1
|
Dong Y, Kang H, Peng R, Liu Z, Liao F, Hu SA, Ding W, Wang P, Yang P, Zhu M, Wang S, Wu M, Ye D, Gan X, Li F, Song K. A clinical-stage Nrf2 activator suppresses osteoclast differentiation via the iron-ornithine axis. Cell Metab 2024; 36:1679-1695.e6. [PMID: 38569557 DOI: 10.1016/j.cmet.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/14/2023] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
Activating Nrf2 by small molecules is a promising strategy to treat postmenopausal osteoporosis. However, there is currently no Nrf2 activator approved for treating chronic diseases, and the downstream mechanism underlying the regulation of Nrf2 on osteoclast differentiation remains unclear. Here, we found that bitopertin, a clinical-stage glycine uptake inhibitor, suppresses osteoclast differentiation and ameliorates ovariectomy-induced bone loss by activating Nrf2. Mechanistically, bitopertin interacts with the Keap1 Kelch domain and decreases Keap1-Nrf2 binding, leading to reduced Nrf2 ubiquitination and degradation. Bitopertin is associated with less adverse events than clinically approved Nrf2 activators in both mice and human subjects. Furthermore, Nrf2 transcriptionally activates ferroportin-coding gene Slc40a1 to reduce intracellular iron levels in osteoclasts. Loss of Nrf2 or iron supplementation upregulates ornithine-metabolizing enzyme Odc1, which decreases ornithine levels and thereby promotes osteoclast differentiation. Collectively, our findings identify a novel clinical-stage Nrf2 activator and propose a novel Nrf2-iron-ornithine metabolic axis in osteoclasts.
Collapse
Affiliation(s)
- Yimin Dong
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renpeng Peng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheming Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fuben Liao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi-An Hu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhong Ding
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengju Wang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengchao Yang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meipeng Zhu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sibo Wang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglong Wu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Gan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kehan Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Yu X, Wu Q, Ren Z, Chen B, Wang D, Yuan T, Ding H, Wang Y, Yuan G, Wang Y, Zhang L, Zhao J, Sun Z. Kaempferol attenuates wear particle-induced inflammatory osteolysis via JNK and p38-MAPK signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117019. [PMID: 37574017 DOI: 10.1016/j.jep.2023.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wear particle-induced inflammatory osteoclast activation is a master contributor to periprosthetic osteolysis, which can cause pathological bone loss and destruction. Hence, inhibiting inflammation and osteoclastogenesis is an important strategy for preventing wear particle-induced osteolysis. To date, there are no FDA-approved non-surgical pharmacotherapies for arresting periprosthetic osteolysis. Kaempferol (KAE), a natural flavonol abundant in many traditional Chinese herbal medicines, has been shown to have protective effects against inflammatory bone diseases such as rheumatoid arthritis, but no previous study has evaluated the effects of KAE on wear particle-induced osteolysis. AIM OF THE STUDY The study aimed to investigate the effects of KAE on wear particle-induced inflammatory osteolysis and osteoclast activation, and further explore the underlying mechanisms. MATERIALS AND METHODS TiAl6V4 metal particles (TiPs) were retrieved from the prosthesis of patients who underwent revision hip arthroplasty due to aseptic loosening. A mouse calvarial osteolysis model was used to investigate the effects of KAE on wear particle-induced inflammatory osteolysis in vivo. Primary bone marrow-derived macrophages (BMMs) were used to explore the effects of KAE on osteoclast differentiation and bone-resorbing activity as well as the underlying mechanisms in vitro. RESULTS In the present study, we found that KAE alleviated wear particle-induced inflammatory bone loss in vivo and inhibited osteoclast differentiation and function in vitro. Furthermore, we revealed that KAE exerted anti-osteoclastogenic effects by downregulating JNK and p38-MAPK signaling as well as the downstream NFATc1 expression. CONCLUSIONS KAE is an alternative therapeutic agent for preventing and treating periprosthetic osteolysis and aseptic loosening.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Qi Wu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China; Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, China
| | - Bin Chen
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Dongsheng Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Tao Yuan
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Hao Ding
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yang Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Guodong Yuan
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yuxiang Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Lei Zhang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Jianning Zhao
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Zhongyang Sun
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China; Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, 210002, China.
| |
Collapse
|
3
|
Li J, Wei G, Liu G, Du Y, Zhang R, Wang A, Liu B, Cui W, Jia P, Xu Y. Regulating Type H Vessel Formation and Bone Metabolism via Bone-Targeting Oral Micro/Nano-Hydrogel Microspheres to Prevent Bone Loss. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207381. [PMID: 36967561 DOI: 10.1002/advs.202207381] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/28/2023] [Indexed: 05/27/2023]
Abstract
Postmenopausal osteoporosis is one of the most prevalent skeletal disorders in women and is featured by the imbalance between intraosseous vascularization and bone metabolism. In this study, a pH-responsive shell-core structured micro/nano-hydrogel microspheres loaded with polyhedral oligomeric silsesquioxane (POSS) using gas microfluidics and ionic cross-linking technology are developed. This micro/nano-hydrogel microsphere system (PDAP@Alg/Cs) can achieve oral delivery, intragastric protection, intestinal slow/controlled release, active targeting to bone tissue, and thus negatively affecting intraosseous angiogenesis and osteoclastogenesis. According to biodistribution data, PDAP@Alg/Cs can successfully enhance drug intestinal absorption and bioavailability through intestine adhesion and bone targeting after oral administration. In vitro and in vivo experiments reveal that PDAP@Alg/Cs promoted type H vessel formation and inhibited bone resorption, effectively mitigating bone loss by activating HIF-1α/VEGF signaling pathway and promoting heme oxygenase-1 (HO-1) expression. In conclusion, this novel oral micro/nano-hydrogel microsphere system can simultaneously accelerate intraosseous vascularization and decrease bone resorption, offering a brand-new approach to prevent postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Junjie Li
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of Orthopaedics, Land Force No.72 Group Army Hospital of PLA, No.9 Chezhan Road, Huzhou, 313000, P. R. China
| | - Gang Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Gongwen Liu
- Department of Orthopaedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No.18 Yangsu Road, Suzhou, 215000, P. R. China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Ruizhi Zhang
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| | - Aifei Wang
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| | - Baoshan Liu
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Peng Jia
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| | - Youjia Xu
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| |
Collapse
|
4
|
Wang D, Li X, Jiao D, Cai Y, Qian L, Shen Y, Lu Y, Zhou Y, Fu B, Sun R, Tian Z, Zheng X, Wei H. LCN2 secreted by tissue-infiltrating neutrophils induces the ferroptosis and wasting of adipose and muscle tissues in lung cancer cachexia. J Hematol Oncol 2023; 16:30. [PMID: 36973755 PMCID: PMC10044814 DOI: 10.1186/s13045-023-01429-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Cancer cachexia is a deadly wasting syndrome that accompanies various diseases (including ~ 50% of cancers). Clinical studies have established that cachexia is not a nutritional deficiency and is linked to expression of certain proteins (e.g., interleukin-6 and C-reactive protein), but much remains unknown about this often fatal syndrome. METHODS First, cachexia was created in experimental mouse models of lung cancer. Samples of human lung cancer were used to identify the association between the serum lipocalin 2 (LCN2) level and cachexia progression. Then, mouse models with LCN2 blockade or LCN2 overexpression were used to ascertain the role of LCN2 upon ferroptosis and cachexia. Furthermore, antibody depletion of tissue-infiltrating neutrophils (TI-Neu), as well as myeloid-specific-knockout of Lcn2, were undertaken to reveal if LCN2 secreted by TI-Neu caused cachexia. Finally, chemical inhibition of ferroptosis was conducted to illustrate the effect of ferroptosis upon tissue wasting. RESULTS Protein expression of LCN2 was higher in the wasting adipose tissue and muscle tissues of experimental mouse models of lung cancer cachexia. Moreover, evaluation of lung cancer patients revealed an association between the serum LCN2 level and cachexia progression. Inhibition of LCN2 expression reduced cachexia symptoms significantly and inhibited tissue wasting in vivo. Strikingly, we discovered a significant increase in the number of TI-Neu in wasting tissues, and that these innate immune cells secreted high levels of LCN2. Antibody depletion of TI-Neu, as well as myeloid-specific-knockout of Lcn2, prevented ferroptosis and tissue wasting in experimental models of lung cancer cachexia. Chemical inhibition of ferroptosis alleviated tissue wasting significantly and also prolonged the survival of cachectic mice. CONCLUSIONS Our study provides new insights into how LCN2-induced ferroptosis functionally impacts tissue wasting. We identified LCN2 as a potential target in the treatment of cancer cachexia.
Collapse
Affiliation(s)
- Dong Wang
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Xiaohui Li
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Defeng Jiao
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Ying Cai
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Liting Qian
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Yiqing Shen
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yichen Lu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yonggang Zhou
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Binqing Fu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Rui Sun
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Zhigang Tian
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Xiaohu Zheng
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Haiming Wei
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
5
|
Ciosek Ż, Kot K, Rotter I. Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2197. [PMID: 36767564 PMCID: PMC9915283 DOI: 10.3390/ijerph20032197] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The paper presents the current understanding on the effects of five metals on bone tissue, namely iron, zinc, copper, cadmium, and mercury. Iron, zinc, and copper contribute significantly to human and animal metabolism when present in sufficient amounts, but their excess or shortage increases the risk of developing bone disorders. In contrast, cadmium and mercury serve no physiological purpose and their long-term accumulation damages the osteoarticular system. We discuss the methods of action and interactions between the discussed elements as well as the concentrations of each element in distinct bone structures.
Collapse
Affiliation(s)
- Żaneta Ciosek
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Iwona Rotter
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
6
|
Zhao S, Ge C, Li Y, Chang L, Dan Z, Tu Y, Deng L, Kang H, Li C. Desferrioxamine alleviates UHMWPE particle-induced osteoclastic osteolysis by inhibiting caspase-1-dependent pyroptosis in osteocytes. J Biol Eng 2022; 16:34. [PMID: 36482442 PMCID: PMC9733322 DOI: 10.1186/s13036-022-00314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cell death and inflammation are the two important triggers of wear particle-induced osteolysis. Particles, including cobalt-chromium-molybdenum and tricalcium phosphate, have been reported to induce pyroptosis in macrophages and osteocytes. Although macrophage pyroptosis facilitates osteoclastic bone resorption and osteolysis, whether osteocyte pyroptosis is involved in osteoclastic osteolysis still needs further investigation. Desferrioxamine (DFO), an FDA-approved medication and a powerful iron chelator, has been proven to reduce ultrahigh-molecular-weight polyethylene (UHMWPE) particle-induced osteolysis. However, whether DFO can ameliorate UHMWPE particle-induced osteolysis by decreasing pyroptosis in osteocytes is unknown. RESULTS A mouse calvarial osteolysis model and the mouse osteocyte cell line MLO-Y4 was used, and we found that pyroptosis in osteocytes was significantly induced by UHMWPE particles. Furthermore, our findings uncovered a role of caspase-1-dependent pyroptosis in osteocytes in facilitating osteoclastic osteolysis induced by UHMWPE particles. In addition, we found that DFO could alleviate UHMWPE particle-induced pyroptosis in osteocytes in vivo and in vitro. CONCLUSIONS We uncovered a role of caspase-1-dependent pyroptosis in osteocytes in facilitating osteoclastic osteolysis induced by UHMWPE particles. Furthermore, we found that DFO alleviated UHMWPE particle-induced osteoclastic osteolysis partly by inhibiting pyroptosis in osteocytes. Schematic of DFO reducing UHMWPE particle-induced osteolysis by inhibiting osteocytic pyroptosis. Wear particles, such as polymers, generated from prosthetic implant materials activate canonical inflammasomes and promote the cleavage and activation of caspase-1. This is followed by caspase-1-dependent IL-β maturation and GSDMD cleavage. The N-terminal fragment of GSDMD binds to phospholipids on the cell membrane and forms holes in the membrane, resulting in the release of mature IL-β and inflammatory intracellular contents. This further facilitates osteoclastic differentiation of BMMs, resulting in excessive bone resorption and ultimately leading to prosthetic osteolysis. DFO reduces UHMWPE particle-induced osteolysis by inhibiting osteocytic pyroptosis.
Collapse
Affiliation(s)
- Shenli Zhao
- grid.460149.e0000 0004 1798 6718Department of Orthopedics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China ,grid.412277.50000 0004 1760 6738Department of Orthopedics, Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2Nd Road, Shanghai, 200025 China
| | - Chen Ge
- grid.412277.50000 0004 1760 6738Department of Orthopedic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Li
- grid.89957.3a0000 0000 9255 8984Nanjing Medical University School of Medicine, Nanjing, China
| | - Leilei Chang
- grid.412277.50000 0004 1760 6738Department of Orthopedics, Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2Nd Road, Shanghai, 200025 China
| | - Zhou Dan
- grid.412277.50000 0004 1760 6738Department of Orthopedics, Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2Nd Road, Shanghai, 200025 China
| | - Yihui Tu
- grid.460149.e0000 0004 1798 6718Department of Orthopedics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lianfu Deng
- grid.412277.50000 0004 1760 6738Department of Orthopedics, Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2Nd Road, Shanghai, 200025 China
| | - Hui Kang
- grid.412538.90000 0004 0527 0050Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicin, No. 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Changwei Li
- grid.412277.50000 0004 1760 6738Department of Orthopedics, Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2Nd Road, Shanghai, 200025 China
| |
Collapse
|
7
|
Mahmoudi A, Atkin SL, Jamialahmadi T, Banach M, Sahebkar A. Effect of Curcumin on Attenuation of Liver Cirrhosis via Genes/Proteins and Pathways: A System Pharmacology Study. Nutrients 2022; 14:nu14204344. [PMID: 36297027 PMCID: PMC9609422 DOI: 10.3390/nu14204344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/30/2023] Open
Abstract
Background: Liver cirrhosis is a life-threatening seqsuel of many chronic liver disorders of varying etiologies. In this study, we investigated protein targets of curcumin in liver cirrhosis based on a bioinformatics approach. Methods: Gene/protein associations with curcumin and liver cirrhosis were probed in drug−gene and gene−diseases databases including STITCH/DGIdb/DisGeNET/OMIM/DISEASES/CTD/Pharos and SwissTargetPrediction. Critical clustering groups (MCODE), hub candidates and critical hub genes in liver cirrhosis were identified, and connections between curcumin and liver cirrhosis-related genes were analyzed via Venn diagram. Interaction of hub genes with curcumin by molecular docking using PyRx-virtual screening tools was performed. Results: MCODE analysis indicated three MCODEs; the cluster (MCODE 1) comprised 79 nodes and 881 edges (score: 22.59). Curcumin database interactions recognized 318 protein targets. Liver cirrhosis genes and curcumin protein targets analysis demonstrated 96 shared proteins, suggesting that curcumin may influence 20 candidate and 13 hub genes, covering 81% of liver cirrhosis critical genes and proteins. Thirteen shared proteins affected oxidative stress regulation, RNA, telomerase activity, cell proliferation, and cell death. Molecular docking analysis showed the affinity of curcumin binding hub genes (Binding affinity: ΔG < −4.9 kcal/mol). Conclusions: Curcumin impacted on several critical liver cirrhosis genes mainly involved in extracellular matrix communication, focal adhesion, and the response to oxidative stress.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Stephen L. Atkin
- School of Postgraduate Studies and Research, RCSI Medical University of Bahrain, Busaiteen, Bahrain
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), 93-338 Lodz, Poland
- Cardiovascular Research Center, University of Zielona Gora, 65-417 Zielona Gora, Poland
- Correspondence: (M.B.); or (A.S.); Tel.: +98-513-180-1239 (A.S.); Fax: +98-513-800-2287 (A.S.)
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Correspondence: (M.B.); or (A.S.); Tel.: +98-513-180-1239 (A.S.); Fax: +98-513-800-2287 (A.S.)
| |
Collapse
|
8
|
Optimization of a Tricalcium Phosphate-Based Bone Model Using Cell-Sheet Technology to Simulate Bone Disorders. Processes (Basel) 2022. [DOI: 10.3390/pr10030550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bone diseases such as osteoporosis, delayed or impaired bone healing, and osteoarthritis still represent a social, financial, and personal burden for affected patients and society. Fully humanized in vitro 3D models of cancellous bone tissue are needed to develop new treatment strategies and meet patient-specific needs. Here, we demonstrate a successful cell-sheet-based process for optimized mesenchymal stromal cell (MSC) seeding on a β-tricalcium phosphate (TCP) scaffold to generate 3D models of cancellous bone tissue. Therefore, we seeded MSCs onto the β-TCP scaffold, induced osteogenic differentiation, and wrapped a single osteogenically induced MSC sheet around the pre-seeded scaffold. Comparing the wrapped with an unwrapped scaffold, we did not detect any differences in cell viability and structural integrity but a higher cell seeding rate with osteoid-like granular structures, an indicator of enhanced calcification. Finally, gene expression analysis showed a reduction in chondrogenic and adipogenic markers, but an increase in osteogenic markers in MSCs seeded on wrapped scaffolds. We conclude from these data that additional wrapping of pre-seeded scaffolds will provide a local niche that enhances osteogenic differentiation while repressing chondrogenic and adipogenic differentiation. This approach will eventually lead to optimized preclinical in vitro 3D models of cancellous bone tissue to develop new treatment strategies.
Collapse
|
9
|
Chen K, Zhao J, Qiu M, Zhang L, Yang K, Chang L, Jia P, Qi J, Deng L, Li C. Osteocytic HIF-1α Pathway Manipulates Bone Micro-structure and Remodeling via Regulating Osteocyte Terminal Differentiation. Front Cell Dev Biol 2022; 9:721561. [PMID: 35118061 PMCID: PMC8804240 DOI: 10.3389/fcell.2021.721561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
The activation of hypoxia-inducible factor 1α (HIF-1α) signaling has promising implications for the treatment of bone diseases such as osteoporosis and skeletal fractures. However, the effects of manipulating HIF-1α pathway on bone micro-structure and remodeling should be fully studied before the clinical application of therapeutics that interfere with the HIF-1α pathway. In this study, we found that osteocyte-specific HIF-1α pathway had critical role in manipulating bone mass accrual, bone material properties and micro-structures, including bone mineralization, bone collagen fiber formation, osteocyte/canalicular network, and bone remodeling. In addition, our results suggest that osteocyte-specific HIF-1α pathway regulates bone micro-structure and remodeling via impairing osteocyte differentiation and maturation.
Collapse
Affiliation(s)
- Kaizhe Chen
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian Zhao
- Department of Orthopedics, The Central Hospital of Taian, Shandong, China
| | - Minglong Qiu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lianfang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Yang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Leilei Chang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Jia
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Qi
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Jin Qi, ; Lianfu Deng, ; Changwei Li, ,
| | - Lianfu Deng
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Jin Qi, ; Lianfu Deng, ; Changwei Li, ,
| | - Changwei Li
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Jin Qi, ; Lianfu Deng, ; Changwei Li, ,
| |
Collapse
|
10
|
Ilka S, Heshmati A, Mirabdollahi SA, Jafarzadeh A, Sedghy F, Bagheri F, Azari O, Mohammadi MA, Jafari Dareh Dar F, Arabnadvi M. Effect of turmeric extract on bone healing in an experimental model of femoral bone fracture. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:197-212. [PMID: 36186936 PMCID: PMC9482714 DOI: 10.22038/ajp.2021.18561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
Objective Following bone trauma, several factors participate in making a balance between the activity of osteoblasts and osteoclasts. The receptor activator of nuclear factor kappa B ligand (RANKL), receptor activator of nuclear factor kappa B (RANK), and osteoprotegerin (OPG) molecules play critical roles in the healing process via regulation of osteoclasts function. Turmeric is suggested to have an anti-osteogenic potential; however, its effect on accelerating bone healing has not been adequately studied. Here, we used a rat model of femur fracture to explore the effect of treatment with turmeric extract on the bone repair and the expression of RANK, RANKL, and OPG molecules. Materials and Methods Eight rats were subjected to surgery, randomly divided into two groups, and treated orally with turmeric (200 mg/kg), or olive oil. Four oil-treated rats without bone fracture were used as control group. After six weeks of treatment, the femurs of animals were examined for radiological, histological, and gene expression analysis. Results X-ray radiography showed thicker callus and a more obscure fracture line in the turmeric group. Furthermore, higher osteoblast percentages but no osteoclasts were observed in turmeric-treated animals, representing better repair of bone in the fracture site. Also, real-time analyses showed that treatment with turmeric reduced RANK and RANKL expression (p<0.0001) and lowered RANKL/OPG ratio (p=0.01) in femoral bone tissue. Conclusion Our findings indicated the turmeric ability to facilitate bone hemostasis and optimize the expression of key markers involved in the bone metabolism.
Collapse
Affiliation(s)
- Shahab Ilka
- Department of Orthopedics, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Afshin Heshmati
- Department of Orthopedics, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Alireza Mirabdollahi
- Department of Orthopedics, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran,Corresponding Author: Tel: +98-3433257660, Fax: +98-3433257671, ,
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran,Corresponding Author: Tel: +98-3433257660, Fax: +98-3433257671, ,
| | - Farnaz Sedghy
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Bagheri
- Pathology and Stem Cell Research Center, Pathology Department, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Omid Azari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Ali Mohammadi
- Department of Parasitology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Jafari Dareh Dar
- Department of Cardiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Moein Arabnadvi
- Department of Orthopedics, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Guo J, Yuan Y, Zhang L, Wang M, Tong X, Liu L, Zhang M, Li H, Chen X, Zou J. Effects of exercise on the expression of long non-coding RNAs in the bone of mice with osteoporosis. Exp Ther Med 2021; 23:70. [PMID: 34934441 PMCID: PMC8649853 DOI: 10.3892/etm.2021.10993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Physical activity or exercise are known to promote bone formation and decrease bone resorption to maintain skeletal and bone health both in animal models and in humans with osteoporosis. Previous studies have indicated that long non-coding RNAs (lncRNAs) are able to regulate bone metabolism. Therefore, the present study aimed to evaluate whether lncRNAs responded to exercise by regulating the balance of bone metabolism in order to prevent osteoporosis. To meet this end, ovariectomized mice were used in the present study to establish an osteoporosis model. The exercise treatment groups were subjected to 9 weeks of treadmill running exercise in 4 weeks of the operation was performed Femurs were collected to measure bone mineral density, bone mass, bone formation and resorption. The expression levels of lncRNAs were subsequently measured using microarray and gene function analyses. The pairwise comparison results [ovariectomy (OVX) vs. OVX + exercise (EX); OVX vs. SHAM; SHAM vs. SHAM + EX; OVX + EX vs. SHAM + EX] of the gene microarray analysis revealed that the expression of 2,424 lncRNAs (1718 upregulated and 706 downregulated) were significantly altered in the mouse femurs following treadmill running. Gene Ontology (GO) analysis, incorporating the GO annotations ‘biological processes’, ‘molecular function’ and ‘cellular components’, of osteoporosis revealed that the VEGF, mTOR and NF-κB signaling pathways were potential targets of the lncRNAs. Moreover, it was possible to predict the target microRNAs (miRNAs) of six lncRNAs (LOC105246953, LOC102637959, NONMMUT014677, NONMMUT027251, ri|D130079K21|PX00187K16|1491 and NONMMUT006626), which suggested that the underlying mechanism by which lncRNAs respond to exercise involved bone regulation via lncRNA-miRNA sponge adsorption. Overall, these results suggested that the treadmill running exercise did regulate lncRNA expression in the bone, and that this was involved in the prevention of osteoporosis.
Collapse
Affiliation(s)
- Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Yu Yuan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China.,School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510631, P.R. China
| | - Lingli Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China.,School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510631, P.R. China
| | - Miao Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xiaoyang Tong
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Lifei Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Miao Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Hui Li
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xi Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China.,School of Sports Science, Wenzhou Medical University, Wenzhou, Zhejiang 325003, P.R. China
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
12
|
Liu J, Kang H, Lu J, Dai Y, Wang F. Experimental study of the effects of hypoxia simulator on osteointegration of titanium prosthesis in osteoporotic rats. BMC Musculoskelet Disord 2021; 22:944. [PMID: 34763682 PMCID: PMC8588664 DOI: 10.1186/s12891-021-04777-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/06/2021] [Indexed: 12/27/2022] Open
Abstract
Background Poor osseointegration is the key reason for implant failure after arthroplasty,whether under osteoporotic or normal bone conditions. To date, osseointegration remains a major challenge. Recent studies have shown that deferoxamine (DFO) can accelerate osteogenesis by activating the hypoxia signaling pathway. The purpose of this study was to test the following hypothesis: after knee replacement, intra-articular injection of DFO will promote osteogenesis and osseointegration with a 3D printed titanium prosthesis in the bones of osteoporotic rats. Materials and methods Ninety female Sprague–Dawley rats were used for the experiment. Ten rats were used to confirm the successful establishment of the osteoporosis model: five rats in the sham operation group and five rats in the ovariectomy group. After ovariectomy and knee arthroplasty were performed, the remaining 80 rats were randomly divided into DFO and control groups (n = 40 per group). The two groups were treated by intraarticular injection of DFO and saline respectively. After 2 weeks, polymerase chain reaction (PCR) and immunohistochemistry were used to evaluate the levels of HIF-1a, VEGF, and CD31. HIF-1a and VEGF have been shown to promote angiogenesis and bone regeneration, and CD31 is an important marker of angiogenesis. After 12 weeks, the specimens were examined by micro-computed tomography (micro-CT), biomechanics, and histopathology to evaluate osteogenesis and osseointegration. Results The results of PCR showed that the mRNA levels of VEGF and CD31 in the DFO group were significantly higher than those in the control group. The immunohistochemistry results indicated that positive cell expression of HIF-1a, VEGF, and CD31 in the DFO group was also higher. Compared with the control group, the micro-CT parameters of BMD, BV/TV, TB. N, and TB. Th were significantly higher. The maximal pull-out force and the bone-to-implant contact value were also higher. Conclusions The local administration of DFO, which is used to activate the HIF-1a signaling pathway, can promote osteogenesis and osseointegration with a prosthesis in osteoporotic bone.
Collapse
Affiliation(s)
- Jiangfeng Liu
- Department of Joint Surgery, Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, China
| | - Huijun Kang
- Department of Joint Surgery, Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, China
| | - Jiangfeng Lu
- Department of Joint Surgery, Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, China
| | - Yike Dai
- Department of Joint Surgery, Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, China
| | - Fei Wang
- Department of Joint Surgery, Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, China.
| |
Collapse
|
13
|
The Multifaceted Therapeutic Mechanisms of Curcumin in Osteosarcoma: State-of-the-Art. JOURNAL OF ONCOLOGY 2021; 2021:3006853. [PMID: 34671398 PMCID: PMC8523229 DOI: 10.1155/2021/3006853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is a major form of malignant bone tumor that typically occurs in young adults and children. The combination of aggressive surgical strategies and chemotherapy has led to improvements in survival time, although individuals with recurrent or metastatic conditions still have an extremely poor prognosis. This disappointing situation strongly indicates that testing novel, targeted therapeutic agents is imperative to prevent the progression of osteosarcoma and enhance patient survival time. Curcumin, a naturally occurring phenolic compound found in Curcuma longa, has been shown to have a wide variety of anti-tumor, anti-oxidant, and anti-inflammatory activities in many types of cancers including osteosarcoma. Curcumin is a highly pleiotropic molecule that can modulate intracellular signaling pathways to regulate cell proliferation, inflammation, and apoptosis. These signaling pathways include RANK/RANKL, Notch, Wnt/β-catenin, apoptosis, autophagy, JAK/STAT, and HIF-1 pathways. Additionally, curcumin can regulate the expression of various types of microRNAs that are involved in osteosarcoma. Therefore, curcumin may be a potential candidate for the prevention and treatment of osteosarcoma. This comprehensive review not only covers the use of curcumin in the treatment of osteosarcoma and its anti-cancer molecular mechanisms but also reveals the novel delivery strategies and combination therapies with the aim to improve the therapeutic effect of curcumin.
Collapse
|
14
|
Chang C, Yan J, Yao Z, Zhang C, Li X, Mao H. Effects of Mesenchymal Stem Cell-Derived Paracrine Signals and Their Delivery Strategies. Adv Healthc Mater 2021; 10:e2001689. [PMID: 33433956 PMCID: PMC7995150 DOI: 10.1002/adhm.202001689] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/13/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have been widely studied as a versatile cell source for tissue regeneration and remodeling due to their potent bioactivity, which includes modulation of inflammation response, macrophage polarization toward proregenerative lineage, promotion of angiogenesis, and reduction in fibrosis. This review focuses on profiling the effects of paracrine signals of MSCs, commonly referred to as the secretome, and highlighting the various engineering approaches to tune the MSC secretome. Recent advances in biomaterials‐based therapeutic strategies for delivery of MSCs and MSC‐derived secretome in the form of extracellular vesicles are discussed, along with their advantages and challenges.
Collapse
Affiliation(s)
- Calvin Chang
- Department of Biomedical Engineering, School of Medicine Johns Hopkins University Baltimore MD 21205 USA
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
| | - Jerry Yan
- Department of Biomedical Engineering, School of Medicine Johns Hopkins University Baltimore MD 21205 USA
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
| | - Zhicheng Yao
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Department of Materials Science and Engineering, Whiting School of Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Chi Zhang
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Department of Materials Science and Engineering, Whiting School of Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Xiaowei Li
- Mary and Dick Holland Regenerative Medicine Program and Department of Neurological Sciences University of Nebraska Medical Center Omaha NE 68198 USA
| | - Hai‐Quan Mao
- Department of Biomedical Engineering, School of Medicine Johns Hopkins University Baltimore MD 21205 USA
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Department of Materials Science and Engineering, Whiting School of Engineering Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
15
|
Zhang J, Zhao H, Yao G, Qiao P, Li L, Wu S. Therapeutic potential of iron chelators on osteoporosis and their cellular mechanisms. Biomed Pharmacother 2021; 137:111380. [PMID: 33601146 DOI: 10.1016/j.biopha.2021.111380] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential trace element in the metabolism of almost all living organisms. Iron overload can disrupt bone homeostasis by significant inhibition of osteogenic differentiation and stimulation of osteoclastogenesis, consequently leading to osteoporosis. Iron accumulation is also involved in the osteoporosis induced by multiple factors, such as estrogen deficiency, ionizing radiation, and mechanical unloading. Iron chelators are first developed for treating iron overloaded disorders. However, growing evidence suggests that iron chelators can be potentially used for the treatment of bone loss. In this review, we focus on the therapeutic effects of iron chelators on bone loss. Iron chelators have therapeutic effects not only on iron overload induced osteoporosis, but also on osteoporosis induced by estrogen deficiency, ionizing radiation, and mechanical unloading, and in Alzheimer's disease-associated osteoporotic deficits. Iron chelators differently affect the cellular behaviors of bone cells. For osteoblast lineage cells (bone mesenchymal stem cells and osteoblasts), iron chelation stimulates osteogenic differentiation. Conversely, iron chelation significantly inhibits osteoclast differentiation. These different responses may be associated with the different needs of iron during differentiation. Fibroblast growth factor 23, angiogenesis, and antioxidant capability are also involved in the osteoprotective effects of iron chelators.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| | - Hai Zhao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gang Yao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Penghai Qiao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Longfei Li
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuguang Wu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
16
|
Yang J, Dong D, Luo X, Zhou J, Shang P, Zhang H. Iron Overload-Induced Osteocyte Apoptosis Stimulates Osteoclast Differentiation Through Increasing Osteocytic RANKL Production In Vitro. Calcif Tissue Int 2020; 107:499-509. [PMID: 32995951 DOI: 10.1007/s00223-020-00735-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022]
Abstract
Iron overload is closely associated with osteoporosis, the potential cellular mechanism involved in decreased osteoblast differentiation and increased osteoclast formation. However, the effect of iron overload on the biological behavior in osteocytes has not been reported. This study aims to investigate the changes of osteocytic activity, apoptosis, and its regulation on osteoclastogenesis in response to iron overload. MLO-Y4 osteocyte-like cells and primary osteocytes from mice were processed with ferric ammonium citrate (FAC) and deferoxamine (DFO), the conditioned medium (CM) was harvested and co-cultured with Raw264.7 cells and bone marrow-derived macrophages (BMDMs) to induce them to differentiate into osteoclasts. Osteocyte apoptosis, osteoclast differentiation, osteocytic gene expression and protein secretion of receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG) was examined. Excessive iron has a toxic effect on MLO-Y4 osteocyte-like cells. Increased cell apoptosis in MLO-Y4 cells and primary osteocytes was induced by iron overload. The osteoclastic formation, differentiation-related gene expression, and osteoclastic bone-resorption capability were significantly increased after treated with the CM from iron overload-exposed osteocytes. Excessive iron exposure significantly promoted the gene expression and protein secretion of the RANKL in MLO-Y4 cells. Addition of RANKL-blocking antibody completely abolished the increase of osteoclast formation and bone resorption capacity induced by the CM from osteocytes exposed to excessive iron. Moreover, the pan-caspase apoptosis inhibitor, QVD (quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methylketone) was used to inhibit osteocyte apoptosis. The results showed osteocyte apoptosis induced by iron overload was reduced by QVD and accompanied by the decrease of soluble RANKL (sRANKL) in supernatant. The increase of osteoclast formation and bone resorption capacity induced by the CM from osteocytes exposed to excessive iron was significantly decreased by QVD. These results indicated that iron overload-induced osteocyte apoptosis is required to regulate osteoclast differentiation by increasing osteocytic RANKL production. This study, for the first time, reveals the indirect effect of iron overload on osteoclast differentiation through regulating osteocytes.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, No. 38, Jinglong Construction Road, Shenzhen, 518109, Guangdong, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, 710072, Shaanxi, China
| | - Dandan Dong
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, 710072, Shaanxi, China
| | - Xinle Luo
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, No. 38, Jinglong Construction Road, Shenzhen, 518109, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Jianhua Zhou
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, No. 38, Jinglong Construction Road, Shenzhen, 518109, Guangdong, China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, 710072, Shaanxi, China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China.
| | - Hao Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, No. 38, Jinglong Construction Road, Shenzhen, 518109, Guangdong, China.
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, China.
| |
Collapse
|
17
|
Kong S, Zhao YG, Guo L, Gao M, Jin C, She Z. Transcriptomics of Planococcus kocurii O516 reveals the degrading metabolism of sulfamethoxazole in marine aquaculture wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114939. [PMID: 32540599 DOI: 10.1016/j.envpol.2020.114939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Environmental threat induced by residual antibiotics in marine aquaculture wastewater is an urgent problem to be solved. In this study, one sulfamethoxazole (SMX)-degrading bacterium, Planococcus kocurii O516 was isolated from high SMX marine aquafarm. The isolate was able to consume more than 60% of SMX with the initial concentration of 10 mg L-1 within 72 h. Transcriptome analysis found great gene expression differences in the strains with or without SMX dosage. Three putatively differentially expressed proteins, namely AbrB/MazE/SpoVT family DNA-binding domain-containing protein, pantoate-beta-alanine ligase and MerR family transcriptional regulator, were annotated in detail. They were inferred to trigger the strain's response to SMX stress. Reverse transcription-quantitative PCR (RT-qPCR) analysis of four significantly different expressed genes accorded well with expression changes revealed by transcriptomics and confirmed the validity of transcriptome analysis. According to functional annotations of the proteins obtained by transcriptome sequencing and structural analysis of the intermediate metabolites by GC-MS, a possible SMX degradation pathway was reasonably proposed. SMX was first decomposed into sulfonamide and 5-methylisoxazole. The sulfonamide was then hydroxylated to form 4-(hydroxyamino) benzenesulfonamide. Subsequently, the sulfamic acid was detached, and 4-(hydroxyamino) phenol was formed. Finally, 4-aminophenol was generated from dehydroxylated of 4-(hydroxyamino) phenol. In sum, transcriptome analysis of the P. kocurii in response to SMX stress benefits to revealing the degradation pathway of SMX and will provide theoretical feasibility for the application of microbial method to treat the SMX-contaminated aquaculture wastewater.
Collapse
Affiliation(s)
- Sijia Kong
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China.
| | - Liang Guo
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China
| | - Mengchun Gao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China
| | - Chunji Jin
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China
| | - Zonglian She
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China
| |
Collapse
|
18
|
Chiu C, Jheng T, Peng B, Chung W, Mong KT. Convergent Synthesis of Macrocyclic and Linear Desferrioxamines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cheng‐Hsin Chiu
- Applied Chemistry Department National Chiao Tung University 1001, University Road R.O.C. 30069 Hsinchu City Taiwan
| | - Ting‐Cian Jheng
- Applied Chemistry Department National Chiao Tung University 1001, University Road R.O.C. 30069 Hsinchu City Taiwan
| | - Bo‐Chun Peng
- Applied Chemistry Department National Chiao Tung University 1001, University Road R.O.C. 30069 Hsinchu City Taiwan
| | - Wen‐Sheng Chung
- Applied Chemistry Department National Chiao Tung University 1001, University Road R.O.C. 30069 Hsinchu City Taiwan
| | - Kwok‐Kong Tony Mong
- Applied Chemistry Department National Chiao Tung University 1001, University Road R.O.C. 30069 Hsinchu City Taiwan
| |
Collapse
|
19
|
Chen B, You Y, Ma A, Song Y, Jiao J, Song L, Shi E, Zhong X, Li Y, Li C. Zn-Incorporated TiO 2 Nanotube Surface Improves Osteogenesis Ability Through Influencing Immunomodulatory Function of Macrophages. Int J Nanomedicine 2020; 15:2095-2118. [PMID: 32273705 PMCID: PMC7109325 DOI: 10.2147/ijn.s244349] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Zinc (Zn), an essential trace element in the body, has stable chemical properties, excellent osteogenic ability and moderate immunomodulatory property. In the present study, a Zn-incorporated TiO2 nanotube (TNT) was fabricated on titanium (Ti) implant material. We aimed to evaluate the influence of nano-scale topography and Zn on behaviors of murine RAW 264.7 macrophages. Moreover, the effects of Zn-incorporated TNT surface-regulated macrophages on the behaviors and osteogenic differentiation of murine MC3T3-E1 osteoblasts were also investigated. METHODS TNT coatings were firstly fabricated on a pure Ti surface using anodic oxidation, and then nano-scale Zn particles were incorporated onto TNTs by the hydrothermal method. Surface topography, chemical composition, roughness, hydrophilicity, Zn release pattern and protein adsorption ability of the Zn-incorporated TiO2 nanotube surface were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), surface profiler, contact angle test, Zn release test and protein adsorption test. The cell behaviors and both pro-inflammatory (M1) and pro-regenerative (M2) marker gene and protein levels in macrophages cultured on Zn-incorporated TNTs surfaces with different TNT diameters were detected. The supernatants of macrophages were extracted and preserved as conditioned medium (CM). Furthermore, the behaviors and osteogenic properties of osteoblasts cultured in CM on various surfaces were evaluated. RESULTS The release profile of Zn on Zn-incorporated TNT surfaces revealed a controlled release pattern. Macrophages cultured on Zn-incorporated TNT surfaces displayed enhanced gene and protein expression of M2 markers, and M1 markers were moderately inhibited, compared with the LPS group (the inflammation model). When cultured in CM, osteoblasts cultured on Zn-incorporated TNTs showed strengthened cell proliferation, adhesion, osteogenesis-related gene expression, alkaline phosphatase activity and extracellular mineralization, compared with their TNT counterparts and the Ti group. CONCLUSION This study suggests that the application of Zn-incorporated TNT surfaces may establish an osteogenic microenvironment and accelerate bone formation. It provided a promising strategy of Ti surface modification for a better applicable prospect.
Collapse
Affiliation(s)
- Bo Chen
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yapeng You
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Aobo Ma
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yunjia Song
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Jian Jiao
- Department of Stomatology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Liting Song
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Enyu Shi
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xue Zhong
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Ying Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Changyi Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| |
Collapse
|
20
|
Yang C, Zhu K, Yuan X, Zhang X, Qian Y, Cheng T. Curcumin has immunomodulatory effects on RANKL-stimulated osteoclastogenesis in vitro and titanium nanoparticle-induced bone loss in vivo. J Cell Mol Med 2019; 24:1553-1567. [PMID: 31845532 PMCID: PMC6991655 DOI: 10.1111/jcmm.14842] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 12/25/2022] Open
Abstract
Wear particle‐stimulated inflammatory bone destruction and the consequent aseptic loosening remain the primary causes of artificial prosthesis failure and revision. Previous studies have demonstrated that curcumin has a protective effect on bone disorders and inflammatory diseases and can ameliorate polymethylmethacrylate‐induced osteolysis in vivo. However, the effect on immunomodulation and the definitive mechanism by which curcumin reduces the receptor activators of nuclear factor‐kappa B ligand (RANKL)‐stimulated osteoclast formation and prevents the activation of osteoclastic signalling pathways are unclear. In this work, the immunomodulation effect and anti‐osteoclastogenesis capacities exerted by curcumin on titanium nanoparticle‐stimulated macrophage polarization and on RANKL‐mediated osteoclast activation and differentiation in osteoclastic precursor cells in vitro were investigated. As expected, curcumin inhibited RANKL‐stimulated osteoclast maturation and formation and had an immunomodulatory effect on macrophage polarization in vitro. Furthermore, studies aimed to identify the potential molecular and cellular mechanisms revealed that this protective effect of curcumin on osteoclastogenesis occurred through the amelioration of the activation of Akt/NF‐κB/NFATc1 pathways. Additionally, an in vivo mouse calvarial bone destruction model further confirmed that curcumin ameliorated the severity of titanium nanoparticle‐stimulated bone loss and destruction. Our results conclusively indicated that curcumin, a major biologic component of Curcuma longa with anti‐inflammatory and immunomodulatory properties, may serve as a potential therapeutic agent for osteoclastic diseases.
Collapse
Affiliation(s)
- Chao Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kechao Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiangwei Yuan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xianlong Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yebin Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tao Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
21
|
Zhang J, Hu W, Ding C, Yao G, Zhao H, Wu S. Deferoxamine inhibits iron-uptake stimulated osteoclast differentiation by suppressing electron transport chain and MAPKs signaling. Toxicol Lett 2019; 313:50-59. [PMID: 31238089 DOI: 10.1016/j.toxlet.2019.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Iron overload causes osteoporosis by enhancing osteoclastic bone resorption. During differentiation, osteoclasts demand high energy and contain abundant mitochondria. In mitochondria, iron is used for the synthesis of Fe-S clusters to support mitochondria biogenesis and electron transport chain. Moreover, mitochondrial reactive oxygen species (ROS) play an important role in osteoclastogenesis. Activation of MAPKs (ERK1/2, JNK, and p38) by ROS is essential and contribute to osteoclast differentiation. How iron chelation impairs electron transport chain and ROS dependent MAPKs activation during osteoclast differentiation is unknown. This study aimed to determine the direct effects of iron chelation on osteoclast differentiation, electron transport chain and MAPKs activation. In the present study, we found that when iron chelator, deferoxamine (DFO), was added, a dose-dependent inhibition of osteoclast differentiation and bone resorption was observed. Supplementation of transferrin-bound iron recovered osteoclastogenesis. Iron chelation resulted in a marked decrease in ferritin level, and increased expression of transferrin receptor 1 and ferroportin. As an iron chelator, DFO negatively affected mitochondrial function through decreasing activities of all the complexes. Expressions of mitochondrial subunits encoded both by mitochondrial and nuclear DNA were decreased. DFO augmented production of mitochondrial ROS, but inhibited the phosphorylation of ERK1/2, JNK, and p38, even in the presence of hydrogen peroxide. These results suggest that iron chelation directly inhibits iron-uptake stimulated osteoclast differentiation and suppresses electron transport chain. Iron chelation negatively regulates MAPKs activation, and this negative regulation is independent on ROS stimulation.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Laboratory Animal Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| | - Wentao Hu
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Chong Ding
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Department of Biomedical Engineering, School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Gang Yao
- Institute of Laboratory Animal Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hai Zhao
- Institute of Laboratory Animal Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuguang Wu
- Institute of Laboratory Animal Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
22
|
Yan Y, Chen H, Zhang H, Guo C, Yang K, Chen K, Cheng R, Qian N, Sandler N, Zhang YS, Shen H, Qi J, Cui W, Deng L. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials 2019; 190-191:97-110. [DOI: 10.1016/j.biomaterials.2018.10.033] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
|
23
|
Balogh E, Paragh G, Jeney V. Influence of Iron on Bone Homeostasis. Pharmaceuticals (Basel) 2018; 11:ph11040107. [PMID: 30340370 PMCID: PMC6316285 DOI: 10.3390/ph11040107] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Bone homeostasis is a complex process, wherein osteoclasts resorb bone and osteoblasts produce new bone tissue. For the maintenance of skeletal integrity, this sequence has to be tightly regulated and orchestrated. Iron overload as well as iron deficiency disrupt the delicate balance between bone destruction and production, via influencing osteoclast and osteoblast differentiation as well as activity. Iron overload as well as iron deficiency are accompanied by weakened bones, suggesting that balanced bone homeostasis requires optimal-not too low, not too high-iron levels. The goal of this review is to summarize our current knowledge about how imbalanced iron influence skeletal health. Better understanding of this complex process may help the development of novel therapeutic approaches to deal with the pathologic effects of altered iron levels on bone.
Collapse
Affiliation(s)
- Enikő Balogh
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| | - György Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| | - Viktória Jeney
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| |
Collapse
|
24
|
Guo L, Chen K, Yuan J, Huang P, Xu X, Li C, Qian N, Qi J, Shao Z, Deng L, He C, Xu J. Estrogen inhibits osteoclasts formation and bone resorption via microRNA-27a targeting PPARγ and APC. J Cell Physiol 2018; 234:581-594. [PMID: 30272823 DOI: 10.1002/jcp.26788] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022]
Abstract
Inhibition of osteoclasts formation and bone resorption by estrogen is very important in the etiology of postmenopausal osteoporosis. The mechanisms of this process are still not fully understood. Recent studies implicated an important role of microRNAs in estrogen-mediated responses in various cellular processes, including cell differentiation and proliferation. Thus, we hypothesized that these regulatory molecules might be implicated in the process of estrogen-decreased osteoclasts formation and bone resorption. Western blot, quantitative real-time polymerase chain reaction, tartrate-resistant acid phosphatase staining, pit formation assay and luciferase assay were used to investigate the role of microRNAs in estrogen-inhibited osteoclast differentiation and bone resorption. We found that estrogen could directly suppress receptor activator of nuclear factor B ligand/macrophage colony-stimulating factor-induced differentiation of bone marrow-derived macrophages into osteoclasts in the absence of stromal cell. MicroRNA-27a was significantly increased during the process of estrogen-decreased osteoclast differentiation. Overexpressing of microRNA-27a remarkably enhanced the inhibitory effect of estrogen on osteoclast differentiation and bone resorption, whereas which were alleviated by microRNA-27a depletion. Mechanistic studies showed that microRNA-27a inhibited peroxisome proliferator-activated receptor gamma (PPARγ) and adenomatous polyposis coli (APC) expression in osteoclasts through a microRNA-27a binding site within the 3'-untranslational region of PPARγ and APC. PPARγ and APC respectively contributed to microRNA-27a-decreased osteoclast differentiation and bone resorption. Taken together, these results showed that microRNA-27a may play a significant role in the process of estrogen-inhibited osteoclast differentiation and function.
Collapse
Affiliation(s)
- Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kaizhe Chen
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Yuan
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xing Xu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changwei Li
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Niandong Qian
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin Qi
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiliang Shao
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chuan He
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiping Xu
- Orthopedic Sevice, Shanghai Fengxian District Center Hospital, Shanghai Jiaotong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| |
Collapse
|
25
|
Song T, Lin T, Ma J, Guo L, Zhang L, Zhou X, Ye T. Regulation of TRPV5 transcription and expression by E2/ERα signalling contributes to inhibition of osteoclastogenesis. J Cell Mol Med 2018; 22:4738-4750. [PMID: 30063124 PMCID: PMC6156443 DOI: 10.1111/jcmm.13718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
The increasing of osteoclasts formation and activity because of oestrogen (E2) deficiency is very important in the aetiology of postmenopausal osteoporosis. Our previous studies showed that E2 inhibited osteoclastic bone resorption by increasing the expression of Transient Receptor Potential Vanilloid 5 (TRPV5) channel. However, the exact mechanism by which E2 increases TRPV5 expression is not fully elucidated. In this study, Western blot, quantitative real‐time PCR, tartrate‐resistant acid phosphatase staining, F‐actin ring staining, chromatin immunoprecipitation and luciferase assay were applied to explore the mechanisms that E2‐induced TRPV5 expression contributes to the inhibition of osteoclastogenesis. The results showed that silencing or overexpressing of TRPV5 significantly affected osteoclasts differentiation and activity. Silencing of TRPV5 obviously alleviated E2‐inhibited osteoclastogenesis, resulting in increasing of bone resorption. E2 stimulated mature osteoclasts apoptosis by increasing TRPV5 expression. Further studies showed that E2 increased TRPV5 expression through the interaction of the oestrogen receptor α (ERα) with NF‐κB, which could directly bind to the fragment of −286 nt ~ −277 nt in the promoter region of trpv5. Taken together, we conclude that TRPV5 plays a dominant effect in E2‐mediated osteoclasts formation, bone resorption activity and osteoclasts apoptosis. Furthermore, NF‐κB plays an important role in the transcriptional activation of E2‐ERα stimulated TRPV5 expression.
Collapse
Affiliation(s)
- Tengfei Song
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tao Lin
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun Ma
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Department of Medical Genetics, Second Military Medical University, shanghai, China
| | - Xuhui Zhou
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tianwen Ye
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
26
|
Chen H, Guo T, Wang D, Qin R. Vaccaria hypaphorine impairs RANKL-induced osteoclastogenesis by inhibition of ERK, p38, JNK and NF-κB pathway and prevents inflammatory bone loss in mice. Biomed Pharmacother 2017; 97:1155-1163. [PMID: 29136954 DOI: 10.1016/j.biopha.2017.11.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 01/03/2023] Open
Abstract
Osteoclasts are sole bone-resorbing cells which exert a profound effect on skeletal metabolism. The search for medicines that affect the differentiation and function of osteoclasts is crucial in developing therapies for osteoclast-based diseases. Vaccaria hypaphorine, the main active compound of the traditionally used Chinese herb Vaccaria segetalis, has anti-inflammatory activity. The present study demonstrated for the first time that vaccaria hypaphorine could significantly inhibit the receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastic differentiation in vitro and alleviate lipopolysaccharide (LPS)-induced bone loss in vivo. Further study showed that vaccaria hypaphorine decreased osteoclastogenesis in a dose-dependent manner. Furthermore, vaccaria hypaphorine was confirmed to inhibit osteoclasts differentiation at early stage but not at later stage. Pit formation assay and F-actin ring staining showed that vaccaria hypaphorine inhibited the bone-resorbing activity of osteoclasts. Mechanistically, vaccaria hypaphorine impaired RANKL-induced osteoclastogenesis through reduction of extracellular signal-regulated kinases (ERK), p38, c-Jun N-terminal kinase (JNK) and NF-κB p65 phosphorylation. Taken together, our results provided evidences that vaccaria hypaphorine might be considered as potential therapeutic agent for treating osteoclast-based bone loss.
Collapse
Affiliation(s)
- Hongxi Chen
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Tongya Guo
- Department of Bone and Joint Surgery, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Dianrong Wang
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Rujie Qin
- Department of Spine Surgery, The First People's Hospital of Lianyungang, No.182, Tongguan North Road, Lianyungang, Jiangsu 222002, P.R. China.
| |
Collapse
|
27
|
Liu Z, Li C, Meng X, Bai Y, Qi J, Wang J, Zhou Q, Zhang W, Zhang X. Hypoxia-inducible factor-lα mediates aggrecan and collagen Π expression via NOTCH1 signaling in nucleus pulposus cells during intervertebral disc degeneration. Biochem Biophys Res Commun 2017; 488:554-561. [PMID: 28526405 DOI: 10.1016/j.bbrc.2017.05.086] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Abstract
Although hypoxia-inducible factor-lα (HIF-lα) has been reported to have an important role in the metabolism and synthesis of the extracellular matrix (ECM) of nucleus pulposus cells (NPCs), the underlying mechanism has not been fully clarified. Here, we show for the first time that NOTCH1 expression is decreased in NPs isolated from degenerated human intervertebral discs (IVDs), as well as in the NPs of NP-specific HIF-1α-/- mice. Our study reveals that overexpression of HIF-1α leads to increased expression of NOTCH1, the NOTCH1 ligand JAGGED1, and its target gene hairy and enhancer of split-1 (HES1), while also upregulating collagen Π and aggrecan expression in human NPCs. Importantly, these changes in expression are significantly suppressed by the NOTCH1 inhibitor DAPT. In parallel with changes in collagen Π and aggrecan expression, inhibition of the HIF-1α-NOTCH1 pathway altered ECM turnover by suppressing expression of the matrix metalloproteinases MMP1 and MMP13, while increasing the expression of tissue inhibitor of metalloproteinase-1 (TIMP1). Lastly, activation of NOTCH1 via JAGGED1 in human NPCs isolated from degenerated IVDs restored collagen Π and aggrecan expression. Therefore, our study shows that HIF-1α regulates collagen Π and aggrecan expression through NOTCH1 signaling and implicate NOTCH1 as a potential therapeutic target in disc degeneration.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aggrecans/antagonists & inhibitors
- Aggrecans/genetics
- Aggrecans/metabolism
- Animals
- Cells, Cultured
- Collagen Type II/antagonists & inhibitors
- Collagen Type II/genetics
- Collagen Type II/metabolism
- Diamines/pharmacology
- Dose-Response Relationship, Drug
- Female
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/deficiency
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Intervertebral Disc Degeneration/metabolism
- Male
- Mice
- Mice, Knockout
- Middle Aged
- Nucleus Pulposus/cytology
- Nucleus Pulposus/drug effects
- Nucleus Pulposus/metabolism
- Receptor, Notch1/antagonists & inhibitors
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Structure-Activity Relationship
- Thiazoles/pharmacology
- Young Adult
Collapse
Affiliation(s)
- Zhuochao Liu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changwei Li
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiangchao Meng
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yunting Bai
- Department of Orthopedics, The Fifth People's Hospital of Jinan, Jinan, China
| | - Jin Qi
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Wang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Zhou
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weibin Zhang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xingkai Zhang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
MicroRNA-16-5p Inhibits Osteoclastogenesis in Giant Cell Tumor of Bone. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3173547. [PMID: 28589137 PMCID: PMC5447262 DOI: 10.1155/2017/3173547] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/18/2017] [Accepted: 04/20/2017] [Indexed: 01/03/2023]
Abstract
Giant cell tumor (GCT) of bone is an aggressive skeletal tumor characterized by localized bone resorption. MicroRNA-16-5p (miR-16-5p) has been reported to be downregulated in lesions of patients with GCT, but little is known about its role in GCT. To explore the underlying function of miR-16-5p in GCT, we first detected its expression in patients with GCT. The results showed that osteoclast formation increased, whereas miR-16-5p expression considerably decreased with the severity of bone destruction. Furthermore, we found that miR-16-5p expression considerably decreased with the progression of receptor activator of nuclear factor-κB ligand- (RANKL-) induced osteoclastogenesis. Functionally, miR-16-5p mimics significantly reduced RANKL-induced osteoclast formation. However, treatment with an inhibitor of miR-16-5p significantly promoted osteoclastogenesis. These findings reveal that miR-16-5p inhibits osteoclastogenesis and that it may represent a therapeutic target for giant cell tumor of bone.
Collapse
|