1
|
Cao Q, Zhang Z, Zhao J, Feng L, Jiang W, Wu P, Zhao J, Liu H, Jiang J. Evaluation of glycyrrhetinic acid in attenuating adverse effects of a high-fat diet in largemouth bass ( Micropterus salmoides). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:248-260. [PMID: 39640558 PMCID: PMC11617298 DOI: 10.1016/j.aninu.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/12/2024] [Accepted: 09/19/2024] [Indexed: 12/07/2024]
Abstract
Glycyrrhetinic acid (GA) has been shown to promote growth characteristics and play a crucial role in anti-inflammatory responses in animals. To investigate the effects of dietary GA supplementation on growth performance, intestinal inflammation, and intestinal barrier protection in largemouth bass (Micropterus salmoides) fed a high-fat diet (HFD), a 77-day feeding experiment was conducted. A total of 750 largemouth bass, initially averaging 17.39 ± 0.09 g in body weight, were randomly allocated to five experimental groups and fed a control diet, a HFD, and the HFD diet supplemented with GA at either 0.5, 1.0, or 1.5 mg/kg, named as control, HDF, HFD + GA 0.5, HFD + GA 1.0, and 1.5 HFD + GA 1.5, respectively. Each group contained three replicates. The study revealed that dietary GA improved final body weight (P < 0.001), percent weight gain (P = 0.041), and feed intake (P < 0.001), all of which had been affected by a HFD in largemouth bass (P < 0.05). Supplementation of HFD with 1.0 mg/kg GA increased the mRNA expressions and protein levels of corresponding tight junctions, occludin, zonula occluden-1 (ZO-1) and claudin-1 in the intestines of largemouth bass. Furthermore, the addition of HFD with both of 0.5 and 1.0 mg/kg GA decreased the mRNA expressions of pro-inflammatory genes such as interleukin-1β (IL-1β), IL-18, and cysteinyl aspartate specific proteinase 1 (caspase-1), as well as proteins associated with pyroptosis-induced inflammation, including NOD-like receptor family and pyrin domain contain 3 (NLRP3), apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), gasdermin E (GSDME), and N-terminal domain of GSDME (GSDME-N) (P < 0.05). Finally, dietary GA supplementation alleviated mitochondrial damage and reduced reactive oxygen species (ROS) production induced by the HFD. It is concluded that GA supplementation in HFD enhances growth performance, increases mRNA expression and protein levels of tight junction-related parameters, decreases mRNA expression and protein levels of pyroptosis-related genes, and alleviates intestinal mitochondrial injury and inflammation induced by HFD.
Collapse
Affiliation(s)
| | | | - Ju Zhao
- College of Animal Science and Technology, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- College of Animal Science and Technology, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Weidan Jiang
- College of Animal Science and Technology, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- College of Animal Science and Technology, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Zhao
- College of Animal Science and Technology, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haifeng Liu
- College of Animal Science and Technology, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- College of Animal Science and Technology, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Zhou XR, Wang XY, Sun YM, Zhang C, Liu KJ, Zhang FY, Xiang B. Glycyrrhizin Protects Submandibular Gland Against Radiation Damage by Enhancing Antioxidant Defense and Preserving Mitochondrial Homeostasis. Antioxid Redox Signal 2024; 41:723-743. [PMID: 38069572 DOI: 10.1089/ars.2022.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Aims: Radiotherapy inevitably causes radiation damage to the salivary glands (SGs) in patients with head and neck cancers (HNCs). Excessive reactive oxygen species (ROS) levels and imbalanced mitochondrial homeostasis are serious consequences of ionizing radiation in SGs; however, there are few mitochondria-targeting therapeutic approaches. Glycyrrhizin is the main extract of licorice root and exhibits antioxidant activity to relieve mitochondrial damage in certain oxidative stress conditions. Herein, the effects of glycyrrhizin on irradiated submandibular glands (SMGs) and the related mechanisms were investigated. Results: Glycyrrhizin reduced radiation damage in rat SMGs at both the cell and tissue levels, and promoted saliva secretion in irradiated SMGs. Glycyrrhizin significantly downregulated high-mobility group box-1 protein (HMGB1) and toll-like receptor 5 (TLR5). Moreover, glycyrrhizin significantly suppressed the increases in malondialdehyde and glutathione disulfide (GSSG) levels; elevated the activity of some critical antioxidants, including superoxide dismutase, catalase, glutathione peroxidase, and glutathione (GSH); and increased the GSH/GSSG ratio in irradiated cells. Importantly, glycyrrhizin effectively enhanced thioredoxin-2 levels and scavenged mitochondrial ROS, inhibited the decline in mitochondrial membrane potential, improved adenosine triphosphate synthesis, preserved the mitochondrial ultrastructure, activated the proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α)/nuclear respiratory factor 1/2 (NRF1/2)/mitochondrial transcription factor A (TFAM) signaling pathway, and inhibited mitochondria-related apoptosis in irradiated SMG cells and tissues. Innovation: Radiotherapy causes radiation sialadenitis in HNC patients. Our data suggest that glycyrrhizin could be a mitochondria-targeted antioxidant for the prevention of radiation damage in SGs. Conclusion: These findings demonstrate that glycyrrhizin protects SMGs from radiation damage by downregulating HMGB1/TLR5 signaling, maintaining intracellular redox balance, eliminating mitochondrial ROS, preserving mitochondrial homeostasis, and inhibiting apoptosis.
Collapse
Affiliation(s)
- Xin-Ru Zhou
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Xin-Yue Wang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Yue-Mei Sun
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Chong Zhang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Ke Jian Liu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Fu-Yin Zhang
- Department of Oral Surgery, Second Hospital of Dalian Medical University, Dalian, China
| | - Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| |
Collapse
|
3
|
Chen S, Pan J, Gong Z, Wu M, Zhang X, Chen H, Yang D, Qi S, Peng Y, Shen J. Hypochlorous acid derived from microglial myeloperoxidase could mediate high-mobility group box 1 release from neurons to amplify brain damage in cerebral ischemia-reperfusion injury. J Neuroinflammation 2024; 21:70. [PMID: 38515139 PMCID: PMC10958922 DOI: 10.1186/s12974-023-02991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/11/2023] [Indexed: 03/23/2024] Open
Abstract
Myeloperoxidase (MPO) plays critical role in the pathology of cerebral ischemia-reperfusion (I/R) injury via producing hypochlorous acid (HOCl) and inducing oxidative modification of proteins. High-mobility group box 1 (HMGB1) oxidation, particularly disulfide HMGB1 formation, facilitates the secretion and release of HMGB1 and activates neuroinflammation, aggravating cerebral I/R injury. However, the cellular sources of MPO/HOCl in ischemic brain injury are unclear yet. Whether HOCl could promote HMGB1 secretion and release remains unknown. In the present study, we investigated the roles of microglia-derived MPO/HOCl in mediating HMGB1 translocation and secretion, and aggravating the brain damage and blood-brain barrier (BBB) disruption in cerebral I/R injury. In vitro, under the co-culture conditions with microglia BV cells but not the single culture conditions, oxygen-glucose deprivation/reoxygenation (OGD/R) significantly increased MPO/HOCl expression in PC12 cells. After the cells were exposed to OGD/R, MPO-containing exosomes derived from BV2 cells were released and transferred to PC12 cells, increasing MPO/HOCl in the PC12 cells. The HOCl promoted disulfide HMGB1 translocation and secretion and aggravated OGD/R-induced apoptosis. In vivo, SD rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) plus different periods of reperfusion. Increased MPO/HOCl production was observed at the reperfusion stage, accomplished with enlarged infarct volume, aggravated BBB disruption and neurological dysfunctions. Treatment of MPO inhibitor 4-aminobenzoic acid hydrazide (4-ABAH) and HOCl scavenger taurine reversed those changes. HOCl was colocalized with cytoplasm transferred HMGB1, which was blocked by taurine in rat I/R-injured brain. We finally performed a clinical investigation and found that plasma HOCl concentration was positively correlated with infarct volume and neurological deficit scores in ischemic stroke patients. Taken together, we conclude that ischemia/hypoxia could activate microglia to release MPO-containing exosomes that transfer MPO to adjacent cells for HOCl production; Subsequently, the production of HOCl could mediate the translocation and secretion of disulfide HMGB1 that aggravates cerebral I/R injury. Furthermore, plasma HOCl level could be a novel biomarker for indexing brain damage in ischemic stroke patients.
Collapse
Affiliation(s)
- Shuang Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jingrui Pan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhe Gong
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaoni Zhang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hansen Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dan Yang
- Department of Chemistry, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Suhua Qi
- Medical and Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China.
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China.
- Medical and Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
4
|
Chen X, Zheng X, Shen T, He T, Zhao Y, Dong Y. In vitro validation: GLY alleviates UV-induced corneal epithelial damage through the HMGB1-TLR/MyD88-NF-κB signaling pathway. Acta Histochem 2023; 125:152111. [PMID: 37939523 DOI: 10.1016/j.acthis.2023.152111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
UV-induced corneal damage is a common ocular surface injury that usually leads to corneal lesions causing persistent inflammation. High mobility group box 1 (HMGB1) is identified as an inflammatory alarm in various tissue injuries. Here, this study first evaluates the repair effect of the HMGB1-selective inhibitor GLY in UV-induced corneal damage; Secondly, the inhibitory effect of GLY on UV-induced corneal damage induced inflammation and the potential therapeutic mechanism of GLY were studied. GLY effectively attenuates the expression of UV-induced inflammatory factors and HMGB1, TLR/MyD88, NF-κB signaling pathway genes at the mRNA and protein levels. In addition, RT-PCR and Western Blot experiments after knocking down HMGB1 and TLR2/9 genes showed that GLY alleviated corneal inflammation by inhibiting the HMGB1-TLR/MyD88 signaling pathway. The results of this study show that targeting HMGB1-NF-κB by GLY can alleviate the inflammatory response induced by UV induction.
Collapse
Affiliation(s)
- XinYi Chen
- School of Pharmacy, Zhejiang University of Technology, China
| | - XiaoXiao Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine,China Department of Medical Oncology, Tongde Hospital of Zhejiang Province, China
| | - Ting Shen
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, China.
| | - Ting He
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, China
| | - YangQi Zhao
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, China
| | - Yi Dong
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, China
| |
Collapse
|
5
|
Luo L, Wang S, Chen B, Zhong M, Du R, Wei C, Huang F, Kou X, Xing Y, Tong G. Inhibition of inflammatory liver injury by the HMGB1-A box through HMGB1/TLR-4/NF-κB signaling in an acute liver failure mouse model. Front Pharmacol 2022; 13:990087. [PMID: 36313316 PMCID: PMC9614247 DOI: 10.3389/fphar.2022.990087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
We aimed to investigate the preventive effect of high mobility group box 1 (HMGB1)-A box and the mechanism by which it alleviates inflammatory injury in acute liver failure (ALF) by inhibiting the extracellular release of HMGB1. BALB/c mice were intraperitoneally (i.p.) administered LPS/D-GalN to establish an ALF mouse model. HMGB1-A box was administered (i.p.) 1 h before establishing the ALF mouse model. The levels of extracellularly released HMGB1, TLR-4/NF-κB signaling molecules, the proinflammatory cytokines TNF-α, IL-1β, and IL-6 and COX-2 were measured in the liver tissue and/or serum by Immunohistochemistry, Western blotting and Enzyme-linked immunosorbent assay (ELISA). The levels of extracellularly released HMGB1, TLR-4/NF-κB signaling molecules and proinflammatory cytokines were measured in Huh7 cells as well as LPS- and/or HMGB1-A box treatment by confocal microscopy, Western blotting and ELISA. In the ALF mouse model, the levels of HMGB1 were significantly increased both in the liver and serum, TLR-4/NF-κB signaling molecules and proinflammatory cytokines also was upregulated. Notably, HMGB1-A box could reverse these changes. HMGB1-A box could also cause these changes in LPS-induced Huh7 cells. HMGB1-A box played a protective role by inhibiting inflammatory liver injury via the regulation of HMGB1/TLR-4/NF-κB signaling in the LPS/D-GaIN-induced ALF mouse model, which may be related to inhibiting the extracellular release of HMGB1.
Collapse
Affiliation(s)
- Lidan Luo
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- *Correspondence: Lidan Luo, ; Yufeng Xing, ; Guangdong Tong,
| | - Shuai Wang
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Bohao Chen
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, China
| | - Mei Zhong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, China
| | - Ruili Du
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, China
| | - ChunShan Wei
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Furong Huang
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Xinhui Kou
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Yufeng Xing
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- *Correspondence: Lidan Luo, ; Yufeng Xing, ; Guangdong Tong,
| | - Guangdong Tong
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
- *Correspondence: Lidan Luo, ; Yufeng Xing, ; Guangdong Tong,
| |
Collapse
|
6
|
Hsu WH, Chung CP, Wang YY, Kuo YH, Yeh CH, Lee IJ, Lin YL. Dendrobium nobile protects retinal cells from UV-induced oxidative stress damage via Nrf2/HO-1 and MAPK pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114886. [PMID: 34856359 DOI: 10.1016/j.jep.2021.114886] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/19/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Excessive UV irradiation and ROS exposure are the main contributors of ocular pathologies. Pseudobulb of Dendrobium nobile Lindl. is one of the sources of Shihu and has long been used in traditional Chinese medicine as a tonic to nourish stomach, replenish body fluid, antipyretic and anti-inflammation. AIM OF STUDY This study aimed to investigate whether D. nobile could protect ocular cells against oxidative stress damage. MATERIALS AND METHODS Retinal-related cell lines, ARPE-19 and RGC-5 cells, were pretreated with D. nobile extracts before H2O2- and UV-treatment. Cell viability and the oxidative stress were monitored by sulforhodamine B (SRB) and SOD1 and CAT assay kits, respectively. The oxidative stress related proteins were measured by Western blotting. RESULTS Under activity-guided fractionation, a sesquiterpene-enriched fraction (DN-2) and a major component (1) could ameliorate H2O2- and UV-induced cytotoxicity and SOD1 and CAT activity, but not dendrobine, the chemical marker of D. nobile. Western blotting showed both DN-2 and compound 1 protected ARPE-19 cells against UV-induced oxidative stress damage by regulating MAPK and Nrf2/HO-1 signaling. CONCLUSION Our results suggest D. nobile extract protects retinal pigment epithelia cells from UV- and oxidative stress-damage, which may have a beneficial effect on eye diseases.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Cheng-Pei Chung
- Department of Nutrition and Health Science, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | | | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
| | - Chih-Hsin Yeh
- Taoyuan District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Taoyuan 32754, Taiwan
| | - I-Jung Lee
- Herbal Medicine Department, Yokohama University of Pharmacy, Yokohama Kanagawa 245-0046, Japan
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; Department of Pharmacy, National Taiwan University, Taipei 10050, Taiwan.
| |
Collapse
|
7
|
Wang B, Zeng H, Zuo X, Yang X, Wang X, He D, Yuan J. TLR4-Dependent DUOX2 Activation Triggered Oxidative Stress and Promoted HMGB1 Release in Dry Eye. Front Med (Lausanne) 2022; 8:781616. [PMID: 35096875 PMCID: PMC8793023 DOI: 10.3389/fmed.2021.781616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Dry eye disease (DED) is one of the most common ocular surface diseases worldwide. DED has been characterized by excessive accumulation of reactive oxygen species (ROS), following significant corneal epithelial cell death and ocular surface inflammation. However, the key regulatory factor remains unclear. In this study, we tended to explore whether DUOX2 contributed to DED development and the underlying mechanism. Human corneal epithelial (HCE) cells were treated with hyperosmolarity, C57BL/6 mice were injected of subcutaneous scopolamine to imitate DED. Expression of mRNA was investigated by RNA sequencing (RNA-seq) and quantitative real-time PCR (qPCR). Protein changes and distribution of DUOX2, high mobility group box 1 (HMGB1), Toll-like receptor 4 (TLR4), and 4-hydroxynonenal (4-HNE) were evaluated by western blot assays and immunofluorescence. Cell death was assessed by Cell Counting Kit-8 (CCK8), lactate dehydrogenase (LDH) release, and propidium iodide (PI) staining. Cellular ROS levels and mitochondrial membrane potential (MMP) were analyzed by flow cytometry. RNA-seq and western blot assay indicated a significant increase of DUOX2 dependent of TLR4 activation in DED both in vitro and in vivo. Immunofluorescence revealed significant translocation of HMGB1 within corneal epithelial cells under hyperosmolar stress. Interestingly, after ablated DUOX2 expression by siRNA, we found a remarkable decrease of ROS level and recovered MMP in HCE cells. Moreover, knockdown of DUOX2 greatly inhibited HMGB1 release, protected cell viability and abolished inflammatory activation. Taken together, our data here suggest that upregulation of DUOX2 plays a crucial role in ROS production, thereafter, induce HMGB1 release and cell death, which triggers ocular surface inflammation in DED.
Collapse
Affiliation(s)
- Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Hao Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Xin Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Xue Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Li J, Tao T, Yu Y, Xu N, Du W, Zhao M, Jiang Z, Huang L. Expression profiling suggests the involvement of hormone-related, metabolic, and Wnt signaling pathways in pterygium progression. Front Endocrinol (Lausanne) 2022; 13:943275. [PMID: 36187094 PMCID: PMC9515788 DOI: 10.3389/fendo.2022.943275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pterygium is an ocular surface disease that can cause visual impairment if it progressively invades the cornea. Although many pieces of research showed ultraviolet radiation is a trigger of pterygium pathological progress, the underlying mechanism in pterygium remains indistinct. METHODS In this study, we used microarray to evaluate the changes of transcripts between primary pterygium and adjacent normal conjunctiva samples in China. Then, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Moreover, we constructed protein-protein interaction (PPI) and miRNA-mRNA regulatory networks to predict possible regulatory relationships. We next performed gene set enrichment analysis (GSEA) to explore the similarities and differences of transcripts between Asian studies from the Gene Expression Omnibus database. Furthermore, we took the intersection of differentially expressed genes (DEGs) with other data and identified hub genes of the development of pterygium. Finally, we utilized real-time quantitative PCR to verify the expression levels of candidate genes. RESULTS A total of 49 DEGs were identified. The enrichment analyses of DEGs showed that pathways such as the Wnt-signaling pathway and metabolism-related pathways were upregulated, while pathways such as hormone-related and transcription factor-associated pathways were downregulated. The PPI and miRNA-mRNA regulatory networks provide ideas for future research directions. The GSEA of selecting Asian data revealed that epithelial-mesenchymal transition and myogenesis existed in the pathology of pterygium in the Asian group. Furthermore, five gene sets (interferon-gamma response, Wnt beta-catenin signaling, oxidative phosphorylation, DNA repair, and MYC targets v2) were found only in our Chinese datasets. After taking an intersection between selecting datasets, we identified two upregulated (SPP1 and MYH11) and five downregulated (ATF3, FOS, EGR1, FOSB, and NR4A2) hub genes. We finally chose night genes to verify their expression levels, including the other two genes (SFRP2 and SFRP4) involved in Wnt signaling; Their expression levels were significantly different between pterygium and conjunctiva. CONCLUSIONS We consider hormone-related, metabolic, and Wnt signaling pathways may be important in the pathology of pterygium development. Nine candidate genes we identified deserve further study and can be potential therapeutic targets.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Tianchang Tao
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Yingying Yu
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Ningda Xu
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Wei Du
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Lvzhen Huang, ; Zhengxuan Jiang,
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
- *Correspondence: Lvzhen Huang, ; Zhengxuan Jiang,
| |
Collapse
|
9
|
Ghoniem ESA, Basha M, Elgayed EA. Role of high mobility group box 1 in vitiligo. MENOUFIA MEDICAL JOURNAL 2021; 34:494. [DOI: 10.4103/mmj.mmj_363_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
10
|
Novel Therapeutic Effects of Pterosin B on Ang II-Induced Cardiomyocyte Hypertrophy. Molecules 2020; 25:molecules25225279. [PMID: 33198253 PMCID: PMC7697794 DOI: 10.3390/molecules25225279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pathological cardiac hypertrophy is characterized by an abnormal increase in cardiac muscle mass in the left ventricle, resulting in cardiac dysfunction. Although various therapeutic approaches are being continuously developed for heart failure, several studies have suggested natural compounds as novel potential strategies. Considering relevant compounds, we investigated a new role for Pterosin B for which the potential life-affecting biological and therapeutic effects on cardiomyocyte hypertrophy are not fully known. Thus, we investigated whether Pterosin B can regulate cardiomyocyte hypertrophy induced by angiotensin II (Ang II) using H9c2 cells. The antihypertrophic effect of Pterosin B was evaluated, and the results showed that it reduced hypertrophy-related gene expression, cell size, and protein synthesis. In addition, upon Ang II stimulation, Pterosin B attenuated the activation and expression of major receptors, Ang II type 1 receptor and a receptor for advanced glycation end products, by inhibiting the phosphorylation of PKC-ERK-NF-κB pathway signaling molecules. In addition, Pterosin B showed the ability to reduce excessive intracellular reactive oxygen species, critical mediators for cardiac hypertrophy upon Ang II exposure, by regulating the expression levels of NAD(P)H oxidase 2/4. Our results demonstrate the protective role of Pterosin B in cardiomyocyte hypertrophy, suggesting it is a potential therapeutic candidate.
Collapse
|
11
|
Wu MQ, Li C, Zhang LN, Lin J, He K, Niu YW, Che CY, Jiang N, Jiang JQ, Zhao GQ. High-mobility group box1 as an amplifier of immune response and target for treatment in Aspergillus fumigatus keratitis. Int J Ophthalmol 2020; 13:708-717. [PMID: 32420216 DOI: 10.18240/ijo.2020.05.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
AIM To determine the roles of high-mobility group box1 (HMGB1) in pro-inflammation, host immune response and its potential target for treatment in Aspergillus fumigatus (A.fumigatus) keratitis. METHODS Expression of HMGB1 was tested in C57BL/6 normal and infected corneas. Dual immunostaining tested co-expression of HMGB1 with TLR4 or LOX-1. C57BL/6 mice were pretreated with Box A or PBS and then infected. Clinical scores, polymerase chain reaction, ELISA, and MPO assay were used to assess the disease response. Flow cytometry were used to test the effect of Box A on reactive oxygen species (ROS) expression after A.fumigatus stimulation in polymorphonuclear neutrophilic leukocytes (PMN). C57BL/6 peritoneal macrophages were pretreated with Box B before A.fumigatus stimulation, and MIP-2, IL-1β, TNF-α, HMGB1 and LOX-1 were measured. Macrophages were pretreated with Box B or Box B combined with Poly(I) (an inhibitor of LOX-1) before stimulating with A.fumigatus, and MIP-2, IL-1β, TNF-α, LOX-1, p38-MAPK, p-p38-MAPK were measured. RESULTS HMGB1 levels were elevated in C57BL/6 mice after infection. HMGB1 co-expressed with TLR4, and LOX-1 in infiltrated cells. Box A vs PBS treated C57BL/6 mice had lower clinical scores and down-regulated corneal HMGB1, MIP-2, IL-1β expression and neutrophil influx. Box B treatment amplified expression of MIP-2, IL-1β, TNF-α, HMGB1 and LOX-1 that induced by A.fumigatus in macrophage. Compared to the treatment of Box B only, the protein expression of IL-1β, TNF-α showed inhibition of Box B combined with Poly(I), which also reduced the A.fumigatus-evoked protein level of LOX-1 and phosphorylation level of p38-MAPK. The production of A.fumigatus-stimulated ROS was significantly declined after Box A pretreatment in PMN. CONCLUSION Blocking HMGB1 reduces the disease response in C57BL/6 mice. HMGB1 can amplify the host immune response through p38-MAPK, and is a target for treatment of A.fumigatus keratitis.
Collapse
Affiliation(s)
- Meng-Qi Wu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Li-Na Zhang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Kun He
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Ya-Wen Niu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cheng-Ye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Nan Jiang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jia-Qian Jiang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
12
|
Lema C, Reins RY, Redfern RL. High-Mobility Group Box 1 in Dry Eye Inflammation. Invest Ophthalmol Vis Sci 2019; 59:1741-1750. [PMID: 29610858 PMCID: PMC5886030 DOI: 10.1167/iovs.17-23363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose To determine high-mobility group box 1 (HMGB1) expression during experimental dry eye (EDE) and dry eye-like culture conditions and elucidate its role in corneal dry eye-related inflammation. Methods EDE was induced in 8- to 12-week-old C57BL/6 mice. Corneal tissue sections and lysates from EDE and untreated mice were evaluated for HMGB1 expression by immunostaining and quantitative real-time PCR (qPCR). For in vitro studies, human corneal epithelial cells (HCEC) were treated with hyperosmolar media, toll-like receptor (TLR) agonists, or proinflammatory cytokines to determine HMGB1 expression. HCEC were also treated with human recombinant HMGB1 (hrHMGB1) alone or in combination with inflammatory stimuli, and TNFα, IL-6, and IL-8 expression evaluated by qPCR and ELISA. Nuclear factor-κB (NF-κB) p65 nuclear translocation was determined by immunostaining. Results EDE mice had higher corneal HMGB1 RNA and protein expression compared to untreated animals. In HCEC, hyperosmolar stress and TNFα treatment stimulated HMGB1 production and secretion into culture supernatants. However, in vitro stimulation with hrHMGB1 did not induce secretion of TNFα, IL-6, or IL-8 or NF-κB p65 nuclear translocation. In addition, the inflammatory response elicited by TLR agonists fibroblast-stimulating lipopeptide-1 and lipopolysaccharide was not enhanced by hrHMGB1 treatment. Conclusions HMGB1 expression was enhanced by dry eye conditions in vivo as well as in vitro, during hyperosmolar stress and cytokine exposure, suggesting an important role for HMGB1 in dry eye disease. However, no direct inflammatory effect was observed with HMGB1 treatment. Therefore, under these conditions, HMGB1 does not contribute directly to dry eye-induced inflammation and its function at the ocular surface needs to be explored further.
Collapse
Affiliation(s)
- Carolina Lema
- The Ocular Surface Institute, University of Houston, College of Optometry, Houston, Texas, United States
| | - Rose Y Reins
- The Ocular Surface Institute, University of Houston, College of Optometry, Houston, Texas, United States
| | - Rachel L Redfern
- The Ocular Surface Institute, University of Houston, College of Optometry, Houston, Texas, United States
| |
Collapse
|
13
|
Yuan CY, Wang QC, Chen XL, Wang Q, Sun CS, Sun YX, Wang CH, Su MX, Wang HY, Wu XS. Hypertonic saline resuscitation protects against kidney injury induced by severe burns in rats. Burns 2018; 45:641-648. [PMID: 30327229 DOI: 10.1016/j.burns.2018.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/22/2018] [Accepted: 09/13/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Proper fluid resuscitation can relieve visceral damage and improve survival in severely burned patients. This study compared the effectiveness of resuscitation with 400mEq/L hypertonic saline (HS) and sodium lactate Ringer's solution (LR) in rats with kidney injury caused by burn trauma. METHODS Rats (Sprague-Dawley) underwent burn injury and were randomized into sham, LR, and HS groups. Samples from the kidney were assayed for water content ratio, histopathology, and oxidative stress (superoxide dismutase (SOD) and malondialdehyde (MDA)). Serum sodium, renal function (creatinine and cystatin (Cys)-C), and inflammatory response (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and high mobility group protein box (HMGB)-1) were also examined as serum markers. RESULTS Hypertonic saline resuscitation reduced the renal water content ratio and improved renal histopathology caused by severe burns. This effect was accompanied by reductions in serum creatinine and Cys-C as well as TNF-α, IL-1β, and HMGB1. Serum sodium concentration and SOD activity were increased, whereas MDA content was decreased in the kidney tissue of the HS group. CONCLUSIONS The data indicate that 400mEq/L HS solution reduces hyponatremia and renal edema, inhibits the release of inflammatory mediators, and alleviates oxidative stress injury, thus protecting against kidney injury induced by severe burns.
Collapse
Affiliation(s)
- Chun-Yu Yuan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Qin-Cheng Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Qiang Wang
- Institute of Disease Control and Prevention of the Chinese People's Liberation Army, Beijing 100071, PR China
| | - Cong-Song Sun
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Ye-Xiang Sun
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| | - Chun-Hua Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Ming-Xing Su
- Institute of Disease Control and Prevention of the Chinese People's Liberation Army, Beijing 100071, PR China
| | - Hai-Ying Wang
- Institute of Disease Control and Prevention of the Chinese People's Liberation Army, Beijing 100071, PR China
| | - Xue-Sheng Wu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| |
Collapse
|
14
|
Cho HJ, Kim CH. Oxygen matters: hypoxia as a pathogenic mechanism in rhinosinusitis. BMB Rep 2018; 51:59-64. [PMID: 29366441 PMCID: PMC5836558 DOI: 10.5483/bmbrep.2018.51.2.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Indexed: 12/21/2022] Open
Abstract
The airway epithelium is the first place, where a defense mechanism is initiated against environmental stimuli. Mucociliary transport (MCT), which is the defense mechanism of the airway and the role of airway epithelium as mechanical barriers are essential in innate immunity. To maintain normal physiologic function, normal oxygenation is critical for the production of energy for optimal cellular functions. Several pathologic conditions are associated with a decrease in oxygen tension in airway epithelium and chronic sinusitis is one of the airway diseases, which is associated with the hypoxic condition, a potent inflammatory stimulant. We have observed the overexpression of the hypoxia-inducible factor 1 (HIF-1), an essential factor for oxygen homeostasis, in the epithelium of sinus mucosa in sinusitis patients. In a series of previous reports, we have found hypoxia-induced mucus hyperproduction, especially by MUC5AC hyperproduction, disruption of epithelial barrier function by the production of VEGF, and down-regulation of junctional proteins such as ZO-1 and E-cadherin. Furthermore, hypoxia-induced inflammation by HMGB1 translocation into the cytoplasm results in the release of IL-8 through a ROS-dependent mechanism in upper airway epithelium. In this mini-review, we briefly introduce and summarize current progress in the pathogenesis of sinusitis related to hypoxia. The investigation of hypoxia-related pathophysiology in airway epithelium will suggest new insights on airway inflammatory diseases, such as rhinosinusitis for clinical application and drug development.
Collapse
Affiliation(s)
- Hyung-Ju Cho
- Department of Otorhinolaryngology, and The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, and The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
15
|
Shao S, Gao Y, Liu J, Tian M, Gou Q, Su X. Ferulic Acid Mitigates Radiation Injury in Human Umbilical Vein Endothelial Cells In Vitro via the Thrombomodulin Pathway. Radiat Res 2018; 190:298-308. [DOI: 10.1667/rr14696.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shuai Shao
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Yue Gao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jianxiang Liu
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Mei Tian
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Qiao Gou
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Xu Su
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| |
Collapse
|
16
|
Caputo R, Pasti M, de Libero C, Mori F, Barni S, Danti G, Buonvicino D, Urru M, Chiarugi A, Pucci N. Increased Lacrimal Fluid Level of HMGB1 in Vernal Keratoconjunctivitis. Ocul Immunol Inflamm 2018; 27:808-812. [PMID: 29847189 DOI: 10.1080/09273948.2018.1467465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Purpose: The aim of the present prospective study was to evaluate the lacrimal fluid concentration of HMGB1 in young patients affected by Vernal Keratoconjunctivitis (VKC) compared to a control group of healthy subjects of same age. Methods: Tear fluids was collected in a group of VKC patients and compared to a control group of healthy subjects. HMGB1 concentration was measured using the HMGB1 ELISA II test both in VCK and control subjects. Results: The mean concentration of HMGB1 in tear fluids of 45 VKC patients was 0,977 ± 0,72 ng/ml whereas in the control group was 0,24 ± 0,25 ng/ml and the difference was statistically significant (p = 0,000106) Conclusion: The concentration of HMGB1 in VCK patients was found to be significantly increased, suggesting a possible role of this protein in the inflammatory mechanism of VKC.
Collapse
Affiliation(s)
- Roberto Caputo
- a Department of Pediatric Ophthalmology, AOU Meyer , Florence , Italy
| | - Mattia Pasti
- a Department of Pediatric Ophthalmology, AOU Meyer , Florence , Italy
| | | | - Francesca Mori
- b Department of Allergology, AOU Meyer , Florence , Italy
| | - Simona Barni
- b Department of Allergology, AOU Meyer , Florence , Italy
| | - Gioia Danti
- a Department of Pediatric Ophthalmology, AOU Meyer , Florence , Italy
| | - Daniela Buonvicino
- c Department of Health Sciences, Clinical Pharmacology Section, Università degli Studi di Firenze , Florence , Italy
| | - Matteo Urru
- c Department of Health Sciences, Clinical Pharmacology Section, Università degli Studi di Firenze , Florence , Italy
| | - Alberto Chiarugi
- c Department of Health Sciences, Clinical Pharmacology Section, Università degli Studi di Firenze , Florence , Italy
| | - Neri Pucci
- b Department of Allergology, AOU Meyer , Florence , Italy
| |
Collapse
|
17
|
Abstract
Ageing is the gradual decline in biological function both at the cellular and organismal level. One of the key characteristics of cellular ageing is the accumulation of damaged proteins and organelles which, in turn, can cause cellular toxicity and death. Autophagy is an evolutionarily conserved process that is responsible for the sequestration of damaged or surplus cytoplasmic components which are then delivered to the lysosome for degradation. This house-keeping mechanism is essential to maintain cellular homeostasis and survival, particularly during stress. A decline or loss of sensitivity/responsiveness of autophagy is intimately linked with an accelerated rate of ageing as well as many age-related diseases including neurodegeneration, cancer and metabolic disease where damage accumulation exceeds damage removal. This chapter summarises current knowledge regarding the relationship between autophagy and ageing and outlines some strategies that can be implemented to promote the anti-ageing effects of autophagy to improve human health and lifespan.
Collapse
Affiliation(s)
- Charlotte J Pattison
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
18
|
Rider P, Voronov E, Dinarello CA, Apte RN, Cohen I. Alarmins: Feel the Stress. THE JOURNAL OF IMMUNOLOGY 2017; 198:1395-1402. [PMID: 28167650 DOI: 10.4049/jimmunol.1601342] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
Over the last decade, danger-associated molecular pattern molecules, or alarmins, have been recognized as signaling mediators of sterile inflammatory responses after trauma and injury. In contrast with the accepted passive release models suggested by the "danger hypothesis," it was recently shown that alarmins can also directly sense and report damage by signaling to the environment when released from live cells undergoing physiological stress, even without loss of subcellular compartmentalization. In this article, we review the involvement of alarmins such as IL-1α, IL-33, IL-16, and high-mobility group box 1 in cellular and physiological stress, and suggest a novel activity of these molecules as central initiators of sterile inflammation in response to nonlethal stress, a function we denote "stressorins." We highlight the role of posttranslational modifications of stressorins as key regulators of their activity and propose that targeted inhibition of stressorins or their modifiers could serve as attractive new anti-inflammatory treatments for a broad range of diseases.
Collapse
Affiliation(s)
- Peleg Rider
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | | | - Ron N Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Idan Cohen
- Faculty of Medicine, Galilee Medical Center, Nahariya Hospital, 22100 Nahariya, Israel
| |
Collapse
|
19
|
Park EJ, Kim YM, Chang KC. Hemin Reduces HMGB1 Release by UVB in an AMPK/HO-1-dependent Pathway in Human Keratinocytes HaCaT Cells. Arch Med Res 2017; 48:423-431. [DOI: 10.1016/j.arcmed.2017.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022]
|
20
|
Chen YY, Tsai CF, Tsai MC, Hsu YW, Lu FJ. Inhibitory effects of rosmarinic acid on pterygium epithelial cells through redox imbalance and induction of extrinsic and intrinsic apoptosis. Exp Eye Res 2017; 160:96-105. [PMID: 28559202 DOI: 10.1016/j.exer.2017.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/16/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023]
Abstract
Pterygium is a common tumor-like ocular disease, which may be related to exposure to chronic ultraviolet (UV) radiation. Although the standard treatment for pterygium is surgical intervention, the recurrence rate of pterygium is high when no effective inhibitory drug is used after surgery. Rosmarinic acid (RA) is a polyphenol antioxidant with many biological activities, including anti-UV and anti-tumor properties. This study aimed to examine the inhibitory effects of RA on pterygium epithelial cells (PECs). Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was used to examine the cell cytotoxicity of PECs after RA treatment. A fluorescent probe, DCFH-DA (2',7'-dichlorofluorescin diacetate), was stained with PECs to measure intracellular reactive oxygen species (ROS) levels. Antioxidant activity assays were used to measure the levels of superoxide dismutase (SOD) and catalase (CAT) in PECs. Western blot analysis was used to determine the protein expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), quinone acceptor oxidoreductase 1 (NQO1), and apoptosis-associated proteins. RA significantly reduced the cell viability of the PECs. Treatment with RA remarkably increased the Nrf2 protein expression levels in the nucleus, HO-1 and NQO1 protein expression levels, and the activities of SOD and CAT. As a result, intracellular ROS levels in PECs were decreased. Additionally, the induction of extrinsic apoptosis on PECs by RA was associated with increasing expressions levels of Fas, Fas-associated protein with death domain (FADD), tumor necrosis factor-alpha (TNF-α), and caspase 8 protein. Moreover, the induction of intrinsic apoptotic cell death in PECs was confirmed through upregulation of cytochrome c, Bax, caspase 9, and caspase 3 and downregulation of Bcl-2 and pro-caspase 3. Our study demonstrated that RA could inhibit the viability of PECs through regulation of extrinsic and intrinsic apoptosis pathways. Therefore, RA may have potential as a therapeutic medication for pterygium.
Collapse
Affiliation(s)
- Ya-Yu Chen
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Chia-Fang Tsai
- Department of Biotechnology, TransWorld University, Douliu City, Taiwan
| | - Ming-Chu Tsai
- Department of Biotechnology, TransWorld University, Douliu City, Taiwan
| | - Yu-Wen Hsu
- Department of Optometry, Da-Yeh University, Changhua, Taiwan.
| | - Fung-Jou Lu
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung City, Taiwan; Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung City, Taiwan.
| |
Collapse
|
21
|
Min HJ, Kim JH, Yoo JE, Oh JH, Kim KS, Yoon JH, Kim CH. ROS-dependent HMGB1 secretion upregulates IL-8 in upper airway epithelial cells under hypoxic condition. Mucosal Immunol 2017; 10:685-694. [PMID: 27624778 DOI: 10.1038/mi.2016.82] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023]
Abstract
High-mobility group box 1 (HMGB1) mediates various functions according to the location. We tried to investigate the role of HMGB1 in upper airway under hypoxic conditions. We cultured primary normal human nasal epithelium (NHNE) cells under hypoxic conditions and evaluated the movement of HMGB1 by western blotting, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) level was evaluated to estimate the translocation mechanism of HMGB1. The role of secreted HMGB1 was evaluated by ELISA assay. Furthermore, we collected human nasal mucosa samples and nasal lavage fluids from patients conditioned under hypoxic and non-hypoxic environment, and compared the expression of HMGB1 in human nasal mucosa samples by immunohistochemistry and the levels of HMGB1 in lavage fluids using ELISA assay. Hypoxia induced translocation of HMGB1 into the extracellular area and it was dependent on ROS produced by dual oxidase 2. Secreted HMGB1 was involved in the upregulation of interleukin (IL)-8. In human samples, HMGB1 was translocated from nucleus to the cytoplasm in hypoxic-conditioned nasal mucosa. HMGB1 was increased in nasal lavage samples of chronic rhinosinusitis patients, whose sinus mucosa was supposed to be hypoxic as compared with controls. We suggest that HMGB1 is secreted in hypoxic condition via ROS-dependent mechanism and secreted HMGB1 participates in IL-8 upregulation mediating inflammatory response.
Collapse
Affiliation(s)
- H J Min
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - J-H Kim
- The Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - J E Yoo
- The Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - J-H Oh
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - K S Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - J-H Yoon
- The Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - C-H Kim
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
22
|
Kim JY, Lee EJ, Seo J, Oh SH. Impact of high-mobility group box 1 on melanocytic survival and its involvement in the pathogenesis of vitiligo. Br J Dermatol 2017; 176:1558-1568. [PMID: 27787879 DOI: 10.1111/bjd.15151] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Vitiligo is attributable to loss of functional melanocytes and is the most common acquired depigmenting disorder. Oxidative stress and intense ultraviolet irradiation are known to aggravate this condition. The nonhistone high-mobility group box 1 (HMGB1) DNA-binding protein is a physiological activator of immune responses, cellular proliferation and cell death. Although it is implicated in the pathogenesis of autoimmune diseases and cutaneous disorders, the precise role of HMGB1 in melanocytes has yet to be studied. OBJECTIVES To elucidate the effect of HMGB1 on melanocytic survival and its involvement in the pathogenesis of vitiligo. METHODS Melanocytes were treated with recombinant HMGB1 (rHMGB1). Thereafter, apoptosis-, autophagy- and melanogenesis-related molecules were detected. Ex vivo skin organ culture was performed after rHMGB1 treatment. Also, levels of HMGB1 were examined in blood and skin specimens from patients with vitiligo. RESULTS In this study, rHMGB1 increased expression of cleaved caspase 3 and decreased melanin production and expression of melanogenesis-related molecules. rHMGB1-induced caspase 3 activation was confirmed through preincubation with a pan-caspase inhibitor. In ex vivo experiments for the confirmation of HMGB1-induced melanocyte apoptosis, melanocyte disappearance and increased caspase 3 activation were observed in rHMGB1-treated skin tissues. In Western blot analysis and enzyme-linked immunosorbent assay, patients with active vitiligo showed significantly higher blood levels of HMGB1 (vs. healthy controls). Also, greater expression of HMGB1 was observed in vitiliginous skin (vs. uninvolved skin). CONCLUSIONS External stimuli (e.g. oxidative stress and ultraviolet irradiation) may trigger HMGB1 release by keratinocytes, thereby perpetuating vitiligo through HMGB1-induced melanocytic apoptosis.
Collapse
Affiliation(s)
- J Y Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - E J Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - J Seo
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - S H Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|