1
|
Egelberg M, De Marchi T, Pekar G, Tran L, Bendahl P, Tullberg AS, Holmberg E, Karlsson P, Farnebo M, Killander F, Nimeús E. Low levels of WRAP53 predict decreased efficacy of radiotherapy and are prognostic for local recurrence and death from breast cancer: a long-term follow-up of the SweBCG91RT randomized trial. Mol Oncol 2023; 17:2029-2040. [PMID: 36975842 PMCID: PMC10552889 DOI: 10.1002/1878-0261.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Downregulation of the DNA repair protein WD40-encoding RNA antisense to p53 (WRAP53) has been associated with radiotherapy resistance and reduced cancer survival. The aim of this study was to evaluate WRAP53 protein and RNA levels as prognostic and predictive markers in the SweBCG91RT trial, in which breast cancer patients were randomized for postoperative radiotherapy. Using tissue microarray and microarray-based gene expression, 965 and 759 tumors were assessed for WRAP53 protein and RNA levels, respectively. Correlation with local recurrence and breast cancer-related death was assessed for prognosis, and the interaction between WRAP53 and radiotherapy in relation to local recurrence was assessed for radioresistance prediction. Tumors with low WRAP53 protein levels had a higher subhazard ratio (SHR) for local recurrence [1.76 (95% CI 1.10-2.79)] and breast cancer-related death [1.55 (1.02-2.38)]. Low WRAP53 RNA levels were associated with almost a three-fold decreased effect of radiotherapy in relation to ipsilateral breast tumor recurrence [IBTR; SHR 0.87 (95% CI 0.44-1.72)] compared with high RNA levels [0.33 (0.19-0.55)], with a significant interaction (P = 0.024). In conclusion, low WRAP53 protein is prognostic for local recurrence and breast cancer-related death. Low WRAP53 RNA is a potential marker for radioresistance.
Collapse
Affiliation(s)
- Moa Egelberg
- Division of Surgery, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
- Department of RadiologyKristianstad HospitalSweden
| | - Tommaso De Marchi
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
| | - Gyula Pekar
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
| | - Lena Tran
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
| | - Pär‐Ola Bendahl
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
| | - Axel Stenmark Tullberg
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University HospitalUniversity of GothenburgSweden
| | - Erik Holmberg
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University HospitalUniversity of GothenburgSweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University HospitalUniversity of GothenburgSweden
| | - Marianne Farnebo
- Department of Bioscience and Nutrition & Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Fredrika Killander
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of MedicineSkåne University HospitalLundSweden
| | - Emma Nimeús
- Division of Surgery, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversitySweden
- Division of Surgery, Department of Clinical Sciences Lund, Faculty of MedicineSkåne University HospitalLundSweden
| |
Collapse
|
2
|
Novau-Ferré N, Rojas M, Gutierrez-Tordera L, Arcelin P, Folch J, Papandreou C, Bulló M. Lipoprotein Particle Profiles Associated with Telomere Length and Telomerase Complex Components. Nutrients 2023; 15:nu15112624. [PMID: 37299586 DOI: 10.3390/nu15112624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Telomere length (TL) is a well-known marker of age-related diseases. Oxidative stress and inflammation increase the rate of telomere shortening, triggering cellular senescence. Although lipoproteins could have anti-inflammatory and proinflammatory functional properties, the relationship between lipoprotein particles with TL and telomerase activity-related genes has not been investigated much. In this study, we assessed the associations of lipoprotein subfractions with telomere length, TERT, and WRAP53 expression in a total of 54 pre-diabetic subjects from the EPIRDEM study. We regressed TL, TERT, and WRAP53 on 12 lipoprotein subclasses, employing a Gaussian linear regression method with Lasso penalty to determine a lipoprotein profile associated with telomere-related parameters. The covariates included age, sex, body mass index (BMI), dyslipidemia, statin consumption, and physical activity leisure time. We identified a lipoprotein profile composed of four lipoprotein subfractions associated with TL (Pearson r = 0.347, p-value = 0.010), two lipoprotein subfractions associated with TERT expression (Pearson r = 0.316, p-value = 0.020), and five lipoprotein subfractions associated with WRAP53 expression (Pearson r = 0.379, p-value =0.005). After adjusting for known confounding factors, most lipoprotein profiles maintained the association with TL, TERT, and WRAP53. Overall, medium and small-sized HDL particles were associated with shorter telomeres and lower expression of TERT and WRAP53. Large HDL particles were associated with longer telomere and lower expression of WRAP53, but not with TERT. Our results suggest that the lipoprotein profiles are associated with telomere length, TERT, and WRAP53 expression and should be considered when assessing the risk of chronic diseases.
Collapse
Affiliation(s)
- Nil Novau-Ferré
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
| | - Melina Rojas
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
| | - Laia Gutierrez-Tordera
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
| | - Pierre Arcelin
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Atención Básica de Salud (ABS) Reus V. Centro de Atención Primaria Marià Fortuny, SAGESSA, 43204 Reus, Spain
| | - Jaume Folch
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28031 Madrid, Spain
| | - Christopher Papandreou
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
- Department of Nutrition and Dietetics Sciences, School of Health Sciences, Hellenic Mediterranean University (HMU), 72300 Siteia, Greece
| | - Mònica Bulló
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
- Atención Básica de Salud (ABS) Reus V. Centro de Atención Primaria Marià Fortuny, SAGESSA, 43204 Reus, Spain
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
3
|
Zhu Y, Sun W, Jiang X, Bai R, Luo Y, Gao Y, Li S, Huang Z, Gong Y, Xie C. Differential effects of WRAP53 transcript variants on non-small cell lung cancer cell behaviors. PLoS One 2023; 18:e0281132. [PMID: 36706151 PMCID: PMC9882892 DOI: 10.1371/journal.pone.0281132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The WD40-encoding RNA antisense to p53 (WRAP53) is an antisense gene of TP53 with three transcriptional start sites producing three transcript variants involved in the progression of non-small cell lung cancer. However, the mechanism by which these different transcript variants regulate non-small cell lung cancer cell behaviors is to be elucidated. METHODS Two non-small cell lung cancer cell lines, A549 cells with wild-type p53 and H1975 with mutated p53, were transfected with WRAP53-1α and WRAP53-1β siRNA. The biological effects were assessed via colony formation, cell viability, apoptosis, cell cycle, wound healing and cell invasion assays, as well as immunoblotting. RESULTS Knockdown of WRAP53-1α increased the mRNA and protein levels of p53; suppressed colony formation and proliferation of A549 cells but promoted them in H1975 cells; increased the proportion of cells in the G0/G1 phase in A549 cells but decreased that in H1975 cells; and suppressed migration and invasion in A549 cells but not in H1975 cells. Conversely, knockdown of WRAP53-1β had no effect on p53 expression; promoted the growth of A549 cells but not of H1975 cells; decreased the proportion of cells in the G0/G1 phase in A549 cells but not in H1975 cells; and promoted migration and invasion in A549 cells but not in H1975 cells. Knockdown of both WRAP53-1α and WRAP53-1β promoted apoptosis in A549 cells but not in H1975 cells. CONCLUSIONS WRAP53 transcript variants exerted different functions in non-small cell lung cancer cells and regulated non-small cell lung cancer cell behaviors depending on the p53 expression.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui Bai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhengrong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail: (CX); (YG)
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumour Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail: (CX); (YG)
| |
Collapse
|
4
|
Gadelha RB, Machado CB, Pessoa FMCDP, Pantoja LDC, Barreto IV, Ribeiro RM, de Moraes Filho MO, de Moraes MEA, Khayat AS, Moreira-Nunes CA. The Role of WRAP53 in Cell Homeostasis and Carcinogenesis Onset. Curr Issues Mol Biol 2022; 44:5498-5515. [PMID: 36354684 PMCID: PMC9688736 DOI: 10.3390/cimb44110372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2023] Open
Abstract
The WD repeat containing antisense to TP53 (WRAP53) gene codifies an antisense transcript for tumor protein p53 (TP53), stabilization (WRAP53α), and a functional protein (WRAP53β, WDR79, or TCAB1). The WRAP53β protein functions as a scaffolding protein that is important for telomerase localization, telomere assembly, Cajal body integrity, and DNA double-strand break repair. WRAP53β is one of many proteins known for containing WD40 domains, which are responsible for mediating a variety of cell interactions. Currently, WRAP53 overexpression is considered a biomarker for a diverse subset of cancer types, and in this study, we describe what is known about WRAP53β's multiple interactions in cell protein trafficking, Cajal body formation, and DNA double-strand break repair and its current perspectives as a biomarker for cancer.
Collapse
Affiliation(s)
- Renan Brito Gadelha
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Caio Bezerra Machado
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Flávia Melo Cunha de Pinho Pessoa
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Laudreísa da Costa Pantoja
- Department of Pediatrics, Octávio Lobo Children’s Hospital, Belém 60430-275, PA, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
| | - Igor Valentim Barreto
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | | | - Manoel Odorico de Moraes Filho
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Maria Elisabete Amaral de Moraes
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
| | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
- Northeast Biotechnology Network (RENORBIO), Itaperi Campus, Ceará State University, Fortaleza 60740-903, CE, Brazil
| |
Collapse
|
5
|
Bergstrand S, O'Brien EM, Coucoravas C, Hrossova D, Peirasmaki D, Schmidli S, Dhanjal S, Pederiva C, Siggens L, Mortusewicz O, O'Rourke JJ, Farnebo M. Small Cajal body-associated RNA 2 (scaRNA2) regulates DNA repair pathway choice by inhibiting DNA-PK. Nat Commun 2022; 13:1015. [PMID: 35197472 PMCID: PMC8866460 DOI: 10.1038/s41467-022-28646-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/25/2022] [Indexed: 12/20/2022] Open
Abstract
Evidence that long non-coding RNAs (lncRNAs) participate in DNA repair is accumulating, however, whether they can control DNA repair pathway choice is unknown. Here we show that the small Cajal body-specific RNA 2 (scaRNA2) can promote HR by inhibiting DNA-dependent protein kinase (DNA-PK) and, thereby, NHEJ. By binding to the catalytic subunit of DNA-PK (DNA-PKcs), scaRNA2 weakens its interaction with the Ku70/80 subunits, as well as with the LINP1 lncRNA, thereby preventing catalytic activation of the enzyme. Inhibition of DNA-PK by scaRNA2 stimulates DNA end resection by the MRN/CtIP complex, activation of ATM at DNA lesions and subsequent repair by HR. ScaRNA2 is regulated in turn by WRAP53β, which binds this RNA, sequestering it away from DNA-PKcs and allowing NHEJ to proceed. These findings reveal that RNA-dependent control of DNA-PK catalytic activity is involved in regulating whether the cell utilizes NHEJ or HR. Proper repair of DNA double-strand breaks is essential for genomic stability. Here, the authors report that a long non-coding RNA, scaRNA2, inhibits DNA-PK and thereby regulates the choice between error-prone NHEJ and error-free HR DNA repair.
Collapse
Affiliation(s)
- Sofie Bergstrand
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Stockholm, Sweden
| | - Eleanor M O'Brien
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Christos Coucoravas
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Dominika Hrossova
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Sandro Schmidli
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Soniya Dhanjal
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Chiara Pederiva
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Lee Siggens
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Mortusewicz
- Department of Oncology and Pathology, SciLife, Karolinska Institutet, Stockholm, Sweden
| | - Julienne J O'Rourke
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Farnebo
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Stockholm, Sweden. .,Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Roy Choudhury S, Ashby C, Zhan F, van Rhee F. Epigenetic Deregulation of Telomere-Related Genes in Newly Diagnosed Multiple Myeloma Patients. Cancers (Basel) 2021; 13:cancers13246348. [PMID: 34944968 PMCID: PMC8699806 DOI: 10.3390/cancers13246348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/27/2022] Open
Abstract
High-risk Multiple Myeloma (MM) patients were found to maintain telomere length (TL), below the margin of short critical length, consistent with proactive overexpression of telomerase. Previously, DNA methylation has been shown as a determinant of telomere-related gene (TRG) expression and TL to assess risk in different types of cancer. We mapped genome-wide DNA methylation in a cohort of newly diagnosed MM (NDMM; n = 53) patients of major molecular subgroups, compared to age-matched healthy donors (n = 4). Differential methylation and expression at TRG-loci were analyzed in combination with overlapping chromatin marks and underlying DNA-sequences. We observed a strong correlation (R2 ≥ 0.5) between DNA methylation and expression amongst selective TRGs, such that demethylation at the promoters of DDX1 and TERF1 were associated to their oncogenic upregulation, while demethylation at the bodies of two key tumor suppressors ZNF208 and RAP1A led to downregulation of the genes. We demonstrated that TRG expression may be controlled by DNA methylation alone or in cooperation with chromatin modifications or CCCTC-binding factor at the regulatory regions. Additionally, we showed that hypomethylated DMRs of TRGs in NDMM are stabilized with G-quadruplex forming sequences, suggesting a crucial role of these epigenetically vulnerable loci in MM pathogenesis. We have identified a panel of five TRGs, which are epigenetically deregulated in NDMM patients and may serve as early detection biomarkers or therapeutic targets in the disease.
Collapse
Affiliation(s)
- Samrat Roy Choudhury
- Pediatric Hematology-Oncology, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Correspondence: ; Tel.: +1-(501)-364-7531 or +1-(501)-364-2873
| | - Cody Ashby
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Fenghuang Zhan
- Myeloma Center, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (F.Z.); (F.v.R.)
| | - Frits van Rhee
- Myeloma Center, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (F.Z.); (F.v.R.)
| |
Collapse
|
7
|
Ranhem C, Larsson GL, Lindqvist D, Sorbe B, Karlsson MG, Farnebo M, Hellman K, Kovaleska L, Kashuba E, Andersson S. Evaluation of dyskerin expression and the Cajal body protein WRAP53β as potential prognostic markers for patients with primary vaginal carcinoma. Oncol Lett 2021; 23:30. [PMID: 34868367 PMCID: PMC8630817 DOI: 10.3892/ol.2021.13148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/30/2021] [Indexed: 11/06/2022] Open
Abstract
Primary vaginal cancer (PVC) is a rare gynaecological malignancy, which, at present, lacks appropriate biomarkers for prognosis. The proteins dyskerin and WD repeat containing antisense to TP53 (WRAP53β), both of which exert their functions in the telomerase holoenzyme complex, have been shown to be upregulated in different cancer types. These proteins have also been proposed as prognostic markers in some types of cancer. The aim of the present study was to examine the expression patterns of dyskerin and WRAP53β in patients with PVC. Moreover, as part of a search for effective biomarkers to evaluate prognosis in PVC, the expression of these two proteins and their potential association with clinical variables and survival were also evaluated. The expression of dyskerin and WRAP53β was assessed in PVC tumour samples from 68 patients using immunohistochemistry. The majority of tumour samples showed low and moderate expression levels of dyskerin. Upregulation of dyskerin in tumour samples was significantly associated with a shorter survival time and a poorer cancer-specific survival rate. WRAP53β was also expressed in most of the cells but was not significantly associated with clinical variables or survival. This study demonstrates that upregulation of dyskerin is significantly associated with poor prognosis. Thus, dyskerin may serve as a promising prognostic marker and a potential putative therapeutic target in PVC.
Collapse
Affiliation(s)
- Cecilia Ranhem
- Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.,Centre for Clinical Research Region Västmanland, Uppsala University, Västmanlands Hospital Västerås, 721 89 Västerås, Sweden
| | - Gabriella Lillsunde Larsson
- School of Health and Medical Sciences, Örebro University, Campus USÖ, 701 82 Örebro, Sweden.,Department of Laboratory Medicine, Örebro University Hospital, 701 85 Örebro, Sweden
| | - David Lindqvist
- Department of Radiation Sciences, Umeå Universitet, 901 87 Umeå, Sweden
| | - Bengt Sorbe
- Department of Oncology, Örebro University Hospital, 701 85 Örebro, Sweden
| | - Mats G Karlsson
- School of Medical Sciences, Örebro University, 701 85 Örebro, Sweden
| | - Marianne Farnebo
- Department of Bioscience and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kristina Hellman
- Department of Oncology-Pathology, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Larysa Kovaleska
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, 03022 Kiev, Ukraine
| | - Elena Kashuba
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, 03022 Kiev, Ukraine.,Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sonia Andersson
- Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
8
|
Liu S, Wu M, Wang F. Research Progress in Prognostic Factors and Biomarkers of Ovarian Cancer. J Cancer 2021; 12:3976-3996. [PMID: 34093804 PMCID: PMC8176232 DOI: 10.7150/jca.47695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is a serious threat to women's health; its early diagnosis rate is low and prone to metastasis and recurrence. The current conventional treatment for ovarian cancer is a combination of platinum and paclitaxel chemotherapy based on surgery. The recurrence and progression of ovarian cancer with poor prognosis is a major challenge in treatment. With rapid advances in technology, understanding of the molecular pathways involved in ovarian cancer recurrence and progression has increased, biomarker-guided treatment options can greatly improve the prognosis of patients. This review systematically discusses and summarizes existing and new information on prognostic factors and biomarkers of ovarian cancer, which is expected to improve the clinical management of patients and lead to effective personalized treatment.
Collapse
Affiliation(s)
- Shuna Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029
- National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| | - Ming Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029
- National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| | - Fang Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029
- National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| |
Collapse
|
9
|
Akincilar SC, Chan CHT, Ng QF, Fidan K, Tergaonkar V. Non-canonical roles of canonical telomere binding proteins in cancers. Cell Mol Life Sci 2021; 78:4235-4257. [PMID: 33599797 PMCID: PMC8164586 DOI: 10.1007/s00018-021-03783-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Reactivation of telomerase is a major hallmark observed in 90% of all cancers. Yet paradoxically, enhanced telomerase activity does not correlate with telomere length and cancers often possess short telomeres; suggestive of supplementary non-canonical roles that telomerase might play in the development of cancer. Moreover, studies have shown that aberrant expression of shelterin proteins coupled with their release from shortening telomeres can further promote cancer by mechanisms independent of their telomeric role. While targeting telomerase activity appears to be an attractive therapeutic option, this approach has failed in clinical trials due to undesirable cytotoxic effects on stem cells. To circumvent this concern, an alternative strategy could be to target the molecules involved in the non-canonical functions of telomeric proteins. In this review, we will focus on emerging evidence that has demonstrated the non-canonical roles of telomeric proteins and their impact on tumorigenesis. Furthermore, we aim to address current knowledge gaps in telomeric protein functions and propose future research approaches that can be undertaken to achieve this.
Collapse
Affiliation(s)
- Semih Can Akincilar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Claire Hian Tzer Chan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Qin Feng Ng
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Kerem Fidan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
10
|
Niu J, Gao RQ, Cui MT, Zhang CG, Li ST, Cheng S, Ding W. Suppression of TCAB1 expression induced cellular senescence by lessening proteasomal degradation of p21 in cancer cells. Cancer Cell Int 2021; 21:26. [PMID: 33413389 PMCID: PMC7788802 DOI: 10.1186/s12935-020-01745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/31/2020] [Indexed: 11/25/2022] Open
Abstract
Background TCAB1, a.k.a. WRAP53β or WDR79, is an important molecule for the maintenance of Cajal bodies and critically involved in telomere elongation and DNA repair. Upregulation of TCAB1 were discovered in a variety types of cancers. However, the function of TCAB1 in tumor cell senescence remains absent. Methods The TCAB1 knockdown cell lines were constructed. The expression levels of TCAB1, p21, p16 and p53 were detected by qRT-PCR and western blotting. Staining of senescence-associated β-galactosidase was used to detect senescent cells. The ubiquitination of the p21 was analysed by immunoprecipitation and in vivo ubiquitination assay. TCGA databases were employed to perform in silico analyses for the mRNA expression of TCAB1, p21, p16 and p53. Results Here, we discovered that knockdown of TCAB1 induced rapid progression of cellular senescence in A549, H1299 and HeLa cells. In exploiting the mechanism underlining the role of TCAB1 on senescence, we found a significant increase of p21 at the protein levels upon TCAB1 depletion, whereas the p21 mRNA expression was not altered. We verified that TCAB1 knockdown was able to shunt p21 from proteasomal degradation by regulating the ubiquitination of p21. In rescue assays, it was demonstrated that decreasing the expression of p21 or increasing the expression of TCAB1 were able to attenuate the cellular senescence process induced by TCAB1 silencing. Conclusions This study revealed the importance of TCAB1 for its biological functions in the regulation of cell senescence. Our results will be helpful to understand the mechanisms of senescence in cancer cells, which could provide clues for designing novel strategies for developing effective treatment regimens.
Collapse
Affiliation(s)
- Jing Niu
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China.,Beijing Key Laboratory for Tumor Invasion and Metastasis Research, Capital Medical University, 10 You'an Men West, Beijing, P. R. China
| | - Rui-Qi Gao
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China
| | - Meng-Tian Cui
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China
| | - Chen-Guang Zhang
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China.,Beijing Key Laboratory for Tumor Invasion and Metastasis Research, Capital Medical University, 10 You'an Men West, Beijing, P. R. China
| | - Shen-Tao Li
- Central Facility of Biomedical Research, Capital Medical University, 10 You'an Men West, Beijing, P. R. China
| | - Shan Cheng
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China.
| | - Wei Ding
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China.
| |
Collapse
|
11
|
Sánchez-Morán I, Rodríguez C, Lapresa R, Agulla J, Sobrino T, Castillo J, Bolaños JP, Almeida A. Nuclear WRAP53 promotes neuronal survival and functional recovery after stroke. SCIENCE ADVANCES 2020; 6:6/41/eabc5702. [PMID: 33028529 PMCID: PMC7541066 DOI: 10.1126/sciadv.abc5702] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/18/2020] [Indexed: 05/07/2023]
Abstract
Failure of neurons to efficiently repair DNA double-strand breaks (DSBs) contributes to cerebral damage after stroke. However, the molecular machinery that regulates DNA repair in this neurological disorder is unknown. Here, we found that DSBs in oxygen/glucose-deprived (OGD) neurons spatiotemporally correlated with the up-regulation of WRAP53 (WD40-encoding p53-antisense RNA), which translocated to the nucleus to activate the DSB repair response. Mechanistically, OGD triggered a burst in reactive oxygen species that induced both DSBs and translocation of WRAP53 to the nucleus to promote DNA repair, a pathway that was confirmed in an in vivo mouse model of stroke. Noticeably, nuclear translocation of WRAP53 occurred faster in OGD neurons expressing the Wrap53 human nonsynonymous single-nucleotide polymorphism (SNP) rs2287499 (c.202C>G). Patients carrying this SNP showed less infarct volume and better functional outcome after stroke. These results indicate that WRAP53 fosters DNA repair and neuronal survival to promote functional recovery after stroke.
Collapse
Affiliation(s)
- Irene Sánchez-Morán
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
| | - Cristina Rodríguez
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
| | - Rebeca Lapresa
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
| | - Jesús Agulla
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
- CIBERFES, Instituto de Salud Carlos III, Madrid, Spain
| | - Angeles Almeida
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain.
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
| |
Collapse
|
12
|
Biallelic mutations in WRAP53 result in dysfunctional telomeres, Cajal bodies and DNA repair, thereby causing Hoyeraal-Hreidarsson syndrome. Cell Death Dis 2020; 11:238. [PMID: 32303682 PMCID: PMC7165179 DOI: 10.1038/s41419-020-2421-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
Approximately half of all cases of Hoyeraal–Hreidarsson syndrome (HHS), a multisystem disorder characterized by bone marrow failure, developmental defects and very short telomeres, are caused by germline mutations in genes related to telomere biology. However, the varying symptoms and severity of the disease indicate that additional mechanisms are involved. Here, a 3-year-old boy with HHS was found to carry biallelic germline mutations in WRAP53 (WD40 encoding RNA antisense to p53), that altered two highly conserved amino acids (L283F and R398W) in the WD40 scaffold domain of the protein encoded. WRAP53β (also known as TCAB1 or WDR79) is involved in intracellular trafficking of telomerase, Cajal body functions and DNA repair. We found that both mutations cause destabilization, mislocalization and faulty interactions of WRAP53β, defects linked to misfolding by the TRiC chaperonin complex. Consequently, WRAP53β HHS mutants cannot elongate telomeres, maintain Cajal bodies or repair DNA double-strand breaks. These findings provide a molecular explanation for the pathogenesis underlying WRAP53β-associated HHS and highlight the potential contribution of DNA damage and/or defects in Cajal bodies to the early onset and/or severity of this disease.
Collapse
|
13
|
Subramanian DN, Zethoven M, McInerny S, Morgan JA, Rowley SM, Lee JEA, Li N, Gorringe KL, James PA, Campbell IG. Exome sequencing of familial high-grade serous ovarian carcinoma reveals heterogeneity for rare candidate susceptibility genes. Nat Commun 2020; 11:1640. [PMID: 32242007 PMCID: PMC7118163 DOI: 10.1038/s41467-020-15461-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 03/12/2020] [Indexed: 01/31/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) has a significant hereditary component, approximately half of which cannot be explained by known genes. To discover genes, we analyse germline exome sequencing data from 516 BRCA1/2-negative women with HGSOC, focusing on genes enriched with rare, protein-coding loss-of-function (LoF) variants. Overall, there is a significant enrichment of rare protein-coding LoF variants in the cases (p < 0.0001, chi-squared test). Only thirty-four (6.6%) have a pathogenic variant in a known or proposed predisposition gene. Few genes have LoF mutations in more than four individuals and the majority are detected in one individual only. Forty-three highly-ranked genes are identified with three or more LoF variants that are enriched by three-fold or more compared to GnomAD. These genes represent diverse functional pathways with relatively few involved in DNA repair, suggesting that much of the remaining heritability is explained by previously under-explored genes and pathways.
Collapse
Affiliation(s)
- Deepak N Subramanian
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Magnus Zethoven
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Simone McInerny
- The Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, 3000, Australia
| | - James A Morgan
- The Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, 3000, Australia
| | - Simone M Rowley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Jue Er Amanda Lee
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Na Li
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kylie L Gorringe
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul A James
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- The Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, 3000, Australia
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
14
|
Pal S, Garg M, Pandey AK. Deciphering the Mounting Complexity of the p53 Regulatory Network in Correlation to Long Non-Coding RNAs (lncRNAs) in Ovarian Cancer. Cells 2020; 9:E527. [PMID: 32106407 PMCID: PMC7140525 DOI: 10.3390/cells9030527] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022] Open
Abstract
Amongst the various gynecological malignancies affecting female health globally, ovarian cancer is one of the predominant and lethal among all. The identification and functional characterization of long non-coding RNAs (lncRNAs) are made possible with the advent of RNA-seq and the advancement of computational logarithm in understanding human disease biology. LncRNAs can interact with deoxyribonucleic acid (DNA), ribonucleic acid (RNA), proteins and their combinations. Moreover, lncRNAs regulate orchestra of diverse functions including chromatin organization and transcriptional and post-transcriptional regulation. LncRNAs have conferred their critical role in key biological processes in human cancer including tumor initiation, proliferation, cell cycle, apoptosis, necroptosis, autophagy, and metastasis. The interwoven function of tumor-suppressor protein p53-linked lncRNAs in the ovarian cancer paradigm is of paramount importance. Several lncRNAs operate as p53 regulators or effectors and modulates a diverse array of functions either by participating in various signaling cascades or via interaction with different proteins. This review highlights the recent progress made in the identification of p53 associated lncRNAs while elucidating their molecular mechanisms behind the altered expression in ovarian cancer tumorigenesis. Moreover, the development of novel clinical and therapeutic strategies for targeting lncRNAs in human cancers harbors great promise.
Collapse
Affiliation(s)
- Sonali Pal
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India;
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India;
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India;
| |
Collapse
|
15
|
Bergstrand S, O'Brien EM, Farnebo M. The Cajal Body Protein WRAP53β Prepares the Scene for Repair of DNA Double-Strand Breaks by Regulating Local Ubiquitination. Front Mol Biosci 2019; 6:51. [PMID: 31334247 PMCID: PMC6624377 DOI: 10.3389/fmolb.2019.00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Proper repair of DNA double-strand breaks is critical for maintaining genome integrity and avoiding disease. Modification of damaged chromatin has profound consequences for the initial signaling and regulation of repair. One such modification involves ubiquitination by E3 ligases RNF8 and RNF168 within minutes after DNA double-strand break formation, altering chromatin structure and recruiting factors such as 53BP1 and BRCA1 for repair via non-homologous end-joining (NHEJ) and homologous recombination (HR), respectively. The WD40 protein WRAP53β plays an essential role in localizing RNF8 to DNA breaks by scaffolding its interaction with the upstream factor MDC1. Loss of WRAP53β impairs ubiquitination at DNA lesions and reduces downstream repair by both NHEJ and HR. Intriguingly, WRAP53β depletion attenuates repair of DNA double-strand breaks more than depletion of RNF8, indicating functions other than RNF8-mediated ubiquitination. WRAP53β plays key roles with respect to the nuclear organelles Cajal bodies, including organizing the genome to promote associated transcription and collecting factors involved in maturation of the spliceosome and telomere elongation within these organelles. It is possible that similar functions may aid also in DNA repair. Here we describe the involvement of WRAP53β in Cajal bodies and DNA double-strand break repair in detail and explore whether and how these processes may be linked. We also discuss the possibility that the overexpression of WRAP53β detected in several cancer types may reflect its normal participation in the DNA damage response rather than oncogenic properties.
Collapse
Affiliation(s)
- Sofie Bergstrand
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Eleanor M O'Brien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Farnebo
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Liu Q, Tan W, Che J, Yuan D, Zhang L, Sun Y, Yue X, Xiao L, Jin Y. 12-HETE facilitates cell survival by activating the integrin-linked kinase/NF-κB pathway in ovarian cancer. Cancer Manag Res 2018; 10:5825-5838. [PMID: 30510451 PMCID: PMC6248369 DOI: 10.2147/cmar.s180334] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background The dysfunction of cell apoptosis is an important event in the progression of cancer, and the growth of cancer cells is negatively regulated by cell apoptosis. In different types of cancers, inhibition of cellular apoptosis is often observed in the cancerous tissue, and increased resistance to apoptosis is a hallmark of cancer. Although previous studies have shown that 12-lipoxygenase (12-LOX)/12-hydroxyeicosatetraenoic acid (12-HETE) is activated and upregulated in different types of cancers, the consequences of 12-LOX/12-HETE upregulation and its precise roles in the survival of ovarian carcinoma cells are still unknown. Methods MTT assays, caspase activity assays, lactate dehydrogenase (LDH) assays, and Western blot analysis were the methods used in this study. Results In our study, we found that 12-HETE, a major metabolic product of arachidonic acid using 12-LOX catalysis, inhibited cell apoptosis in a dose-dependent manner and that the effects of 12-HETE on cell apoptosis were mediated by the integrin-linked kinase (ILK) pathway. Moreover, the downstream target of 12-HETE-activated ILK was nuclear factor kappa-B (NF-κB) in ovarian carcinoma. The inhibitory effects of 12-HETE on cell apoptosis were attenuated by the inhibition of the NF-κB pathway. Conclusion These results indicate that 12-HETE participates in the inhibition of cell apoptosis by activating the ILK/NF-κB pathway, implying an important underlying mechanism that promotes the survival of ovarian cancer cells.
Collapse
Affiliation(s)
- Qian Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China, ;
| | - Wenhua Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China, ;
| | - Jianhua Che
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China, ;
| | - Dandan Yuan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China, ;
| | - Liying Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China, ;
| | - Yuhong Sun
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China, ;
| | - Xiaolong Yue
- Department of Medical Oncology, Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Lei Xiao
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yuxia Jin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China, ;
| |
Collapse
|
17
|
Chen J, Sheng X, Ma H, Tang Z, Yang C, Cao L, Sun Y, Deng T, Feng P, Hu B, Wei D, Liu J, Xiong W, Ye M. WDR79 mediates the proliferation of non-small cell lung cancer cells by regulating the stability of UHRF1. J Cell Mol Med 2018. [PMID: 29516630 PMCID: PMC5908104 DOI: 10.1111/jcmm.13580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
WD repeat protein 79 (WDR79) is a member of the WD-repeat protein family characterized by the presence of a series of WD-repeat domains and is a scaffold protein that participates in telomerase assembly, Cajal body formation and DNA double strand break repair. Although previous studies have revealed that WDR79 is frequently overexpressed in non-small cell lung cancer (NSCLC) and promotes the proliferation of NSCLC cells, the underlying mechanism responsible for WDR79-mediated NSCLC proliferation is not fully understood. In this study, we report a novel molecular function of WDR79 that mediates NSCLC cell proliferation by controlling the stability of UHRF1. In the nucleus, WDR79 colocalized and interacted with UHRF1. As a result, overexpression of WDR79 stabilized UHRF1, whereas ablation of WDR79 decreased the level of UHRF1. Meanwhile, we showed that WDR79 can protect UHRF1 from poly-ubiquitination-mediated proteolysis, which facilitated the stabilization of UHRF1. We further demonstrated that WDR79 exerts a proliferation effect on NSCLC cells by stabilizing UHRF1. These findings reveal that WDR79 is a novel UHRF1 regulator by maintaining UHRF1 stability, and they also provide a clue as to how to explore WDR79 for potential therapeutic application in NSCLC.
Collapse
Affiliation(s)
- Jieying Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Xunan Sheng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Hongchang Ma
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Zhengshan Tang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Chao Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China.,College of Life and Environmental Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Lanqin Cao
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Sun
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Tanggang Deng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Peifu Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Bin Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Dong Wei
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Jing Liu
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Ophthalmology and Eye Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| |
Collapse
|
18
|
Tiefenböck-Hansson K, Haapaniemi A, Farnebo L, Palmgren B, Tarkkanen J, Farnebo M, Munck-Wikland E, Mäkitie A, Garvin S, Roberg K. WRAP53β, survivin and p16INK4a expression as potential predictors of radiotherapy/chemoradiotherapy response in T2N0-T3N0 glottic laryngeal cancer. Oncol Rep 2017; 38:2062-2068. [PMID: 28849066 PMCID: PMC5652956 DOI: 10.3892/or.2017.5898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/16/2017] [Indexed: 02/06/2023] Open
Abstract
The current treatment recommendation for T2-3N0M0 glottic squamous cell carcinoma (SCC) in the Nordic countries comprises of radiotherapy (RT) and chemoradiotherapy (CRT). Tumor radiosensitivity varies and another option is primary surgical treatment, which underlines the need for predictive markers in this patient population. The aim of the present study was to investigate the relation of the proteins WRAP53β, survivin and p16INK4a to RT/CRT response and ultimate outcome of patients with T2-T3N0 glottic SCC. Protein expression was determined using immunohistochemistry on tumors from 149 patients consecutively treated with RT or CRT at Helsinki University Hospital, Karolinska University Hospital, and Linköping University Hospital during 1999–2010. Our results demonstrate a significantly better 5-year relapse-free survival, disease-free survival (DFS), disease-specific survival and overall survival of patients with T3N0 tumors treated with CRT compared with RT alone. Patients with tumors showing a cytoplasmic staining of WRAP53β revealed significantly worse DFS compared with those with nuclear staining. For survivin, we observed a trend towards better 5-year DFS in patients with strong nuclear survivin expression compared with those with weak nuclear survivin expression (P=0.091). Eleven (7%) tumors showed p16 positivity, with predilection to younger patients, and this age group of patients with p16-positive SCC had a significantly better DFS compared with patients with p16-negative SCC. Taken together, our results highlight WRAP53β as a potential biomarker for predicting RT/CRT response in T2-T3N0 glottic SCC. p16 may identify a small but distinct group of glottic SCC with favorable outcome. Furthermore, for T3N0 patients better outcome was observed following CRT compared to RT alone.
Collapse
Affiliation(s)
- Katharina Tiefenböck-Hansson
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Aaro Haapaniemi
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Lovisa Farnebo
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Björn Palmgren
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jussi Tarkkanen
- Department of Pathology, HUSLAB, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Marianne Farnebo
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Eva Munck-Wikland
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Antti Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Stina Garvin
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Karin Roberg
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Epstein-Barr virus-induced up-regulation of TCAB1 is involved in the DNA damage response in nasopharyngeal carcinoma. Sci Rep 2017; 7:3218. [PMID: 28607398 PMCID: PMC5468285 DOI: 10.1038/s41598-017-03156-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 04/25/2017] [Indexed: 02/05/2023] Open
Abstract
Telomerase Cajal body protein 1 (TCAB1), which is involved in Cajal body maintenance, telomere elongation and ribonucleoprotein biogenesis, has been linked to cancer predisposition, including nasopharyngeal carcinoma (NPC), due to its oncogenic properties. However, there are no specific reports to date on the functional relevance of TCAB1 and Epstein–Barr virus (EBV), which is considered to be a risk factor for NPC. In this study, we first examined NPC clinical tissues and found a notable overexpression of TCAB1 in EBV-positive specimens. Secondly, on a cellular level, we also observed that TCAB1 expression rose gradually along with the increased duration of EBV exposure in NPC cell lines. Additionally, EBV infection promoted cell proliferation and telomerase activity, but the activation was significantly inhibited after TCAB1 knockdown. Moreover, depletion of TCAB1 caused both cell cycle arrest and apoptosis, and suppressed the activation of ataxia telangiectasia and Rad3 related protein (ATR) induced by EBV, resulting in accumulation of DNA damage. Taken together, we here demonstrate that up-regulated expression of TCAB1, induced by EBV in the development of NPC, is involved in stimulating telomerase activity and regulating the DNA damage response within the context of EBV infection.
Collapse
|
20
|
Sun Y, Cao L, Sheng X, Chen J, Zhou Y, Yang C, Deng T, Ma H, Feng P, Liu J, Tan W, Ye M. WDR79 promotes the proliferation of non-small cell lung cancer cells via USP7-mediated regulation of the Mdm2-p53 pathway. Cell Death Dis 2017; 8:e2743. [PMID: 28406480 PMCID: PMC5477585 DOI: 10.1038/cddis.2017.162] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/02/2017] [Accepted: 03/13/2017] [Indexed: 12/26/2022]
Abstract
WD repeat protein 79 (WDR79) is a member of the WD-repeat protein family and functions as a scaffold protein during telomerase assembly, Cajal body formation and DNA double strand break repair. We have previously shown that WDR79 is frequently overexpressed in cell lines and tissues derived from non-small cell lung cancer (NSCLC) and it accelerates cell proliferation in NSCLC. However, the detailed mechanism underlying the role of WDR79 in the proliferation of NSCLC cells remains unclear. Here, we report the discovery of a molecular interaction between WDR79 and USP7 and show its functional significance in linking the Mdm2-p53 pathway to the proliferation of NSCLC cells. We found that WDR79 colocalized and interacted with USP7 in the nucleus of NSCLC cells. This event, in turn, reduced the ubiquitination of Mdm2 and p53, thereby increasing the stability and extending the half-life of the two proteins. We further found that the functional effects of WDR79 depended upon USP7, because the knockdown of USP7 resulted in their attenuation. Finally, we demonstrated that WDR79 promoted the proliferation of NSCLC cells via USP7. Taken together, our findings reveal a novel molecular function of WDR79 and may lead to broadly applicable and innovative therapeutic avenues for NSCLC.
Collapse
Affiliation(s)
- Yang Sun
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Lanqin Cao
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Xunan Sheng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Jieying Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Yu Zhou
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Chao Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China.,College of Life and Environmental Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Tanggang Deng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Hongchang Ma
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Peifu Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Jing Liu
- School of Life Sciences, State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
21
|
Raschellà G, Melino G, Malewicz M. New factors in mammalian DNA repair-the chromatin connection. Oncogene 2017; 36:4673-4681. [PMID: 28394347 PMCID: PMC5562846 DOI: 10.1038/onc.2017.60] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/01/2017] [Accepted: 02/04/2017] [Indexed: 12/12/2022]
Abstract
In response to DNA damage mammalian cells activate a complex network of stress response pathways collectively termed DNA damage response (DDR). DDR involves a temporary arrest of the cell cycle to allow for the repair of the damage. DDR also attenuates gene expression by silencing global transcription and translation. Main function of DDR is, however, to prevent the fixation of debilitating changes to DNA by activation of various DNA repair pathways. Proper execution of DDR requires careful coordination between these interdependent cellular responses. Deregulation of some aspects of DDR orchestration is potentially pathological and could lead to various undesired outcomes such as DNA translocations, cellular transformation or acute cell death. It is thus critical to understand the regulation of DDR in cells especially in the light of a strong linkage between the DDR impairment and the occurrence of common human diseases such as cancer. In this review we focus on recent advances in understanding of mammalian DNA repair regulation and a on the function of PAXX/c9orf142 and ZNF281 proteins that recently had been discovered to play a role in that process. We focus on regulation of double-strand DNA break (DSB) repair via the non-homologous end joining pathway, as unrepaired DSBs are the primary cause of pathological cellular states after DNA damage. Interestingly these new factors operate at the level of chromatin, which reinforces a notion of a central role of chromatin structure in the regulation of cellular DDR regulation.
Collapse
Affiliation(s)
- G Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Rome, Italy
| | - G Melino
- Department of Experimental Medicine &Surgery, University of Rome Tor Vergata, Rome, Italy.,MRC Toxicology Unit, Hodgkin Building, Leicester, UK
| | - M Malewicz
- MRC Toxicology Unit, Hodgkin Building, Leicester, UK
| |
Collapse
|
22
|
Coucoravas C, Dhanjal S, Henriksson S, Böhm S, Farnebo M. Phosphorylation of the Cajal body protein WRAP53β by ATM promotes its involvement in the DNA damage response. RNA Biol 2016; 14:804-813. [PMID: 27715493 PMCID: PMC5519231 DOI: 10.1080/15476286.2016.1243647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cellular response to DNA double-strand breaks is orchestrated by the protein kinase ATM, which phosphorylates key actors in the DNA repair network. WRAP53β is a multifunctional protein that controls trafficking of factors to Cajal bodies, telomeres and DNA double-strand breaks but what regulates the involvement of WRAP53β in these separate processes remains unclear. Here, we show that in response to various types of DNA damage, including IR and UV, WRAP53β is phosphorylated on serine residue 64 by ATM with a time-course that parallels its accumulation at DNA lesions. Interestingly, recruitment of phosphorylated WRAP53β (pWRAP53βS64) to sites of such DNA damage promotes its interaction with γH2AX at these locations. Moreover, pWRAP53βS64 stimulates the accumulation of the repair factor 53BP1 at DNA double-strand breaks and enhances repair of this type of damage via homologous recombination and non-homologous end joining. At the same time, phosphorylation of WRAP53β is dispensable for its localization to Cajal bodies, where it accumulates even in unstressed cells. These findings not only reveal ATM to be an upstream regulator of WRAP53β, but also indicates that phosphorylation of WRAP53β at serine 64 controls its involvement in the DNA damage response and may also restrict its other functions.
Collapse
Affiliation(s)
- Christos Coucoravas
- a Department of Oncology-Pathology , Cancer Centrum Karolinska (CCK), Karolinska Institutet , Stockholm , Sweden
| | - Soniya Dhanjal
- a Department of Oncology-Pathology , Cancer Centrum Karolinska (CCK), Karolinska Institutet , Stockholm , Sweden
| | - Sofia Henriksson
- a Department of Oncology-Pathology , Cancer Centrum Karolinska (CCK), Karolinska Institutet , Stockholm , Sweden
| | - Stefanie Böhm
- a Department of Oncology-Pathology , Cancer Centrum Karolinska (CCK), Karolinska Institutet , Stockholm , Sweden
| | - Marianne Farnebo
- a Department of Oncology-Pathology , Cancer Centrum Karolinska (CCK), Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
23
|
Overexpression of the scaffold WD40 protein WRAP53β enhances the repair of and cell survival from DNA double-strand breaks. Cell Death Dis 2016; 7:e2267. [PMID: 27310875 PMCID: PMC5143398 DOI: 10.1038/cddis.2016.172] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/11/2022]
Abstract
Altered expression of the multifunctional protein WRAP53β (WD40 encoding RNA Antisense to p53), which targets repair factors to DNA double-strand breaks and factors involved in telomere elongation to Cajal bodies, is linked to carcinogenesis. While loss of WRAP53β function has been shown to disrupt processes regulated by this protein, the consequences of its overexpression remain unclear. Here we demonstrate that overexpression of WRAP53β disrupts the formation of and impairs the localization of coilin to Cajal bodies. At the same time, the function of this protein in the repair of DNA double-strand breaks is enhanced. Following irradiation, cells overexpressing WRAP53β exhibit more rapid clearance of phospho-histone H2AX (γH2AX), and more efficient homologous recombination and non-homologous end-joining, in association with fewer DNA breaks. Moreover, in these cells the ubiquitylation of damaged chromatin, which is known to facilitate the recruitment of repair factors and subsequent repair, is elevated. Knockdown of the ubiquitin ligase involved, ring-finger protein 8 (RNF8), which is recruited to DNA breaks by WRAP53β, attenuated this effect, suggesting that overexpression of WRAP53β leads to more rapid repair, as well as improved cell survival, by enhancing RNF8-mediated ubiquitylation at DNA breaks. Our present findings indicate that WRAP53β and RNF8 are rate-limiting factors in the repair of DNA double-strand breaks and raise the possibility that upregulation of WRAP53β may contribute to genomic stability in and survival of cancer cells.
Collapse
|
24
|
The Sub-Cellular Localization of WRAP53 Has Prognostic Impact in Breast Cancer. PLoS One 2015; 10:e0139965. [PMID: 26460974 PMCID: PMC4603798 DOI: 10.1371/journal.pone.0139965] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022] Open
Abstract
WRAP53 protein controls intracellular trafficking of DNA repair proteins, the telomerase enzyme, and splicing factors. Functional loss of the protein has been linked to carcinogenesis, premature aging and neurodegeneration. The aim of this study was to investigate the prognostic significance of WRAP53 protein expression in breast cancer. A tissue microarray was constructed from primary breast tumors and immunostained by a polyclonal WRAP53 antibody to assess the protein expression pattern. Two different patient cohorts with long term follow-up were studied; a test- and a validation set of 154 and 668 breast tumor samples respectively. Breast cancer patients with tumor cells lacking the expression of WRAP53 in the nucleus had a significantly poorer outcome compared to patients with tumor cells expressing this protein in the nuclei (HR = 1.95, 95%CI = 1.09-3.51, p = 0.025). Nuclear localization of WRAP53 was further shown to be an independent marker of prognosis in multivariate analysis (HR = 2.57, 95%CI = 1.27-5.19, p = 0.008), and also significantly associated with better outcome in patients with TP53 mutation. Here we show that the sub-cellular localization of the WRAP53 protein has a significant impact on breast cancer survival, and thus has a potential as a clinical marker in diagnostics and treatment.
Collapse
|