1
|
Tshikhudo PP, Mabhaudhi T, Koorbanally NA, Mudau FN, Avendaño Caceres EO, Popa D, Calina D, Sharifi-Rad J. Anticancer Potential of β-Carboline Alkaloids: An Updated Mechanistic Overview. Chem Biodivers 2024; 21:e202301263. [PMID: 38108650 DOI: 10.1002/cbdv.202301263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/10/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
his comprehensive review is designed to evaluate the anticancer properties of β-carbolines derived from medicinal plants, with the ultimate goal of assessing their suitability and potential in cancer treatment, management, and prevention. An exhaustive literature survey was conducted on a wide array of β-carbolines including, but not limited to, harmaline, harmine, harmicine, harman, harmol, harmalol, pinoline, tetrahydroharmine, tryptoline, cordysinin C, cordysinin D, norharmane, and perlolyrine. Various analytical techniques were employed to identify and screen these compounds, followed by a detailed analysis of their anticancer mechanisms. Natural β-carbolines such as harmaline and harmine have shown promising inhibitory effects on the growth of cancer cells, as evidenced by multiple in vitro and in vivo studies. Synthetically derived β-carbolines also displayed noteworthy anticancer, neuroprotective, and cognitive-enhancing effects. The current body of research emphasizes the potential of β-carbolines as a unique source of bioactive compounds for cancer treatment. The diverse range of β-carbolines derived from medicinal plants can offer valuable insights into the development of new therapeutic strategies for cancer management and prevention.
Collapse
Affiliation(s)
- Phumudzo P Tshikhudo
- Department of Agriculture, Land Reform and Rural Development, Directorate Plant Health, Division Pest Risk Analysis, Arcadia, Pretoria, South Africa
| | - Tafadzwanashe Mabhaudhi
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, P. Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Fhatuwani N Mudau
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, P. Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Edgardo Oscar Avendaño Caceres
- Departamento de quimica e ingenieria Quimica, Universidad Nacional Jorge Basadre Grohmann. Avenida Miraflores s/n, Tacna, 23001, Perú
| | - Dragos Popa
- Department of Plastic Surgery, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | | |
Collapse
|
2
|
Cui Y, Zhang J, Zhang G. The Potential Strategies for Overcoming Multidrug Resistance and Reducing Side Effects of Monomer Tubulin Inhibitors for Cancer Therapy. Curr Med Chem 2024; 31:1874-1895. [PMID: 37349994 DOI: 10.2174/0929867330666230622142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/26/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Tubulin is an essential target in tumor therapy, and this is attributed to its ability to target MT dynamics and interfere with critical cellular functions, including mitosis, cell signaling, and intracellular trafficking. Several tubulin inhibitors have been approved for clinical application. However, the shortcomings, such as drug resistance and toxic side effects, limit its clinical application. Compared with single-target drugs, multi-target drugs can effectively improve efficacy to reduce side effects and overcome the development of drug resistance. Tubulin protein degraders do not require high concentrations and can be recycled. After degradation, the protein needs to be resynthesized to regain function, which significantly delays the development of drug resistance. METHODS Using SciFinder® as a tool, the publications about tubulin-based dual-target inhibitors and tubulin degraders were surveyed with an exclusion of those published as patents. RESULTS This study presents the research progress of tubulin-based dual-target inhibitors and tubulin degraders as antitumor agents to provide a reference for developing and applying more efficient drugs for cancer therapy. CONCLUSION The multi-target inhibitors and protein degraders have shown a development prospect to overcome multidrug resistance and reduce side effects in the treatment of tumors. Currently, the design of dual-target inhibitors for tubulin needs to be further optimized, and it is worth further clarifying the detailed mechanism of protein degradation.
Collapse
Affiliation(s)
- Yingjie Cui
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| | - Guifang Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
3
|
Tryapkin OA, Kantemirov AV, Dyshlovoy SA, Prassolov VS, Spirin PV, von Amsberg G, Sidorova MA, Zhidkov ME. A New Mild Method for Synthesis of Marine Alkaloid Fascaplysin and Its Therapeutically Promising Derivatives. Mar Drugs 2023; 21:424. [PMID: 37623705 PMCID: PMC10455802 DOI: 10.3390/md21080424] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Fascaplysin is a marine alkaloid which is considered to be a lead drug candidate due to its diverse and potent biological activity. As an anticancer agent, fascaplysin holds a great potential due to the multiple targets affected by this alkaloid in cancer cells, including inhibition of cyclin-dependent kinase 4 (CDK4) and induction of intrinsic apoptosis. At the same time, the studies on structural optimization are hampered by its rather high toxicity, mainly caused by DNA intercalation. In addition, the number of methods for the syntheses of its derivatives is limited. In the current study, we report a new two-step method of synthesis of fascaplysin derivatives based on low temperature UV quaternization for the synthesis of thermolabile 9-benzyloxyfascaplysin and 6-tert-butylfascaplysin. 9-Benzyloxyfascaplysin was used as the starting compound to obtain 9-hydroxyfascaplysin. However, the latter was found to be chemically highly unstable. 6-tert-Butylfascaplysin revealed a significant decrease in DNA intercalation when compared to fascaplysin, while cytotoxicity was only slightly reduced. Therefore, the impact of DNA intercalation for the cytotoxic effects of fascaplysin and its derivatives needs to be questioned.
Collapse
Affiliation(s)
- Oleg A. Tryapkin
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (A.V.K.); (M.A.S.)
| | - Alexey V. Kantemirov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (A.V.K.); (M.A.S.)
| | - Sergey A. Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.A.D.); (G.v.A.)
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Vladimir S. Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia; (V.S.P.); (P.V.S.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Pavel V. Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia; (V.S.P.); (P.V.S.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.A.D.); (G.v.A.)
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Maria A. Sidorova
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (A.V.K.); (M.A.S.)
| | - Maxim E. Zhidkov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (A.V.K.); (M.A.S.)
| |
Collapse
|
4
|
Wang C, Wang S, Li H, Hou Y, Cao H, Hua H, Li D. Marine-Derived Lead Fascaplysin: Pharmacological Activity, Total Synthesis, and Structural Modification. Mar Drugs 2023; 21:md21040226. [PMID: 37103365 PMCID: PMC10142289 DOI: 10.3390/md21040226] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Fascaplysin is a planar structure pentacyclic alkaloid isolated from sponges, which can effectively induce the apoptosis of cancer cells. In addition, fascaplysin has diverse biological activities, such as antibacterial, anti-tumor, anti-plasmodium, etc. Unfortunately, the planar structure of fascaplysin can be inserted into DNA and such interaction also limits the further application of fascaplysin, necessitating its structural modification. In this review, the biological activity, total synthesis and structural modification of fascaplysin will be summarized, which will provide useful information for pharmaceutical researchers interested in the exploration of marine alkaloids and for the betterment of fascaplysin in particular.
Collapse
|
5
|
Shagufta, Ahmad I. Therapeutic significance of molecular hybrids for breast cancer research and treatment. RSC Med Chem 2023; 14:218-238. [PMID: 36846377 PMCID: PMC9945856 DOI: 10.1039/d2md00356b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Worldwide, breast cancer is still a leading cause of cancer death in women. Indeed, over the years, several anti-breast cancer drugs have been developed; however, the complex heterogeneous nature of breast cancer disease reduces the applicability of conventional targeted therapies with the upsurge in side effects and multi-drug resistance. Molecular hybrids generated by a combination of two or more active pharmacophores emerged as a promising approach in recent years for the design and synthesis of anti-breast cancer drugs. The hybrid anti-breast cancer molecules are well known for their several advantages compared to the parent moiety. These hybrid forms of anti-breast cancer molecules demonstrated remarkable effects in blocking different pathways contributing to the pathogenies of breast cancer and improved specificity. In addition, these hybrids are patient compliant with reduced side effects and multi-drug resistance. The literature revealed that molecular hybrids are applied to discover and develop novel hybrids for various complex diseases. This review article highlights the recent progress (∼2018-2022) in developing molecular hybrids, including linked, merged, and fused hybrids, as promising anti-breast cancer agents. Furthermore, their design principles, biological potential, and future perspective are discussed. The provided information will lead to the development of novel anti-breast cancer hybrids with excellent pharmacological profiles in the future.
Collapse
Affiliation(s)
- Shagufta
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| | - Irshad Ahmad
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| |
Collapse
|
6
|
Bai XG, Zheng Y, Qi J. Advances in thiosemicarbazone metal complexes as anti-lung cancer agents. Front Pharmacol 2022; 13:1018951. [PMID: 36238553 PMCID: PMC9551402 DOI: 10.3389/fphar.2022.1018951] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/13/2022] [Indexed: 01/31/2023] Open
Abstract
The great success of cisplatin as a chemotherapeutic agent considerably increased research efforts in inorganic biochemistry to identify more metallic drugs having the potential of treating lung cancer. Metal coordination centres, which exhibit a wide range of coordination numbers and geometries, various oxidised and reduced states and the inherent ligand properties offer pharmaceutical chemists a plethora of drug structures. Owing to the presence of C=N and C=S bonds in a thiosemicarbazone Schiff base, N and S atoms in its hybrid orbital has lone pair of electrons, which can generate metal complexes with different stabilities with most metal elements under certain conditions. Such ligands and complexes play key roles in the treatment of anti-lung cancer. Research regarding metallic anti-lung cancer has advanced considerably, but there remain several challenges. In this review, we discuss the potential of thiosemicarbazone Schiff base complexes as anti-lung cancer drugs, their anti-cancer activities and the most likely action mechanisms involving the recent families of copper, nickel, platinum, ruthenium and other complexes.
Collapse
Affiliation(s)
| | | | - Jinxu Qi
- *Correspondence: Yunyun Zheng, ; Jinxu Qi,
| |
Collapse
|
7
|
Plangger A, Rath B, Hochmair M, Funovics M, Neumayer C, Zeillinger R, Hamilton G. Synergistic cytotoxicity of the CDK4 inhibitor Fascaplysin in combination with EGFR inhibitor Afatinib against Non-small Cell Lung Cancer. Invest New Drugs 2022; 40:215-223. [PMID: 34596822 PMCID: PMC8993745 DOI: 10.1007/s10637-021-01181-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
In the absence of suitable molecular markers, non-small cell lung cancer (NSCLC) patients have to be treated with chemotherapy with poor results at advanced stages. Therefore, the activity of the anticancer marine drug fascaplysin was tested against primary NSCLC cell lines established from pleural effusions. Cytotoxicity of the drug or combinations were determined using MTT assays and changes in intracellular phosphorylation by Western blot arrays. Fascaplysin revealed high cytotoxicity against NSCLC cells and exhibit an activity pattern different of the standard drug cisplatin. Furthermore, fascaplysin synergizes with the EGFR tyrosine kinase inhibitor (TKI) afatinib to yield a twofold increased antitumor effect. Interaction with the Chk1/2 inhibitor AZD7762 confirm the differential effects of fascplysin and cisplatin. Protein phosphorylation assays showed hypophosphorylation of Akt1/2/3 and ERK1/2 as well as hyperphosphorylation of stress response mediators of H1299 NSCLC cells. In conclusion, fascaplysin shows high cytotoxicity against pleural primary NSCLC lines that could be further boosted when combined with the EGFR TKI afatinib.
Collapse
Affiliation(s)
- Adelina Plangger
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maximilian Hochmair
- Department of Respiratory & Critical Care Medicine, Karl Landsteiner Institute of Lung Research & Pulmonary Oncology, Vienna, Austria
| | - Martin Funovics
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-Guided Therapy Medical, University of Vienna, Vienna, Austria
| | - Christoph Neumayer
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Facile synthesis of C1-substituted β-carbolines as CDK4 inhibitors for the treatment of cancer. Bioorg Chem 2022; 121:105659. [DOI: 10.1016/j.bioorg.2022.105659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/05/2022] [Accepted: 02/05/2022] [Indexed: 01/04/2023]
|
9
|
Soltan OM, Shoman ME, Abdel-Aziz SA, Narumi A, Konno H, Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur J Med Chem 2021; 225:113768. [PMID: 34450497 DOI: 10.1016/j.ejmech.2021.113768] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023]
Abstract
Protein kinases have grown over the past few years as a crucial target for different cancer types. With the multifactorial nature of cancer, and the fast development of drug resistance for conventional chemotherapeutics, a strategy for designing multi-target agents was suggested to potentially increase drug efficacy, minimize side effects and retain the proper pharmacokinetic properties. Kinase inhibitors were used extensively in such strategy. Different kinase inhibitor agents which target EGFR, VEGFR, c-Met, CDK, PDK and other targets were merged into hybrids with conventional chemotherapeutics such as tubulin polymerization and topoisomerase inhibitors. Other hybrids were designed gathering kinase inhibitors with targeted cancer therapy such as HDAC, PARP, HSP 90 inhibitors. Nitric oxide donor molecules were also merged with kinase inhibitors for cancer therapy. The current review presents the hybrids designed in the past five years discussing their design principles, results and highlights their future perspectives.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111, Minia, Egypt
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| |
Collapse
|
10
|
Bhurta D, Bharate SB. Analyzing the scaffold diversity of cyclin-dependent kinase inhibitors and revisiting the clinical and preclinical pipeline. Med Res Rev 2021; 42:654-709. [PMID: 34605036 DOI: 10.1002/med.21856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 07/04/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022]
Abstract
Kinases have gained an important place in the list of vital therapeutic targets because of their overwhelming clinical success in the last two decades. Among various clinically validated kinases, the cyclin-dependent kinases (CDK) are one of the extensively studied drug targets for clinical development. Food and Drug Administration has approved three CDK inhibitors for therapeutic use, and at least 27 inhibitors are under active clinical development. In the last decade, research and development in this area took a rapid pace, and thus the analysis of scaffold diversity is essential for future drug design. Available reviews lack the systematic study and discussion on the scaffold diversity of CDK inhibitors. Herein we have reviewed and critically analyzed the chemical diversity present in the preclinical and clinical pipeline of CDK inhibitors. Our analysis has shown that although several scaffolds represent CDK inhibitors, only the amino-pyrimidine is a well-represented scaffold. The three-nitrogen framework of amino-pyrimidine is a fundamental hinge-binding unit. Further, we have discussed the selectivity aspects among CDKs, the clinical trial dose-limiting toxicities, and highlighted the most advanced clinical candidates. We also discuss the changing paradigm towards selective inhibitors and an overview of ATP-binding pockets of all druggable CDKs. We carefully analyzed the clinical pipeline to unravel the candidates that are currently under active clinical development. In addition to the plenty of dual CDK4/6 inhibitors, there are many selective CDK7, CDK9, and CDK8/19 inhibitors in the clinical pipeline.
Collapse
Affiliation(s)
- Deendyal Bhurta
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
11
|
Khotimchenko R, Bryukhovetskiy I, Khotimchenko M, Khotimchenko Y. Bioactive Compounds with Antiglioma Activity from Marine Species. Biomedicines 2021; 9:biomedicines9080886. [PMID: 34440090 PMCID: PMC8389718 DOI: 10.3390/biomedicines9080886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
The search for new chemical compounds with antitumor pharmacological activity is a necessary process for creating more effective drugs for each specific malignancy type. This review presents the outcomes of screening studies of natural compounds with high anti-glioma activity. Despite significant advances in cancer therapy, there are still some tumors currently considered completely incurable including brain gliomas. This review covers the main problems of the glioma chemotherapy including drug resistance, side effects of common anti-glioma drugs, and genetic diversity of brain tumors. The main emphasis is made on the characterization of natural compounds isolated from marine organisms because taxonomic diversity of organisms in seawaters significantly exceeds that of terrestrial species. Thus, we should expect greater chemical diversity of marine compounds and greater likelihood of finding effective molecules with antiglioma activity. The review covers at least 15 classes of organic compounds with their chemical formulas provided as well as semi-inhibitory concentrations, mechanisms of action, and pharmacokinetic profiles. In conclusion, the analysis of the taxonomic diversity of marine species containing bioactives with antiglioma activity is performed noting cytotoxicity indicators and to the tumor cells in comparison with similar indicators of antitumor agents approved for clinical use as antiglioblastoma chemotherapeutics.
Collapse
Affiliation(s)
- Rodion Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Igor Bryukhovetskiy
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Maksim Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
- Laboratory of Pharmacology, A. V. Zhirmunsky National Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690950 Vladivostok, Russia
- Correspondence:
| |
Collapse
|
12
|
Murugesan S, Murugesan J, Palaniappan S, Palaniappan S, Murugan T, Siddiqui SS, Loganathan S. Tyrosine Kinase Inhibitors (TKIs) in Lung Cancer Treatment: A Comprehensive Analysis. Curr Cancer Drug Targets 2021; 21:55-69. [PMID: 33038912 DOI: 10.2174/1568009620666201009130008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading type of cancer worldwide today. Kinases play a crucial role in mediating the signaling pathways, and it directs to control several necessary cellular processes. Conversely, the deregulation of tyrosine kinases leads to oncogenic conversion, uncontrolled cell proliferation and tumorigenesis. Tyrosine kinases are largely deregulated in lung cancer and specifically in non-small cell lung cancer (NSCLC). Therefore, the inhibition of pathogenic kinases is a breakthrough development in cancer research, treatment and care, which clinically improve the quality of life. In the last decades, various single or combination inhibitors are approved by U.S Food and Drug Administration (FDA) and commercially available in clinics, and currently, several preclinical studies are ongoing and examining the kinase inhibitors. However, many gaps remain in understanding the mechanisms of kinase inhibitors and their selectivity. In this analysis, we focus on a class of receptor and non-receptor tyrosine kinase inhibitors and their novel role in lung cancer.
Collapse
Affiliation(s)
- Sivakumar Murugesan
- Department of Environmental Science, Periyar University, Salem-636011, Tamil Nadu, India
| | - Jayakumar Murugesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar- 608002, Tamilnadu, India
| | - Seedevi Palaniappan
- Department of Environmental Science, Periyar University, Salem-636011, Tamil Nadu, India
| | - Sivasankar Palaniappan
- Department of Environmental Science, Periyar University, Salem-636011, Tamil Nadu, India
| | - Tamilselvi Murugan
- Department of Zoology, Government Arts College (Autonomous), Coimbatore-641018, Tamil Nadu, India
| | - Shahid S Siddiqui
- Department of Medicine, University of Chicago, Chicago, IL-60637, United States
| | - Sivakumar Loganathan
- Department of Environmental Science, Periyar University, Salem-636011, Tamil Nadu, India
| |
Collapse
|
13
|
Sharma B, Saha ST, Perumal S, Gu L, Ebenezer O, Singh P, Kaur M, Kumar V. Design, Synthesis, Antiproliferative Evaluation, and Molecular Docking Studies of N-(3-Hydroxyindole)-Appended β-Carbolines/Tetrahydro-β-Carbolines Targeting Triple-Negative and Non-Triple-Negative Breast Cancer. ACS OMEGA 2020; 5:28907-28917. [PMID: 33225121 PMCID: PMC7675558 DOI: 10.1021/acsomega.0c01226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/25/2020] [Indexed: 05/04/2023]
Abstract
The present manuscript pertains to the design and synthesis of a series of 3-hydroxyindole-substituted β-carbolines/tetrahydro-β-carbolines with an aim to explore their antiproliferative structure-activity relationship against breast cancer. The conjugate with an optimum combination of a flexible tetrahydro-β-carboline core, a tertiary alcoholic group along with a chloro substituent on the indole ring, proved to be the most active compound. It displayed IC50 values of 13.61 and 22.76 μM against MCF-7 (ER+) and MDA-MB-231 (ER-) cells, respectively. The docking studies were found to be consistent with experimental results owing to the stronger binding affinity of the synthesized conjugates via hydrophobic and H-bonding interactions.
Collapse
Affiliation(s)
- Bharvi Sharma
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Sourav Taru Saha
- School
of Molecular and Cell Biology, University
of the Witwatersrand, Private Bag 3,
WITS, Johannesburg 2050, South Africa
| | - Shanen Perumal
- School
of Molecular and Cell Biology, University
of the Witwatersrand, Private Bag 3,
WITS, Johannesburg 2050, South Africa
| | - Liang Gu
- School
of Molecular and Cell Biology, University
of the Witwatersrand, Private Bag 3,
WITS, Johannesburg 2050, South Africa
| | - Oluwakemi Ebenezer
- School
of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Parvesh Singh
- School
of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Mandeep Kaur
- School
of Molecular and Cell Biology, University
of the Witwatersrand, Private Bag 3,
WITS, Johannesburg 2050, South Africa
| | - Vipan Kumar
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
14
|
Design, synthesis, and cytotoxic screening of novel azole derivatives on hepatocellular carcinoma (HepG2 Cells). Bioorg Chem 2020; 101:103995. [PMID: 32569897 DOI: 10.1016/j.bioorg.2020.103995] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
Abstract
Novel azole derivatives 3-30 were designed, synthesized, and screened for their antitumor activity on HepG2 cell line. The cytotoxicity screening demonstrated that imidazolone 8 and triazoles 25 and 29 exhibited more potent cytotoxic activities by 1.21-, 4.75-, and 1.8-fold compared to Sorafenib (SOR). Furthermore, vascular endothelial growth factor receptor-2 (VEGFR-2) enzyme inhibition assay declared that compounds 25 and 29 had inhibitory activity at the nanomolar concentration. Moreover, the tested compounds exhibited good β-tubulin (TUB) polymerization inhibition percentages. In addition, DNA flow cytometry analysis over HepG2 cells indicated that triazoles 25 and 29 demonstrated arrest at G1 and G2/M phase of the cell cycle and induced apoptotic activity by increasing sub-G1 phase. Finally, mechanistic studies of the proapoptotic activities of compounds 8, 10, 11, 25, and 29 indicated that they induced upregulation of P53, Fas/Fas-ligand, and BAX/BCL-2 ratio expression that resulted in increasing the active caspase 3/7 percentages and trigger apoptosis.
Collapse
|
15
|
Singh H, Kinarivala N, Sharma S. Multi-Targeting Anticancer Agents: Rational Approaches, Synthetic Routes and Structure Activity Relationship. Anticancer Agents Med Chem 2020; 19:842-874. [PMID: 30657048 DOI: 10.2174/1871520619666190118120708] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/21/2022]
Abstract
We live in a world with complex diseases such as cancer which cannot be cured with one-compound one-target based therapeutic paradigm. This could be due to the involvement of multiple pathogenic mechanisms. One-compound-various-targets stratagem has become a prevailing research topic in anti-cancer drug discovery. The simultaneous interruption of two or more targets has improved the therapeutic efficacy as compared to the specific targeted based therapy. In this review, six types of dual targeting agents along with some interesting strategies used for their design and synthesis are discussed. Their pharmacology with various types of the molecular interactions within their specific targets has also been described. This assemblage will reveal the recent trends and insights in front of the scientific community working in dual inhibitors and help them in designing the next generation of multi-targeted anti-cancer agents.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Nihar Kinarivala
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, United States
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India.,Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, United States
| |
Collapse
|
16
|
A Systematic Review of Recently Reported Marine Derived Natural Product Kinase Inhibitors. Mar Drugs 2019; 17:md17090493. [PMID: 31450856 PMCID: PMC6780990 DOI: 10.3390/md17090493] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
Protein kinases are validated drug targets for a number of therapeutic areas, as kinase deregulation is known to play an essential role in many disease states. Many investigated protein kinase inhibitors are natural product small molecules or their derivatives. Many marine-derived natural products from various marine sources, such as bacteria and cyanobacteria, fungi, animals, algae, soft corals, sponges, etc. have been found to have potent kinase inhibitory activity, or desirable pharmacophores for further development. This review covers the new compounds reported from the beginning of 2014 through the middle of 2019 as having been isolated from marine organisms and having potential therapeutic applications due to kinase inhibitory and associated bioactivities. Moreover, some existing clinical drugs based on marine-derived natural product scaffolds are also discussed.
Collapse
|
17
|
Sharma B, Singh A, Gu L, Saha ST, Singh-Pillay A, Cele N, Singh P, Kaur M, Kumar V. Diastereoselective approach to rationally design tetrahydro-β-carboline-isatin conjugates as potential SERMs against breast cancer. RSC Adv 2019; 9:9809-9819. [PMID: 35520746 PMCID: PMC9062147 DOI: 10.1039/c9ra00744j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
A series of tetrahydro-β-carboline-isatin conjugates, with varying substituents as well as stereochemistry at C-1 and C-5 position of tetrahydro-β-carboline (THβC) and isatin ring, were prepared and assayed for anti-proliferative efficacy on Estrogen Responsive ER(+) (MCF-7) and ER(-ve) MDA-MB-231 cell-lines. The synthesized scaffolds displayed selective anti-proliferative efficacy against MCF-7 cell-line with the most active conjugate 8b exhibiting an IC50 value of 37.42 μM, comparable to that of peganumine A, a tetrahydro-β-carboline analogue, isolated from Peganum harmala. The synthesized compound 8b was also more potent than the standard drug tamoxifen (IC50 = 50 μM against MCF-7). The observed activities were further corroborated via docking studies in ER-α (PDB ID: 3ERT).
Collapse
Affiliation(s)
- Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University Amritsar-143005 India
| | - Amandeep Singh
- Department of Chemistry, Guru Nanak Dev University Amritsar-143005 India
| | - Liang Gu
- School of Molecular and Cell Biology, University of the Witwatersrand Private Bag 3, Wits-2050 Johannesburg South Africa
| | - Sourav Taru Saha
- School of Molecular and Cell Biology, University of the Witwatersrand Private Bag 3, Wits-2050 Johannesburg South Africa
| | - Ashona Singh-Pillay
- School of Chemistry and Physics, University of KwaZulu Natal P/Bag X54001, Westville Durban 4000 South Africa
| | - Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu Natal P/Bag X54001, Westville Durban 4000 South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu Natal P/Bag X54001, Westville Durban 4000 South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand Private Bag 3, Wits-2050 Johannesburg South Africa
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University Amritsar-143005 India
| |
Collapse
|
18
|
Sonawane VR, Siddique MUM, Gatchie L, Williams IS, Bharate SB, Jayaprakash V, Sinha BN, Chaudhuri B. CYP enzymes, expressed within live human suspension cells, are superior to widely-used microsomal enzymes in identifying potent CYP1A1/CYP1B1 inhibitors: Identification of quinazolinones as CYP1A1/CYP1B1 inhibitors that efficiently reverse B[a]P toxicity and cisplatin resistance. Eur J Pharm Sci 2019; 131:177-194. [PMID: 30776468 DOI: 10.1016/j.ejps.2019.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/26/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022]
Abstract
Microsomal cytochrome P450 (CYP) enzymes, isolated from recombinant bacterial/insect/yeast cells, are extensively used for drug metabolism studies. However, they may not always portray how a developmental drug would behave in human cells with intact intracellular transport mechanisms. This study emphasizes the usefulness of human HEK293 kidney cells, grown in 'suspension' for expression of CYPs, in finding potent CYP1A1/CYP1B1 inhibitors, as possible anticancer agents. With live cell-based assays, quinazolinones 9i/9b were found to be selective CYP1A1/CYP1B1 inhibitors with IC50 values of 30/21 nM, and > 150-fold selectivity over CYP2/3 enzymes, whereas they were far less active using commercially-available CYP1A1/CYP1B1 microsomal enzymes (IC50, >10/1.3-1.7 μM). Compound 9i prevented CYP1A1-mediated benzo[a]pyrene-toxicity in normal fibroblasts whereas 9b completely reversed cisplatin resistance in PC-3/prostate, COR-L23/lung, MIAPaCa-2/pancreatic and LS174T/colon cancer cells, underlining the human-cell-assays' potential. Our results indicate that the most potent CYP1A1/CYP1B1 inhibitors would not have been identified if one had relied merely on microsomal enzymes.
Collapse
Affiliation(s)
- Vinay R Sonawane
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Mohd Usman Mohd Siddique
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Linda Gatchie
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Ibidapo S Williams
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Barij N Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Bhabatosh Chaudhuri
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK.
| |
Collapse
|
19
|
Arnst KE, Banerjee S, Chen H, Deng S, Hwang DJ, Li W, Miller DD. Current advances of tubulin inhibitors as dual acting small molecules for cancer therapy. Med Res Rev 2019; 39:1398-1426. [PMID: 30746734 DOI: 10.1002/med.21568] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 12/25/2022]
Abstract
Microtubule (MT)-targeting agents are highly successful drugs as chemotherapeutic agents, and this is attributed to their ability to target MT dynamics and interfere with critical cellular functions, including, mitosis, cell signaling, intracellular trafficking, and angiogenesis. Because MT dynamics vary in the different stages of the cell cycle, these drugs tend to be the most effective against mitotic cells. While this class of drug has proven to be effective against many cancer types, significant hurdles still exist and include overcoming aspects such as dose limited toxicities and the development of resistance. Newer generations of developed drugs attack these problems and alternative approaches such as the development of dual tubulin and kinase inhibitors are being investigated. This approach offers the potential to show increased efficacy and lower toxicities. This review covers different categories of MT-targeting agents, recent advances in dual inhibitors, and current challenges for this drug target.
Collapse
Affiliation(s)
- Kinsie E Arnst
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Souvik Banerjee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Shanshan Deng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
20
|
Kumar V, Vishwakarma RA, Bharate SS. Engineering solid dispersions of anticancer preclinical lead, IIIM-985: Physicochemical characterization and in vivo pharmacokinetics. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Sonawane V, Mohd Siddique MU, Jadav SS, Sinha BN, Jayaprakash V, Chaudhuri B. Cink4T, a quinazolinone-based dual inhibitor of Cdk4 and tubulin polymerization, identified via ligand-based virtual screening, for efficient anticancer therapy. Eur J Med Chem 2019; 165:115-132. [PMID: 30665142 DOI: 10.1016/j.ejmech.2019.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/05/2019] [Accepted: 01/05/2019] [Indexed: 12/15/2022]
Abstract
Inhibition of cyclin dependent kinase 4 (Cdk4) prevents cancer cells from entering the early G0/G1 phase of the cell division cycle whereas inhibiting tubulin polymerization blocks cancer cells' ability to undergo mitosis (M) late in the cell cycle. We had reported earlier that two non-planar and relatively non-toxic fascaplysin derivatives, an indole and a tryptoline, inhibit Cdk4 with IC50 values of 6.2 and 10 μM, respectively. Serendipitously, we had also found that they inhibited tubulin polymerization. The molecules were efficacious in mouse tumor models. We have now identified Cink4T in a 59-compound quinazolinone library, designed on the basis of ligand-based virtual screening, as a compound that inhibits Cdk4 and tubulin. Its IC50 value for Cdk4 inhibition is 0.47 μM and >50 μM for inhibition of Cdk1, Cdk2, Cdk6, Cdk9. Cink4T inhibits tubulin polymerization with an IC50 of 0.6 μM. Molecular modelling studies on Cink4T with Cdk4 and tubulin crystal structures lend support to these observations. Cancer cell cycle analyses confirm that Cink4T blocks cells at both G0/G1 and M phases as it should if it were to inhibit both Cdk4 and tubulin polymerization. Our results show, for the very first time, that virtual screening can be used to design novel inhibitors that can potently block two crucial phases of the cell division cycle.
Collapse
Affiliation(s)
- Vinay Sonawane
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Mohd Usman Mohd Siddique
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | | | - Barij Nayan Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK.
| |
Collapse
|
22
|
Anticancer Activity of Fascaplysin against Lung Cancer Cell and Small Cell Lung Cancer Circulating Tumor Cell Lines. Mar Drugs 2018; 16:md16100383. [PMID: 30322180 PMCID: PMC6213142 DOI: 10.3390/md16100383] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is a leading cause of tumor-associated mortality. Fascaplysin, a bis-indole of a marine sponge, exhibit broad anticancer activity as specific CDK4 inhibitor among several other mechanisms, and is investigated as a drug to overcome chemoresistance after the failure of targeted agents or immunotherapy. The cytotoxic activity of fascaplysin was studied using lung cancer cell lines, primary Non-Small Cell Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC) cells, as well as SCLC circulating tumor cell lines (CTCs). This compound exhibited high activity against SCLC cell lines (mean IC50 0.89 µM), as well as SCLC CTCs as single cells and in the form of tumorospheres (mean IC50 0.57 µM). NSCLC lines showed a mean IC50 of 1.15 µM for fascaplysin. Analysis of signal transduction mediators point to an ATM-triggered signaling cascade provoked by drug-induced DNA damage. Fascaplysin reveals at least an additive cytotoxic effect with cisplatin, which is the mainstay of lung cancer chemotherapy. In conclusion, fascaplysin shows high activity against lung cancer cell lines and spheroids of SCLC CTCs which are linked to the dismal prognosis of this tumor type. Derivatives of fascaplysin may constitute valuable new agents for the treatment of lung cancer.
Collapse
|
23
|
Sharma R, Williams IS, Gatchie L, Sonawane VR, Chaudhuri B, Bharate SB. Khellinoflavanone, a Semisynthetic Derivative of Khellin, Overcomes Benzo[ a]pyrene Toxicity in Human Normal and Cancer Cells That Express CYP1A1. ACS OMEGA 2018; 3:8553-8566. [PMID: 31458985 PMCID: PMC6645225 DOI: 10.1021/acsomega.8b01088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/19/2018] [Indexed: 05/08/2023]
Abstract
Cytochrome P450 family 1 (CYP1) enzymes catalyze the metabolic activation of environmental procarcinogens such as benzo[a]pyrene, B[a]P, into carcinogens, which initiates the process of carcinogenesis. Thus, stopping the metabolic activation of procarcinogens can possibly prevent the onset of cancer. Several natural products have been reported to show unique ability in inhibiting CYP1 enzymes. We found that khellin, a naturally occurring furanochromone from Ammi visnaga, inhibits CYP1A1 enzyme with an IC50 value of 4.02 μM in CYP1A1-overexpressing human HEK293 suspension cells. To further explore this natural product for discovery of more potent and selective CYP1A1 inhibitors, two sets of semisynthetic derivatives were prepared. Treatment of khellin with alkali results in opening of a pyrone ring, yielding khellinone (2). Claisen-Schmidt condensation of khellinone (2) with various aldehydes in presence of potassium hydroxide, at room temperature, provides a series of furanochalcones 3a-v (khellinochalcones). Treatment of khellinone (2) with aryl aldehydes in the presence of piperidine, under reflux, affords the flavanone series of compounds 4a-p (khellinoflavanones). The khellinoflavanone 4l potently inhibited CYP1A1 with an IC50 value of 140 nM in live cells, with 170-fold selectivity over CYP1B1 (IC50 for CYP1B1 = 23.8 μM). Compound 4l at 3× IC50 concentration for inhibition of CYP1A1 completely protected HEK293 cells from CYP1A1-mediated B[a]P toxicity. Lung cancer cells, A549 (p53+) and Calu-1 (p53-null), blocked in growth at the S-phase by B[a]P were restored into the cell cycle by compound 4l. The results presented herein strongly indicate the potential of these khellin derivatives for further development as cancer chemopreventive agents.
Collapse
Affiliation(s)
- Rajni Sharma
- Natural
Products Chemistry Division, Academy of Scientific & Innovative
Research, and Medicinal Chemistry Division, CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ibidapo S. Williams
- CYP
Design Ltd, Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Linda Gatchie
- CYP
Design Ltd, Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Vinay R. Sonawane
- CYP
Design Ltd, Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Bhabatosh Chaudhuri
- Natural
Products Chemistry Division, Academy of Scientific & Innovative
Research, and Medicinal Chemistry Division, CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- CYP
Design Ltd, Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Sandip B. Bharate
- Natural
Products Chemistry Division, Academy of Scientific & Innovative
Research, and Medicinal Chemistry Division, CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| |
Collapse
|
24
|
You Y, Bai F, Ye Z, Zhang N, Yao L, Tang Y, Li X. Downregulated CDK10 expression in gastric cancer: Association with tumor progression and poor prognosis. Mol Med Rep 2018; 17:6812-6818. [PMID: 29512714 DOI: 10.3892/mmr.2018.8662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/12/2018] [Indexed: 11/05/2022] Open
Abstract
The tumor suppressor characteristics of cyclin‑dependent kinase 10 (CDK10) in nasopharyngeal carcinoma and breast cancer have been previously demonstrated. In the present study the expression status of CDK10 and its prognostic significance in gastric cancer was determined, as well as its role in cell proliferation and invasion. Immunoblot analysis revealed that CDK10 protein expression was notably decreased in gastric cancer compared with normal tissues. Immunohistochemistry demonstrated that the loss of CDK10 expression, which was observed in 50.8% of primary gastric cancer tissues (n=128), significantly correlated with advanced tumor stage (P<0.001), frequent lymph node metastasis (P<0.001), distant metastasis (P=0.013), tumor differentiation (P=0.004) and unfavorable overall survival (P<0.001). Multivariate analysis suggested that CDK10 expression may serve as an independent prognostic predictor (P=0.001) for the progression of gastric cancer. In addition, ectopic CDK10 expression inhibited gastric cancer cell proliferation, migration and invasion, while knockdown of CDK10 promoted these phenotypes. Collectively, the results of the present study indicated that CDK10 expression may serve as a novel prognostic biomarker that holds therapeutic promise for gastric cancer.
Collapse
Affiliation(s)
- Yanjie You
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Feihu Bai
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Zhengcai Ye
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Nan Zhang
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Li Yao
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Yuanyuan Tang
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Ximei Li
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| |
Collapse
|
25
|
Joshi P, Sonawane VR, Williams IS, McCann GJP, Gatchie L, Sharma R, Satti N, Chaudhuri B, Bharate SB. Identification of karanjin isolated from the Indian beech tree as a potent CYP1 enzyme inhibitor with cellular efficacy via screening of a natural product repository. MEDCHEMCOMM 2018; 9:371-382. [PMID: 30108931 PMCID: PMC6083783 DOI: 10.1039/c7md00388a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/05/2018] [Indexed: 12/16/2022]
Abstract
CYP1A1 is thought to mediate carcinogenesis in oral, lung and epithelial cancers. In order to identify a CYP1A1 inhibitor from an edible plant, 394 natural products in the IIIM's natural product repository were screened, at 10 μM concentration, using CYP1A1-Sacchrosomes™ (i.e. microsomal enzyme isolated from recombinant baker's yeast). Twenty-seven natural products were identified that inhibited 40-97% of CYP1A1's 7-ethoxyresorufin-O-deethylase activity. The IC50 values of the 'hits', belonging to different chemical scaffolds, were determined. Their selectivity was studied against a panel of 8 CYP-Sacchrosomes™. In order to assess cellular efficacy, the 'hits' were screened for their capability to inhibit CYP enzymes expressed within live recombinant human embryonic kidney (HEK293) cells from plasmids encoding specific CYP genes (1A2, 1B1, 2C9, 2C19, 2D6, 3A4). Isopimpinellin (IN-475; IC50, 20 nM) and karanjin (IN-195; IC50, 30 nM) showed the most potent inhibition of CYP1A1 in human cells. Isopimpinellin is found in celery, parsnip, fruits and in the rind and pulp of limes whereas different parts of the Indian beech tree, which contain karanjin, have been used in traditional medicine. Both isopimpinellin and karanjin negate the cellular toxicity of CYP1A1-mediated benzo[a]pyrene. Molecular docking and molecular dynamic simulations with CYP isoforms rationalize the observed trends in the potency and selectivity of isopimpinellin and karanjin.
Collapse
Affiliation(s)
- Prashant Joshi
- Medicinal Chemistry Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India . ; ; Tel: +91 191 2569111
- Academy of Scientific & Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India
| | - Vinay R Sonawane
- Leicester School of Pharmacy , De Montfort University , Leicester , LE1 9BH , UK .
| | - Ibidapo S Williams
- Leicester School of Pharmacy , De Montfort University , Leicester , LE1 9BH , UK .
- CYP Design Limited, Innovation Centre , 49 Oxford Street , Leicester , LE1 5XY , UK
| | - Glen J P McCann
- Leicester School of Pharmacy , De Montfort University , Leicester , LE1 9BH , UK .
| | - Linda Gatchie
- Leicester School of Pharmacy , De Montfort University , Leicester , LE1 9BH , UK .
- CYP Design Limited, Innovation Centre , 49 Oxford Street , Leicester , LE1 5XY , UK
| | - Rajni Sharma
- Academy of Scientific & Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India
- Natural Product Chemistry Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India
| | - Naresh Satti
- Natural Product Chemistry Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy , De Montfort University , Leicester , LE1 9BH , UK .
| | - Sandip B Bharate
- Medicinal Chemistry Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India . ; ; Tel: +91 191 2569111
- Academy of Scientific & Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India
| |
Collapse
|
26
|
Oh TI, Lee JH, Kim S, Nam TJ, Kim YS, Kim BM, Yim WJ, Lim JH. Fascaplysin Sensitizes Anti-Cancer Effects of Drugs Targeting AKT and AMPK. Molecules 2017; 23:molecules23010042. [PMID: 29295560 PMCID: PMC5943942 DOI: 10.3390/molecules23010042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Fascaplysin, a natural product isolated from marine sponges, is a potential candidate for the development of anti-cancer drugs. However, the mechanism underlying its therapeutic effect of strengthening anti-cancer efficacy of other drugs is poorly understood. Here, we found that fascaplysin increases phosphorylation of protein kinase B (PKB), also known as AKT, and adenosine monophosphate-activated protein kinase (AMPK), which are considered therapeutic targets for cancer treatment due to their anti-apoptotic or pro-survival functions in cancer. A cell viability assay revealed that pharmacological suppression of AKT using LY294002 enhanced the anti-cancer effect of fascaplysin in various cancer cells. Similarly, fascaplysin was observed to have improved anti-cancer effects in combination with compound C, a selective AMPK inhibitor. Another challenge showed that fascaplysin increased the efficacy of methotrexate (MTX)-mediated cancer therapy by suppressing genes related to folate and purine metabolism. Overall, these results suggest that fascaplysin may be useful for improving the anti-cancer efficacy of targeted anti-cancer drugs, such as inhibitors of phosphoinositide 3-kinase AKT signaling, and chemotherapeutic agents, such as MTX.
Collapse
Affiliation(s)
- Taek-In Oh
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Jun Ho Lee
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Seongman Kim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Taek-Jin Nam
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Young-Seon Kim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Byeong Mo Kim
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases (SIRIC), Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Woo Jong Yim
- Jung-Ang Microbe Research Institute (JM), 398, Jikji-daero, Heungdeok-gu, Cheongju 28576, Chungbuk, Korea.
| | - Ji-Hong Lim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
- Nanotechnology Research Center, Konkuk University, Chungju 27478, Korea.
| |
Collapse
|
27
|
Tanabe K. Microtubule Depolymerization by Kinase Inhibitors: Unexpected Findings of Dual Inhibitors. Int J Mol Sci 2017; 18:ijms18122508. [PMID: 29168788 PMCID: PMC5751111 DOI: 10.3390/ijms18122508] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
Microtubule-targeting agents are widely used as clinical drugs in the treatment of cancer. However, some kinase inhibitors can also disrupt microtubule organization by directly binding to tubulin. These unexpected effects may result in a plethora of harmful events and/or a misinterpretation of the experimental results. Thus, further studies are needed to understand these dual inhibitors. In this review, I discuss the roles of dual inhibitors of kinase activity and microtubule function as well as describe the properties underlining their dual roles. Since both kinase and microtubule inhibitors cause cell toxicity and cell cycle arrest, it is difficult to determine which inhibitor is responsible for each phenotype. A discrimination of cell cycle arrest at G0/G1 or G2/M and/or image analyses of cellular phenotype may eventually lead to new insights on drug duality. Because of the indispensable roles of microtubules in mitosis and vesicle transport, I propose a simple and easy method to identify microtubule depolymerizing compounds.
Collapse
Affiliation(s)
- Kenji Tanabe
- Medical Research Institute, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
28
|
Chen S, Guan X, Wang LL, Li B, Sang XB, Liu Y, Zhao Y. Fascaplysin inhibit ovarian cancer cell proliferation and metastasis through inhibiting CDK4. Gene 2017; 635:3-8. [DOI: 10.1016/j.gene.2017.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 12/29/2022]
|
29
|
Bayraktar O, Ozkirimli E, Ulgen K. Sphingosine kinase 1 (SK1) allosteric inhibitors that target the dimerization site. Comput Biol Chem 2017; 69:64-76. [PMID: 28587987 DOI: 10.1016/j.compbiolchem.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/29/2017] [Accepted: 05/24/2017] [Indexed: 02/03/2023]
Abstract
The sphingosine kinase 1 (SK1)/sphingosine-1-phosphate (S1P) signaling pathway is a crucial target for numerous human diseases from cancer to cardiovascular diseases. However, available SK1 inhibitors that target the active site suffer from poor potency, selectivity and pharmacokinetic properties. The selectivity issue of the kinases, which share a highly-conserved ATP-pocket, can be overcome by targeting the less-conserved allosteric sites. SK1 is known to function minimally as a dimer; however, the crystal structure of the SK1 dimer has not been determined. In this study, a template-based algorithm implemented in PRISM was used to predict the SK1 dimer structure and then the possible allosteric sites at the dimer interface were determined via SiteMap. These sites were used in a virtual screening campaign that includes an integrated workflow of structure-based pharmacophore modeling, virtual screening, molecular docking, re-screening of common scaffolds to propose a series of compounds with different scaffolds as potential allosteric SK1 inhibitors. Finally, the stability of the SK1-ligand complexes was analyzed by molecular dynamics simulations. As a final outcome, ligand 7 having a 4,9-dihydro-1H-purine scaffold and ligand 12 having a 2,3,4,9-tetrahydro-1H-β-carboline scaffold were found to be potential selective inhibitors for SK1.
Collapse
Affiliation(s)
- Ozge Bayraktar
- Department of Computational Science and Engineering, Bogazici University, 34342 Bebek, Istanbul, Turkey
| | - Elif Ozkirimli
- Department of Computational Science and Engineering, Bogazici University, 34342 Bebek, Istanbul, Turkey; Department of Chemical Engineering, Bogazici University, 34342 Bebek, Istanbul, Turkey.
| | - Kutlu Ulgen
- Department of Computational Science and Engineering, Bogazici University, 34342 Bebek, Istanbul, Turkey; Department of Chemical Engineering, Bogazici University, 34342 Bebek, Istanbul, Turkey.
| |
Collapse
|
30
|
|
31
|
Horley NJ, Beresford KJ, Chawla T, McCann GJ, Ruparelia KC, Gatchie L, Sonawane VR, Williams IS, Tan HL, Joshi P, Bharate SS, Kumar V, Bharate SB, Chaudhuri B. Discovery and characterization of novel CYP1B1 inhibitors based on heterocyclic chalcones: Overcoming cisplatin resistance in CYP1B1-overexpressing lines. Eur J Med Chem 2017; 129:159-174. [DOI: 10.1016/j.ejmech.2017.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
|
32
|
QIAO WENLIANG, HU HAIYANG, SHI BOWEN, ZANG LIJUAN, JIN WEI, LIN QIANG. Lentivirus-mediated knockdown of TSP50 suppresses the growth of non-small cell lung cancer cells via G0/G1 phase arrest. Oncol Rep 2016; 35:3409-18. [DOI: 10.3892/or.2016.4763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/18/2016] [Indexed: 11/05/2022] Open
|
33
|
You Y, Li H, Qin X, Zhang Y, Song W, Ran Y, Gao F. Decreased CDK10 expression correlates with lymph node metastasis and predicts poor outcome in breast cancer patients - a short report. Cell Oncol (Dordr) 2015; 38:485-91. [PMID: 26392360 DOI: 10.1007/s13402-015-0246-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase 10 (CDK10) has recently been identified as a tumor suppressor and, concordantly, its encoding gene has frequently been found to be inactivated in various human cancers. Here, we examined the expression status of CDK10 in a panel of primary human breast cancers and evaluated its correlation with clinicopathological parameters and clinical outcome. METHODS Western blotting was used to assess CDK10 protein levels in 20 paired breast cancer tissues and adjacent noncancerous tissues. In addition, immunohistochemistry was performed in 128 formalin-fixed, paraffin-embedded tumor tissues. Associations of CDK10 expression with various clinicopathological parameters were evaluated and Kaplan-Meier survival analyses and Cox proportional hazards models were used to estimate its effect on patient survival. RESULTS We found that CDK10 protein expression was markedly decreased in cancer tissues compared to adjacent noncancerous tissues. Immunohistochemistry revealed decreased CDK10 levels in 65/128 (50.8 %) of the primary breast cancer tissues tested. These decreased levels were found to be significantly associated with lymph node metastasis (P = 0.003), advanced tumor stage (P < 0.001) and unfavorable overall survival (P < 0.001). Furthermore, multivariate analyses indicated that CDK10 expression may serve as an independent prognostic factor for survival (P = 0.001). CONCLUSION Down-regulated CDK10 expression frequently occurs in breast cancers and correlates with disease progression and poor survival. CDK10 may serve as a prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Yanjie You
- Pathological Examination and Research Center, Luohe Medical College, 148 Daxue-Road, Luohe, 462002, China
- Department of Pharmacy, Luohe Medical College, Luohe, 462002, China
- Luohe Key Laboratory of Medical Bioengineering, Luohe, 462002, China
- Bioengineering Laboratory, Luohe Medical College, Luohe, 462002, China
| | - Haijun Li
- Department of Radiation Oncology, the Second People's Hospital of Neijiang City, Neijaing, 641000, China
| | - Xin Qin
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Yinpo Zhang
- Pathological Examination and Research Center, Luohe Medical College, 148 Daxue-Road, Luohe, 462002, China
| | - Wengang Song
- Pathological Examination and Research Center, Luohe Medical College, 148 Daxue-Road, Luohe, 462002, China
| | - Yonggang Ran
- Department of Teaching and Training, Bethune Military Medical NCO Academy of PLA, Shijiazhuang, 050081, China
| | - Fenglan Gao
- Pathological Examination and Research Center, Luohe Medical College, 148 Daxue-Road, Luohe, 462002, China.
| |
Collapse
|
34
|
Cytotoxic activity of the MK2 inhibitor CMPD1 in glioblastoma cells is independent of MK2. Cell Death Discov 2015; 1:15028. [PMID: 27551460 PMCID: PMC4979411 DOI: 10.1038/cddiscovery.2015.28] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 07/16/2015] [Indexed: 01/14/2023] Open
Abstract
MAPK-activated protein kinase 2 (MK2) is a checkpoint kinase involved in the DNA damage response. MK2 inhibition enhances the efficacy of chemotherapeutic agents; however, whether MK2 inhibition alone, without concurrent chemotherapy, would attenuate survival of cancer cells has not been investigated. CMPD1 is a widely used non-ATP competitive inhibitor that prevents MK2 phosphorylation. We employed CMPD1 together with MK2 knock-down and ATP-competitive MK2 inhibitor III (MK2i) in a panel of glioblastoma cells to assess whether MK2 inhibition could induce cancer cell death. While CMPD1 was effective at selective killing of cancer cells, MK2i and MK2 knock-down had no effect on viability of glioblastoma cells. CMPD1 treatment induced a significant G2/M arrest but MK2i-treated cells were only minimally arrested at G1 phase. Intriguingly, at doses that were cytotoxic to glioblastoma cells, CMPD1 did not inhibit phosphorylation of MK2 and of its downstream substrate Hsp27. These results suggest that CMPD1 exhibits cytotoxic activity independently of MK2 inhibition. Indeed, we identified tubulin as a primary target of the CMPD1 cytotoxic activity. This study demonstrates how functional and mechanistic studies with appropriate selection of test compounds, combining genetic knock-down and pharmacological inhibition, coordinating timing and dose levels enabled us to uncover the primary target of an MK2 inhibitor commonly used in the research community. Tubulin is emerging as one of the most common non-kinase targets for kinase inhibitors and we propose that potential tubulin-targeting activity should be assessed in preclinical pharmacology studies of all novel kinase inhibitors.
Collapse
|