1
|
Zhong X, Shang J, Zhang R, Zhang X, Yu L, Niu H, Duan X. Explore the shared molecular mechanism between dermatomyositis and nasopharyngeal cancer by bioinformatic analysis. PLoS One 2024; 19:e0296034. [PMID: 38753689 PMCID: PMC11098312 DOI: 10.1371/journal.pone.0296034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/04/2023] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Dermatomyositis (DM) is prone to nasopharyngeal carcinoma (NPC), but the mechanism is unclear. This study aimed to explore the potential pathogenesis of DM and NPC. METHODS The datasets GSE46239, GSE142807, GSE12452, and GSE53819 were downloaded from the GEO dataset. The disease co-expression module was obtained by R-package WGCNA. We built PPI networks for the key modules. ClueGO was used to analyze functional enrichment for the key modules. DEG analysis was performed with the R-package "limma". R-package "pROC" was applied to assess the diagnostic performance of hub genes. MiRNA-mRNA networks were constructed using MiRTarBase and miRWalk databases. RESULTS The key modules that positively correlated with NPC and DM were found. Its intersecting genes were enriched in the negative regulation of viral gene replication pathway. Similarly, overlapping down-regulated DEGs in DM and NPC were also enriched in negatively regulated viral gene replication. Finally, we identified 10 hub genes that primarily regulate viral biological processes and type I interferon responses. Four key genes (GBP1, IFIH1, IFIT3, BST2) showed strong diagnostic performance, with AUC>0.8. In both DM and NPC, the expression of key genes was correlated with macrophage infiltration level. Based on hub genes' miRNA-mRNA network, hsa-miR-146a plays a vital role in DM-associated NPC. CONCLUSIONS Our research discovered pivot genes between DM and NPC. Viral gene replication and response to type I interferon may be the crucial bridge between DM and NPC. By regulating hub genes, MiR-146a will provide new strategies for diagnosis and treatment in DM complicated by NPC patients. For individuals with persistent viral replication in DM, screening for nasopharyngeal cancer is necessary.
Collapse
Affiliation(s)
- Xiuqin Zhong
- Department of rheumatology and immunology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jingjing Shang
- Department of rheumatology and immunology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Rongwei Zhang
- Department of rheumatology and immunology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiuling Zhang
- Department of rheumatology and immunology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Le Yu
- Department of rheumatology and immunology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Haitao Niu
- School of Medicine, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Guangzhou Key Laboratory of Germ-free Animals and Microbiota Application, Jinan University, Guangzhou, China
| | - Xinwang Duan
- Department of rheumatology and immunology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Yu H, Bian Q, Wang X, Wang X, Lai L, Wu Z, Zhao Z, Ban B. Bone marrow stromal cell antigen 2: Tumor biology, signaling pathway and therapeutic targeting (Review). Oncol Rep 2024; 51:45. [PMID: 38240088 PMCID: PMC10828922 DOI: 10.3892/or.2024.8704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Bone marrow stromal cell antigen 2 (BST2) is a type II transmembrane protein that serves critical roles in antiretroviral defense in the innate immune response. In addition, it has been suggested that BST2 is highly expressed in various types of human cancer and high BST2 expression is related to different clinicopathological parameters in cancer. The molecular mechanism underlying BST2 as a potential tumor biomarker in human solid tumors has been reported on; however, to the best of our knowledge, there has been no review published on the molecular mechanism of BST2 in human solid tumors. The present review focuses on human BST2 expression, structure and functions; the molecular mechanisms of BST2 in breast cancer, hepatocellular carcinoma, gastrointestinal tumor and other solid tumors; the therapeutic potential of BST2; and the possibility of BST2 as a potential marker. BST2 is involved in cell membrane integrity and lipid raft formation, which can activate epidermal growth factor receptor signaling pathways, providing a potential mechanistic link between BST2 and tumorigenesis. Notably, BST2 may be considered a universal tumor biomarker and a potential therapeutical target.
Collapse
Affiliation(s)
- Honglian Yu
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Qiang Bian
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
- Department of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xin Wang
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Xinzhe Wang
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Luhao Lai
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Zhichun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Zhankui Zhao
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Bo Ban
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
3
|
Huang P, Ning X, Kang M, Wang R. Ferroptosis-Related Genes Are Associated with Radioresistance and Immune Suppression in Head and Neck Cancer. Genet Test Mol Biomarkers 2024; 28:100-113. [PMID: 38478802 PMCID: PMC10979683 DOI: 10.1089/gtmb.2023.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024] Open
Abstract
Background: Ferroptosis is associated with tumor development; however, its contribution to radioresistant head and neck cancer (HNC) remains unclear. In this study, we used bioinformatics analysis and in vitro testing to explore ferroptosis-related genes associated with HNCs radiosensitivity. Materials and Methods: GSE9714, GSE90761, and The Cancer Genome Atlas (TCGA) datasets were searched to identify ferroptosis-related differentially expressed genes between radioresistant and radiosensitive HNCs or radiation-treated and nonradiation-treated HNCs. A protein-protein interaction analysis on identified hub genes was then performed. Receiver operating characteristic curves and Kaplan-Meier survival analysis were used to assess the diagnostic and prognostic potential of the hub genes. Cell counting kit-8, transwell assay, and flow cytometry were applied to examine the role of hub gene collagen type IV, alpha1 chain (COL4A1) on the proliferation, migration, invasion, and apoptosis of TU686 cells. Results: Hub genes MMP10, MMP1, COL4A1, IFI27, and INHBA showed diagnostic potential for HNC and were negatively correlated with overall survival and disease-free survival in the TCGA dataset. Also, IL-1B, IFI27, INHBA, and COL4A1 mRNA levels were significantly increased in TCGA patients with advanced clinical stages or receiving radiotherapy, whereas COL4A1, MMP10, and INHBA expressions were negatively correlated with immune infiltration. Furthermore, the knockdown of COL4A1 inhibited cell proliferation, migration, and invasion while promoting apoptosis in TU686 cells. Conclusion: Ferroptosis-related hub genes, such as COL4A1, are potential diagnostic and prognostic indicators as well as therapeutic targets for HNC.
Collapse
Affiliation(s)
- Ping Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Oncology, LiuZhou Traditional Chinese Medical Hospital Affiliated to Guangxi University of Chinese Medicine, Liuzhou, China
| | - Xuejian Ning
- Department of Oncology, LiuZhou Traditional Chinese Medical Hospital Affiliated to Guangxi University of Chinese Medicine, Liuzhou, China
| | - Min Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - RenSheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Wang BR, Han JB, Jiang Y, Xu S, Yang R, Kong YG, Tao ZZ, Hua QQ, Zou Y, Chen SM. CENPN suppresses autophagy and increases paclitaxel resistance in nasopharyngeal carcinoma cells by inhibiting the CREB-VAMP8 signaling axis. Autophagy 2024; 20:329-348. [PMID: 37776538 PMCID: PMC10813569 DOI: 10.1080/15548627.2023.2258052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023] Open
Abstract
Chemotherapeutic resistance is one of the most common reasons for poor prognosis of patients with nasopharyngeal carcinoma (NPC). We found that CENPN can promote the growth, proliferation and apoptosis resistance of NPC cells, but its relationship with chemotherapeutic resistance in NPC is unclear. Here we verified that the CENPN expression level in NPC patients was positively correlated with the degree of paclitaxel (PTX) resistance and a poor prognosis through analysis of clinical cases. VAMP8 expression was significantly increased after knockdown of CENPN by transcriptome sequencing. We found in cell experiments that CENPN inhibited macroautophagy/autophagy and VAMP8 expression and significantly increased PTX resistance. Overexpression of CENPN reduced the inhibitory effects of PTX on survival, cell proliferation, cell cycle progression and apoptosis resistance in NPC cells by inhibiting autophagy. In turn, knockdown of CENPN can affect the phenotype of NPC cells by increasing autophagy to achieve PTX sensitization. Sequential knockdown of CENPN and VAMP8 reversed the PTX-sensitizing effect of CENPN knockdown alone. Experiments in nude mice confirmed that knockdown of CENPN can increase VAMP8 expression, enhance autophagy and increase the sensitivity of NPC cells to PTX. Mechanistic studies showed that CENPN inhibited the translocation of p-CREB into the nucleus of NPC cells, resulting in the decreased binding of p-CREB to the VAMP8 promoter, thereby inhibiting the transcription of VAMP8. These results demonstrate that CENPN may be a marker for predicting chemotherapeutic efficacy and a potential target for inducing chemosensitization to agents such as PTX.Abbreviations: 3-MA: 3-methyladenine; ATG5: autophagy related 5; CENPN: centromere protein N; CQ: chloroquine; CREB: cAMP responsive element binding protein; ChIP: chromatin immunoprecipitation assay; IC50: half-maximal inhibitory concentration; LAMP2A: lysosomal associated membrane protein 2A; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NPC: nasopharyngeal carcinoma; NPG: nasopharyngitis; oeCENPN: overexpressed CENPN; PTX: paclitaxel; RAPA: rapamycin; RNA-seq: transcriptome sequencing; shCENPN: small hairpin RNA expression vector targeting the human CENPN gene; shCENPN-shVAMP8: sequential knockdown targeting the human CENPN gene and VAMP8 gene; shVAMP8: small hairpin RNA expression vector targeting the human VAMP8 gene; TEM: transmission electron microscopy; TIR: tumor inhibitory rate; VAMP8: vesicle associated membrane protein 8.
Collapse
Affiliation(s)
- Bin-Ru Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ji-Bo Han
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yang Jiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Shan Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Rui Yang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yong-Gang Kong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Qing-Quan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - You Zou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| |
Collapse
|
5
|
Cui X, Chen Y, Zhao L, Ding X. Extracellular vesicles derived from paclitaxel-sensitive nasopharyngeal carcinoma cells deliver miR-183-5p and impart paclitaxel sensitivity through a mechanism involving P-gp. Cell Biol Toxicol 2023; 39:2953-2970. [PMID: 37296288 DOI: 10.1007/s10565-023-09812-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Paclitaxel treatment has been applied for late-stage nasopharyngeal carcinoma (NPC), but therapy failure usually occurs due to paclitaxel resistance. Besides, microRNAs (miRs) delivered by extracellular vesicles (EVs) have been demonstrated as promising biomarkers affecting cancer development. Our work clarified the role of bioinformatically predicted miR-183-5p, which could be delivered by EVs, in the paclitaxel resistance of NPC. Downstream targets of miR-183-5p were predicted in publicly available databases, followed by GO enrichment analysis. A confirmatory dual-luciferase reporter assay determined the targeting relationship between miR-183-5p and P-glycoprotein (P-gp). The shuttling of extracellular miR-183-5p was identified by immunofluorescence. EVs transferred miR-183-5p from paclitaxel-sensitive NPC cells to paclitaxel-resistant NPC cells. Furthermore, overexpression of miR-183-5p and under-expression of P-gp occurred in clinical samples and cells of NPC. High expression of miR-183-5p corresponded to better survival of paclitaxel-treated patients. The effects of manipulated expression of miR-183-5p on NPC cell activities, tumor growth, and paclitaxel resistance were investigated in vitro and in vivo. Its effect was achieved through negatively regulating drug transporters P-gp. Ectopically expressed miR-183-5p enhanced the cancer-suppressive effects of paclitaxel by targeting P-gp, corresponding to diminished cell viability and tumor growth. Taken together, this work goes to elucidate the mechanical actions of miR-183-5p delivered by EVs and its significant contribution towards paclitaxel sensitivity to NPC. 1. This study provides mechanistic insight into the role of miR-183-5p-containing EVs in NPC. 2. The intercellular transportation of miR-183-5p is mediated by EVs in NPC. 3. Overexpressing miR-183-5p facilitates the anti-tumor effects of paclitaxel in NPC. 4. miR-183-5p suppresses paclitaxel resistance of NPC cells by inhibiting P-gp.
Collapse
Affiliation(s)
- Xiangguo Cui
- Department of Otorhinolaryngology Head and Neck, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang, 110000, China
| | - Yu Chen
- Department of Otorhinolaryngology Head and Neck, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang, 110000, China
| | - Lanqing Zhao
- Department of Sleep Medical Center, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Xiaoxu Ding
- Department of Otorhinolaryngology Head and Neck, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang, 110000, China.
| |
Collapse
|
6
|
Siak PY, Heng WS, Teoh SSH, Lwin YY, Cheah SC. Precision medicine in nasopharyngeal carcinoma: comprehensive review of past, present, and future prospect. J Transl Med 2023; 21:786. [PMID: 37932756 PMCID: PMC10629096 DOI: 10.1186/s12967-023-04673-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with high propensity for lymphatic spread and distant metastasis. It is prominent as an endemic malignancy in Southern China and Southeast Asia regions. Studies on NPC pathogenesis mechanism in the past decades such as through Epstein Barr Virus (EBV) infection and oncogenic molecular aberrations have explored several potential targets for therapy and diagnosis. The EBV infection introduces oncoviral proteins that consequently hyperactivate many promitotic pathways and block cell-death inducers. EBV infection is so prevalent in NPC patients such that EBV serological tests were used to diagnose and screen NPC patients. On the other hand, as the downstream effectors of oncogenic mechanisms, the promitotic pathways can potentially be exploited therapeutically. With the apparent heterogeneity and distinct molecular aberrations of NPC tumor, the focus has turned into a more personalized treatment in NPC. Herein in this comprehensive review, we depict the current status of screening, diagnosis, treatment, and prevention in NPC. Subsequently, based on the limitations on those aspects, we look at their potential improvements in moving towards the path of precision medicine. The importance of recent advances on the key molecular aberration involved in pathogenesis of NPC for precision medicine progression has also been reported in the present review. Besides, the challenge and future outlook of NPC management will also be highlighted.
Collapse
Affiliation(s)
- Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Win Sen Heng
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Sharon Siew Hoon Teoh
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Yu Yu Lwin
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Medicine, Mandalay, Myanmar
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
7
|
Cheng J, Zhang G, Deng T, Liu Z, Zhang M, Zhang P, Adeshakin FO, Niu X, Yan D, Wan X, Yu G. CD317 maintains proteostasis and cell survival in response to proteasome inhibitors by targeting calnexin for RACK1-mediated autophagic degradation. Cell Death Dis 2023; 14:333. [PMID: 37210387 DOI: 10.1038/s41419-023-05858-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Unbalanced protein homeostasis (proteostasis) networks are frequently linked to tumorigenesis, making cancer cells more susceptible to treatments that target proteostasis regulators. Proteasome inhibition is the first licensed proteostasis-targeting therapeutic strategy, and has been proven effective in hematological malignancy patients. However, drug resistance almost inevitably develops, pressing for a better understanding of the mechanisms that preserve proteostasis in tumor cells. Here we report that CD317, a tumor-targeting antigen with a unique topology, was upregulated in hematological malignancies and preserved proteostasis and cell viability in response to proteasome inhibitors (PIs). Knocking down CD317 lowered Ca2+ levels in the endoplasmic reticulum (ER), promoting PIs-induced proteostasis failure and cell death. Mechanistically, CD317 interacted with calnexin (CNX), an ER chaperone protein that limits calcium refilling via the Ca2+ pump SERCA, thereby subjecting CNX to RACK1-mediated autophagic degradation. As a result, CD317 decreased the level of CNX protein, coordinating Ca2+ uptake and thus favoring protein folding and quality control in the ER lumen. Our findings reveal a previously unrecognized role of CD317 in proteostasis control and imply that CD317 could be a promising target for resolving PIs resistance in the clinic.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Immunology, Jinzhou Medical University, Jinzhou, Liaoning, China
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China.
- Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), Shenzhen, China.
| | - Tian Deng
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Zhao Liu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Mengqi Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Funmilayo O Adeshakin
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Xiangyun Niu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Dehong Yan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), Shenzhen, China
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China.
- Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), Shenzhen, China.
| | - Guang Yu
- Department of Immunology, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
8
|
Yang M, Wang X, Ye Z, Liu T, Meng Y, Duan Y, Yuan X, Yue X, Deng W, Liu RY. Mitochondrial creatine kinase 1 regulates the cell cycle in non-small cell lung cancer via activation of cyclin-dependent kinase 4. Respir Res 2023; 24:111. [PMID: 37061730 PMCID: PMC10105958 DOI: 10.1186/s12931-023-02417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the main type of the most common malignant tumor in the world. Previous studies have shown that the expression level of mitochondrial creatine kinase 1 (CKMT1) is abnormal in NSCLC, but the mechanism of its effect remains unclear. Therefore, in this study, we intend to clarify the potential mechanism of CKMT1 in NSCLC and provide the theoretical basis for the clinical application of CKMT1. METHODS The function of CKMT1 in NSCLC was identified by analyzing the GEO dataset and evaluating using in vitro and in vivo models. Protein mass spectrometry was used to find proteins interacting with CKMT1, and Co-immunoprecipitation (Co-IP) and GST-pull down experiments were used to verify the interaction between proteins. The immunofluorescence (IF) assay was used to explore the functional position of CKMT1 in cells. The effect of CKMT1 expression level on the efficacy of paclitaxel (TAX) in the treatment of NSCLC was analyzed by a combined TAX experiment in vivo and in vitro. RESULTS CKMT1 expression was increased in NSCLC and CKMT1 promoted the proliferation of NSCLC cells in vitro and in vivo. CKMT1 knockdown resulted in a significantly increased G0/G1 fraction and decreased S phase cell fraction, indicating G1 phase arrest. Mechanically, the cyclin-dependent kinase 4 (CDK4) was identified to interact with CKMT1, and the crucial binding areas were focused on the DH domain of CKMT1 and the N- and C-terminal of CDK4. A fraction of the CDK4 proteins colocalize and interact with the CKMT1 at mitochondria, the level of phosphorylated CDK4 was regulated by CKMT1. Hence, the decrease in CKMT1 expression level could increase the antitumor effect of G2/M cell cycle antagonist-TAX in NSCLC in vitro and in vivo. CONCLUSIONS CKMT1 could interact with CDK4 in mitochondria and regulate the phosphorylated level of CDK4, thus contributing to the proliferation and cell cycle transition of NSCLC cells. And CKMT1 could be a potential target to improve the sensitivity of chemotherapy based on TAX.
Collapse
Affiliation(s)
- Mengjie Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Xuecen Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhihua Ye
- Department of Medical Oncology Center, Zhongshan People's Hospital, Zhongshan, Guangdong Province, China
| | - Tingyu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yuan Meng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Youfa Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xuexia Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xin Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
| | - Ran-Yi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
9
|
Shan F, Shen S, Wang X, Chen G. BST2 regulated by the transcription factor STAT1 can promote metastasis, invasion and proliferation of oral squamous cell carcinoma via the AKT/ERK1/2 signaling pathway. Int J Oncol 2023; 62:54. [PMID: 36929425 PMCID: PMC10019759 DOI: 10.3892/ijo.2023.5502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/22/2023] [Indexed: 03/15/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the main types of head and neck squamous cell carcinoma. Although progress has been made in treating OSCC, it remains a threat to human health, and novel therapeutic strategies are needed to extend the lifespan of patients with OSCC. The present study, evaluated whether bone marrow stromal antigen 2 (BST2) and STAT1 were potential therapeutic targets in OSCC. Small interfering RNA (siRNA) or overexpression plasmids were used to regulate BST2 or STAT1 expression. Western blotting and reverse transcription‑quantitative PCR were performed to assess changes in the protein and mRNA expression levels of signaling pathway components. The effects of BST2 and STAT1 expression changes on the migration, invasion and proliferation of OSCC cells were assessed using the scratch test assay, Transwell assay and colony formation assay in vitro, respectively. Cell‑derived xenograft models were used to evaluate the impact of BST2 and STAT1 on the occurrence and development of OSCC in vivo. Finally, it was demonstrated that BST2 expression was significantly upregulated in OSCC. Furthermore, it was demonstrated that high expression of BST2 in OSCC contributed to the metastasis, invasion and proliferation of OSCC cells. Moreover, it was demonstrated that the promoter region of BST2 was regulated by the transcription factor STAT1, and that the STAT1/BST2 axis could affect the behavior of OSCC via the AKT/ERK1/2 signaling pathway. In vivo studies also demonstrated that STAT1 downregulation inhibited OSCC growth by down‑regulating BST2 expression via the AKT/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Fayu Shan
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Si Shen
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xinxing Wang
- Environmental Medicine Laboratory, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. China
- Correspondence to: Dr Xinxing Wang, Environmental Medicine Laboratory, Tianjin Institute of Environmental and Operational Medicine, 1 Dali Road, Heping, Tianjin 300050, P.R. China, E-mail:
| | - Gang Chen
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, P.R. China
- Dr Gang Chen, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tianjin Medical University, 12 Qi Xinang Tai Road, Heping, Tianjin 300070, P.R. China, E-mail:
| |
Collapse
|
10
|
Yuan XX, Duan YF, Luo C, Li L, Yang MJ, Liu TY, Cao ZR, Huang W, Bu X, Yue X, Liu RY. Disulfiram enhances cisplatin cytotoxicity by forming a novel platinum chelate Pt(DDTC) 3. Biochem Pharmacol 2023; 211:115498. [PMID: 36913990 DOI: 10.1016/j.bcp.2023.115498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023]
Abstract
Despite the use of targeted therapy in non-small cell lung cancer (NSCLC) patients, cisplatin (DDP)-based chemotherapy is still the main option. However, DDP resistance is the major factor contributing to the failure of chemotherapy. In this study, we tried to screen DDP sensitizers from an FDA-approved drug library containing 1374 small-molecule drugs to overcome DDP resistance in NSCLC. As a result, disulfiram (DSF) was identified as a DDP sensitizer: DSF and DDP had synergistic anti-NSCLC effects, which are mainly reflected in inhibiting tumor cell proliferation, plate colony formation and 3D spheroidogenesis and inducing apoptosis in vitro, as well as the growth of NSCLC xenografts in mice. Although DSF has recently been reported to promote the antitumor effect of DDP by inhibiting ALDH activity or modulating some important factors or pathways, unexpectedly, we found that DSF reacted with DDP to form a new platinum chelate, Pt(DDTC)3+, which might be one of the important mechanisms for their synergistic effect. Moreover, Pt(DDTC)3+ has a stronger anti-NSCLC effect than DDP, and its antitumor activity is broad-spectrum. These findings reveal a novel mechanism underlying the synergistic antitumor effect of DDP and DSF, and provide a drug candidate or a lead compound for the development of a new antitumor drug.
Collapse
Affiliation(s)
- Xue-Xia Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - You-Fa Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chunxiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Meng-Jie Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Ting-Yu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhi-Rui Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenlin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Guangdong Provincial Key Laboratory of Tumor Targeted Drugs & Guangzhou Enterprise Key Laboratory of Gene Medicine, Guangzhou DoublleBioproduct Co., Ltd., Guangzhou 510535, China
| | - Xianzhang Bu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xin Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Institute of Precision Medicine, The First Affiliated Hospital, SunYat-sen University, Guangzhou 510080, China.
| | - Ran-Yi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
11
|
Head and neck cancer patient-derived tumouroid cultures: opportunities and challenges. Br J Cancer 2023; 128:1807-1818. [PMID: 36765173 PMCID: PMC10147637 DOI: 10.1038/s41416-023-02167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Head and neck cancers (HNC) are the seventh most prevalent cancer type globally. Despite their common categorisation, HNCs are a heterogeneous group of malignancies arising in various anatomical sites within the head and neck region. These cancers exhibit different clinical and biological manifestations, and this heterogeneity also contributes to the high rates of treatment failure and mortality. To evaluate patients who will respond to a particular treatment, there is a need to develop in vitro model systems that replicate in vivo tumour status. Among the methods developed, patient-derived cancer organoids, also known as tumouroids, recapitulate in vivo tumour characteristics including tumour architecture. Tumouroids have been used for general disease modelling and genetic instability studies in pan-cancer research. However, a limited number of studies have thus far been conducted using tumouroid-based drug screening. Studies have concluded that tumouroids can play an essential role in bringing precision medicine for highly heterogenous cancer types such as HNC.
Collapse
|
12
|
Lin M, Zhang XL, You R, Liu YP, Cai HM, Liu LZ, Liu XF, Zou X, Xie YL, Zou RH, Zhang YN, Sun R, Feng WY, Wang HY, Tao GH, Li HJ, Huang WJ, Zhang C, Huang PY, Wang J, Zhao Q, Yang Q, Zhang HW, Liu T, Li HF, Jiang XB, Tang J, Gu YK, Yu T, Wang ZQ, Feng L, Kang TB, Zuo ZX, Chen MY. Evolutionary route of nasopharyngeal carcinoma metastasis and its clinical significance. Nat Commun 2023; 14:610. [PMID: 36739462 PMCID: PMC9899247 DOI: 10.1038/s41467-023-35995-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/04/2023] [Indexed: 02/06/2023] Open
Abstract
It is critical to understand factors associated with nasopharyngeal carcinoma (NPC) metastasis. To track the evolutionary route of metastasis, here we perform an integrative genomic analysis of 163 matched blood and primary, regional lymph node metastasis and distant metastasis tumour samples, combined with single-cell RNA-seq on 11 samples from two patients. The mutation burden, gene mutation frequency, mutation signature, and copy number frequency are similar between metastatic tumours and primary and regional lymph node tumours. There are two distinct evolutionary routes of metastasis, including metastases evolved from regional lymph nodes (lymphatic route, 61.5%, 8/13) and from primary tumours (hematogenous route, 38.5%, 5/13). The hematogenous route is characterised by higher IFN-γ response gene expression and a higher fraction of exhausted CD8+ T cells. Based on a radiomics model, we find that the hematogenous group has significantly better progression-free survival and PD-1 immunotherapy response, while the lymphatic group has a better response to locoregional radiotherapy.
Collapse
Affiliation(s)
- Mei Lin
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, P. R. China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Xiao-Long Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Take2 Health (Shenzhen) Limited, Shenzhen, 518066, P. R. China
| | - Rui You
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - You-Ping Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Hong-Min Cai
- School of Computer Science and Engineering, South China University of Technology, 382 East Waihuan Road, Guangzhou, 510006, P. R. China
| | - Li-Zhi Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Xue-Fei Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Xiong Zou
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Yu-Long Xie
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Ru-Hai Zou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Department of Ultrasound, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Yi-Nuan Zhang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Wei-Yi Feng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Hai-Yan Wang
- College of Mathematics and Informatics, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| | - Gui-Hua Tao
- School of Computer Science and Engineering, South China University of Technology, 382 East Waihuan Road, Guangzhou, 510006, P. R. China
| | - Hao-Jiang Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Wen-Jie Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Chao Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Pei-Yu Huang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Jin Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Qi Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Qi Yang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Hong-Wan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Ting Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Hui-Feng Li
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Xiao-Bing Jiang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Jun Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, 51 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Yang-Kui Gu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Department of Minimally Invasive Interventional Radiology, Sun Yat-sen University Cancer Center, 51 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Tao Yu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Zhi-Qiang Wang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Lin Feng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Tie-Bang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Zhi-Xiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.
| | - Ming-Yuan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.
| |
Collapse
|
13
|
Chaudhary RK, Khanal P, Mateti UV, Shastry CS, Shetty J. Identification of hub genes involved in cisplatin resistance in head and neck cancer. J Genet Eng Biotechnol 2023; 21:9. [PMID: 36715825 PMCID: PMC9886788 DOI: 10.1186/s43141-023-00468-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/14/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cisplatin resistance is one of the major contributors to the poor survival rate among head and neck cancer (HNC) patients. Focusing on the protein-protein interaction rather than a single protein could provide a better understanding of drug resistance. Thus, this study aimed to identify hub genes in a complex network of cisplatin resistance associated genes in HNC chemotherapy via a series of bioinformatic tools. METHODS The genes involved in cisplatin resistance were retrieved from the NCBI gene database using "head and neck cancer" and "cisplatin resistance" as key words. The human genes retrieved were analyzed for their interactions and enriched using the STRING database. The interaction between KEGG pathways and genes was visualized in Cytoscape 3.7.2. Further, the hub gene was identified using the Cytohubba plugin of Cytoscape and validated using UALCAN and Human Protein Atlas database. Validated genes were investigated for the drug-gene interaction using the DGIbd database. RESULTS Out of 137 genes obtained using key words, 133 were associated with cisplatin resistance in the human species. A total of 150 KEGG pathways, 82 cellular components, 123 molecular functions, and 1752 biological processes were modulated on enrichment analysis. Out of 37 hub genes, CCND1, AXL, CDKN2A, TERT, and EXH2 genes were found to have significant (p < 0.05) mRNA expression and effect on overall survival whereas protein expression was found to be positive for all the significant genes except TERT. Thus, they can be targeted with palbociclib, methotrexate, bortezomib and fluorouracil, sorafenib, dasatinib, carboplatin, paclitaxel, gemcitabine, imatinib, doxorubicin, and vorinostat. CONCLUSION As the pathogenesis of head and neck cancer is complex, targeting hub genes and associated pathways involved in cisplatin resistance could bring a milestone change in the drug discovery and management of drug resistance which might uplift overall survival among HNC patients.
Collapse
Affiliation(s)
- Raushan Kumar Chaudhary
- Department of Pharmacy Practice, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Pukar Khanal
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Uday Venkat Mateti
- Department of Pharmacy Practice, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, 575018, India.
| | - C. S. Shastry
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Jayarama Shetty
- grid.414809.00000 0004 1765 9194Department of Radiation Therapy and Oncology, K.S. Hegde Medical Academy (KSHEMA), Justice K.S. Hegde Charitable Hospital, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| |
Collapse
|
14
|
Li J, He Y, Qu Y, Ren C, Wang X, Cheng Y, Sun L, Zhang X, Zhang G. Promotion of BST2 expression by the transcription factor IRF6 affects the progression of endometriosis. Front Immunol 2023; 14:1115504. [PMID: 37143676 PMCID: PMC10151653 DOI: 10.3389/fimmu.2023.1115504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/07/2023] [Indexed: 05/06/2023] Open
Abstract
Background Endometriosis (EM) is a benign, multifactorial, immune-mediated inflammatory disease that is characterized by persistent activation of the NF-κB signaling pathway and some features of malignancies, such as proliferation and lymphangiogenesis. To date, the pathogenesis of EM is still unclear. In this study, we investigated whether BST2 plays a role in the development of EM. Methods Bioinformatic analysis was performed with data from public databases to identify potential candidate targets for drug treatment. Experiments were conducted at the cell, tissue, and mouse EM model levels to characterize the aberrant expression patterns, molecular mechanisms, biological behaviors of endometriosis as well as treatment outcomes. Results BST2 was significantly upregulated in ectopic endometrial tissues and cells compared with control samples. Functional studies indicated that BST2 promoted proliferation, migration, and lymphangiogenesis and inhibited apoptosis in vitro and in vivo. The transcription factor (TF) IRF6 induced high BST2 expression by directly binding the BST2 promoter. The underlying mechanism by which BST2 functions in EM was closely related to the canonical NF-κB signaling pathway. New lymphatic vessels may serve as a channel for the infiltration of immune cells into the endometriotic microenvironment; these immune cells further produce the proinflammatory cytokine IL-1β, which in turn further activates the NF-κB pathway to promote lymphangiogenesis in endometriosis. Conclusion Taken together, our findings provide novel insight into the mechanism by which BST2 participates in a feedback loop with the NF-κB signaling pathway and reveal a novel biomarker and potential therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Jixin Li
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanan He
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanjun Qu
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengcheng Ren
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaotong Wang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Cheng
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liyuan Sun
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Zhang
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Guangmei Zhang,
| |
Collapse
|
15
|
RNF219 Promotes Nasopharyngeal Carcinoma Progression by Activating the NF-κB Pathway. Mol Biotechnol 2022:10.1007/s12033-022-00593-y. [DOI: 10.1007/s12033-022-00593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022]
|
16
|
Kong Y, Xue Z, Wang H, Cui G, Chen A, Liu J, Wang J, Li X, Huang B. Identification of BST2 Contributing to the Development of Glioblastoma Based on Bioinformatics Analysis. Front Genet 2022; 13:890174. [PMID: 35865015 PMCID: PMC9294273 DOI: 10.3389/fgene.2022.890174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022] Open
Abstract
Rigorous molecular analysis of the immune cell environment and immune response of human tumors has led to immune checkpoint inhibitors as one of the most promising strategies for the treatment of human cancer. However, in human glioblastoma multiforme (GBM) which develops in part by attracting immune cell types intrinsic to the human brain (microglia), standard immunotherapy has yielded inconsistent results in experimental models and patients. Here, we analyzed publicly available expression datasets to identify molecules possibly associated with immune response originating from or influencing the tumor microenvironment in primary tumor samples. Using three glioma datasets (GSE16011, Rembrandt-glioma and TCGA-glioma), we first analyzed the data to distinguish between GBMs of high and low tumor cell purity, a reflection of the cellular composition of the tumor microenvironment, and second, to identify differentially expressed genes (DEGs) between these two groups using GSEA and other analyses. Tumor purity was negatively correlated with patient prognosis. The interferon gamma-related gene BST2 emerged as a DEG that was highly expressed in GBM and negatively correlated with tumor purity. BST2high tumors also tended to harbor PTEN mutations (31 vs. 9%, BST2high versus BST2low) while BST2low tumors more often had sustained TP53 mutations (8 versus 36%, BST2high versus BST2low). Prognosis of patients with BST2high tumors was also poor relative to patients with BST2low tumors. Further molecular in silico analysis demonstrated that high expression of BST2 was negatively correlated with CD8+ T cells but positively correlated with macrophages with an M2 phenotype. Further functional analysis demonstrated that BST2 was associated with multiple immune checkpoints and cytokines, and may promote tumorigenesis and progression through interferon gamma, IL6/JAK/STAT3 signaling, IL2/STAT5 signaling and the TNF-α signaling via NF-kB pathway. Finally, a series of experiments confirmed that the expression of BST2 can be significantly increased by IFN induction, and knockdown of BST2 can significantly inhibit the growth and invasion of GBM cells, and may affect the phenotype of tumor-associated macrophages. In conclusion, BST2 may promote the progression of GBM and may be a target for treatment.
Collapse
Affiliation(s)
- Yang Kong
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Neurological Care Unit, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhiwei Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Haiying Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Guangqiang Cui
- Neurological Care Unit, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Jie Liu
- Neurological Care Unit, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Bin Huang,
| |
Collapse
|
17
|
Wang Y, Wang J, Xiang H, Ding P, Wu T, Ji G. Recent update on application of dihydromyricetin in metabolic related diseases. Biomed Pharmacother 2022; 148:112771. [PMID: 35247719 DOI: 10.1016/j.biopha.2022.112771] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/02/2022] Open
Abstract
As a new type of natural flavonoids, dihydromyricetin (DMY) has attracted more and more attention. It has a series of pharmacological effects, such as anti-inflammatory, anti-tumor, anti-oxidation, antibacterial and so on, and it is almost no toxicity and with excellent safety. Therefore, even if the bioavailability is poor, it is often added to daily food, beverages and even medicines. In recent years, some researchers have found that DMY can treat some diseases by anti-oxidation, anti-inflammation, promoting cell death and regulate the activity of lipid and glucose metabolism. In addition, the mechanism of DMY on these diseases was also related to the signal pathway of AMPK, PI3K/Akt, PPAR and the participation of microRNAs. This review describes the mechanism of DMY in metabolic related diseases from three aspects: metabolic diseases, liver diseases, and cancers, hoping to provide some new ideas for clinical researches.
Collapse
Affiliation(s)
- Yirong Wang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
18
|
Zhou ZY, Yang JY, Shao CZ, Luo F, Du W. Positive regulation of ataxia-telangiectasia-mutated protein (ATM) by E2F transcription Factor 1 (E2F-1) in cisplatin-resistant nasopharyngeal carcinoma cells. World J Surg Oncol 2022; 20:88. [PMID: 35303867 PMCID: PMC8933998 DOI: 10.1186/s12957-022-02546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Objective To explore the mechanism of E2F transcription Factor 1 (E2F-1)-mediated ataxia-telangiectasia-mutated protein (ATM) in cisplatin (DDP)-resistant nasopharyngeal carcinoma (NPC). Methods E2F-1 and ATM expression was assessed in DDP-resistant NPC cell lines (CNE2/DDP and HNE1/DDP) and parental cells. Then, DDP-resistant NPC cells were transfected with control shRNA (short hairpin RNA) or E2F-1 shRNAs with or without ATM lentiviral activation particles. The half maximal inhibitory concentration (IC50) was evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, and the cell cycle and cell proliferation were measured by flow cytometry and EdU staining, respectively. In addition, the expression of genes and proteins was quantified by quantitative reverse-transcription polymerase chain reaction (qRT–PCR) and western blotting, respectively. Results Both E2F-1 and ATM expression in DDP-resistant NPC cells was much higher than that in parental cells. E2F-1 shRNA reduced ATM expression in DDP-resistant NPC cells, but ATM overexpression had no significant effect on E2F-1. ATM overexpression enhanced DDP resistance in DDP-resistant NPC cells with increased IC50 values, which was reversed by E2F-1 inhibition. Meanwhile, ATM overexpression resulted in upregulation of ABCA2 and ABCA5 in DDP-resistant NPC cells, induced elevations in the transition of the cells into S-phase, and increased cell proliferation with enhanced expression of cyclin E1, CDK2, and Ki67, which was reversed by E2F-1 shRNAs. Conclusion Downregulation of E2F-1, possibly by regulating ATM, could block the cell cycle in the G1 phase and reduce the proliferation of CNE2/DDP cells, thereby reversing the resistance of human NPC cells to DDP.
Collapse
Affiliation(s)
- Zun-Yan Zhou
- Department of Oncology, The First People's Hospital of Jingzhou, Jingzhou, 434000, China
| | - Ji-Yuan Yang
- Department of Oncology, The First People's Hospital of Jingzhou, Jingzhou, 434000, China
| | - Cheng-Ze Shao
- Department of Oncology, The First People's Hospital of Jingzhou, Jingzhou, 434000, China
| | - Fei Luo
- Department of Oncology, The First People's Hospital of Jingzhou, Jingzhou, 434000, China
| | - Wei Du
- Department of Oncology, The First People's Hospital of Jingzhou, Jingzhou, 434000, China.
| |
Collapse
|
19
|
Zhang LL, Zhu WJ, Zhang XX, Feng D, Wang XC, Ding Y, Wang DX, Li YY. Ferroptosis patterns and tumor microenvironment infiltration characterization in esophageal squamous cell cancer. Front Genet 2022; 13:1047382. [PMID: 36568375 PMCID: PMC9780266 DOI: 10.3389/fgene.2022.1047382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Esophageal Squamous Cell Cancer (ESCC) is an aggressive disease associated with a poor prognosis. As a newly defined form of regulated cell death, ferroptosis plays a crucial role in cancer development and treatment and might be a promising therapeutic target. However, the expression patterns of ferroptosis-related genes (FRGs) in ESCC remain to be systematically analyzed. Methods: First, we retrieved the transcriptional profile of ESCC from TCGA and GEO datasets (GSE47404, GSE23400, and GSE53625) and performed unsupervised clustering to identify different ferroptosis patterns. Then, we used the ssGSEA algorithm to estimate the immune cell infiltration of these patterns and explored the differences in immune cell abundance. Common genes among patterns were finally identified as signature genes of ferroptosis patterns. Results: Herein, we depicted the multi-omics landscape of FRGs through integrated bioinformatics analysis and identified three ESCC subtypes with distinct immune characteristics: clusters A-C. Cluster C was abundant in CD8+ T cells and other immune cell infiltration, while cluster A was immune-barren. By comparing the differently expressed genes between clusters of diverse datasets, we defined a gene signature for each cluster and successfully validated it in the TCGA-ESCC dataset. Conclusion: We provided a comprehensive insight into the expression pattern of ferroptosis genes and their interaction with immune cell infiltration. Additionally, we established a gene signature to define the ferroptosis patterns, which might be used to predict the response to immunotherapy.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Wei-Jie Zhu
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xin-Xin Zhang
- Department of Otolaryngology, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Da Feng
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xi-Cheng Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ying Ding
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- *Correspondence: Yi-Yang Li, ; Dong-Xia Wang, ; Ying Ding,
| | - Dong-Xia Wang
- Department of Radiation Oncology, Affiliated Dongguan People’s Hospital, Southern Medical University, Dongguan, Guangdong, China
- *Correspondence: Yi-Yang Li, ; Dong-Xia Wang, ; Ying Ding,
| | - Yi-Yang Li
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- *Correspondence: Yi-Yang Li, ; Dong-Xia Wang, ; Ying Ding,
| |
Collapse
|
20
|
Abdel-Latif RT, Wadie W, Abdel-mottaleb Y, Abdallah DM, El-Maraghy NN, El-Abhar HS. Reposition of the anti-inflammatory drug diacerein in an in-vivo colorectal cancer model. Saudi Pharm J 2021; 30:72-90. [PMID: 35145347 PMCID: PMC8802128 DOI: 10.1016/j.jsps.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
|
21
|
The Role of Genetic Pathways in the Development of Chemoradiation Resistance in Nasopharyngeal Carcinoma (NPC) Patients. Genes (Basel) 2021; 12:genes12111835. [PMID: 34828441 PMCID: PMC8619242 DOI: 10.3390/genes12111835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Management of nasopharyngeal carcinoma (NPC) remains elusive despite new developments and advancement that has been made in the current management approaches. A patient’s survival and prognosis remain dismal especially for a late-stage disease. This is highly attribute to the chemoradiation resistance. Arrays of genes and molecular mechanisms underlie the development of chemoradiation resistance in NPC. Imperatively, unravelling the true pathogenesis of chemoradiation resistance is crucial as these significant proteins and genes can be modulated to produce an effective therapeutic target. It is pivotal to identify the chemoradiation resistance at the very beginning in order to combat the chemoradiation resistance efficiently. Intense research in the genetic ecosphere is critical, as the discovery and development of novel therapeutic targets can be used for screening, diagnosis, and treating the chemoradiation resistance aggressively. This will escalate the management trajectory of NPC patients. This article highlights the significance of genetic and molecular factors that play critical roles in the chemoradiation resistance and how these factors may be modified for next-generation targeted therapy products.
Collapse
|
22
|
Niu Z, Li X, Dong S, Gao J, Huang Q, Yang H, Qian H, Zhuo S, Zhuang T, Zhu J, Ding Y, Xu W. The E3 Ubiquitin Ligase HOIP inhibits Cancer Cell Apoptosis via modulating PTEN stability. J Cancer 2021; 12:6553-6562. [PMID: 34659546 PMCID: PMC8489130 DOI: 10.7150/jca.61996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022] Open
Abstract
Chemotherapy is widely used in a variety of solid tumors, such as lung cancer, gastric cancer and breast cancer. The genotoxic drugs, such as cisplatin, suppress cancer progression either by inhibition cell proliferation or facilitating apoptosis. However, the chemotherapy resistance remains an urgent challenge in cancer therapy, especially in advanced stages. Several studies showed that the activation of pro-survival pathways, such as PI3K-AKT, participated in mediating chemotherapy resistance. The insights into the molecular mechanisms for underlying chemotherapy resistance are of great importance to improve cancer patient survival in advanced stages. The HOIP protein belongs to the RING family E3 ubiquitin ligases and modulates several atypical ubiquitination processes in cellular signaling. Previous studies showed that HOIP might be an important effector in modulating cancer cell death under genotoxic drugs. Here, we report that HOIP associates with PTEN and facilitates PTEN degradation in cancer cells. Depletion of HOIP causes cell cycle arrest and apoptosis, which effects could be rescued by PTEN silencing. Besides, the survival data from public available database show that HOIP expression correlates with poor survival in several types of chemotherapy-treated cancer patients. In conclusion, our study establishes a novel mechanism by which HOIP modulates PTEN stability and facilitates chemotherapy resistance in malignancies.
Collapse
Affiliation(s)
- Zhiguo Niu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China.,Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Xin Li
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Shuxiao Dong
- Department of Gastroenterology surgery, Shandong Provincial Third Hospital, Jinan, 250000, China
| | - Jianhui Gao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Qingsong Huang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Huijie Yang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Shu Zhuo
- Signet Therapeutics Inc, Shenzhen, China. Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518000, China
| | - Ting Zhuang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Jian Zhu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China.,Department of general surgery, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Yinlu Ding
- Department of general surgery, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| |
Collapse
|
23
|
Targeting DNA Damage Response and Repair to Enhance Therapeutic Index in Cisplatin-Based Cancer Treatment. Int J Mol Sci 2021; 22:ijms22158199. [PMID: 34360968 PMCID: PMC8347825 DOI: 10.3390/ijms22158199] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Platinum-based chemotherapies, such as cisplatin, play a large role in cancer treatment. The development of resistance and treatment toxicity creates substantial barriers to disease control, yet. To enhance the therapeutic index of cisplatin-based chemotherapy, it is imperative to circumvent resistance and toxicity while optimizing tumor sensitization. One of the primary mechanisms by which cancer cells develop resistance to cisplatin is through upregulation of DNA repair pathways. In this review, we discuss the DNA damage response in the context of cisplatin-induced DNA damage. We describe the proteins involved in the pathways and their roles in resistance development. Common biomarkers for cisplatin resistance and their utilization to improve patient risk stratification and treatment personalization are addressed. Finally, we discuss some of the current treatments and future strategies to circumvent the development of cisplatin resistance.
Collapse
|
24
|
Kanno Y, Chen CY, Lee HL, Chiou JF, Chen YJ. Molecular Mechanisms of Chemotherapy Resistance in Head and Neck Cancers. Front Oncol 2021; 11:640392. [PMID: 34026617 PMCID: PMC8138159 DOI: 10.3389/fonc.2021.640392] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy resistance is a huge barrier for head and neck cancer (HNC) patients and therefore requires close attention to understand its underlay mechanisms for effective strategies. In this review, we first summarize the molecular mechanisms of chemotherapy resistance that occur during the treatment with cisplatin, 5-fluorouracil, and docetaxel/paclitaxel, including DNA/RNA damage repair, drug efflux, apoptosis inhibition, and epidermal growth factor receptor/focal adhesion kinase/nuclear factor-κB activation. Next, we describe the potential approaches to combining conventional therapies with previous cancer treatments such as immunotherapy, which may improve the treatment outcomes and prolong the survival of HNC patients. Overall, by parsing the reported molecular mechanisms of chemotherapy resistance within HNC patient’s tumors, we can improve the prediction of chemotherapeutic responsiveness, and reveal new therapeutic targets for the future.
Collapse
Affiliation(s)
- Yuzuka Kanno
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan.,Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Chang-Yu Chen
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan.,Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yin-Ju Chen
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,Translational Laboratory, Research Department, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
25
|
Zhang J, Zheng B, Zhou X, Zheng T, Wang H, Wang Y, Zhang W. Increased BST-2 expression by HBV infection promotes HBV-associated HCC tumorigenesis. J Gastrointest Oncol 2021; 12:694-710. [PMID: 34012659 DOI: 10.21037/jgo-20-356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The majority of hepatocellular carcinoma (HCC) is closely associated with hepatitis B virus (HBV) infection, while the mechanism of HCC induced by HBV is debatable. Bone marrow stromal cell antigen 2 (BST-2), an N-glycoprotein, has been characterized as an oncogenic factor in several types of cancer. However, whether BST-2 plays an important role in HCC tumorigenesis remains unknown. Methods A total of 182 HCC tumorous and adjacent nontumor liver tissues were collected. HepG2, Huh7, L02, HepAD38, and HEK293T cell lines were adopted in this study. Tumor proliferation was detected by CCK8, transwell, wound healing, colony formation assays in vitro, and in vivo tumorigenesis was measured by mouse xenografts. NF-κB activation was determined by luciferase assay and Western blot. Protein expression was detected by Western blot, ELISA, or qPCR. Immunoprecipitation was used to confirm the interaction between BST-2 and Syk. Results Here, we observed the higher BST-2 expression in HBV-infected HCC than their paired adjacent tissues and HBV-uninfected HCC tissues, particularly more aberrant non-N-glycosylated BST-2 in HBV-infected HCC tumors. We also observed the increased ER degradation-enhancing α-mannosidase-like protein 3 (EDEM3), which is trimming of N-linked glycans by sequential removal of mannose residues, might result in more non-N-glycosylated form of BST-2. Moreover, we demonstrated that BST-2 and non-N-glycosylated BST-2 N65/92A mutant, not only enhanced the tumor characteristics of hepatoma cell lines in vitro, but also enhanced the growth of mouse xenografts in vivo. Mechanically, N65/92A mutant has stronger ability to promote HCC than BST-2 via NF-κB/ERK1/2 but not NF-κB/anti-apoptotic factors pathway. NF-κB inhibitor attenuated BST-2-mediated tumorigenesis of HCC. Conclusions Our findings illuminate the novel function of BST-2 as an oncogene of HBV-associated HCC, and highlight the novel relationship of N-glycosylation of BST-2 in regulating HCC tumorigenesis in vitro.
Collapse
Affiliation(s)
- Jun Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| | - Xiaolei Zhou
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| | - Tianhang Zheng
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| | - Yingchao Wang
- Hepatobiliary Pancreatic Surgery, the First Hospital of Jilin University, Changchun, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Ye L, Yin G, Jiang M, Tu B, Li Z, Wang Y. Dihydromyricetin Exhibits Antitumor Activity in Nasopharyngeal Cancer Cell Through Antagonizing Wnt/β-catenin Signaling. Integr Cancer Ther 2021; 20:1534735421991217. [PMID: 33724059 PMCID: PMC7975991 DOI: 10.1177/1534735421991217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) have been demonstrated to play a vital role in a diversity of biological processes in cancers. With the emergence of new evidence, the important function of CSCs in the formation of multidrug resistance of nasopharyngeal cancer has been demonstrated. Dysregulated Wnt/β-catenin signaling pathway is an important contributor to chemoresistance and maintenance of CSCs-like characteristics. This research aims to investigate comprehensively the function of dihydromyricetin (DMY), a natural flavonoid drug, on the cisplatin (cis) resistance and stem cell properties of nasopharyngeal cancer. METHODS In this study, the functional role of DMY in nasopharyngeal cancer progression was comprehensively investigated in vitro and in vivo, and then its relationship with CSCs-like phenotypes and multiple oncogenes was analyzed. RESULTS In parallel assays, the growth inhibitory action of cis was enhanced by the addition of DMY in cis-resistant nasopharyngeal cancer cell lines (Hone1/cis and CNE1/cis). Functional assays showed that DMY markedly diminished the stem cell properties of nasopharyngeal cells, such as colony and tumor-sphere formation. In vivo data showed that the growth of Hone1 CSCs formed tumor xenograft was inhibited significantly by the administration of DMY. Additionally, DMY could impair the Wnt/β-catenin signaling pathway and regulate the expression of downstream proteins in nasopharyngeal cancer cells. CONCLUSIONS Our study clarified the anti-tumor activity of DMY through blocking the Wnt/β-catenin signaling pathway in nasopharyngeal cancer. Therefore, DMY could be a novel therapeutic agent for nasopharyngeal cancer treatment.
Collapse
Affiliation(s)
- Ling Ye
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Gendi Yin
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Miaohua Jiang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Bo Tu
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhicheng Li
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiming Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Cao Y, Xie L, Shi F, Tang M, Li Y, Hu J, Zhao L, Zhao L, Yu X, Luo X, Liao W, Bode AM. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduct Target Ther 2021; 6:15. [PMID: 33436584 PMCID: PMC7801793 DOI: 10.1038/s41392-020-00376-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus-associated diseases are important global health concerns. As a group I carcinogen, EBV accounts for 1.5% of human malignances, including both epithelial- and lymphatic-originated tumors. Moreover, EBV plays an etiological and pathogenic role in a number of non-neoplastic diseases, and is even involved in multiple autoimmune diseases (SADs). In this review, we summarize and discuss some recent exciting discoveries in EBV research area, which including DNA methylation alterations, metabolic reprogramming, the changes of mitochondria and ubiquitin-proteasome system (UPS), oxidative stress and EBV lytic reactivation, variations in non-coding RNA (ncRNA), radiochemotherapy and immunotherapy. Understanding and learning from this advancement will further confirm the far-reaching and future value of therapeutic strategies in EBV-associated diseases.
Collapse
Affiliation(s)
- Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China. .,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China. .,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China. .,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, 410078, Changsha, China. .,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China. .,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, 410078, Changsha, China. .,Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Lin Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Luqing Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| |
Collapse
|
28
|
Jin H, Zhang L, Wang S, Qian L. BST2 promotes growth and induces gefitinib resistance in oral squamous cell carcinoma via regulating the EGFR pathway. Arch Med Sci 2021; 17:1772-1782. [PMID: 34900059 PMCID: PMC8641506 DOI: 10.5114/aoms.2019.86183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/18/2019] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Gefitinib, well known as a new antitumor agent, has been applied in various cancers such as oral squamous cell carcinoma (OSCC). However, most patients eventually acquire resistance to gefitinib, and the molecular mechanism of gefitinib resistance is not well described. Bone marrow stromal cell antigen 2 (BST2) has been reported to promote tumor cell growth and confer chemotherapy resistance in various cancers. However, the roles of BST2 in OSCC still need to be fully understood. MATERIAL AND METHODS We determined the expression of BST2 in OSCC tissues using qRT-PCR, immunohistochemistry and western blot. Next, we used MTT assay, flow cytometry and western blot to determine the roles of BST2 in OSCC cell proliferation, cycle progression and apoptosis, respectively. Furthermore, we evaluated the effect of BST2 on gefitinib resistance in OSCC cells and explored the related molecular mechanism. RESULTS BST2 expression was up-regulated in OSCC tissues compared with the adjacent normal tissues. BST2 overexpression significantly enhanced OSCC cell proliferation, mediated the cell cycle progression and inhibited cell apoptosis. Additionally, the results showed that BST2 overexpression effectively induced gefitinib resistance in OSCC cells. Subsequent analysis revealed that the underlying mechanism was associated with activation of the EGFR pathway. CONCLUSIONS Our study indicated that BST2 promoted growth and induced gefitinib resistance in OSCC cells, at least partially, through regulating the EGFR pathway. Thus, BST2 could be used as a therapeutic target for gefitinib resistance in OSCC.
Collapse
Affiliation(s)
- Huang Jin
- Department of Stomatology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Lianping Zhang
- Department of Stomatology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Shufang Wang
- Department of Stomatology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Lei Qian
- Department of Stomatology, Shanghai Songjiang District Central Hospital, Shanghai, China
| |
Collapse
|
29
|
Cheng J, Liu Z, Deng T, Lu Z, Liu M, Lu X, Adeshakin FO, Yan D, Zhang G, Wan X. CD317 mediates immunocytolysis resistance by RICH2/cytoskeleton-dependent membrane protection. Mol Immunol 2020; 129:94-102. [PMID: 33223223 DOI: 10.1016/j.molimm.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 11/19/2022]
Abstract
Immune evasion is a common hallmark of cancers. Immunotherapies that aim at restoring or increasing the immune response against cancers have revolutionized outcomes for patients, but the mechanisms of resistance remain poorly defined. Here, we report that CD317, a surface molecule with a unique topology that is double anchored into the membrane, protects tumor cells from immunocytolysis. CD317 knockdown in tumor cells renders more severe death in response to NK or chimeric antigen receptor-modified NK cells challenge. Such effects of CD317 silencing might be the results of increasing sensitivity of tumor cells to immune killing rather than strengthening immune response, since neither effector-target cell contact nor the activation of effector cells was affected, and the enhanced cytolysis was also not counteracted by the addition of recombinant CD317 proteins. Mechanistically, CD317 might endow tumor cells with more flexibility to modulate cytoskeleton through its association with RICH2, thereby protects membrane integrity against perforin and consequently promotes survival in response to immunocytolysis. These results reveal a new mechanism of immunocytolysis resistance and suggest CD317 as an attractive target which can be exploited for improving the efficacy of cancer immunotherapies.
Collapse
Affiliation(s)
- Jian Cheng
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Zhao Liu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China
| | - Tian Deng
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China
| | - Zhen Lu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Maoxuan Liu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China
| | - Xiaoxu Lu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Funmilayo Oladunni Adeshakin
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dehong Yan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China; Shenzhen BinDeBioTech Co., Ltd., Floor 5, Building 6, Tongfuyu Industrial City, Xili, Nanshan, Shenzhen, 518055, PR China.
| |
Collapse
|
30
|
Kang Y, He W, Ren C, Qiao J, Guo Q, Hu J, Xu H, Jiang X, Wang L. Advances in targeted therapy mainly based on signal pathways for nasopharyngeal carcinoma. Signal Transduct Target Ther 2020; 5:245. [PMID: 33093441 PMCID: PMC7582884 DOI: 10.1038/s41392-020-00340-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial carcinoma of the head and neck region which mainly distributes in southern China and Southeast Asia and has a crucial association with the Epstein-Barr virus. Based on epidemiological data, both incidence and mortality of NPC have significantly declined in recent decades grounded on the improvement of living standard and medical level in an endemic region, in particular, with the clinical use of individualized chemotherapy and intensity-modulated radiotherapy (IMRT) which profoundly contributes to the cure rate of NPC patients. To tackle the challenges including local recurrence and distant metastasis in the current NPC treatment, we discussed the implication of using targeted therapy against critical molecules in various signal pathways, and how they synergize with chemoradiotherapy in the NPC treatment. Combination treatment including targeted therapy and IMRT or concurrent chemoradiotherapy is presumably to be future options, which may reduce radiation or chemotherapy toxicities and open new avenues for the improvement of the expected functional outcome for patients with advanced NPC.
Collapse
Affiliation(s)
- Yuanbo Kang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Weihan He
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Caiping Ren
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Jincheng Qiao
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qiuyong Guo
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Jingyu Hu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Hongjuan Xu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Xingjun Jiang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Lei Wang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
31
|
Shi H, Luo K, Huang W. Bone Marrow Stromal Antigen 2 is a Potential Unfavorable Prognostic Factor for High-Grade Glioma. Onco Targets Ther 2020; 13:8723-8734. [PMID: 32943880 PMCID: PMC7468947 DOI: 10.2147/ott.s258631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Bone marrow stromal antigen 2 (BST2) is considered as a transmembrane glycoprotein and plays essential roles in innate immunity. It has been recently reported that up-regulation of BST2 was associated with the development of breast carcinoma. However, the clinical significance of BST2 in glioma has not been identified. The purpose of the present study is to explore the expression pattern and the role of BST2 in the progression of high-grade glioma. METHODS Expression levels of BST2 were tested in glioma tissues by analyzing the GEO database and immunohistochemistry staining. The prognostic role of BST2 in glioma was evaluated through univariate and multivariate analyses. In vitro and in vivo assays were conducted to confirm the role of BST2 on promoting glioma proliferation. RESULTS The mRNA level of BST2 was higher in glioma tissues than that in nontumorous brain tissues. High protein level of BST2 was correlated with larger tumor size and advanced WHO grade. Glioma patients with a high BST2 level had worse overall survival. In addition, BST2 was defined as an independent risk factor for glioma prognosis. Cellular and xenograft studies revealed that BST2 can significantly promote glioma proliferation. CONCLUSION Our study revealed that a high BST2 expression level was closely related to the unfavorable clinical features and poor prognosis of high-grade glioma patients. BST2 may serve as an invaluable prognostic indicator and novel therapeutic target for glioma treatment considering its membrane localization.
Collapse
Affiliation(s)
- Haiping Shi
- Department of Neurosurgery, Suining Central Hospital, Suining, Sichuan, People’s Republic of China
| | - Ke Luo
- Department of Neurosurgery, Suining Central Hospital, Suining, Sichuan, People’s Republic of China
| | - Wei Huang
- Department of Neurosurgery, Suining Central Hospital, Suining, Sichuan, People’s Republic of China
| |
Collapse
|
32
|
Yang H, Liu Y, Zhang R, Ye Y, Chen Q, Qin Q, Huang L, Li X, Cai R, Tang H, Jiang W. Prognostic value of the tumor volume reduction rate after neoadjuvant chemotherapy in patients with locoregional advanced nasopharyngeal carcinoma. Oral Oncol 2020; 110:104897. [PMID: 32679404 DOI: 10.1016/j.oraloncology.2020.104897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/06/2020] [Accepted: 07/04/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE Aim of this study was to evaluate the prognostic value of the tumor volume reduction rate (TVRR) of neoadjuvant chemotherapy (NACT) in patients with locoregional advanced nasopharyngeal carcinoma (NPC). METHODS We collected the clinical data of 263 patients with locoregional advanced NPC receiving NACT and subsequent radiotherapy from two hospitals: a training cohort (n = 130) was obtained from one hospital and a validation cohort was obtained the other hospital (n = 133). By follow-up and calculating the TVRR of all patients, the prognostic value of the TVRR was analyzed though a univariate and multivariate Cox regression model. A cut-off point of the TVRR relating to survival was explored by means of the Youden index, and the prognostic value of the TNM stage plus TVRR was measured by creating receiver operating characteristic (ROC) curves. RESULTS 12.6%, a cut-off point of TVRR, was found to best predict DFS. Patients with a TVRR > 12.6% had better DFS (hazard ratio, 0.160, 95% confidence interval 0.072-0.354; P < 0.001), LRRFS (0.064, 0.013-0.310; 0.001) and DMFS (0.274, 0.106-0.711; 0.008) than patients with a TVRR ≤ 12.6%. The TVRR was a significant independent prognostic factor for OS, DFS, LRRFS and DMFS. Combining the TVRR and TNM stage enhanced the ability to predict DFS and LRRFS. CONCLUSIONS The TVRR of NACT is an independent prognostic factor for patients with locoregional advanced NPC receiving radiotherapy. Adding the TVRR to the original TNM staging system improves the prognostic value for locoregional advanced NPC.
Collapse
Affiliation(s)
- Huiyun Yang
- Department of Radiation Oncology, Guilin Medical University Affiliated Hospital, Guilin 541001, PR China
| | - Yuanyuan Liu
- Department of Radiation Oncology, Wuzhou Red Cross Hospital, Wuzhou 543002, PR China
| | - Rongjun Zhang
- Department of Radiation Oncology, Guilin Medical University Affiliated Hospital, Guilin 541001, PR China
| | - Yaomin Ye
- Department of Radiation Oncology, Guilin Medical University Affiliated Hospital, Guilin 541001, PR China
| | - Qiuqiu Chen
- Department of Radiation Oncology, Guilin Medical University Affiliated Hospital, Guilin 541001, PR China
| | - Qinghua Qin
- Department of Radiation Oncology, Guilin Medical University Affiliated Hospital, Guilin 541001, PR China
| | - Liying Huang
- Department of Radiation Oncology, Guilin Medical University Affiliated Hospital, Guilin 541001, PR China
| | - Xi Li
- Department of Radiation Oncology, Guilin Medical University Affiliated Hospital, Guilin 541001, PR China
| | - Rui Cai
- Department of Radiation Oncology, Guilin Medical University Affiliated Hospital, Guilin 541001, PR China
| | - Huaying Tang
- Department of Radiation Oncology, Guilin Medical University Affiliated Hospital, Guilin 541001, PR China
| | - Wei Jiang
- Department of Radiation Oncology, Guilin Medical University Affiliated Hospital, Guilin 541001, PR China; Department of Oncology, People's Hospital of Gongcheng Yao Autonomous County, Guilin 542500, PR China.
| |
Collapse
|
33
|
Xu X, Wang Y, Xue F, Guan E, Tian F, Xu J, Zhang H. BST2 Promotes Tumor Growth via Multiple Pathways in Hepatocellular Carcinoma. Cancer Invest 2020; 38:329-337. [PMID: 32427495 DOI: 10.1080/07357907.2020.1769125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bone marrow stromal antigen 2 (BST2) is a transmembrane glycoprotein and plays an essential role in innate immunity. Here we firstly found that BST2 expression was significantly elevated in hepatocellular carcinoma (HCC) tissues. High BST2 was closely related to the larger tumor size and more tumor number. Moreover, HCC patients with higher expression of BST2 had poorer overall survival and BST2 was identified as an independent unfavorable prognosis factor. Finally, we demonstrated that BST2 can promote proliferation capacity of tumor cells. In conclusion, HCC patients with higher BST2 expression were more predisposed to poorer clinical symptoms and unfavorable prognosis.
Collapse
Affiliation(s)
- Xiaoguang Xu
- Department of Gastroenterology, Linyi Central Hospital, Shandong, Linyi, China
| | - Yu Wang
- Department of Gastroenterology, Linyi Central Hospital, Shandong, Linyi, China
| | - Fangxi Xue
- Department of Gastroenterology, Linyi Central Hospital, Shandong, Linyi, China
| | - Encui Guan
- Department of Gastroenterology, Linyi Central Hospital, Shandong, Linyi, China
| | - Feng Tian
- Department of Gastroenterology, Linyi Central Hospital, Shandong, Linyi, China
| | - Jian Xu
- Department of Gastroenterology, Linyi Central Hospital, Shandong, Linyi, China
| | - Hongjin Zhang
- Department of Endocrinology and Nephrology, The Third People's Hospital of Linyi, Shandong, Linyi, China
| |
Collapse
|
34
|
Li T, Si W, Zhu J, Yin L, Zhong C. Emodin reverses 5-Fu resistance in human colorectal cancer via downregulation of PI3K/Akt signaling pathway. Am J Transl Res 2020; 12:1851-1861. [PMID: 32509181 PMCID: PMC7269979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND 5-Fu resistance is a major obstacle in the treatment of malignant tumors. Therefore, combination therapy is employed to overcome this limitation. Since it was demonstrated that emodin could resensitize breast cancer to 5-Fu treatment, we aimed to investigate if emodin could reverse 5-Fu resistant colorectal cancer (CRC) in the current study. METHODS For the aim to explore the effect of emodin on 5-Fu resistant CRC, 5-Fu-resistant cell line (SW480/5-Fu) was established. CCK-8 assay and Ki67 staining were performed to evaluate the effects of emodin in combination with 5-Fu on cell proliferation. Flow cytometry was used to detect the apoptosis of SW480/5-Fu cells. Additionally, the invasion and migration of SW480/5-Fu cells were tested by transwell assay and wound healing, respectively. Western-blot was performed to examine the protein expressions in SW480/5-Fu cells. Moreover, xenograft mice model was established to test the anti-tumor effect of emodin in combination with 5-Fu in vivo. RESULTS Emodin notably increased the anti-proliferation effect of 5-Fu in SW480/5-Fu cells. Similarly, the invasion and migration of SW480/5-Fu cells were further inhibited in the presence of emodin. In addition, the combination treatment (emodin plus 5-Fu) induced cell apoptosis via inhibiting Bcl-2 and activating cleaved caspase3 and Bax. Moreover, emodin reduced 5-Fu resistant in CRC via downregulation of PI3K/Akt signaling. Finally, in vivo study indicated that emodin could notably reverse 5-Fu resistance in CRC xenograft. CONCLUSION Our research revealed that emodin could reverse 5-Fu resistance in CRC through inactivating PI3K/Akt signaling pathway in vitro and in vivo. Thus, this finding might provide a molecular basis for treating 5-Fu resistant CRC.
Collapse
Affiliation(s)
- Tonghu Li
- Department of General Surgery, Shuyang Traditional Chinese Medicine Hospital Suqian 223600, Jiangsu, China
| | - Wenjun Si
- Department of General Surgery, Shuyang Traditional Chinese Medicine Hospital Suqian 223600, Jiangsu, China
| | - Jiameng Zhu
- Department of General Surgery, Shuyang Traditional Chinese Medicine Hospital Suqian 223600, Jiangsu, China
| | - Li Yin
- Department of General Surgery, Shuyang Traditional Chinese Medicine Hospital Suqian 223600, Jiangsu, China
| | - Chongyang Zhong
- Department of General Surgery, Shuyang Traditional Chinese Medicine Hospital Suqian 223600, Jiangsu, China
| |
Collapse
|
35
|
Coleman DJ, Sampson DA, Sehrawat A, Kumaraswamy A, Sun D, Wang Y, Schwartzman J, Urrutia J, Lee AR, Coleman IM, Nelson PS, Dong X, Morrissey C, Corey E, Xia Z, Yates JA, Alumkal JJ. Alternative splicing of LSD1+8a in neuroendocrine prostate cancer is mediated by SRRM4. Neoplasia 2020; 22:253-262. [PMID: 32403054 PMCID: PMC7218227 DOI: 10.1016/j.neo.2020.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is the most virulent form of prostate cancer. Importantly, our recent work examining metastatic biopsy samples demonstrates NEPC is increasing in frequency. In contrast to prostate adenocarcinomas that express a luminal gene expression program, NEPC tumors express a neuronal gene expression program. Despite this distinction, the diagnosis of NEPC is often challenging, demonstrating an urgent need to identify new biomarkers and therapeutic targets. Our prior work demonstrated that the histone demethylase LSD1 (KDM1A) is important for survival of prostate adenocarcinomas, but little was known about LSD1's role in NEPC. Recently, a neural-specific transcript variant of LSD1-LSD1+8a-was discovered and demonstrated to activate neuronal gene expression in neural cells. The splicing factor SRRM4 was previously shown to promote LSD1+8a splicing in neuronal cells, and SRRM4 promotes NEPC differentiation and cell survival. Therefore, we sought to determine if LSD1+8a might play a role in NEPC and whether LSD1+8a splicing was linked to SRRM4. To investigate a potential role for LSD1+8a in NEPC, we examined a panel of prostate adenocarcinoma and NEPC patient-derived xenografts and metastatic biopsies. LSD1+8a was expressed exclusively in NEPC samples and correlated significantly with elevated expression of SRRM4. Using SRRM4-overexpressing cell lines, we determined that SRRM4 mediates alternative splicing of LSD1+8a. Finally, using gain of function studies, we confirmed that LSD1+8a and SRRM4 co-regulate target genes distinct from canonical LSD1. Our findings suggest further study of the interplay between SRRM4 and LSD1+8a and mechanisms by which LSD1+8a regulates gene expression in NEPC is warranted.
Collapse
Affiliation(s)
- Daniel J Coleman
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - David A Sampson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Archana Sehrawat
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Anbarasu Kumaraswamy
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Duanchen Sun
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Jacob Schwartzman
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joshua Urrutia
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ahn R Lee
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Ilsa M Coleman
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter S Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Xuesen Dong
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Zheng Xia
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
| | - Joel A Yates
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Joshi J Alumkal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
36
|
Zhang R, Li SW, Liu L, Yang J, Huang G, Sang Y. TRIM11 facilitates chemoresistance in nasopharyngeal carcinoma by activating the β-catenin/ABCC9 axis via p62-selective autophagic degradation of Daple. Oncogenesis 2020; 9:45. [PMID: 32382014 PMCID: PMC7206012 DOI: 10.1038/s41389-020-0229-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy resistance is the major cause of nasopharyngeal carcinoma (NPC) treatment failure. Tripartite motif-containing protein (TRIM) family members play important roles in tumor development and chemotherapy failure. Here, based on a screening analysis of 71 TRIM family members by qRT-PCR, we first confirmed that the TRIM11 levels were significantly higher in drug-resistant NPC cells than in non-drug-resistant NPC cells, and high TRIM11 expression predicted poor overall survival (OS) and progression-free survival (PFS). N(6)-Methyladenosine (m6A) was highly enriched in TRIM11 in NPC drug-resistant cells and enhanced its RNA stability. TRIM11 enhanced the multidrug resistance in NPC by inhibiting apoptosis in vitro and promoting cisplatin (DDP) resistance in vivo. TRIM11 associated with Daple and promoted Daple ubiquitin-mediated degradation in a p62-selective autophagic manner, further upregulating β-catenin expression to induce ABCC9 expression by directly binding to the ABCC9 promoter. TRIM11 may regulate NPC drug resistance by positively modulating the Daple/β-catenin/ABCC9 signaling pathway. Thus, TRIM11 may be a potential diagnostic marker and therapeutic target for chemoresistant NPC.
Collapse
Affiliation(s)
- Runa Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Si-Wei Li
- Department of Oncology, Tongji Huangzhou Hospital of Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Lijuan Liu
- Department of Pharmacy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Jun Yang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Guofu Huang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.
| | - Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.
| |
Collapse
|
37
|
Zhou QH, Han H, Lu JB, Liu TY, Huang KB, Deng CZ, Li ZS, Chen JP, Yao K, Qin ZK, Liu ZW, Li YH, Guo SJ, Ye YL, Zhou FJ, Liu RY. Up-regulation of indoleamine 2,3-dioxygenase 1 (IDO1) expression and catalytic activity is associated with immunosuppression and poor prognosis in penile squamous cell carcinoma patients. Cancer Commun (Lond) 2020; 40:3-15. [PMID: 32125093 PMCID: PMC7163927 DOI: 10.1002/cac2.12001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Background Indoleamine 2,3‐dioxygenase 1 (IDO1) and tryptophan (Trp) catabolism have been demonstrated to play an important role in tumor immunosuppression. This study examined the expression and catalytic activity of IDO1 in penile squamous cell carcinoma (PSCC) and explored their clinical significance. Methods IDO1 expression level, serum concentrations of Trp and kynurenine (Kyn) were examined in 114 PSCC patients by immunohistonchemistry and solid‐phase extraction‐liquid chromatography‐tandem mass spectrometry. The survival was analyzed using Kaplan‐Meier method and the log‐rank test. Hazard ratio of death was analyzed via univariate and multivariate Cox regression. Immune cell types were defined by principal component analysis. The correlativity was assessed by Pearson's correlation analysis. Results The expression level of IDO1 in PSCC cells was positively correlated with serum Kyn concentration and Kyn/Trp radio (KTR; both P < 0.001) but negatively correlated with serum Trp concentration (P = 0.001). Additionally, IDO1 up‐regulation in cancer cells and the increase of serum KTR were significantly associated with advanced N stage (both P < 0.001) and high pathologic grade (P = 0.008 and 0.032, respectively). High expression level of IDO1 in cancer cells and serum KTR were associated with short disease‐specific survival (both P < 0.001). However, besides N stage (hazard radio [HR], 6.926; 95% confidence interval [CI], 2.458‐19.068; P < 0.001) and pathologic grade (HR, 2.194; 95% CI, 1.021‐4.529; P = 0.038), only serum KTR (HR, 2.780; 95% CI, 1.066‐7.215; P = 0.036) was an independent predictor for PSCC prognosis. IDO1 expression was positively correlated with the expression of interferon‐γ (IFNγ, P < 0.001) and immunosuppressive markers (programmed cell death protein 1, cytotoxic T‐lymphocyte‐associated protein 4 and programmed death‐ligand 1 and 2; all P < 0.05), and the infiltration of immune cells (including cytotoxic T lymphocytes, regulatory T lymphocytes, tumor‐associated macrophages, and myeloid‐derived suppressor cells; all P < 0.001) in PSCC tissues. Furthermore, the expression of IDO1 was induced by IFNγ in a dose‐dependent manner in PSCC cells. Conclusions IFNγ‐induced IDO1 plays a crucial role in immunoediting and immunosuppression in PSCC. Additionally, serum KTR, an indicator of IDO1 catabolic activity, can be utilized as an independent prognostic factor for PSCC.
Collapse
Affiliation(s)
- Qiang-Hua Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Hui Han
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Jia-Bin Lu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Ting-Yu Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Kang-Bo Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Chuang-Zhong Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Zai-Shang Li
- Department of Urology, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong, 518021, P. R. China
| | - Jie-Ping Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Kai Yao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Zi-Ke Qin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Zhuo-Wei Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yong-Hong Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Sheng-Jie Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yun-Lin Ye
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Fang-Jian Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Ran-Yi Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| |
Collapse
|
38
|
Association of expression of p53, livin, ERCC1, BRCA1 and PARP1 in epithelial ovarian cancer tissue with drug resistance and prognosis. Pathol Res Pract 2020; 216:152794. [DOI: 10.1016/j.prp.2019.152794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023]
|
39
|
Fagan V, Johansson C, Gileadi C, Monteiro O, Dunford JE, Nibhani R, Philpott M, Malzahn J, Wells G, Faram R, Cribbs AP, Halidi N, Li F, Chau I, Greschik H, Velupillai S, Allali-Hassani A, Bennett J, Christott T, Giroud C, Lewis AM, Huber KVM, Athanasou N, Bountra C, Jung M, Schüle R, Vedadi M, Arrowsmith C, Xiong Y, Jin J, Fedorov O, Farnie G, Brennan PE, Oppermann U. A Chemical Probe for Tudor Domain Protein Spindlin1 to Investigate Chromatin Function. J Med Chem 2019; 62:9008-9025. [PMID: 31550156 DOI: 10.1021/acs.jmedchem.9b00562] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Modifications of histone tails, including lysine/arginine methylation, provide the basis of a "chromatin or histone code". Proteins that contain "reader" domains can bind to these modifications and form specific effector complexes, which ultimately mediate chromatin function. The spindlin1 (SPIN1) protein contains three Tudor methyllysine/arginine reader domains and was identified as a putative oncogene and transcriptional coactivator. Here we report a SPIN1 chemical probe inhibitor with low nanomolar in vitro activity, exquisite selectivity on a panel of methyl reader and writer proteins, and with submicromolar cellular activity. X-ray crystallography showed that this Tudor domain chemical probe simultaneously engages Tudor domains 1 and 2 via a bidentate binding mode. Small molecule inhibition and siRNA knockdown of SPIN1, as well as chemoproteomic studies, identified genes which are transcriptionally regulated by SPIN1 in squamous cell carcinoma and suggest that SPIN1 may have a role in cancer related inflammation and/or cancer metastasis.
Collapse
Affiliation(s)
- Vincent Fagan
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Catrine Johansson
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Carina Gileadi
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Octovia Monteiro
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - James E Dunford
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Martin Philpott
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Jessica Malzahn
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Graham Wells
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Ruth Faram
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Adam P Cribbs
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Nadia Halidi
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Fengling Li
- Structural Genomics Consortium , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - Irene Chau
- Structural Genomics Consortium , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - Holger Greschik
- Department of Urology, Center for Clinical Research, Medical Center, Signalling Research Centres BIOSS and CIBSS , University of Freiburg , D-79106 Freiburg , Germany
| | - Srikannathasan Velupillai
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
| | - Abdellah Allali-Hassani
- Structural Genomics Consortium , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - James Bennett
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Thomas Christott
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Charline Giroud
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Andrew M Lewis
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Kilian V M Huber
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Nick Athanasou
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Chas Bountra
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
| | - Manfred Jung
- FRIAS-Freiburg Institute of Advanced Studies , University of Freiburg , 79104 Freiburg , Germany
- Institute of Pharmaceutical Sciences , University of Freiburg , Albertstraße 25 , 79104 Freiburg , Germany
| | - Roland Schüle
- Department of Urology, Center for Clinical Research, Medical Center, Signalling Research Centres BIOSS and CIBSS , University of Freiburg , D-79106 Freiburg , Germany
| | - Masoud Vedadi
- Structural Genomics Consortium , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - Cheryl Arrowsmith
- Structural Genomics Consortium , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences , Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences , Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Oleg Fedorov
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Gillian Farnie
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Paul E Brennan
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
- Alzheimer's Research UK Oxford Drug Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Udo Oppermann
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
- FRIAS-Freiburg Institute of Advanced Studies , University of Freiburg , 79104 Freiburg , Germany
| |
Collapse
|
40
|
Zhang Q, Cao WS, Wang XQ, Zhang M, Lu XM, Chen JQ, Chen Y, Ge MM, Zhong CY, Han HY. Genistein inhibits nasopharyngeal cancer stem cells through sonic hedgehog signaling. Phytother Res 2019; 33:2783-2791. [PMID: 31342620 DOI: 10.1002/ptr.6464] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 01/03/2025]
Abstract
Genistein, a soy derived isoflavanoid compound, exerts anticancer effects in various cancers. Nasopharyngeal cancer stem cells (NCSCs) are a small subpopulation of cancer cells which are responsible for initiation, progression, metastasis, and recurrence of nasopharyngeal cancer. The present study aimed to investigate the suppressive effects of genistein on NCSCs and its underlying mechanism. NCSCs were enriched from human nasopharyngeal cancer cell lines CNE2 and HONE1 through tumorsphere-forming assay. It was shown that genistein inhibited the tumorsphere formation capacity, decreased the number of EpCAM+ cells, downregulated the expression of NCSCs markers, suppressed cell proliferation, and induced apoptosis of NCSCs. Genistein suppressed the activity of Sonic hedgehog (SHH) signaling, which was important for the maintenance of NCSCs, while activation of SHH signaling by purmorphamine diminished the inhibitory effects of genistein on NCSCs. Our data suggested that genistein inhibited NCSCs through the suppression of SHH signaling. These findings support the use of genistein for targeting NCSCs.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wan-Shuang Cao
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xue-Qi Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiao-Min Lu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jia-Qi Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Miao-Miao Ge
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cai-Yun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hong-Yu Han
- Department of Clinical Nutrition, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
41
|
Astragalus polysaccharides (PG2) Enhances the M1 Polarization of Macrophages, Functional Maturation of Dendritic Cells, and T Cell-Mediated Anticancer Immune Responses in Patients with Lung Cancer. Nutrients 2019; 11:nu11102264. [PMID: 31547048 PMCID: PMC6836209 DOI: 10.3390/nu11102264] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Recently, we demonstrated that Astragalus polysaccharide (PG2), the active ingredient in dried roots of astragalus membranaceus, ameliorates cancer symptom clusters and improves quality of life (QoL) in patients with metastatic disease by modulating inflammatory cascade against the background roles of inflammatory cells, including macrophages, dendritic cells (DCs), and cytotoxic T lymphocytes (CTLs) in tumor initiation, metastasis, and progression. Nevertheless, the role of PG2 in the modulation of anticancer immunogenicity and therapeutic response remains relatively underexplored and unclear. Purpose: The present study investigates how and to what extent PG2 modulates cellular and biochemical components of the inflammatory cascade and enhances anticancer immunity, as well as the therapeutic implication of these bio-events in patients with lung cancer. Methods and Results: Herein, we demonstrated that PG2 significantly increased the M1/M2 macrophage polarization ratio in non-small cell carcinoma (NSCLC) H441 and H1299 cells. This PG2-induced preferential pharmacologic up-regulation of tumoral M1 population in vitro positively correlated with the downregulation of tumor-promoting IL-6 and IL-10 expression in NSCLC cell-conditioned medium, with concomitant marked inhibition of cell proliferation, clonogenicity, and tumorsphere formation. Our ex vivo results, using clinical sample from our NSCLC cohort, demonstrated that PG2 also promoted the functional maturation of DCs with consequent enhancement of T cell-mediated anticancer immune responses. Consistent with the in vitro and ex vivo results, our in vivo studies showed that treatment with PG2 elicited significant time-dependent depletion of the tumor-associated M2 population, synergistically enhanced the anti-M2-based anticancer effect of cisplatin, and inhibited xenograft tumor growth in the NSCLC mice models. Moreover, in the presence of PG2, cisplatin-associated dyscrasia and weight-loss was markedly suppressed. Conclusion: These results do indicate a therapeutically-relevant role for PG2 in modulating the M1/M2 macrophage pool, facilitating DC maturation and synergistically enhancing the anticancer effect of conventional chemotherapeutic agent, cisplatin, thus laying the foundation for further exploration of the curative relevance of PG2 as surrogate immunotherapy and/or clinical feasibility of its use for maintenance therapy in patients with lung cancer.
Collapse
|
42
|
Yu X, Wang R, Zhang Y, Zhou L, Wang W, Liu H, Li W. Skp2-mediated ubiquitination and mitochondrial localization of Akt drive tumor growth and chemoresistance to cisplatin. Oncogene 2019; 38:7457-7472. [PMID: 31435020 DOI: 10.1038/s41388-019-0955-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 11/09/2022]
Abstract
The E3 ligase S-phase kinase-associated protein 2(Skp2) is overexpressed in human cancers and correlated with poor prognosis, but its contributions to tumorigenesis and chemoresistance in nasopharyngeal carcinoma (NPC) are not evident. Herein we show that Skp2 is highly expressed in NPC tumor tissues and cell lines. Knockdown of Skp2 suppresses tumor cell growth, colony formation, glycolysis, and in vivo tumor growth. Skp2 promotes Akt K63-mediated ubiquitination and activation, which is required for EGF-induced Akt mitochondrial localization. Importantly, K63-linked ubiquitination enhances the interaction between Akt and HK2 and eventually increases HK2 phosphorylation on Thr473 and mitochondrial localization. Overexpression of Skp2 impaired the intrinsic apoptotic pathway and confers cisplatin resistance. Moreover, ectopic expression of Myr-Akt1 or phosphomimetic HK2-T473D rescued cisplatin-induced tumor suppression in Skp2 knockdown stable cells. Also, depletion of Akt ubiquitination enhances the antitumor efficacy of cisplatin in vitro and in vivo. Finally, we demonstrated that Skp2 is positively correlated with p-Akt and HK2 in NPC tumor tissues. This study highlights the clinical value of Skp2 targeting in NPC treatment.
Collapse
Affiliation(s)
- Xinfang Yu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Ruike Wang
- Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, PR China
| | - Yangnan Zhang
- Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, PR China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, PR China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410000, Hunan, PR China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China. .,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China.
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410000, Hunan, PR China.
| |
Collapse
|
43
|
Hsieh MJ, Wang CW, Lin JT, Chuang YC, Hsi YT, Lo YS, Lin CC, Chen MK. Celastrol, a plant-derived triterpene, induces cisplatin-resistance nasopharyngeal carcinoma cancer cell apoptosis though ERK1/2 and p38 MAPK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152805. [PMID: 31022663 DOI: 10.1016/j.phymed.2018.12.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Developing resistance to chemotherapeutic drugs has become a major problem in the management of nasopharyngeal carcinoma (NPC). To overcome this issue, use of natural plant products as chemosensitizers is gaining importance at a fast pace. HYPOTHESIS/PURPOSE The present study was designed to evaluate the cytotoxic effect and mode of action of a natural pentacyclic triterpenoid, celastrol, on cisplatin-resistant NPC cells. RESULTS Study results revealed that celastrol treatment significantly reduced the viability of NPC cells in dose and time dependent manners, as compared to untreated control cells. The cytotoxic effect of celastrol was mediated by cell cycle arrest at G2/M phase and induction of intrinsic and extrinsic apoptotic pathways. With further analysis, we observed that celastrol-induced activation of caspases was accompanied by increased phosphorylation of MAPK pathway proteins, p38, ERK1/2. CONCLUSION Taken together, our observation provides a novel insight on use of a natural plant product, celastrol, in the management of chemoresistant NPC.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Department of Holistic Wellness, Mingdao University, Changhua 52345, Taiwan.
| | - Che-Wei Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Jen-Tsun Lin
- Division of Hematology and Oncology, Department of Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yi-Ting Hsi
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan.
| |
Collapse
|
44
|
Wang XC, Yue X, Zhang RX, Liu TY, Pan ZZ, Yang MJ, Lu ZH, Wang ZY, Peng JH, Le LY, Wang GY, Peng QH, Meng Y, Huang W, Liu RY. Genome-wide RNAi Screening Identifies RFC4 as a Factor That Mediates Radioresistance in Colorectal Cancer by Facilitating Nonhomologous End Joining Repair. Clin Cancer Res 2019; 25:4567-4579. [PMID: 30979744 DOI: 10.1158/1078-0432.ccr-18-3735] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/14/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Neoadjuvant chemoradiotherapy (neoCRT) is a standard treatment for locally advanced rectal cancer (LARC); however, resistance to chemoradiotherapy is one of the main obstacles to improving treatment outcomes. The goal of this study was to identify factors involved in the radioresistance of colorectal cancer and to clarify the underlying mechanisms. EXPERIMENTAL DESIGN A genome-wide RNAi screen was used to search for candidate radioresistance genes. After RFC4 knockdown or overexpression, colorectal cancer cells exposed to X-rays both in vitro and in a mouse model were assayed for DNA damage, cytotoxicity, and apoptosis. Moreover, the regulatory effects and mechanisms of RFC4 in DNA repair were investigated in vitro. Finally, the relationships between RFC4 expression and clinical parameters and outcomes were investigated in 145 patients with LARC receiving neoCRT. RESULTS RFC4, NCAPH, SYNE3, LDLRAD2, NHP2, and FICD were identified as potential candidate radioresistance genes. RFC4 protected colorectal cancer cells from X-ray-induced DNA damage and apoptosis in vitro and in vivo. Mechanistically, RFC4 promoted nonhomologous end joining (NHEJ)-mediated DNA repair by interacting with Ku70/Ku80 but did not affect homologous recombination-mediated repair. Higher RFC4 expression in cancer tissue was associated with weaker tumor regression and poorer prognosis in patients with LARC treated with neoCRT, which likely resulted from the effect of RFC4 on radioresistance, not chemoresistance. CONCLUSIONS RFC4 was identified as a radioresistance factor that promotes NHEJ-mediated DNA repair in colorectal cancer cells. In addition, the expression level of RFC4 predicted radiotherapy responsiveness and the outcome of neoadjuvant radiotherapy in patients with LARC.
Collapse
Affiliation(s)
- Xue-Cen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong-Xin Zhang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting-Yu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Zhong Pan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Meng-Jie Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zhen-Hai Lu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zi-Yang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Hong Peng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Yuan Le
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Gao-Yuan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi-Hua Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuan Meng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenlin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Tumor Targeted Drugs and Guangzhou Enterprise Key Laboratory of Gene Medicine, Guangzhou Doublle Bioproducts Co. Ltd., Guangzhou, China
| | - Ran-Yi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
45
|
Fouani L, Kovacevic Z, Richardson DR. Targeting Oncogenic Nuclear Factor Kappa B Signaling with Redox-Active Agents for Cancer Treatment. Antioxid Redox Signal 2019; 30:1096-1123. [PMID: 29161883 DOI: 10.1089/ars.2017.7387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Nuclear factor kappa B (NF-κB) signaling is essential under physiologically relevant conditions. However, aberrant activation of this pathway plays a pertinent role in tumorigenesis and contributes to resistance. Recent Advances: The importance of the NF-κB pathway means that its targeting must be specific to avoid side effects. For many currently used therapeutics and those under development, the ability to generate reactive oxygen species (ROS) is a promising strategy. CRITICAL ISSUES As cancer cells exhibit greater ROS levels than their normal counterparts, they are more sensitive to additional ROS, which may be a potential therapeutic niche. It is known that ROS are involved in (i) the activation of NF-κB signaling, when in sublethal amounts; and (ii) high levels induce cytotoxicity resulting in apoptosis. Indeed, ROS-induced cytotoxicity is valuable for its capabilities in killing cancer cells, but establishing the potency of ROS for effective inhibition of NF-κB signaling is necessary. Indeed, some cancer treatments, currently used, activate NF-κB and may stimulate oncogenesis and confer resistance. FUTURE DIRECTIONS Thus, combinatorial approaches using ROS-generating agents alongside conventional therapeutics may prove an effective tactic to reduce NF-κB activity to kill cancer cells. One strategy is the use of thiosemicarbazones, which form redox-active metal complexes that generate high ROS levels to deliver potent antitumor activity. These agents also upregulate the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), which functions as an NF-κB signaling inhibitor. It is proposed that targeting NF-κB signaling may proffer a new therapeutic niche to improve the efficacy of anticancer regimens.
Collapse
Affiliation(s)
- Leyla Fouani
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
46
|
Xu H, Zeng L, Guan Y, Feng X, Zhu Y, Lu Y, Shi C, Chen S, Xia J, Guo J, Kuang C, Li W, Jin F, Zhou W. High NEK2 confers to poor prognosis and contributes to cisplatin-based chemotherapy resistance in nasopharyngeal carcinoma. J Cell Biochem 2019; 120:3547-3558. [PMID: 30295336 PMCID: PMC6704366 DOI: 10.1002/jcb.27632] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant tumor in southern China and Southeast Asia, but the molecular mechanism of its pathogenesis is poorly understood. Our previous work demonstrated that NEK2 is overexpressed in multiple cancers. However, how NEK2 involves in NPC development remains to be elucidated. In this study, we firstly identified NEK2, located at +1q32-q33, a late event in NPC pathogenesis, overexpressed in the stage III-IV and paired sequential recurrent patients with NPC by immunohistochemistry. Furthermore, Kaplan-Meier analysis indicated high NEK2 conferred an inferior overall survival in NPC. In addition, cisplatin experiments with cell counting kit-8, colony formation, and a xenograft mice model of NPC demonstrated that NEK2 contributed to proliferation and cisplatin resistance in vitro and in vivo. On the contrary, downregulation of NEK2 by short hairpin RNA inhibited NPC cell growth and increased the sensitivity of cisplatin treatment in vitro. Thus, increased expression of NEK2 protein could not be predicted for poor survival but used as a novel biomarker for recurrence of NPC. Targeting NEK2 has the potential to eradicate the cisplatin-based chemotherapy resistant NPC cells.
Collapse
Affiliation(s)
- He Xu
- Cancer Center, The First Hospital of Jilin UniversityChangchunChina
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Liang Zeng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaHunanChina
| | - Yongjun Guan
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Xiangling Feng
- School of Public Health, Central South UniversityChangshaHunanChina
| | - Yinghong Zhu
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Yichen Lu
- Cancer Center, The First Hospital of Jilin UniversityChangchunChina
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Chen Shi
- Cancer Center, The First Hospital of Jilin UniversityChangchunChina
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Shilian Chen
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Jiliang Xia
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Jiaojiao Guo
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Chunmei Kuang
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Wei Li
- Cancer Center, The First Hospital of Jilin UniversityChangchunChina
| | - Fengyan Jin
- Cancer Center, The First Hospital of Jilin UniversityChangchunChina
| | - Wen Zhou
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| |
Collapse
|
47
|
Weng H, Bejjanki NK, Zhang J, Miao X, Zhong Y, Li H, Xie H, Wang S, Li Q, Xie M. TAT peptide-modified cisplatin-loaded iron oxide nanoparticles for reversing cisplatin-resistant nasopharyngeal carcinoma. Biochem Biophys Res Commun 2019; 511:597-603. [PMID: 30826059 DOI: 10.1016/j.bbrc.2019.02.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
Abstract
As chemo-radiotherapy continues to increase the lifespan of patients with nasopharyngeal carcinoma (NPC), adverse reaction and drug resistance remain two major problems when using cisplatin (CDDP). In this study, we took the lead in designing a dual-mechanism anti-cancer system modified with cell-penetrating peptide on the surface of superparamagnetic iron oxide nanoparticles (SPION) to enhance CDDP delivery efficacy to NPC cells, especially CDDP resistant NPC cells. The combinatorial delivery of CDDP and iron oxide nanoparticles showed an unexpected effect on reversal of CDDP resistance due to the Fenton reaction with an average decrease in the half maximal inhibitory concentration (IC 50) of 85% and 94% in HNE-1/DDP and CNE-2/DDP resistant cells respectively compared to CDDP alone. On this basis, modification with TAT peptide (YGRKKRRQRRR) significantly improved tumor intracellular uptake, devoting to better curative effects and minimized side effects by reducing CDDP therapeutic doses. Furthermore, we specifically labelled CDDP with fluorescence for detection of intracellular nanoparticles uptake and mechanism research through drug tracing. This novel compound provides a promising therapy for reducing chemotherapy side effects and reversing CDDP-resistant nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Huanhuan Weng
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Naveen Kumar Bejjanki
- Department of Otolaryngology-Head and Neck Surgery, Zhuhai People's Hospital, Kangning Road, Zhuhai, 519000, Guangdong, China
| | - Juan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Xiangwan Miao
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ying Zhong
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Hailiang Li
- Department of Otolaryngology-Head and Neck Surgery, Zhuhai People's Hospital, Kangning Road, Zhuhai, 519000, Guangdong, China
| | - Huifen Xie
- Department of Otolaryngology-Head and Neck Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Siqi Wang
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Quanming Li
- Department of Otolaryngology-Head and Neck Surgery, Zhuhai People's Hospital, Kangning Road, Zhuhai, 519000, Guangdong, China
| | - Minqiang Xie
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China; Department of Otolaryngology-Head and Neck Surgery, Zhuhai People's Hospital, Kangning Road, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
48
|
CBX6 is negatively regulated by EZH2 and plays a potential tumor suppressor role in breast cancer. Sci Rep 2019; 9:197. [PMID: 30655550 PMCID: PMC6336801 DOI: 10.1038/s41598-018-36560-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022] Open
Abstract
Chromobox 6 (CBX6) is a subunit of Polycomb Repressive Complex 1 (PRC1) that mediates epigenetic gene repression and acts as an oncogene or tumor suppressor in a cancer type-dependent manner. The specific function of CBX6 in breast cancer is currently undefined. In this study, a comprehensive analysis of The Cancer Genome Atlas (TCGA) dataset led to the identification of CBX6 as a consistently downregulated gene in breast cancer. We provided evidence showing enhancer of zeste homolog 2 (EZH2) negatively regulated CBX6 expression in a Polycomb Repressive Complex 2 (PRC2)-dependent manner. Exogenous overexpression of CBX6 inhibited cell proliferation and colony formation, and induced cell cycle arrest along with suppression of migration and invasion of breast cancer cells in vitro. Microarray analyses revealed that CBX6 governs a complex gene expression program. Moreover, CBX6 induced significant downregulation of bone marrow stromal cell antigen-2 (BST2), a potential therapeutic target, via interactions with its promoter region. Our collective findings support a tumor suppressor role of CBX6 in breast cancer.
Collapse
|
49
|
BST-2 promotes survival in circulation and pulmonary metastatic seeding of breast cancer cells. Sci Rep 2018; 8:17608. [PMID: 30514852 PMCID: PMC6279795 DOI: 10.1038/s41598-018-35710-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022] Open
Abstract
Bone marrow stromal antigen 2 (BST-2) mediates various facets of cancer progression and metastasis. Here, we show that BST-2 is linked to poor survival in invasive breast cancer patients as its expression positively correlates with disease severity. However, the mechanisms that drive the pro‐metastatic functions of BST-2 are not fully understood. Correlation of BST-2 expression and tumor aggressiveness was analyzed in human tissue samples. Migration, invasion, and competitive experimental metastasis assays were used to measure the cellular responses after silencing BST-2 expression. Using a mouse model of breast cancer, we show that BST-2 promotes metastasis independent of the primary tumor. Additional experiments show that suppression of BST-2 renders non-adherent cancer cells non-viable by sensitizing cells to anoikis. Embedment of cancer cells in basement membrane matrix reveals that silencing BTS-2 expression inhibits invadopodia formation, extracellular matrix degradation, and subsequent cell invasion. Competitive experimental pulmonary metastasis shows that silencing BST-2 reduces the numbers of viable circulating tumor cells (CTCs) and decreases the efficiency of lung colonization. Our data define a previously unknown function for BST-2 in the i) formation of invadopodia, ii) degradation of extracellular matrix, and iii) protection of CTCs from hemodynamic stress. We believe that physical (tractional forces) and biochemical (ECM type/composition) cues may control BST-2’s role in cell survival and invadopodia formation. Collectively, our findings highlight BST-2 as a key factor that allows cancer cells to invade, survive in circulation, and at the metastatic site.
Collapse
|
50
|
Liu S, Lian M, Fang J, Zhai J, Shen X, Wang R. c-Jun and Camk2a contribute to the drug resistance of induction docetaxel/cisplatin/5-fluorouracil in hypopharyngeal carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4605-4613. [PMID: 31949859 PMCID: PMC6962968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/31/2018] [Indexed: 06/10/2023]
Abstract
Hypopharyngeal carcinoma (HPC) is a subtype of head and neck squamous cell carcinoma, and prognosis has improved significantly over the past three decades. Induction docetaxel/cisplatin/5 fluorouracil (TPF) chemotherapy is regarded as the standard of treatment for locoregionally advanced HPC. However, patients who do not respond to cisplatin suffer, rather than benefit, from chemotherapy treatment. The goal of this study was to identify molecules involved in TPF resistance and to clarify their molecular mechanisms. Using the FaDu cell line as the cell model, the TPF IC50 was identified, and c-Jun, IL6, Camk2a, c-fos knockdown using siRNAs resulted in a significant declined TPF IC50. Retrospective analysis of the expression status of c-Jun, IL6, Camk2a, and c-fos by immunohistochemistry staining in sectioned HPC tissues from TPF-sensitive and TPF-insensitive patients shows that Camk2a and c-Jun were associated with the clinical pathogenesic features in HPC. The in vitro experiments also indicate that both Camk2a and c-Jun were responsive to TPF treatment. This study identified Camk2a and c-Jun as candidate genes that confer induction TPF resistance, which would help in the discovery of potential therapeutic markers and in developing a personalized and precise treatment approach for HPC patients.
Collapse
Affiliation(s)
- Shuzhou Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical UniversityBeijing, China
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General HospitalChina
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical UniversityBeijing, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical UniversityBeijing, China
- Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing Institute of OtorhinolaryngologyChina
| | - Jie Zhai
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical UniversityBeijing, China
| | - Xixi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical UniversityBeijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|