1
|
Voropaeva EN, Orlov YL, Loginova AB, Seregina OB, Maksimov VN, Pospelova TI. Deregulation mechanisms and therapeutic opportunities of p53-responsive microRNAs in diffuse large B-cell lymphoma. PeerJ 2025; 13:e18661. [PMID: 39802185 PMCID: PMC11720970 DOI: 10.7717/peerj.18661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/17/2024] [Indexed: 01/16/2025] Open
Abstract
Here, we have discussed the molecular mechanisms of p53-responsive microRNAs dysregulation in response to genotoxic stress in diffuse large B-cell lymphoma (DLBCL) patients. The role of micro ribonucleic acids (microRNAs) in p53-signaling cellular stress has been studied. MicroRNAs are the small non-coding RNAs, which regulate genes expression at post-transcriptional level. Many of them play a crucial role in carcinogenesis and may act as oncogenes or suppressor of tumor growth. The understanding of the effect of p53-responsive microRNA dysregulation on oncogenesis achieved in recent decades opens wide opportunities for the diagnosis, prediction and of microRNA-based cancer therapy. Development of new bioinformatics tools and databases for microRNA supports DLBCL research. We overview the studies on the role of miRNAs in regulating gene expression associated with tumorigenesis processes, with particular emphasis on their role as tumor growth-suppressing factors. The starting point is a brief description of the classical microRNA biogenesis pathway and the role of p53 in regulating the expression of these molecules. We analyze various molecular mechanisms leading to this dysregulation, including mutations in the TP53 gene, DNA methylation, changes in host-genes expression or microRNA gene copy number, mutations in microRNA and microRNA biogenesis genes.
Collapse
Affiliation(s)
- Elena N. Voropaeva
- Research Institute of Internal and Preventive Medicine - Branch of the Federal State Budget Scientific Institution “The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences”, Novosibirsk, Russia
- Novosibirsk State Medical University of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Yuriy L. Orlov
- The Digital Health Center, I.M Sechenov First Moscow State Medical University, Moscow, Russia
- Agrarian and Technological Institute, Patrice Lumumba Peoples’ Friendship University of Russia, Moscow, Russia
| | - Anastasia B. Loginova
- Novosibirsk State Medical University of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Olga B. Seregina
- Novosibirsk State Medical University of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Vladimir N. Maksimov
- Research Institute of Internal and Preventive Medicine - Branch of the Federal State Budget Scientific Institution “The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences”, Novosibirsk, Russia
- Novosibirsk State Medical University of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Tatiana I. Pospelova
- Novosibirsk State Medical University of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
2
|
Zhou KZ, Wu PF, Ling XZ, Zhang J, Wang QF, Zhang XC, Xue Q, Zhang T, Han W, Zhang GX. miR-460b-5p promotes proliferation and differentiation of chicken myoblasts and targets RBM19 gene. Poult Sci 2024; 103:103231. [PMID: 37980764 PMCID: PMC10685028 DOI: 10.1016/j.psj.2023.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/20/2023] [Indexed: 11/21/2023] Open
Abstract
The meat production of broilers is crucial to economic benefits of broiler industries, while the slaughter performance of broilers is directly determined by skeletal muscle development. Hence, the broiler breeding for growth traits shows a great importance. As a kind of small noncoding RNA, microRNA (miRNA) can regulate the expression of multiple genes and perform a wide range of regulation in organisms. Currently, more and more studies have confirmed that miRNAs are closely associated with skeletal muscle development of chickens. Based on our previous miR-seq analysis (accession number: PRJNA668199), miR-460b-5p was screened as one of the key miRNAs probably involved in the growth regulation of chickens. However, the regulatory effect of miR-460b-5p on the development of chicken skeletal muscles is still unclear. Therefore, miR-460b-5p was further used for functional validation at the cellular level in this study. The expression pattern of miR-460b-5p was investigated in proliferation and differentiation stages of chicken primary myoblasts. It was showed that the expression level of miR-460b-5p gradually decreased from the proliferation stage (GM 50%) to the lowest at 24 h of differentiation. As differentiation proceeded, miR-460b-5p expression increased significantly, reaching the highest and stabilizing at 72 h and 96 h of differentiation. Through mRNA quantitative analysis of proliferation marker genes, CCK-8 and Edu assays, miR-460b-5p was found to significantly facilitate the transition of myoblasts from G1 to S phase and promote chicken myoblast proliferation. mRNA and protein quantitative analysis of differentiation marker genes, as well as the indirect immunofluorescence results of myotubes, revealed that miR-460b-5p significantly stimulated myotube development and promote chicken myoblast differentiation. In addition, the target relationship was validated for miR-460b-5p according to the dual-luciferase reporter assay and mRNA quantitative analysis, which indicates that miR-460b-5p was able to regulate RBM19 expression by specifically binding to the 3' UTR of RBM19. In summary, miR-460b-5p has positive regulatory effects on the proliferation and differentiation of chicken myoblasts, and RBM19 is a target gene of miR-460b-5p.
Collapse
Affiliation(s)
- Kai-Zhi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Peng-Fei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xuan-Ze Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Jin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qi-Fan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xin-Chao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qian Xue
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Gen-Xi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|
3
|
Asl ER, Rostamzadeh D, Duijf PHG, Mafi S, Mansoori B, Barati S, Cho WC, Mansoori B. Mutant P53 in the formation and progression of the tumor microenvironment: Friend or foe. Life Sci 2023; 315:121361. [PMID: 36608871 DOI: 10.1016/j.lfs.2022.121361] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. It encodes the tumor suppressor protein p53, which suppresses tumorigenesis by acting as a critical transcription factor that can induce the expression of many genes controlling a plethora of fundamental cellular processes, including cell cycle progression, survival, apoptosis, and DNA repair. Missense mutations are the most frequent type of mutations in the TP53 gene. While these can have variable effects, they typically impair p53 function in a dominant-negative manner, thereby altering intra-cellular signaling pathways and promoting cancer development. Additionally, it is becoming increasingly apparent that p53 mutations also have non-cell autonomous effects that influence the tumor microenvironment (TME). The TME is a complex and heterogeneous milieu composed of both malignant and non-malignant cells, including cancer-associated fibroblasts (CAFs), adipocytes, pericytes, different immune cell types, such as tumor-associated macrophages (TAMs) and T and B lymphocytes, as well as lymphatic and blood vessels and extracellular matrix (ECM). Recently, a large body of evidence has demonstrated that various types of p53 mutations directly affect TME. They fine-tune the inflammatory TME and cell fate reprogramming, which affect cancer progression. Notably, re-educating the p53 signaling pathway in the TME may be an effective therapeutic strategy in combating cancer. Therefore, it is timely to here review the recent advances in our understanding of how TP53 mutations impact the fate of cancer cells by reshaping the TME.
Collapse
Affiliation(s)
- Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia; Cancer and Aging Research Program, Queensland University of Technology, Brisbane, QLD, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA, United States.
| |
Collapse
|
4
|
Abdel-Latif M, Riad A, Soliman RA, Elkhouly AM, Nafae H, Gad MZ, Motaal AA, Youness RA. MALAT-1/p53/miR-155/miR-146a ceRNA circuit tuned by methoxylated quercitin glycoside alters immunogenic and oncogenic profiles of breast cancer. Mol Cell Biochem 2022; 477:1281-1293. [PMID: 35129780 DOI: 10.1007/s11010-022-04378-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Triple-Negative Breast Cancer (TNBC) is one of the most aggressive and hot BC subtypes. Our research group has recently shed the light on the utility of natural compounds as effective immunotherapeutic agents. The aim of this study is to investigate the role of a methoxylated quercetin glycoside (MQG) isolated from Cleome droserifolia in harnessing TNBC progression and tuning the tumor microenvironment and natural killer cells cytotoxicity. Results showed that MQG showed the highest potency (IC50 = 12 µM) in repressing cellular proliferation, colony-forming ability, migration, and invasion capacities. Mechanistically, MQG was found to modulate a circuit of competing endogenous RNAs where it was found to reduce the oncogenic MALAT-1 lncRNA and induce TP53 and its downstream miRNAs; miR-155 and miR-146a. Accordingly, this leads to alteration in several downstream signaling pathways such as nitric oxide synthesizing machinery, natural killer cells' cytotoxicity through inducing the expression of its activating ligands such as MICA/B, ULBP2, CD155, and ICAM-1 and trimming of the immune-suppressive cytokines such as TNF-α and IL-10. In conclusion, this study shows that MQG act as a compelling anti-cancer agent repressing TNBC hallmarks, activating immune cell recognition, and alleviating the immune-suppressive tumor microenvironment experienced by TNBC patients.
Collapse
Affiliation(s)
- Mustafa Abdel-Latif
- Molecular Genetics Research Team (MGRT), Biotechnology Program, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ahmed Riad
- Molecular Genetics Research Team (MGRT), Biotechnology Program, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Raghda A Soliman
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Aisha M Elkhouly
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Heba Nafae
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed Z Gad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Amira Abdel Motaal
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rana A Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt. .,Department of Biology and Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, 11578, Egypt.
| |
Collapse
|
5
|
Gao X, Zheng X, Zhang Y, Dong L, Sun L, Zhao N, Ding C, Ma Z, Wang Y. Deficient or R273H and R248W Mutations of p53 Promote Chemoresistance to 5-FU via TCF21/CD44 Axis-Mediated Enhanced Stemness in Colorectal Carcinoma. Front Cell Dev Biol 2022; 9:788331. [PMID: 35071232 PMCID: PMC8766496 DOI: 10.3389/fcell.2021.788331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
Background: p53 mutations are highly frequent in various human cancers and are reported to contribute to tumor malignance and chemoresistance. In this study, we explored the mechanism by which mutant p53 promotes carcinogenesis and chemoresistance and provided novel insights into cancer therapy. Materials and methods: A total of 409 patients with colorectal carcinoma from TCGA database were subdivided into two groups according to the p53 status, namely, mutant p53 and wild-type p53, following with GSEA analysis. The differences of the clinicopathologic index were also analyzed. Two HCT116 cell lines containing hot spots at codons R273H and R248W of p53 were constructed based on HCT116 with knockout p53, respectively. Cell viability, mobility, clonogenesis, and stemness were detected by CCK8, transwell migration and invasion, colonogenic, and sphere formation assays. Resistance to 5-FU was examined by live-dead staining and flow cytometry. qPCR, Western blot, and luciferase reporter assay were performed to identify that deficient or mutant p53 promoted chemoresistance of the colorectal carcinoma cell line HCT116 through the TCF21/CD44 signaling pathway, with the following rescue assays by overexpression of TCF21 and knockdown of CD44. Results: Patients with recurrence harbor a higher frequency of mutant p53 than those without recurrence (p < 0.05). The mutant p53 group developed a larger tumor than the wild-type one. GSEA analysis showed that oncogenic signatures were enriched in the mutant p53 group. Extracellular assays showed that cancer cells with deficient or mutant p53 (R273H and R248W, respectively) promoted colon cancer cell growth, migration, invasion, and stemness. The mutant cancer cells were also observed to be significantly resistant to 5-FU. Xenografts also confirmed that HCT116 cells harboring deficient or mutant p53 promoted cancer growth and 5-FU tolerance. Luciferase reporter assay showed that deficient or mutant p53 R237H and R248W endowed cancer cells with chemoresistance by activating CD44 via repressing the nuclear transcription factor TCF21 expression. Overexpression of TCF21 or knockdown of CD44 could rescue the sensitivity to 5-FU in deficient and mutant p53 HCT116 cell lines. Conclusion: Our results, for the first time, reveal a novel deficient or mutant p53/TCF21/CD44 signaling pathway which promotes chemoresistance in colorectal carcinoma. The axis could be an effective therapeutic strategy against deficient- or mutant p53-driven chemoresistance.
Collapse
Affiliation(s)
- Xiaolei Gao
- Central Laboratory, Beijing, China.,Department of Oral and Maxillofacial Surgery, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xuan Zheng
- Central Laboratory, Beijing, China.,Department of Oral and Maxillofacial Surgery, Beijing, China
| | - Yixin Zhang
- Central Laboratory, Beijing, China.,Department of Oral and Maxillofacial Surgery, Beijing, China
| | - Liying Dong
- Central Laboratory, Beijing, China.,Department of Oral and Maxillofacial Surgery, Beijing, China
| | - Liangjie Sun
- Central Laboratory, Beijing, China.,Department of Oral and Maxillofacial Surgery, Beijing, China
| | - Na Zhao
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA, United States.,Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | | | - Zeyun Ma
- Department of VIP Service, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yixiang Wang
- Central Laboratory, Beijing, China.,Department of Oral and Maxillofacial Surgery, Beijing, China
| |
Collapse
|
6
|
Hu J, Cao J, Topatana W, Juengpanich S, Li S, Zhang B, Shen J, Cai L, Cai X, Chen M. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J Hematol Oncol 2021; 14:157. [PMID: 34583722 PMCID: PMC8480024 DOI: 10.1186/s13045-021-01169-0] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
TP53 is a critical tumor-suppressor gene that is mutated in more than half of all human cancers. Mutations in TP53 not only impair its antitumor activity, but also confer mutant p53 protein oncogenic properties. The p53-targeted therapy approach began with the identification of compounds capable of restoring/reactivating wild-type p53 functions or eliminating mutant p53. Treatments that directly target mutant p53 are extremely structure and drug-species-dependent. Due to the mutation of wild-type p53, multiple survival pathways that are normally maintained by wild-type p53 are disrupted, necessitating the activation of compensatory genes or pathways to promote cancer cell survival. Additionally, because the oncogenic functions of mutant p53 contribute to cancer proliferation and metastasis, targeting the signaling pathways altered by p53 mutation appears to be an attractive strategy. Synthetic lethality implies that while disruption of either gene alone is permissible among two genes with synthetic lethal interactions, complete disruption of both genes results in cell death. Thus, rather than directly targeting p53, exploiting mutant p53 synthetic lethal genes may provide additional therapeutic benefits. Additionally, research progress on the functions of noncoding RNAs has made it clear that disrupting noncoding RNA networks has a favorable antitumor effect, supporting the hypothesis that targeting noncoding RNAs may have potential synthetic lethal effects in cancers with p53 mutations. The purpose of this review is to discuss treatments for cancers with mutant p53 that focus on directly targeting mutant p53, restoring wild-type functions, and exploiting synthetic lethal interactions with mutant p53. Additionally, the possibility of noncoding RNAs acting as synthetic lethal targets for mutant p53 will be discussed.
Collapse
Affiliation(s)
- Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | | | - Shijie Li
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhang
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jiliang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
| | - Liuxin Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China.
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Cognitive Healthcare of Zhejiang Province, Zhejiang Province, Hangzhou, China.
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No. 3 East Qingchun Road, Hangzhou, 310016, China.
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China.
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Cognitive Healthcare of Zhejiang Province, Zhejiang Province, Hangzhou, China.
| |
Collapse
|
7
|
Chiang YT, Chien YC, Lin YH, Wu HH, Lee DF, Yu YL. The Function of the Mutant p53-R175H in Cancer. Cancers (Basel) 2021; 13:4088. [PMID: 34439241 PMCID: PMC8391618 DOI: 10.3390/cancers13164088] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
Wild-type p53 is known as "the guardian of the genome" because of its function of inducing DNA repair, cell-cycle arrest, and apoptosis, preventing the accumulation of gene mutations. TP53 is highly mutated in cancer cells and most TP53 hotspot mutations are missense mutations. Mutant p53 proteins, encoded by these hotspot mutations, lose canonical wild-type p53 functions and gain functions that promote cancer development, including promoting cancer cell proliferation, migration, invasion, initiation, metabolic reprogramming, angiogenesis, and conferring drug resistance to cancer cells. Among these hotspot mutations, p53-R175H has the highest occurrence. Although losing the transactivating function of the wild-type p53 and prone to aggregation, p53-R175H gains oncogenic functions by interacting with many proteins. In this review, we summarize the gain of functions of p53-R175H in different cancer types, the interacting proteins of p53-R175H, and the downstream signaling pathways affected by p53-R175H to depict a comprehensive role of p53-R175H in cancer development. We also summarize treatments that target p53-R175H, including reactivating p53-R175H with small molecules that can bind to p53-R175H and alter it into a wild-type-like structure, promoting the degradation of p53-R175H by targeting heat-shock proteins that maintain the stability of p53-R175H, and developing immunotherapies that target the p53-R175H-HLA complex presented by tumor cells.
Collapse
Affiliation(s)
- Yen-Ting Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
| | - Yi-Chung Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
- Program for Translational Medicine, China Medical University, Taichung 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
- Drug Development Center, Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yu-Heng Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
| | - Hui-Hsuan Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yung-Luen Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
- Program for Translational Medicine, China Medical University, Taichung 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
- Drug Development Center, Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
8
|
Hernández Borrero LJ, El-Deiry WS. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim Biophys Acta Rev Cancer 2021; 1876:188556. [PMID: 33932560 PMCID: PMC8730328 DOI: 10.1016/j.bbcan.2021.188556] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
TP53 is the most commonly mutated gene in human cancer with over 100,000 literature citations in PubMed. This is a heavily studied pathway in cancer biology and oncology with a history that dates back to 1979 when p53 was discovered. The p53 pathway is a complex cellular stress response network with multiple diverse inputs and downstream outputs relevant to its role as a tumor suppressor pathway. While inroads have been made in understanding the biology and signaling in the p53 pathway, the p53 family, transcriptional readouts, and effects of an array of mutants, the pathway remains challenging in the realm of clinical translation. While the role of mutant p53 as a prognostic factor is recognized, the therapeutic modulation of its wild-type or mutant activities remain a work-in-progress. This review covers current knowledge about the biology, signaling mechanisms in the p53 pathway and summarizes advances in therapeutic development.
Collapse
Affiliation(s)
- Liz J Hernández Borrero
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America; The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI 02912, United States of America; Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America; The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI 02912, United States of America; Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America.
| |
Collapse
|
9
|
Katoch A, Tripathi SK, Pal A, Das S. Regulation of miR-186-YY1 axis by the p53 translational isoform ∆40p53: implications in cell proliferation. Cell Cycle 2021; 20:561-574. [PMID: 33629930 DOI: 10.1080/15384101.2021.1875670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have earlier shown that p53-FL and its translational isoform ∆40p53 are differentially regulated. In this study, we have investigated the cellular effect of ∆40p53 regulation on downstream gene expression, specifically miRNAs. Interestingly, ∆40p53 showed antagonistic regulation of miR-186-5p as compared to either p53 alone or a combination of both the isoforms. We have elucidated the miR-186-5p mediated effect of ∆40p53 in cell proliferation. Upon expression of ∆40p53, we observed a significant decrease in YY1 levels, an established target of miR-186-5p, which is involved in cell proliferation. Further assays with anti-miR-186 established the interdependence of ∆40p53- miR-186-5p-YY1- cell proliferation. The results unravel a new dimension toward the understanding of ∆40p53 functions, which seems to regulate cellular fate independent of p53FL.
Collapse
Affiliation(s)
- Aanchal Katoch
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sachin Kumar Tripathi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Apala Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,National Institute of Biomedical Genomics, Kalyani, India
| |
Collapse
|
10
|
Ghatak D, Das Ghosh D, Roychoudhury S. Cancer Stemness: p53 at the Wheel. Front Oncol 2021; 10:604124. [PMID: 33505918 PMCID: PMC7830093 DOI: 10.3389/fonc.2020.604124] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor p53 maintains an equilibrium between self-renewal and differentiation to sustain a limited repertoire of stem cells for proper development and maintenance of tissue homeostasis. Inactivation of p53 disrupts this balance and promotes pluripotency and somatic cell reprogramming. A few reports in recent years have indicated that prevalent TP53 oncogenic gain-of-function (GOF) mutations further boosts the stemness properties of cancer cells. In this review, we discuss the role of wild type p53 in regulating pluripotency of normal stem cells and various mechanisms that control the balance between self-renewal and differentiation in embryonic and adult stem cells. We also highlight how inactivating and GOF mutations in p53 stimulate stemness in cancer cells. Further, we have explored the various mechanisms of mutant p53-driven cancer stemness, particularly emphasizing on the non-coding RNA mediated epigenetic regulation. We have also analyzed the association of cancer stemness with other crucial gain-of-function properties of mutant p53 such as epithelial to mesenchymal transition phenotypes and chemoresistance to understand how activation of one affects the other. Given the critical role of cancer stem-like cells in tumor maintenance, cancer progression, and therapy resistance of mutant p53 tumors, targeting them might improve therapeutic efficacy in human cancers with TP53 mutations.
Collapse
Affiliation(s)
- Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Damayanti Das Ghosh
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
11
|
Interplay between p53 and non-coding RNAs in the regulation of EMT in breast cancer. Cell Death Dis 2021; 12:17. [PMID: 33414456 PMCID: PMC7791039 DOI: 10.1038/s41419-020-03327-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The epithelial-mesenchymal transition (EMT) plays a pivotal role in the differentiation of vertebrates and is critically important in tumorigenesis. Using this evolutionarily conserved mechanism, cancer cells become drug-resistant and acquire the ability to escape the cytotoxic effect of anti-cancer drugs. In addition, these cells gain invasive features and increased mobility thereby promoting metastases. In this respect, the process of EMT is critical for dissemination of solid tumors including breast cancer. It has been shown that miRNAs are instrumental for the regulation of EMT, where they play both positive and negative roles often as a part of a feed-back loop. Recent studies have highlighted a novel association of p53 and EMT where the mutation status of p53 is critically important for the outcome of this process. Interestingly, p53 has been shown to mediate its effects via the miRNA-dependent mechanism that targets master-regulators of EMT, such as Zeb1/2, Snail, Slug, and Twist1. This regulation often involves interactions of miRNAs with lncRNAs. In this review, we present a detailed overview of miRNA/lncRNA-dependent mechanisms that control interplay between p53 and master-regulators of EMT and their importance for breast cancer.
Collapse
|
12
|
Di Agostino S. The Impact of Mutant p53 in the Non-Coding RNA World. Biomolecules 2020; 10:biom10030472. [PMID: 32204575 PMCID: PMC7175150 DOI: 10.3390/biom10030472] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), micro RNAs (miRNAs), and extracellular RNAs (exRNAs) are new groups of RNAs with regulation activities that have low or no protein-coding ability. Emerging evidence suggests that deregulated expression of these non-coding RNAs is associated with the induction and progression of diverse tumors throughout epigenetic, transcriptional, and post-transcriptional modifications. A consistent number of non-coding RNAs (ncRNAs) has been shown to be regulated by p53, the most important tumor suppressor of the cells frequently mutated in human cancer. It has been shown that some mutant p53 proteins are associated with the loss of tumor suppressor activity and the acquisition of new oncogenic functions named gain-of-function activities. In this review, we highlight recent lines of evidence suggesting that mutant p53 is involved in the expression of specific ncRNAs to gain oncogenic functions through the creation of a complex network of pathways that influence each other.
Collapse
|
13
|
Wang Y, Ding Q, Lu YC, Cao SY, Liu QX, Zhang L. Interferon-stimulated gene 15 enters posttranslational modifications of p53. J Cell Physiol 2018; 234:5507-5518. [PMID: 30317575 DOI: 10.1002/jcp.27347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
The tumor suppressor protein p53 is a central governor of various cellular signals. It is well accepted that ubiquitination as well as ubiquitin-like (UBL) modifications of p53 protein is critical in the control of its activity. Interferon-stimulated gene 15 (ISG15) is a well-known UBL protein with pleiotropic functions, serving both as a free intracellular molecule and as a modifier by conjugating to target proteins. Initially, attentions have historically focused on the antiviral effects of ISG15 pathway. Remarkably, a significant role in the processes of autophagy, DNA repair, and protein translation provided considerable insight into the new functions of ISG15 pathway. Despite the deterministic revelation of the relation between ISG15 and p53, the functional consequence of p53 ISGylation appears somewhat confused. More important, more recent studies have hinted p53 ubiquitination or other UBL modifications that might interconnect with its ISGylation. Here, we aim to summarize the current knowledge of p53 ISGylation and the differences in other significant modifications, which would be beneficial for the development of p53-based cancer therapy.
Collapse
Affiliation(s)
- Yang Wang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Qi Ding
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yu-Chen Lu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Shi-Yang Cao
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Qing-Xue Liu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Ermakov A, Daks A, Fedorova O, Shuvalov O, Barlev NA. Ca 2+ -depended signaling pathways regulate self-renewal and pluripotency of stem cells. Cell Biol Int 2018; 42:1086-1096. [PMID: 29851182 DOI: 10.1002/cbin.10998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/25/2018] [Indexed: 12/15/2022]
Abstract
Ca2+ -mediated signaling is widely spread in nature and plays critical role in the individual development of various organisms ranging from microorganisms to mammals. In vertebrates, Ca2+ is involved in important developmental events: fertilization, body plan establishment, and organogenesis. The two later events are defined by embryonic stem cells (ESCs). ESCs are capable of self-renewal and are pluripotent by nature, that is, can give rise to all types of cells that make up the body. Given the paramount importance of Ca2+ signalization in the development, it is therefore not surprising this process also plays role in the biology of stem cells. In this review, we scrutinize the published experimental data on the role of Ca2+ ions in embryonic stem cells self-renewal and pluripotency. In line with this, we also discuss possible mechanisms of p53 inhibition as a major hindrance to self-renewal of ESCs. Finally, we argue about the role of G-protein-coupled receptors (GPCRs), the largest family of heteromeric transmembrane receptors, and GPCR-mediated signalization in stem cells, and propose the role for the GPCR-G-protein-PLC-Ca2+ -downstream signaling pathway in the regulation of pluripotency of both mouse and human ESCs.
Collapse
Affiliation(s)
| | - Alexandra Daks
- Institute of Cytology RAS, Saint-Petersburg 194064, Russia
| | - Olga Fedorova
- Institute of Cytology RAS, Saint-Petersburg 194064, Russia
| | - Oleg Shuvalov
- Institute of Cytology RAS, Saint-Petersburg 194064, Russia
| | | |
Collapse
|
15
|
Agostini M, Niklison-Chirou MV, Annicchiarico-Petruzzelli MM, Grelli S, Di Daniele N, Pestlikis I, Knight RA, Melino G, Rufini A. p73 Regulates Primary Cortical Neuron Metabolism: a Global Metabolic Profile. Mol Neurobiol 2017; 55:3237-3250. [PMID: 28478509 DOI: 10.1007/s12035-017-0517-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/04/2017] [Indexed: 12/20/2022]
Abstract
The transcription factor p73 has been demonstrated to play a significant role in survival and differentiation of neuronal stem cells. In this report, by employing comprehensive metabolic profile and mitochondrial bioenergetics analysis, we have explored the metabolic alterations in cortical neurons isolated from p73 N-terminal isoform specific knockout animals. We found that loss of the TAp73 or ΔNp73 triggers selective biochemical changes. In particular, p73 isoforms regulate sphingolipid and phospholipid biochemical pathway signaling. Indeed, sphinganine and sphingosine levels were reduced in p73-depleted cortical neurons, and decreased levels of several membrane phospholipids were also observed. Moreover, in line with the complexity associated with p73 functions, loss of the TAp73 seems to increase glycolysis, whereas on the contrary, loss of ΔNp73 isoform reduces glucose metabolism, indicating an isoform-specific differential effect on glycolysis. These changes in glycolytic flux were not reflected by parallel alterations of mitochondrial respiration, as only a slight increase of mitochondrial maximal respiration was observed in p73-depleted cortical neurons. Overall, our findings reinforce the key role of p73 in regulating cellular metabolism and point out that p73 exerts its functions in neuronal biology at least partially through the regulation of metabolic pathways.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, LE1 9HN, UK.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Maria Victoria Niklison-Chirou
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, LE1 9HN, UK.,Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | | | - Sandro Grelli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, Nephrology and Hypertension Unit, "Tor Vergata" University Hospital, Rome, Italy
| | - Ilias Pestlikis
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Richard A Knight
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, LE1 9HN, UK
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, LE1 9HN, UK. .,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Alessandro Rufini
- Department of Cancer Studies, University of Leicester, Leicester, LE2 7LX, UK.
| |
Collapse
|