1
|
Li M, Wang X, Hong J, Mao J, Chen J, Chen X, Du Y, Song D. Transglutaminase 2 in breast cancer metastasis and drug resistance. Front Cell Dev Biol 2024; 12:1485258. [PMID: 39544364 PMCID: PMC11560871 DOI: 10.3389/fcell.2024.1485258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Transglutaminase 2 (TG2) is a widely distributed multifunctional protein with various enzymatic and non-enzymatic activities. It is becoming increasingly evident that high levels of TG2 in tumors induce the occurrence of epithelial to mesenchymal transition (EMT) and the acquisition of stem cell-like phenotypes, promoting tumor metastasis and drug resistance. By regulating intracellular and extracellular signaling pathways, TG2 promotes breast cancer metastasis to lung, brain, liver and bone, as well as resistance to various chemotherapy drugs including docetaxel, doxorubicin, platinum and neratinib. More importantly, recent studies described the involvement of TG2 in PD-1/PD-L1 inhibitors resistance. An in-depth understanding of the role that TG2 plays in the progression of metastasis and drug resistance will offer new therapeutic targets for breast cancer treatment. This review covers the extensive and rapidly growing field of the role of TG2 in breast cancer. Based on the role of TG2 in EMT, we summarize TG2-related signaling pathways in breast cancer metastasis and drug resistance and discuss TG2 as a therapeutic target.
Collapse
Affiliation(s)
- Mengxin Li
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Xuanzhong Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Jinghui Hong
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Juanjuan Mao
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiasi Chen
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuyang Chen
- School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Ye Du
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dong Song
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Yao Z, Fan Y, Lin L, Kellems RE, Xia Y. Tissue transglutaminase: a multifunctional and multisite regulator in health and disease. Physiol Rev 2024; 104:281-325. [PMID: 37712623 DOI: 10.1152/physrev.00003.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.
Collapse
Affiliation(s)
- Zhouzhou Yao
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuhua Fan
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lizhen Lin
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas, United States
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
3
|
Lisetto M, Fattorini M, Lanza A, Gerdol M, Griffin M, Wang Z, Ferrara F, Sblattero D. Biochemical and Functional Characterization of the Three Zebrafish Transglutaminases 2. Int J Mol Sci 2023; 24:12041. [PMID: 37569416 PMCID: PMC10419279 DOI: 10.3390/ijms241512041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein widely distributed in various tissues and involved in many physiological and pathological processes. However, its actual role in biological processes is often controversial as TG2 shows different effects in these processes depending on its localization, cell type, or experimental conditions. We characterized the enzymatic and functional properties of TG2 proteins expressed in Danio rerio (zebrafish) to provide the basis for using this established animal model as a reliable tool to characterize TG2 functions in vivo. We confirmed the existence of three genes orthologous to human TG2 (zTGs2) in the zebrafish genome and their expression and function during embryonic development. We produced and purified the zTGs2s as recombinant proteins and showed that, like the human enzyme, zTGs2 catalyzes a Ca2+ dependent transamidation reaction that can be inhibited with TG2-specific inhibitors. In a cell model of human fibroblasts, we also demonstrated that zTGs2 can mediate RGD-independent cell adhesion in the extracellular environment. Finally, we transfected and selected zTGs2-overexpressing HEK293 cells and demonstrated that intracellular zTGs2 plays a very comparable protective/damaging role in the apoptotic process, as hTG2. Overall, our results suggest that zTGs2 proteins behave very similarly to the human ortholog and pave the way for future in vivo studies of TG2 functions in zebrafish.
Collapse
Affiliation(s)
- Manuel Lisetto
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.L.); (M.F.); (A.L.); (M.G.)
| | - Mariagiulia Fattorini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.L.); (M.F.); (A.L.); (M.G.)
| | - Andrea Lanza
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.L.); (M.F.); (A.L.); (M.G.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.L.); (M.F.); (A.L.); (M.G.)
| | - Martin Griffin
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (M.G.); (Z.W.)
| | - Zhuo Wang
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (M.G.); (Z.W.)
| | | | - Daniele Sblattero
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.L.); (M.F.); (A.L.); (M.G.)
| |
Collapse
|
4
|
Naselsky W, Adhikary G, Shrestha S, Chen X, Ezeka G, Xu W, Friedberg JS, Eckert RL. Transglutaminase 2 enhances hepatocyte growth factor signaling to drive the mesothelioma cancer cell phenotype. Mol Carcinog 2022; 61:537-548. [PMID: 35319795 PMCID: PMC10074999 DOI: 10.1002/mc.23399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/08/2022]
Abstract
Transglutaminase 2 (TG2) is an important mesothelioma cancer cell survival protein. However, the mechanism whereby TG2 maintains mesothelioma cell survival is not well understood. We present studies showing that TG2 drives hepatocyte growth factor (HGF)-dependent MET receptor signaling to maintain the aggressive mesothelioma cancer phenotype. TG2 increases HGF and MET messenger RNA and protein levels to enhance MET signaling. TG2 inactivation reduces MET tyrosine kinase activity to reduce cancer cell spheroid formation, invasion and migration. We also confirm that HGF/MET signaling is a biologically important mediator of TG2 action. Reducing MET level using genetic methods or treatment with MET inhibitors reduces spheroid formation, invasion and migration and this is associated with reduced MEK1/2 and ERK1/2. In addition, MEK1/2 and ERK1/2 inhibitors suppress the cancer phenotype. Moreover, MET knockout mesothelioma cells form 10-fold smaller tumors compared to wild-type cells and these tumors display reduced MET, MEK1/2, and ERK1/2 activity. These findings suggest that TG2 maintains HGF and MET levels in cultured mesothelioma cells and tumors to drive HGF/MET, MEK1/2, and ERK1/2 signaling to maintain the aggressive mesothelioma cancer phenotype.
Collapse
Affiliation(s)
- Warren Naselsky
- Department of Surgery, Division of Thoracic Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Suruchi Shrestha
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xi Chen
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Geraldine Ezeka
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wen Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joseph S Friedberg
- Department of Surgery, Division of Thoracic Oncology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Erythrocyte transglutaminase-2 combats hypoxia and chronic kidney disease by promoting oxygen delivery and carnitine homeostasis. Cell Metab 2022; 34:299-316.e6. [PMID: 35108516 PMCID: PMC9380699 DOI: 10.1016/j.cmet.2021.12.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 02/03/2023]
Abstract
Due to lack of nuclei and de novo protein synthesis, post-translational modification (PTM) is imperative for erythrocytes to regulate oxygen (O2) delivery and combat tissue hypoxia. Here, we report that erythrocyte transglutminase-2 (eTG2)-mediated PTM is essential to trigger O2 delivery by promoting bisphosphoglycerate mutase proteostasis and the Rapoport-Luebering glycolytic shunt for adaptation to hypoxia, in healthy humans ascending to high altitude and in two distinct murine models of hypoxia. In a pathological hypoxia model with chronic kidney disease (CKD), eTG2 is critical to combat renal hypoxia-induced reduction of Slc22a5 transcription and OCNT2 protein levels via HIF-1α-PPARα signaling to maintain carnitine homeostasis. Carnitine supplementation is an effective and safe therapeutic approach to counteract hypertension and progression of CKD by enhancing erythrocyte O2 delivery. Altogether, we reveal eTG2 as an erythrocyte protein stabilizer orchestrating O2 delivery and tissue adaptive metabolic reprogramming and identify carnitine-based therapy to mitigate hypoxia and CKD progression.
Collapse
|
6
|
Pinton G, Wang Z, Balzano C, Missaglia S, Tavian D, Boldorini R, Fennell DA, Griffin M, Moro L. CDKN2A Determines Mesothelioma Cell Fate to EZH2 Inhibition. Front Oncol 2021; 11:678447. [PMID: 34277422 PMCID: PMC8281343 DOI: 10.3389/fonc.2021.678447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural mesothelioma is an aggressive cancer, heterogeneous in its presentation and behaviour. Despite an increasing knowledge about molecular markers and their diagnostic and prognostic value, they are not used as much as they might be for treatment allocation. It has been recently reported that mesothelioma cells that lack BAP1 (BRCA1 Associated Protein) are sensitive to inhibition of the EZH2 (Enhancer of Zeste Homolog 2) histone methyltransferase. Since we observed strong H3K27me3 (histone H3 lysine 27 trimetylation) immunoreactivity in BAP1 wild-type mesothelioma biopsies, we decided to characterize in vitro the response/resistance of BAP1 wild-type mesothelioma cells to the EZH2 selective inhibitor, EPZ-6438. Here we demonstrate that BAP1 wild-type mesothelioma cells were rendered sensitive to EPZ-6438 upon SIRT1 (Sirtuin 1) silencing/inhibition or when cultured as multicellular spheroids, in which SIRT1 expression was lower compared to cells grown in monolayers. Notably, treatment of spheroids with EPZ-6438 abolished H3K27me3 and induced the expression of CDKN2A (Cyclin-Dependent Kinase Inhibitor 2A), causing cell growth arrest. EPZ-6438 treatment also resulted in a rapid and sustained induction of the genes encoding HIF2α (Hypoxia Inducible Factor 2α), TG2 (Transglutaminase 2) and IL-6 (Interleukin 6). Loss of CDKN2 is a common event in mesothelioma. CDKN2A silencing in combination with EPZ-6438 treatment induced apoptotic death in mesothelioma spheroids. In a CDKN2A wild-type setting apoptosis was induced by combining EPZ-6438 with 1-155, a TG2 selective and irreversible inhibitor. In conclusion, our data suggests that the expression of CDKN2A predicts cell fate in response to EZH2 inhibition and could potentially stratify tumors likely to undergo apoptosis.
Collapse
Affiliation(s)
- Giulia Pinton
- Department of Pharmaceutical Sciences, University of Piemonte Orientale (UPO), Novara, Italy,*Correspondence: Laura Moro, ; Giulia Pinton,
| | - Zhuo Wang
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Cecilia Balzano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale (UPO), Novara, Italy
| | - Sara Missaglia
- Laboratory of Cellular Biochemistry and Molecular Biology, Centro di Ricerca in Biochimica E Nutrizione dello Sport (CRIBENS), Catholic University of the Sacred Heart, Milan, Italy
| | - Daniela Tavian
- Laboratory of Cellular Biochemistry and Molecular Biology, Centro di Ricerca in Biochimica E Nutrizione dello Sport (CRIBENS), Catholic University of the Sacred Heart, Milan, Italy
| | - Renzo Boldorini
- Department of Health Science, University of Piemonte Orientale (UPO), Novara, Italy
| | - Dean A. Fennell
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Martin Griffin
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Laura Moro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale (UPO), Novara, Italy,*Correspondence: Laura Moro, ; Giulia Pinton,
| |
Collapse
|
7
|
Tempest R, Guarnerio S, Maani R, Cooper J, Peake N. The Biological and Biomechanical Role of Transglutaminase-2 in the Tumour Microenvironment. Cancers (Basel) 2021; 13:cancers13112788. [PMID: 34205140 PMCID: PMC8199963 DOI: 10.3390/cancers13112788] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Transglutaminase-2 (TG2) is the most highly and ubiquitously expressed member of the transglutaminase enzyme family and is primarily involved in protein cross-linking. TG2 has been implicated in the development and progression of numerous cancers, with a direct role in multiple cellular processes and pathways linked to apoptosis, chemoresistance, epithelial-mesenchymal transition, and stem cell phenotype. The tumour microenvironment (TME) is critical in the formation, progression, and eventual metastasis of cancer, and increasing evidence points to a role for TG2 in matrix remodelling, modulation of biomechanical properties, cell adhesion, motility, and invasion. There is growing interest in targeting the TME therapeutically in response to advances in the understanding of its critical role in disease progression, and a number of approaches targeting biophysical properties and biomechanical signalling are beginning to show clinical promise. In this review we aim to highlight the wide array of processes in which TG2 influences the TME, focussing on its potential role in the dynamic tissue remodelling and biomechanical events increasingly linked to invasive and aggressive behaviour. Drug development efforts have yielded a range of TG2 inhibitors, and ongoing clinical trials may inform strategies for targeting the biomolecular and biomechanical function of TG2 in the TME.
Collapse
|
8
|
Wang F, Wang L, Qu C, Chen L, Geng Y, Cheng C, Yu S, Wang D, Yang L, Meng Z, Chen Z. Kaempferol induces ROS-dependent apoptosis in pancreatic cancer cells via TGM2-mediated Akt/mTOR signaling. BMC Cancer 2021; 21:396. [PMID: 33845796 PMCID: PMC8042867 DOI: 10.1186/s12885-021-08158-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Kaempferol, a natural flavonoid, exhibits anticancer properties by scavenging reactive oxygen species (ROS). However, increasing evidence has demonstrated that, under certain conditions, kaempferol can inhibit tumor growth by upregulating ROS levels. In this study, we aimed to investigate whether kaempferol effectively suppresses pancreatic cancer through upregulation of ROS, and to explore the underlying molecular mechanism. METHODS PANC-1 and Mia PaCa-2 cells were exposed to different concentrations of kaempferol. Cell proliferation and colony formation were evaluated by CCK-8 and colony formation assays. Flow cytometry was performed to assess the ROS levels and cell apoptosis. The mRNA sequencing and KEGG enrichment analysis were performed to identify differentially expressed genes and to reveal significantly enriched signaling pathways in response to kaempferol treatment. Based on biological analysis, we hypothesized that tissue transglutaminase (TGM2) gene was an essential target for kaempferol to induce ROS-related apoptosis in pancreatic cancer. TGM2 was overexpressed by lentivirus vector to verify the effect of TGM2 on the ROS-associated apoptotic signaling pathway. Western blot and qRT-PCR were used to determine the protein and mRNA levels, respectively. The prognostic value of TGM2 was analyzed by Gene Expression Profiling Interactive Analysis (GEPIA) tools based on public data from the TCGA database. RESULTS Kaempferol effectively suppressed pancreatic cancer in vitro and in vivo. Kaempferol promoted apoptosis in vitro by increasing ROS generation, which was involved in Akt/mTOR signaling. TGM2 levels were significantly increased in PDAC tissues compared with normal tissues, and high TGM2 expression was positively correlated with poor prognosis in pancreatic cancer patients. Decreased TGM2 mRNA and protein levels were observed in the cells after treatment with kaempferol. Additionally, TGM2 overexpression downregulated ROS production and inhibited the abovementioned apoptotic signaling pathway. CONCLUSIONS Kaempferol induces ROS-dependent apoptosis in pancreatic cancer cells via TGM2-mediated Akt/mTOR signaling, and TGM2 may represent a promising prognostic biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- Fengjiao Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Lai Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Chao Qu
- Cancer Center, Tenth People’s Hospital of Tongji University, Shanghai, 200072 China
| | - Lianyu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yawen Geng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Chienshan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Shulin Yu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Dan Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Cancer Institutes, Fudan University, Shanghai, 200032 China
| | - Lina Yang
- Department of Genetics and Cell Biology, Qingdao University Medical College, Qingdao, 266071 China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Cancer Institutes, Fudan University, Shanghai, 200032 China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
9
|
Suzuki AS, Yagi R, Kimura MY, Iwamura C, Shinoda K, Onodera A, Hirahara K, Tumes DJ, Koyama-Nasu R, Iismaa SE, Graham RM, Motohashi S, Nakayama T. Essential Role for CD30-Transglutaminase 2 Axis in Memory Th1 and Th17 Cell Generation. Front Immunol 2020; 11:1536. [PMID: 32793209 PMCID: PMC7385138 DOI: 10.3389/fimmu.2020.01536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Memory helper T (Th) cells are crucial for secondary immune responses against infectious microorganisms but also drive the pathogenesis of chronic inflammatory diseases. Therefore, it is of fundamental importance to understand how memory T cells are generated. However, the molecular mechanisms governing memory Th cell generation remain incompletely understood. Here, we identified CD30 as a molecule heterogeneously expressed on effector Th1 and Th17 cells, and CD30hi effector Th1 and Th17 cells preferentially generated memory Th1 and Th17 cells. We found that CD30 mediated signal induced Transglutaminase-2 (TG2) expression, and that the TG2 expression in effector Th cells is essential for memory Th cell generation. In fact, Cd30-deficiency resulted in the impaired generation of memory Th1 and Th17 cells, which can be rescued by overexpression of TG2. Furthermore, transglutaminase-2 (Tgm2)-deficient CD4 T cells failed to become memory Th cells. As a result, T cells from Tgm2-deficient mice displayed impaired antigen-specific antibody production and attenuated Th17-mediated allergic responses. Our data indicate that CD30-induced TG2 expression in effector Th cells is essential for the generation of memory Th1 and Th17 cells, and that CD30 can be a marker for precursors of memory Th1 and Th17 cells.
Collapse
Affiliation(s)
- Akane S Suzuki
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryoji Yagi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Motoko Y Kimura
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chiaki Iwamura
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kenta Shinoda
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Institute for Global Prominent Research, Chiba University, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Damon J Tumes
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Ryo Koyama-Nasu
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Siiri E Iismaa
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Robert M Graham
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
10
|
Shan H, Zhou X, Chen C. MicroRNA‑214 suppresses the viability, migration and invasion of human colorectal carcinoma cells via targeting transglutaminase 2. Mol Med Rep 2019; 20:1459-1467. [PMID: 31173203 PMCID: PMC6625444 DOI: 10.3892/mmr.2019.10325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/21/2019] [Indexed: 12/17/2022] Open
Abstract
Colorectal carcinoma (CRC) is a common malignancy of the digestive tract. MicroRNA (miR)-214 is considered a key hub that controls tumor networks; therefore, the effects of miR-214 on CRC were examined and its target gene was investigated in this study. The expression levels of transglutaminase 2 (TGM2) and miR-214 were detected in CRC and adjacent normal tissues by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting, and luciferase activity was analyzed by dual luciferase reporter analysis. In addition, cell viability, invasion and migration were measured by Cell Counting kit-8 and Transwell assays, respectively. The expression levels of epithelial-mesenchymal transition-related proteins, and phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt) signaling-associated factors were detected using RT-qPCR and western blotting. The results demonstrated that miR-214 expression was downregulated in CRC tissue, whereas TGM2 expression was upregulated. According to TargetScan prediction, miR-214 possesses a binding site to TGM2. In addition, transfection with miR-214 mimics markedly suppressed the viability of LoVo cells. miR-214 overexpression also inhibited cell invasion and migration by increasing E-cadherin and tissue inhibitor of metalloproteinases-2 expression, and decreasing matrix metalloproteinase (MMP)-2 and MMP-9 expression. Furthermore, miR-214 downregulated phosphorylation of PI3K and Akt; however, the expression levels of total PI3K and Akt were not affected by miR-214. In conclusion, this study indicated that TGM2 was a target gene of miR-214, and a negative correlation between miR-214 and TGM2 expression was determined in CRC. Notably, miR-214 markedly suppressed the viability, invasion and migration of CRC cells, which may be associated with a downregulation in PI3K/Akt signaling. These findings suggested that miR-214 may be considered a novel target for the treatment of CRC.
Collapse
Affiliation(s)
- Huiguo Shan
- Department of Oncology, The Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, P.R. China
| | - Xuefeng Zhou
- Department of Oncology, The Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, P.R. China
| | - Chuanjun Chen
- Department of Medical Oncology, Xinchang People's Hospital, Shaoxing, Zhejiang 312500, P.R. China
| |
Collapse
|
11
|
Eckert RL. Transglutaminase 2 takes center stage as a cancer cell survival factor and therapy target. Mol Carcinog 2019; 58:837-853. [PMID: 30693974 DOI: 10.1002/mc.22986] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
Transglutaminase 2 (TG2) has emerged as a key cancer cell survival factor that drives epithelial to mesenchymal transition, angiogenesis, metastasis, inflammation, drug resistance, cancer stem cell survival and stemness, and invasion and migration. TG2 can exist in a GTP-bound signaling-active conformation or in a transamidase-active conformation. The GTP bound conformation of TG2 contributes to cell survival and the transamidase conformation can contribute to cell survival or death. We present evidence suggesting that TG2 has a role in human cancer, summarize what is known about the TG2 mechanism of action in a range of cancer types, and discuss TG2 as a cancer therapy target.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Soluri MF, Boccafoschi F, Cotella D, Moro L, Forestieri G, Autiero I, Cavallo L, Oliva R, Griffin M, Wang Z, Santoro C, Sblattero D. Mapping the minimum domain of the fibronectin binding site on transglutaminase 2 (TG2) and its importance in mediating signaling, adhesion, and migration in TG2-expressing cells. FASEB J 2018; 33:2327-2342. [PMID: 30285580 DOI: 10.1096/fj.201800054rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between the enzyme transglutaminase 2 (TG2) and fibronectin (FN) is involved in the cell-matrix interactions that regulate cell signaling, adhesion, and migration and play central roles in pathologic conditions, particularly fibrosis and cancer. A precise definition of the exact interaction domains on both proteins could provide a tool to design novel molecules with potential therapeutic applications. Although specific residues involved in the interaction within TG2 have been analyzed, little is known regarding the TG2 binding site on FN. This site has been mapped to a large internal 45-kDa protein fragment coincident with the gelatin binding domain (GBD). With the goal of defining the minimal FN interacting domain for TG2, we produced several expression constructs encoding different portions or modules of the GBD and tested their binding and functional properties. The results demonstrate that the I8 module is necessary and sufficient for TG2-binding in vitro, but does not have functional effects on TG2-expressing cells. Modules I7 and I9 increase the strength of the binding and are required for cell adhesion. A 15-kDa fragment encompassing modules I7-9 behaves as the whole 45-kDa GBD and mediates signaling, adhesion, spreading, and migration of TG2+ cells. This study provides new insights into the mechanism for TG2 binding to FN.-Soluri, M. F., Boccafoschi, F., Cotella, D., Moro, L., Forestieri, G., Autiero, I., Cavallo, L., Oliva, R., Griffin, M., Wang, Z., Santoro, C., Sblattero, D. Mapping the minimum domain of the fibronectin binding site on transglutaminase 2 (TG2) and its importance in mediating signaling, adhesion, and migration in TG2-expressing cells.
Collapse
Affiliation(s)
- Maria Felicia Soluri
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Diego Cotella
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Laura Moro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale (UPO), Novara, Italy
| | - Gabriela Forestieri
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Ida Autiero
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST) Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST) Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Naples, Italy.,Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Martin Griffin
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom; and
| | - Zhuo Wang
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom; and
| | - Claudio Santoro
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | | |
Collapse
|
13
|
Adhikary G, Grun D, Alexander HR, Friedberg JS, Xu W, Keillor JW, Kandasamy S, Eckert RL. Transglutaminase is a mesothelioma cancer stem cell survival protein that is required for tumor formation. Oncotarget 2018; 9:34495-34505. [PMID: 30349644 PMCID: PMC6195372 DOI: 10.18632/oncotarget.26130] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/08/2018] [Indexed: 12/26/2022] Open
Abstract
Mesothelioma is a rare cancer of the mesothelial cell layer of the pleura, peritoneum, pericardium and tunica vaginalis. It is typically caused by asbestos, notoriously resistant to chemotherapy and generally considered incurable with a poor life expectancy. Transglutaminase 2 (TG2), a GTP binding regulatory protein, is an important cancer stem cell survival and therapy resistance factor. We show that TG2 is highly expressed in human mesothelioma tumors and in mesothelioma cancer stem cells (MCS cells). TG2 knockdown or TG2 inhibitor treatment reduces MCS cell spheroid formation, matrigel invasion, migration and tumor formation. Time to tumor first appearance is doubled in TG2 knockout cells as compared to wild-type. In addition, TG2 loss is associated with reduced expression of stemness, and epithelial mesenchymal transition markers, and enhanced apoptosis. These studies indicate that TG2 is an important MCS cell survival protein and suggest that TG2 may serve as a mesothelioma cancer stem cell therapy target.
Collapse
Affiliation(s)
- Gautam Adhikary
- 1 Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Daniel Grun
- 1 Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - H. Richard Alexander
- 7 Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Joseph S. Friedberg
- 4 Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA,5 Department of Surgery and Division of General and Surgical Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wen Xu
- 1 Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Sivaveera Kandasamy
- 5 Department of Surgery and Division of General and Surgical Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard L. Eckert
- 1 Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA,2 Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA,3 Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA,4 Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Spotlight on the transglutaminase 2 gene: a focus on genomic and transcriptional aspects. Biochem J 2018; 475:1643-1667. [PMID: 29764956 DOI: 10.1042/bcj20170601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 01/16/2023]
Abstract
The type 2 isoenzyme is the most widely expressed transglutaminase in mammals displaying several intra- and extracellular activities depending on its location (protein modification, modulation of gene expression, membrane signalling and stabilization of cellular interactions with the extracellular matrix) in relation to cell death, survival and differentiation. In contrast with the appreciable knowledge about the regulation of the enzymatic activities, much less is known concerning its inducible expression, which is altered in inflammatory and neoplastic diseases. In this context, we first summarize the gene's basic features including single-nucleotide polymorphism characterization, epigenetic DNA methylation and identification of regulatory regions and of transcription factor-binding sites at the gene promoter, which could concur to direct gene expression. Further aspects related to alternative splicing events and to ncRNAs (microRNAs and lncRNAs) are involved in the modulation of its expression. Notably, this important gene displays transcriptional variants relevant for the protein's function with the occurrence of at least seven transcripts which support the synthesis of five isoforms with modified catalytic activities. The different expression of the TG2 (type 2 transglutaminase) variants might be useful for dictating the multiple biological features of the protein and their alterations in pathology, as well as from a therapeutic perspective.
Collapse
|
15
|
Szondy Z, Korponay-Szabó I, Király R, Sarang Z, Tsay GJ. Transglutaminase 2 in human diseases. Biomedicine (Taipei) 2017; 7:15. [PMID: 28840829 PMCID: PMC5571667 DOI: 10.1051/bmdcn/2017070315] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022] Open
Abstract
Transglutaminase 2 (TG2) is an inducible transamidating acyltransferase that catalyzes Ca(2+)-dependent protein modifications. In addition to being an enzyme, TG2 also serves as a G protein for several seven transmembrane receptors and acts as a co-receptor for integrin β1 and β3 integrins distinguishing it from other members of the transglutaminase family. TG2 is ubiquitously expressed in almost all cell types and all cell compartments, and is also present on the cell surface and gets secreted to the extracellular matrix via non-classical mechanisms. TG2 has been associated with various human diseases including inflammation, cancer, fibrosis, cardiovascular disease, neurodegenerative diseases, celiac disease in which it plays either a protective role, or contributes to the pathogenesis. Thus modulating the biological activities of TG2 in these diseases will have a therapeutic value.
Collapse
Affiliation(s)
- Zsuzsa Szondy
- Dental Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4010, Hungary
| | - Ilma Korponay-Szabó
- Department of Pediatrics and Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4010, Hungary - Celiac Disease Center, Heim Pál Children's Hospital, Budapest 1089, Hungary
| | - Robert Király
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4010, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4010, Hungary
| | - Gregory J Tsay
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan - School of medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|