation of BMMSCs and the potential mechanism involved in this process. As determined in the present investigation, CdCl₂, in a concentration-dependent manner, affected the viability of BMMSCs and their cytoskeletons. Exposure to 0.1 or 0.2 µM CdCl₂ inhibited osteogenic differentiation of BMMSCs, which was reflected in the down-regulation of osteoblast-related genes (ALP, OCN, Runx2, OSX, and OPN); in suppression of the protein expression of alkaline phosphatase (ALP) and runt-related transcription factor 2 (Runx2); and in decreased ALP activity and capacity for mineralization. Moreover, mRNA microarray was performed to determine the roles of these factors in BMMSCs treated with CdCl₂ in comparison to control BMMSCs. As determined with the microarrays, the Wingless-type (Wnt), mothers against decapentaplegic and the C. elegans gene Sam (SMAD), and Janus kinase-Signal Transducers and Activators of Transcription (JAK-STAT) signaling pathways were involved in the effects caused by CdCl₂. Moreover, during differentiation, the protein levels of Wnt3a, β-catenin, lymphoid enhancer factor 1 (LEF1), and T-cell factor 1 (TCF1) were reduced by CdCl₂. The current research shows that CdCl₂ suppresses the osteogenesis of BMMSCs via inhibiting the Wnt/β-catenin pathway. The results establish a previously unknown mechanism for bone injury induced by CdCl₂.
Collapse
Affiliation(s)
- Lu Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Qinzhi Wei
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Yingjian Lv
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| | - Junchao Xue
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Bo Zhang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Qian Sun
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Tian Xiao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Rui Huang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| | - Ping Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| | - Xiangyu Dai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Haibo Xia
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Junjie Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xingfen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Qizhan Liu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
42
|
Li SL, An N, Liu B, Wang SY, Wang JJ, Ye Y. Exosomes from LNCaP cells promote osteoblast activity through miR-375 transfer. Oncol Lett 2019; 17:4463-4473. [PMID: 30988815 PMCID: PMC6447935 DOI: 10.3892/ol.2019.10110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
Previous studies have revealed that exosomes influence tumour metastasis, diagnosis and treatment. In addition, exosomal microRNAs (miRNAs/miRs) are closely associated with the metastatic microenvironment; however, the regulatory role of exosomal miRNAs from prostate cancer cells on bone metastasis remains poorly understood. In the present study, a series of experiments were performed to determine whether exosomal miR-375 from LNCaP cells promote osteoblast activity. Exosomes were isolated and purified by ultracentrifugation, total RNA from cells and total miRNA from exosomes were then extracted, and miR-375 levels were detected by reverse transcription-quantitative polymerase chain reaction. Exosome libraries from LNCaP and RWPE-1 cells were sequenced and selected using an Illumina HiSeq™ 2500 system. The effects of exosomes on osteoblasts were determined and osteoblast activity was evaluated by measuring the activity of alkaline phosphatase, the extent of extracellular matrix mineralisation and the expression of osteoblast activity-associated marker genes. Morphological observations, particle size analysis and molecular phenotyping confirmed that cell supernatants contained exosomes. Differential expression analysis confirmed high miR-375 expression levels in LNCaP cell-derived exosomes. The ability of exosomes to enter osteoblasts and increase their levels of miR-375 was further analysed. The results demonstrated that exosomal miR-375 significantly promoted osteoblast activity. In conclusion, the present study may lead to further investigation of the function role of exosomal miR-375 in the activation and differentiation of osteoblasts in PCa.
Collapse
Affiliation(s)
- Su-Liang Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Na An
- Department of Laboratory Medicine, Shaanxi Jiaotong Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Bing Liu
- Department of Pathology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Sheng-Yu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Jian-Jun Wang
- Intensive Care Unit, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Yun Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| |
Collapse
|
43
|
Chen XJ, Shen YS, He MC, Yang F, Yang P, Pang FX, He W, Cao YM, Wei QS. Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/β-catenin signaling pathway. Biomed Pharmacother 2019; 112:108746. [PMID: 30970530 DOI: 10.1016/j.biopha.2019.108746] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is a refractory disease induced by glucocorticoids. Marrow mesenchymal stem cells (MSCs) differentiate into multiple bone matrix cells and have been used as cell-based therapies to treat ONFH. However, the osteogenesis of MSCs isolated from patients with SONFH is significantly decreased. Polydatin has been widely used in traditional Chinese remedies due to its multiple pharmacological actions. As shown in our previous study, Polydatin protects from oxidative stress and promotes BMSC migration. However, little is known about its role in BMSC (Bone marrow mesenchymal stem cells) osteogenesis; therefore, we further investigated the effect and mechanism of Polydatin in hBMSC osteogenesis. The ability of Polydatin to promote the proliferation and osteogenic differentiation of hBMSCs was determined using the MTT assay, ALP staining and the ALP activity assay. Next, qPCR and western blotting were performed to measure the levels of genes and proteins related to the osteogenesis of hBMSCs. Then, the effect of Polydatin on the nuclear translocation of β-catenin was determined using immunofluorescence staining. Polydatin (30 μM) markedly enhanced the proliferation of hBMSCs and alkaline phosphatase (ALP) activity. Additionally, it also significantly upregulated the expression of osteogenic genes (Runx2, osteopontin, DLX5, osteocalcin, collagen type I and BMP2) and components of the Wnt signaling pathway (β-catenin, Lef1, TCF7, c-jun, c-myc and cyclin D). These osteogenesis-potentiating effects of Polydatin were blocked by Noggin, an inhibitor of the BMP pathway, and DKK1, an inhibitor of the Wnt/β-catenin pathway. However, DKK1 did not affect Polydatin-induced BMP2 expression. Based on our results, Polydatin promotes the proliferation and osteogenic differentiation of hBMSCs through the BMP2-Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiao-Jun Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ying-Shan Shen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Min-Cong He
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Fan Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Peng Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Feng-Xiang Pang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Wei He
- Hip Preserving Ward, No. 3 Orthopaedic Region, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Institute of Hip Joint, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yan-Ming Cao
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China.
| | - Qiu-Shi Wei
- Hip Preserving Ward, No. 3 Orthopaedic Region, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Institute of Hip Joint, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
44
|
Zhu Y, Wang Y, Jia Y, Xu J, Chai Y. Catalpol promotes the osteogenic differentiation of bone marrow mesenchymal stem cells via the Wnt/β-catenin pathway. Stem Cell Res Ther 2019; 10:37. [PMID: 30670092 PMCID: PMC6341609 DOI: 10.1186/s13287-019-1143-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 12/22/2022] Open
Abstract
Background Rehmanniae Radix is a traditional herbal medicine in East Asia that has been widely used to treat patients with osteoporosis. However, the effect of catalpol, the primary active principle component of Rehmanniae Radix, on the function of bone marrow mesenchymal stem cells (BMSCs) and the underlying molecular mechanisms associated with its activity remain poorly understood. Methods The effect of catalpol on the proliferation of BMSCs was evaluated using a Cell Counting Kit-8 assay. Alkaline phosphatase (ALP) staining, ALP activity and Alizarin Red staining were performed to elucidate the effect of catalpol on the osteogenesis of BMSCs. qRT-PCR, Western blotting and immunofluorescence were performed to evaluate the expression of osteo-specific markers and the Wnt/β-catenin signalling-related genes and proteins. Moreover, a rat critical-sized calvarial defect model and a rat ovariectomy model were used to assess the effect of catalpol on bone regeneration in vivo. Results Catalpol significantly enhanced osteoblast-specific gene expression, alkaline phosphatase activity and calcium deposition in BMSCs in vitro. This phenomenon was accompanied by an upregulation of Wnt/β-catenin signalling. In addition, the enhanced osteogenesis due to catalpol treatment was partially reversed by a Wnt/β-catenin antagonist. Furthermore, catalpol increased the bone healing capacity of BMSCs in a rat critical-sized calvarial defect model and attenuated bone loss in a rat ovariectomy model. Conclusions These data suggest that catalpol enhances the osteogenic differentiation of BMSCs, partly via activation of the Wnt/β-catenin pathway. Catalpol may provide a new strategy for bone tissue engineering and can be a potential agent for the treatment of postmenopausal osteoporosis. Electronic supplementary material The online version of this article (10.1186/s13287-019-1143-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China
| | - Yanmao Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China
| | - Yachao Jia
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China.
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
45
|
Liu L, Wang D, Qin Y, Xu M, Zhou L, Xu W, Liu X, Ye L, Yue S, Zheng Q, Li D. Astragalin Promotes Osteoblastic Differentiation in MC3T3-E1 Cells and Bone Formation in vivo. Front Endocrinol (Lausanne) 2019; 10:228. [PMID: 31040823 PMCID: PMC6476984 DOI: 10.3389/fendo.2019.00228] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Astragalin (AG) is a biologically active flavonoid compound that can be extracted from a number of medicinal plants. However, the effects of AG on osteoblastic differentiation in mouse MC3T3-E1 cells and on bone formation in vivo have not been studied fully. In this study, we found that the activities of alkaline phosphatase (ALP) and mineralized nodules in MC3T3-E1 cells were both significantly increased after treatment with AG (5, 10, and 20 μM). Meanwhile, the mRNA and protein levels of osteoblastic marker genes in MC3T3-E1 cells after AG treatment were markedly increased compared with a control group. In addition, the levels of BMP-2, p-Smad1/5/9, and Runx2 were significantly elevated in AG-treated MC3T3-E1 cells. Moreover, we found that the protein levels of Erk1/2, p-Erk1/2, p38, p-p38, and p-JNK were also significantly increased in AG-treated MC3T3-E1 cells compared to those in the control group. Finally, in vivo experiments demonstrated that AG significantly promoted bone formation in an ovariectomized (OVX)-induced osteoporotic mouse model. This was evidenced by significant increases in the values of osteoblast-related parameters (BFR/BS, MAR, Ob.S/BS, and Ob.N/B.Pm) and bone histomorphometric parameters (BMD, BV/TV, Tb.Th, and Tb.N.) in OVX mice after AG treatment (5, 10, and 20 mg/kg). Collectively, these results demonstrated that AG may promote osteoblastic differentiation in MC3T3-E1 cells via the activation of the BMP and MAPK pathways and promote bone formation in vivo. These novel findings indicated that AG may be a useful bone anabolic agent for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Li Liu
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Dan Wang
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Yao Qin
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Maolei Xu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ling Zhou
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Wenjuan Xu
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Xiaona Liu
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Lei Ye
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Shijun Yue
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiusheng Zheng
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Defang Li
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- *Correspondence: Defang Li
| |
Collapse
|
46
|
Wei XF, Chen QL, Fu Y, Zhang QK. Wnt and BMP signaling pathways co-operatively induce the differentiation of multiple myeloma mesenchymal stem cells into osteoblasts by upregulating EMX2. J Cell Biochem 2018; 120:6515-6527. [PMID: 30450775 DOI: 10.1002/jcb.27942] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022]
Abstract
Osteoblast differentiation, defined as the process whereby a relatively unspecialized cell acquires the specialized features of an osteoblast, is directly linked to multiple myeloma (MM) bone disease. Wnt and bone morphogenetic protein (BMP) are proved to be implicated in the pathological or defective osteoblast differentiation process. This study aims to test the involvement of Wnt, bone morphogenetic proteins (BMP) pathways, and empty spiracles homeobox 2 (EMX2) in osteoblast differentiation and MM development. Initially, differentially expressed genes in bone marrow mesenchymal stem cells (MSCs) from MM patients and healthy donors were identified using microarray-based gene expression profiling. The functional role of Wnt and BMP in MM was determined. Next, we focused on the co-operative effects of Wnt and BMP on calcium deposition, alkaline phosphatase (ALP) activity, the number of mineralized nodules, and osteocalcin (OCN) content in MSCs. The expression patterns of Wnt and BMP pathway-related genes, EMX2 and osteoblast differentiation-related factors were determined to assess their effects on osteoblast differentiation. Furthermore, regulation of Wnt and BMP in ectopic osteogenesis was also investigated in vivo. An integrated genomic screen suggested that Wnt and BMP regularly co-operate to regulate EMX2 and affect MM. EMX2 was downregulated in MSCs. The activated Wnt and BMP resulted in more calcium salt deposits, mineralized nodules, and a noted increased in ALP activity and OCN content by upregulating EMX2, leading to induced differentiation of MSCs into osteoblasts. Collectively, this study demonstrated that Wnt and BMP pathways could co-operatively stimulate differentiation of MSCs into osteoblasts and inhibit MM progression, representing potential targets for MM treatment.
Collapse
Affiliation(s)
- Xiao-Fang Wei
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, China
| | - Qiao-Lin Chen
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, China
| | - Yuan Fu
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, China
| | - Qi-Ke Zhang
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
47
|
Xi J, Li Q, Luo X, Li J, Guo L, Xue H, Wu G. Epigallocatechin‑3‑gallate protects against secondary osteoporosis in a mouse model via the Wnt/β‑catenin signaling pathway. Mol Med Rep 2018; 18:4555-4562. [PMID: 30221714 DOI: 10.3892/mmr.2018.9437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/03/2017] [Indexed: 11/05/2022] Open
Abstract
Epigallocatechin‑3‑gallate (EGCG) is a polyphenolic compound extracted and isolated from green tea, which has a variety of important biological activities in vitro and in vivo, including anti‑tumor, anti‑oxidation, anti‑inflammation and lowering blood pressure. The aim of the present study was to investigate the protective effect of EGCG against secondary osteoporosis in a mouse model via the Wnt/β‑catenin signaling pathway. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting were used to analyze runt‑related transcription factor 2 and osterix mRNA expression, and the protein expression of cyclin D1, Wnt and β‑catenin, and suppressed peroxisome proliferator‑activated receptor γ protein expression. The protective effect of EGCG against secondary osteoporosis was examined and its potential mechanism was analyzed. Treatment with EGCG significantly decreased serum calcium, urinary calcium, body weight and body fat, and increased leptin levels in mice with secondary osteoporosis. In addition, EGCG treatment significantly inhibited the structure score of articular cartilage and cancellous bone in proximal tibia metaphysis in mice with secondary osteoporosis. Treatment also significantly decreased alkaline phosphatase activity, runt‑related transcription factor 2 and osterix mRNA expression. EGCG also significantly induced the protein expression of cyclin D1, Wnt and β‑catenin, and suppressed peroxisome proliferator‑activated receptor γ protein expression in mice with secondary osteoporosis. Taken together, these results suggest that EGCG may be a possible new drug in clinical settings.
Collapse
Affiliation(s)
- Jiancheng Xi
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Qinggui Li
- Department of Orthopedics, The Fourth Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Xiaobo Luo
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Jinlong Li
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Lixin Guo
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Haibin Xue
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Guangsen Wu
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| |
Collapse
|
48
|
Gao Z, Wang L, Wang F, Zhang C, Wang J, He J, Wang S. Expression of BMP2/4/7 during the odontogenesis of deciduous molars in miniature pig embryos. J Mol Histol 2018; 49:545-553. [PMID: 30099666 DOI: 10.1007/s10735-018-9792-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
Abstract
Bone morphogenetic proteins (BMPs) play important roles in tooth development. However, their expression has not been studied in miniature pigs, which have many anatomical similarities in oral and maxillofacial region compared to human. This study investigated BMP2/4/7 expression patterns during deciduous molar development in miniature pigs on embryonic days (E) 40, 50, and 60. The mandibles were fixed, decalcified, and embedded before sectioning. H&E staining, immunohistochemistry, in situ hybridization using specific radionuclide-labeled cRNA probes, and real-time PCR were used to detect the BMP expression patterns during morphogenesis of the third deciduous molar. H&E staining showed that for the deciduous third molar, E40 represented the cap stage, E50 represented the early bell stage, and E60 represented the late bell stage or secretory stage. BMP2 was expressed in both the enamel organ and in the dental mesenchyme on E40 and E50 and was expressed mainly in pre-odontoblasts on E60. BMP7 expression was similar to BMP2 expression, but BMP7 was also expressed in the inner enamel epithelium on E60. On E40, BMP4 was expressed mainly in the epithelium, with some weak expression in the mesenchyme. On E50, BMP4 expression was stronger in the mesenchyme but weaker in the epithelium. On E60, BMP4 was expressed mainly in the mesenchyme. These data indicated that BMP2/4/7 showed differential spatial and temporal expression during the morphogenesis and odontogenesis of deciduous molars, suggesting that these molecules were associated with tooth morphogenesis and cell differentiation.
Collapse
Affiliation(s)
- Zhenhua Gao
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China.,Outpatient Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Lingxiao Wang
- Outpatient Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Fu Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China
| | - Jinsong Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China
| | - Junqi He
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China. .,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
49
|
Lee SY, Kim GT, Yun HM, Kim YC, Kwon IK, Kim EC. Tectorigenin Promotes Osteoblast Differentiation and in vivo Bone Healing, but Suppresses Osteoclast Differentiation and in vivo Bone Resorption. Mol Cells 2018; 41:476-485. [PMID: 29764006 PMCID: PMC5974624 DOI: 10.14348/molcells.2018.0056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 11/27/2022] Open
Abstract
Although tectorigenin (TG), a major compound in the rhizome of Belamcanda chinensis, is conventionally used for the treatment of inflammatory diseases, its effects on osteogenesis and osteoclastogenesis have not been reported. The objective of this study was to investigate the effects and possible underlying mechanism of TG on in vitro osteoblastic differentiation and in vivo bone formation, as well as in vitro osteoclast differentiation and in vivo bone resorption. TG promoted the osteogenic differentiation of primary osteoblasts and periodontal ligament cells. Moreover, TG upregulated the expression of the BMP2, BMP4, and Smad-4 genes, and enhanced the expression of Runx2 and Osterix. In vivo studies involving mouse calvarial bone defects with μCT and histologic analysis revealed that TG significantly increased new bone formation. Furthermore, TG treatment inhibited osteoclast differentiation and the mRNA levels of osteoclast markers. In vivo studies of mice demonstrated that TG caused the marked attenuation of bone resorption. These results collectively demonstrated that TG stimulated osteogenic differentiation in vitro, increased in vivo bone regeneration, inhibited osteoclast differentiation in vitro, and suppressed inflammatory bone loss in vivo. These novel findings suggest that TG may be useful for bone regeneration and treatment of bone diseases.
Collapse
Affiliation(s)
- So-Youn Lee
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02453,
Korea
| | - Gyu-Tae Kim
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University, Seoul 02453,
Korea
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02453,
Korea
| | - Youn-Chul Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan00000,
Korea
| | - Il- Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02453,
Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02453,
Korea
| |
Collapse
|
50
|
Sun T, Liu M, Yao S, Ji Y, Xiong Z, Tang K, Chen K, Yang H, Guo X. Biomimetic Composite Scaffold Containing Small Intestinal Submucosa and Mesoporous Bioactive Glass Exhibits High Osteogenic and Angiogenic Capacity. Tissue Eng Part A 2018; 24:1044-1056. [PMID: 29350101 DOI: 10.1089/ten.tea.2017.0398] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Biomaterials with excellent osteogenic and angiogenic activities are desirable to repair massive bone defects. Decellularized matrix from porcine small intestinal submucosa (SIS) has attracted particular attention for tissue regeneration because it has strong angiogenic effects and retains plentiful bioactive components. However, it has inferior osteoinductivity and osteoconductivity. In this study, we developed porous composite of SIS combined with mesoporous bioactive glass (SIS/MBG) with the goal of improving the mechanical and biological properties. SIS/MBG scaffolds showed uniform interconnected macropores (∼150 μm), high porosity (∼76%), and enhanced compressive strength (∼0.87 MPa). The proliferation and osteogenic gene expression (Runx2, ALP, Ocn, and Col-Iα) of rat bone marrow stromal cells (rBMSCs) as well as the proliferation, angiogenic gene expression (VEGF, bFGF, and KDR), and tube formation capacity of human umbilical vein endothelial cells (HUVECs) in SIS/MBG scaffolds were significantly upregulated compared with nonmesoporous bioactive glass (BG)-modified SIS (SIS/BG) and SIS-only scaffolds. Western blot analysis revealed that SIS/MBG induced rBMSCs to osteogenic differentiation through the activation of Wnt/β-Catenin signaling pathway, and SIS/MBG enhanced angiogenic activity of HUVEC through the activation of PI3k/Akt pathways. The in vivo results demonstrated that SIS/MBG scaffolds significantly enhanced new bone formation and neovascularization simultaneously in critical-sized rat calvarial defects as compared with SIS/BG and SIS. Collectively, the osteostimulative and angiostimulative biomimetic composite scaffold SIS/MBG represents an exciting biomaterial option for bone regeneration.
Collapse
Affiliation(s)
- Tingfang Sun
- 1 Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Man Liu
- 2 Department of Gastroenterology and Hepatology, Taikang Tongji Hospital , Wuhan, China
| | - Sheng Yao
- 1 Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Yanhui Ji
- 1 Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Zekang Xiong
- 1 Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Kai Tang
- 1 Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Kaifang Chen
- 1 Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Hu Yang
- 3 Department of Chemical and Life Science Engineering, Virginia Commonwealth University , Richmond, Virginia.,4 Department of Pharmaceutics, Virginia Commonwealth University , Richmond, Virginia.,5 Massey Cancer Center, Virginia Commonwealth University , Richmond, Virginia
| | - Xiaodong Guo
- 1 Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| |
Collapse
|