1
|
Zhang C, Wang Y, Yu Y, Pang Y, Xiao X, Hao L. Overexpression of ST8Sia1 inhibits tumor progression by TGF-β1 signaling in rectal adenocarcinoma and promotes the tumoricidal effects of CD8 + T cells by granzyme B and perforin. Ann Med 2025; 57:2439539. [PMID: 39656552 PMCID: PMC11633436 DOI: 10.1080/07853890.2024.2439539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/23/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Rectal adenocarcinoma (READ) involves the dysregulated expression of alpha 2,8-Sialyltransferase1 (ST8Sia1) although its role during READ's progression is unclear. METHODS The mRNA level of ST8Sia1 was analyzed based on The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Tumor Immune Estimation Resource (TIMER) 2.0. Furthermore, the prognostic and significance of ST8Sia1 in READ was assessed through Kaplan-Meier curve, univariate, multivariate Cox regression, and receiver operating characteristic (ROC) methods. The role of ST8Sia1 in the READ immune microenvironment was explored using ESTIMATE analysis and TIMER databases. Furthermore, the expression of ST8Sia1 in tissues was analyzed using real-time quantitative polymerase chain reaction (RT-qPCR), western blotting (WB), and immunohistochemistry (IHC). Perforin and Granzyme B secretion by CD8+ T cells, as well as tumor cell apoptosis, were detected after co-culturing CD8+ T cells with READ tumor cells and ST8Sia1-overexpression (ST8Sia1-OE) tumor cells. Furthermore, we examined the interaction between ST8Sia1 and TGF-β1 in READ cells. RESULTS ST8Sia1 exhibited excellent diagnostic capability for READ, with positive correlations to immune response and negative correlations to tumor purity. Increased levels of perforin and Granzyme B from CD8+ T cells were observed in vitro, enhancing tumor cell apoptosis. ST8Sia1 interacts with TGF-β1, mediating its inhibitory effects on READ development. CONCLUSIONS ST8Sia1 is a potential diagnostic biomarker and therapeutic target for READ, enhancing CD8+ T cell function and possibly improving patient outcomes through cellular immunotherapy.
Collapse
Affiliation(s)
- Chang Zhang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| | - Yeli Wang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| | - Yao Yu
- Department of General Pediatric Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| | - Yanchao Pang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| | - Xiao Xiao
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| | - Leilei Hao
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| |
Collapse
|
2
|
Wang Y, Zhang P, Luo Z, Huang C. Insights into the role of glycosyltransferase in the targeted treatment of gastric cancer. Biomed Pharmacother 2024; 178:117194. [PMID: 39137647 DOI: 10.1016/j.biopha.2024.117194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Gastric cancer is a remarkably heterogeneous tumor. Despite some advances in the diagnosis and treatment of gastric cancer in recent years, the precise treatment and curative outcomes remain unsatisfactory. Poor prognosis continues to pose a major challenge in gastric cancer. Therefore, it is imperative to identify effective targets to improve the treatment and prognosis of gastric cancer patients. It should be noted that glycosylation, a novel form of posttranslational modification, is a process capable of regulating protein function and influencing cellular activities. Currently, numerous studies have shown that glycosylation plays vital roles in the occurrence and progression of gastric cancer. As crucial enzymes that regulate glycan synthesis in glycosylation processes, glycosyltransferases are potential targets for treating GC. Hence, investigating the regulation of glycosyltransferases and the expression of associated proteins in gastric cancer cells is highly important. In this review, the related glycosyltransferases and their related signaling pathways in gastric cancer, as well as the existing inhibitors of glycosyltransferases, provide more possibilities for targeted therapies for gastric cancer.
Collapse
Affiliation(s)
- Yueling Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214028, China; Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Pengshan Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zai Luo
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chen Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214028, China; Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
3
|
Hu D, Kobayashi N, Ohki R. FUCA1: An Underexplored p53 Target Gene Linking Glycosylation and Cancer Progression. Cancers (Basel) 2024; 16:2753. [PMID: 39123480 PMCID: PMC11311387 DOI: 10.3390/cancers16152753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer is a difficult-to-cure disease with high worldwide incidence and mortality, in large part due to drug resistance and disease relapse. Glycosylation, which is a common modification of cellular biomolecules, was discovered decades ago and has been of interest in cancer research due to its ability to influence cellular function and to promote carcinogenesis. A variety of glycosylation types and structures regulate the function of biomolecules and are potential targets for investigating and treating cancer. The link between glycosylation and carcinogenesis has been more recently revealed by the role of p53 in energy metabolism, including the p53 target gene alpha-L-fucosidase 1 (FUCA1), which plays an essential role in fucosylation. In this review, we summarize roles of glycan structures and glycosylation-related enzymes to cancer development. The interplay between glycosylation and tumor microenvironmental factors is also discussed, together with involvement of glycosylation in well-characterized cancer-promoting mechanisms, such as the epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and p53-mediated pathways. Glycan structures also modulate cell-matrix interactions, cell-cell adhesion as well as cell migration and settlement, dysfunction of which can contribute to cancer. Thus, further investigation of the mechanistic relationships among glycosylation, related enzymes and cancer progression may provide insights into potential novel cancer treatments.
Collapse
Affiliation(s)
- Die Hu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Naoya Kobayashi
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
- Department of NCC Cancer Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
| |
Collapse
|
4
|
Zhang J, Song Q, Hu W. A functional variant rs10409772 in FUT6 promoter regulates colorectal cancer progression through PKA/CREB signaling. Transl Oncol 2024; 46:102011. [PMID: 38823257 PMCID: PMC11176829 DOI: 10.1016/j.tranon.2024.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/18/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024] Open
Abstract
Fucosyltransferase 6 (FUT6) is overexpressed in colorectal cancer tissue according to TCGA samples and immunohistochemistry results of a tissue microarray. FUT6 effects cell migration, tumor formation and proliferation of colorectal cancer cells in different essays. FUT6 promotes cancer cell proliferation in vitro and colorectal tumorigenesis in vivo by upregulating PKA/CREB pathway activation. Moreover, FUT6 expression is regulated by rs10409772 shown in the luciferase essays, a single nucleotide polymorphism in the promoter of FUT6. Our study suggests that elevated expression of FUT6 promotes PKA/CREB signaling, which in turn augments colorectal carcinogenesis, indicating a potential therapeutic target for colorectal cancer patients with increased FUT6 expression.
Collapse
Affiliation(s)
- Jie Zhang
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China.
| | - Weiguo Hu
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China.
| |
Collapse
|
5
|
Yao Y, Zhang Y, Shi J, Xu X, Gao Y, Bai S, Hu Q, Wu J, Du J. LncRNA PART1 promotes malignant biological behaviours associated with head and neck cancer cells via synergistic action with FUT6. Cancer Cell Int 2024; 24:185. [PMID: 38807207 PMCID: PMC11134962 DOI: 10.1186/s12935-024-03372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
The aim of this study was to determine the role of lncRNA PART1 and downstream FUT6 in tumorigenesis and progression of head and neck cancer (HNC). Bioinformatics analysis and qRT-PCR revealed that lncRNA PART1 was expressed at low levels in HNC patients. The proliferation, apoptosis, migration and flow cytometry results showed that low expression of lncRNA PART1 inhibited apoptosis and promoted HNC cell migration and proliferation. In addition, animal experiments have also shown that low expression of lncRNA PART1 can promote tumor growth. LncRNA PART1 overexpression promoted apoptosis and inhibited HNC cell migration and proliferation. Through bioinformatics analysis, FUT6 was found to be expressed at low levels in HNC and to be correlated with patient survival. Immunohistochemical and qRT-PCR results revealed that FUT6 was underexpressed in tumour tissues and HNC cells. Cell and animal experiments showed that overexpression of FUT6 could inhibit tumour proliferation and migration. Bioinformatics analysis revealed that lncRNA PART1 was positively correlated with FUT6. By qRT-PCR and western blot, we observed that after knockdown of lncRNA PART1, both the mRNA and protein expression levels of FUT6 were reduced. The above results indicated that lncRNA PART1 and FUT6 play an important role in HNC, and that lncRNA PART1 affected the development of tumor by downstream FUT6.
Collapse
Affiliation(s)
- Yanheng Yao
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuxin Zhang
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiyuan Shi
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiling Xu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunran Gao
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Suwen Bai
- The Second Affiliated Hospital, School of Medicine, Shenzhen & Longgang District People's Hospital of Shenzhen Guangdong, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Qin Hu
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| | - Jing Wu
- The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China.
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- The Second Affiliated Hospital, School of Medicine, Shenzhen & Longgang District People's Hospital of Shenzhen Guangdong, The Chinese University of Hong Kong, Shenzhen, 518172, China.
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
6
|
Lao J, Pang Y, Chen H, Tang X, Li R, Tong D, Qiu P, Tang Q. FUT6 Suppresses the Proliferation, Migration, Invasion, and Epithelial-Mesenchymal Transition of Esophageal Carcinoma Cells via the Epidermal Growth Factor Receptor/Extracellular Signal-Regulated Kinase Signaling Pathway. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:699-708. [PMID: 39375968 PMCID: PMC11391235 DOI: 10.5152/tjg.2024.23604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/04/2024] [Indexed: 10/10/2024]
Abstract
Esophageal cancer (ESCA) is a high-incidence disease worldwide, of which the 5-year survival rate remains dismal since the cellular basis of ESCA remains largely unclear. Herein, we attempted to examine the manifestation of fucosyltransferase-6 (FUT6) in ESCA and the associated mechanisms. The GSE161533 dataset was used to analyze a crucial gene in ESCA. The expression of FUT6 was investigated in normal esophageal epithelial cells and ESCA cell lines. Following FUT6 knockdown or overexpression, cell proliferation, migration, invasion, and levels of epithelial–mesenchymal transition (EMT)-related and epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinase (ERK) signaling pathway-related proteins were evaluated using CCK-8, Transwell, and Western blotting with antibodies against EGFR, p-EGFR, E-cadherin, Vimentin, N-cadherin, ERK1/2, and p-ERK1/2), respectively. EGF was administered to stimulate the EGFR/ERK signaling pathway, followed by the assessment of cellular activity. Database analysis revealed that FUT6 was downregulated in the ESCA cells. Our study indicated that FUT6 is suppressed in various ESCA cell lines. Moreover, cell proliferation, invasion, migration, and EMT-related protein levels were conspicuously enhanced or restrained by FUT6 disruption or overexpression. FUT6 overexpression suppressed the malignant activities of the cells when stimulated by EGF, including inhibition of cell growth, movement, invasion, and EMT advancement, as well the reduction the levels of EGFR/ERK pathway proteins. In conclusion, FUT6 can suppress the EGFR/ERK signaling pathway activated by EGF, leading to the potential attenuation of ESCA cell proliferation, invasion, migration, and EMT.
Collapse
Affiliation(s)
- Jianle Lao
- Department of Surgery, Jinan University, Guangzhou, Guangdong Province, China
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
- Key Laboratory of Tumor Molecular Pathology of Baise, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Yanmin Pang
- Department of Hematology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Hongming Chen
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Xiqiang Tang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Rizhu Li
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Danlei Tong
- Department of Surgery, Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, China
| | - Ping Qiu
- Department of Surgery, Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, China
| | - Qianli Tang
- Department of Surgery, Jinan University, Guangzhou, Guangdong Province, China
- Key Laboratory of Tumor Molecular Pathology of Baise, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
- Life Science and Clinical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| |
Collapse
|
7
|
Li Y, Li P, Liu Y, Geng W. A novel gene-based model for prognosis prediction of head and neck squamous cell carcinoma. Heliyon 2024; 10:e29449. [PMID: 38660262 PMCID: PMC11040035 DOI: 10.1016/j.heliyon.2024.e29449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a significant global health challenge. The identification of reliable prognostic biomarkers and construction of an accurate prognostic model are crucial. Methods In this study, mRNA expression data and clinical data of HNSCC patients from The Cancer Genome Atlas were used. Overlapping candidate genes (OCGs) were identified by intersecting differentially expressed genes and prognosis-related genes. Best prognostic genes were selected using the least absolute shrinkage and selection operator Cox regression based on OCGs, and a risk score was developed using the Cox coefficient of each gene. The prognostic power of the risk score was assessed using Kaplan-Meier survival analysis and time-dependent receiver operating characteristic analysis. Univariate and multivariate Cox regression were performed to identify independent prognostic parameters, which were used to construct a nomogram. The predictive accuracy of the nomogram was evaluated using calibration plots. Functional enrichment analysis of risk score related genes was performed to explore the potential biological functions and pathways. External validation was conducted using data from the Gene Expression Omnibus and ArrayExpress databases. Results FADS3, TNFRSF12A, TJP3, and FUT6 were screened to be significantly related to prognosis in HNSCC patients. The risk score effectively stratified patients into high-risk group with poor overall survival (OS) and low-risk group with better OS. Risk score, age, clinical M stage and clinical N stage were regarded as independent prognostic parameters by Cox regression analysis and used to construct a nomogram. The nomogram performed well in 1-, 2-, 3-, 5- and 10-year survival predictions. Functional enrichment analysis suggested that tight junction was closely related to the cancer. In addition, the prognostic power of the risk score was validated by external datasets. Conclusions This study constructed a gene-based model integrating clinical prognostic parameters to accurately predict prognosis in HNSCC patients.
Collapse
Affiliation(s)
- Yanxi Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Peiran Li
- Department of Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Yuqi Liu
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
8
|
Li X, Wu D, Li Q, Gu J, Gao W, Zhu X, Yin W, Zhu R, Zhu L, Jiao N. Host-microbiota interactions contributing to the heterogeneous tumor microenvironment in colorectal cancer. Physiol Genomics 2024; 56:221-234. [PMID: 38073489 DOI: 10.1152/physiolgenomics.00103.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
Colorectal cancer (CRC) exhibits pronounced heterogeneity and is categorized into four widely accepted consensus molecular subtypes (CMSs) with unique tumor microenvironments (TMEs). However, the intricate landscape of the microbiota and host-microbiota interactions within these TMEs remains elusive. Using RNA-sequencing data from The Cancer Genome Atlas, we analyzed the host transcriptomes and intratumoral microbiome profiles of CRC samples. Distinct host genes and microbial genera were identified among the CMSs. Immune microenvironments were evaluated using CIBERSORTx and ESTIMATE, and microbial coabundance patterns were assessed with FastSpar. Through LASSO penalized regression, we explored host-microbiota associations for each CMS. Our analysis revealed distinct host gene signatures within the CMSs, which encompassed ferroptosis-related genes and specific immune microenvironments. Moreover, we identified 293, 153, 66, and 109 intratumoral microbial genera with differential abundance, and host-microbiota associations contributed to distinct TMEs, characterized by 829, 1,270, 634, and 1,882 robust gene-microbe associations for each CMS in CMS1-CMS4, respectively. CMS1 featured inflammation-related HSF1 activation and gene interactions within the endothelin pathway and Flammeovirga. Integrin-related genes displayed positive correlations with Sutterella in CMS2, whereas CMS3 spotlighted microbial associations with biosynthetic and metabolic pathways. In CMS4, genes involved in collagen biosynthesis showed positive associations with Sutterella, contributing to disruptions in homeostasis. Notably, immune-rich subtypes exhibited pronounced ferroptosis dysregulation, potentially linked to tissue microbial colonization. This comprehensive investigation delineates the diverse landscapes of the TME within each CMS, incorporating host genes, intratumoral microbiota, and their complex interactions. These findings shed light on previously uncharted mechanisms underpinning CRC heterogeneity and suggest potential therapeutic targets.NEW & NOTEWORTHY This study determined the following: 1) providing a comprehensive landscape of consensus molecular subtype (CMS)-specific tumor microenvironments (TMEs); 2) constructing CMS-specific networks, including host genes, intratumoral microbiota, and enriched pathways, analyzing their associations to uncover unique patterns that demonstrate the intricate interplay within the TME; and 3) revealing a connection between immune-rich subtypes and ferroptosis activation, suggesting a potential regulatory role of the microbiota in ferroptosis dysregulation of the colorectal cancer TME.
Collapse
Affiliation(s)
- Xiaoyi Li
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Dingfeng Wu
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qiuyu Li
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jinglan Gu
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wenxing Gao
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xinyue Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Wenjing Yin
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Ruixin Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Lixin Zhu
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Na Jiao
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Zhang J, Zhang L, Yao G, Zhao H, Qiao P, Wu S. lncRNA-Gm5532 regulates osteoclast differentiation through the miR-125a-3p/TRAF6 axis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:54-61. [PMID: 38098360 PMCID: PMC10875346 DOI: 10.3724/abbs.2023245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/27/2023] [Indexed: 01/26/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulators of bone metabolism. In this study, lncRNA microarray analysis was used to identify differentially expressed lncRNAs in differentiated osteoclasts. lncRNA-Gm5532 is highly expressed during osteoclast differentiation. lncRNA-Gm5532 knockdown impairs osteoclast formation and bone resorption. Mechanistic experiments show that lncRNA-Gm5532 functions as a competing endogenous RNA (ceRNA) and acts as a sponge for miR-125a-3p, which promotes TNF receptor-associated factor 6 (TRAF6) expression. miR-125a-3p mimics suppress osteoclast differentiation and TAK1/NF-κB/MAPK signaling. The miR-125a-3p inhibitor reverses the negative effects of siGm5532 on osteoclast differentiation. In summary, our study reveals that lncRNA-Gm5532 functions as an activator in osteoclast differentiation by targeting the miR-125a-3p/TRAF6 axis, making it a novel biomarker and potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Jian Zhang
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| | - Lingyan Zhang
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| | - Gang Yao
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| | - Hai Zhao
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| | - Penghai Qiao
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| | - Shuguang Wu
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| |
Collapse
|
10
|
Liu E, Qian X, He Y, Chen K. FUT4 promotes the progression of Cholangiocarcinoma by modulating epithelial-mesenchymal transition. Cell Cycle 2024; 23:218-231. [PMID: 38466946 PMCID: PMC11037297 DOI: 10.1080/15384101.2024.2318949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/02/2024] [Indexed: 03/13/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a common gastrointestinal malignancy characterized by a poor prognosis. Considering its prevalence, exploring its underlying molecular biological mechanisms is of paramount clinical importance. In this study, bioinformatics techniques were utilized to analyze CCA sample data obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The analysis revealed a notable upregulation in FUT4 expression in CCA samples. To further investigate the functional implications of FUT4, in vivo and in vitro experiments were conducted, which demonstrated that FUT4 overexpression significantly enhances the proliferative and migratory capabilities of tumor cells. Subsequent sequencing analysis unveiled a correlation between FUT4 and epithelial-mesenchymal transition (EMT). Indeed, the pioneering discovery of elevated FUT4 expression in CCA was highlighted in this study. Further investigations into the function of FUT4 in CCA provided initial insights into its role in driving cancer progression via EMT. These findings present promising avenues for the diagnosis and treatment of CCA.[Figure: see text].
Collapse
Affiliation(s)
- Enchi Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xingwang Qian
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yuan He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| |
Collapse
|
11
|
Liu H, Wen J, Tian X, Li T, Zhao J, Cheng J, Huang L, Zhao Y, Cao Q, Jiang J. miR-125a-3p regulates the expression of FSTL1, a pro-inflammatory factor, during adipogenic differentiation, and inhibits adipogenesis in mice. FASEB J 2023; 37:e23146. [PMID: 37584664 DOI: 10.1096/fj.202300851r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/28/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
Adipogenesis is tightly regulated by various factors, including genes and microRNAs. Excessive fat deposition is the key feature of obesity, which is a low-grade chronic inflammatory disease. Follistatin-like 1 (FSTL1) has been reported to be an important mediator involved in various inflammatory diseases. However, the underlying mechanism of FSTL1 in preadipocyte differentiation and inflammatory response is still unclear. The current study was designed to explore the biological function and potential mechanism of FSTL1 in mouse subcutaneous preadipocyte differentiation. We found that FSTL1 was highly expressed in the early stage of differentiation and subsequently decreased sharply, suggesting that FSTL1 played a possible role in adipogenesis. Meanwhile, the gain- and loss-of-function assays showed that FSTL1 was not only involved in the inflammatory response by inducing the expression of pro-inflammatory factors IL-1β and CCL2 but also significantly attenuated preadipocyte differentiation, as evidenced by the reduction of lipid accumulation and the levels of adipogenic genes, including PPARγ and FABP4. In addition, the target gene prediction and luciferase reporter assay validated that miR-125a-3p targeted the 3' UTR region of FSTL1. These results demonstrated that miR-125a-3p negatively regulated the expression of FSTL1 at the mRNA and protein levels. Furthermore, overexpressing miR-125a-3p in preadipocytes dramatically accelerated adipogenic differentiation and downregulated the levels of IL-1β and CCL2, which were in accordance with the knockdown of FSTL1. On the contrary, treatment with miR-125a-3p inhibitors attenuated adipogenesis but induced the expression of inflammatory genes. In summary, this study suggests a positive function of FSTL1 in adipocyte-induced inflammation and negatively regulates preadipocyte differentiation. Further studies demonstrated that miR-125a-3p could reverse the effect by targeting FSTL1, which might provide a better understanding of treating obesity-related inflammatory diseases.
Collapse
Affiliation(s)
- Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jie Wen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xue Tian
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Tong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ju Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jingjing Cheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lishi Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Hussein NA, El Sewedy SM, Zakareya MM, Youssef EA, Ibrahim FAR. Expression status of circ-SMARCA5, circ-NOL10, circ-LDLRAD3, and circ-RHOT1 in patients with colorectal cancer. Sci Rep 2023; 13:13308. [PMID: 37587156 PMCID: PMC10432413 DOI: 10.1038/s41598-023-40358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
Colorectal cancer (CRC) poses a significant burden on both the healthcare systems as well as individuals. The high mortality rate of CRC may be attributed to its metastatic potential, heterogeneity, and delayed diagnosis. CircRNAs are an essential class of regulatory RNAs that play significant roles in cancers. This study aimed to detect the expression status of circ-SMARCA5, circ-NOL10, circ-LDLRAD3, and circ-RHOT1 in patients with CRC. This study included 50 CRC patients, 30 individuals with colorectal diseases (non-cancer), and 20 healthy volunteers. By using real-time PCR, the relative expression of circ-SMARCA5, circ-NOL10, circ-LDLRAD3, and circ-RHOT1 was determined in the collected blood samples. In addition, ECLIA was used to quantify carcinoembryonic antigen (CEA) level. All circRNAs expression and CEA levels were significantly up-regulated in cancer patients (CRC, colon, rectum) as compared to healthy controls, except circ-SMARCA5. Moreover, there was a significant up-regulation of circRNAs in most non-cancer patients (UC, polyp, piles). Insignificant upregulation was observed in circRNAs and CEA when comparing cancer with non-cancer patients. No correlations were found between the studied parameters and most clinicopathological characteristics of cancer and non-cancer patients. Circ-SMARCA5, circ-NOL10, circ-LDLRAD3, and circ-RHOT1 were differentially expressed in patients with CRC as well as in non-cancer patients. Circ-SMARCA5 and circ-NOL10 may act as tumor suppressors, while circ-LDLRAD3 and circ-RHOT1 may be oncogenes. Circ-SMARCA5, circ-NOL10, circ-LDLRAD3, and circ-RHOT1 could be promising markers for the early detection of CRC.
Collapse
Affiliation(s)
- Neveen A Hussein
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Shehata M El Sewedy
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohamed M Zakareya
- Colorectal Surgical Unit, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Engy A Youssef
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Fawziya A R Ibrahim
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
13
|
Magdaleno JSL, Grewal RK, Medina-Franco JL, Oliva R, Shaikh AR, Cavallo L, Chawla M. Toward α-1,3/4 fucosyltransferases targeted drug discovery: In silico uncovering of promising natural inhibitors of fucosyltransferase 6. J Cell Biochem 2023; 124:1173-1185. [PMID: 37357420 DOI: 10.1002/jcb.30440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Sialyl Lewis X (sLex ) antigen is a fucosylated cell-surface glycan that is normally involved in cell-cell interactions. The enhanced expression of sLex on cell surface glycans, which is attributed to the upregulation of fucosyltransferase 6 (FUT6), has been implicated in facilitating metastasis in human colorectal, lung, prostate, and oral cancers. The role that the upregulated FUT6 plays in the progression of tumor to malignancy, with reduced survival rates, makes it a potential target for anticancer drugs. Unfortunately, the lack of experimental structures for FUT6 has hampered the design and development of its inhibitors. In this study, we used in silico techniques to identify potential FUT6 inhibitors. We first modeled the three-dimensional structure of human FUT6 using AlphaFold. Then, we screened the natural compound libraries from the COCONUT database to sort out potential natural products (NPs) with best affinity toward the FUT6 model. As a result of these simulations, we identified three NPs for which we predicted binding affinities and interaction patterns quite similar to those we calculated for two experimentally tested FUT6 inhibitors, that is, fucose mimetic-1 and a GDP-triazole derived compound. We also performed molecular dynamics (MD) simulations for the FUT6 complexes with identified NPs, to investigate their stability. Analysis of the MD simulations showed that the identified NPs establish stable contacts with FUT6 under dynamics conditions. On these grounds, the three screened compounds appear as promising natural alternatives to experimentally tested FUT6 synthetic inhibitors, with expected comparable binding affinity. This envisages good prospects for future experimental validation toward FUT6 inhibition.
Collapse
Affiliation(s)
- Jorge Samuel Leon Magdaleno
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Ravneet K Grewal
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - José L Medina-Franco
- Department of Pharmacy, DIFACQUIM Research Group, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Naples, Italy
| | - Abdul Rajjak Shaikh
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mohit Chawla
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
14
|
Guo J, Cheng Q, Li Y, Tian L, Ma D, Li Z, Gao J, Zhu J. Fucosyltransferase 5 Promotes the Proliferative and Migratory Properties of Intrahepatic Cholangiocarcinoma Cells via Regulating Protein Glycosylation Profiles. Clin Med Insights Oncol 2023; 17:11795549231181189. [PMID: 37435017 PMCID: PMC10331077 DOI: 10.1177/11795549231181189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Background The incidence of intrahepatic cholangiocarcinoma (ICC) is increasing globally, and its prognosis has not improved substantially in recent years. Understanding the pathogenesis of ICC may provide a theoretical basis for its treatment. In this study, we investigated the effects and underlying mechanisms of fucosyltransferase 5 (FUT5) on the malignant progression of ICC. Methods FUT5 expression in ICC samples and adjacent nontumor tissues was compared using quantitative real-time polymerase chain reaction and immunohistochemical assays. We performed cell counting kit-8, colony formation, and migration assays to determine whether FUT5 influenced the proliferation and mobility of ICC cells. Finally, mass spectrometry was performed to identify the glycoproteins regulated by FUT5. Results FUT5 mRNA was significantly upregulated in most ICC samples compared with corresponding adjacent nontumor tissues. The ectopic expression of FUT5 promoted the proliferation and migration of ICC cells, whereas FUT5 knockdown significantly suppressed these cellular properties. Mechanistically, we demonstrated that FUT5 is essential for the synthesis and glycosylation of several proteins, including versican, β3 integrin, and cystatin 7, which may serve key roles in the precancer effects of FUT5. Conclusions FUT5 is upregulated in ICC and promotes ICC development by promoting glycosylation of several proteins. Therefore, FUT5 may serve as a therapeutic target for the treatment of ICC.
Collapse
Affiliation(s)
- Jingheng Guo
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Qian Cheng
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Yongjian Li
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Lingyu Tian
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Delin Ma
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
- Peking University Institute of Organ
Transplantation, Peking University, Beijing, China
- Peking University Center of Liver
Cancer Diagnosis and Treatment, Peking University, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
- Peking University Institute of Organ
Transplantation, Peking University, Beijing, China
- Peking University Center of Liver
Cancer Diagnosis and Treatment, Peking University, Beijing, China
| |
Collapse
|
15
|
Cao W, Zeng Z, Lan J, Yang Y, Lu M, Lei S. Knockdown of FUT11 inhibits the progression of gastric cancer via the PI3K/AKT pathway. Heliyon 2023; 9:e17600. [PMID: 37483811 PMCID: PMC10362185 DOI: 10.1016/j.heliyon.2023.e17600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Gastric cancer (GC) is a common and highly malignant tumor of the digestive tract. Members of the focused fucosyltransferase (FUT) family participate in the advancement of various types of cancer. However, research of FUT family members in the progression of GC known to be limited. The purpose of the research was to determine the function of important affiliates of the FUT family in GC and to explore its impacts on the proliferation and migration of GC cells and molecular mechanisms. For the study, fucosyltransferase11 (FUT11) was confirmed to be the only affiliate of the FUT family that was upmodulated in GC tissues and linked to poor survival according to GEPIA data. Furthermore, compared with adjacent noncancerous tissues, the expression of FUT11 was increased in GC tissues. The elevated FUT11 expression suggested that the overall survival (OS) rate of GC is low. Inhibition of FUT11 significantly reduced the proliferation and migration and suppressed the PI3K/AKT pathway by down-regulated collagen type VI alpha 3 chain (COL6A3) in GC cells. The present study has demonstrated that reinstating the expression of COL6A3 in gastric cancer (GC) cells can counteract the inhibitory impact of FUT11 knockdown on the proliferation and migration of GC cells. In conclusion, FUT11 may serve as a novel biomarker for GC, as it modulates GC cell proliferation and migration through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Jinzhi Lan
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Yushi Yang
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Min Lu
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550009, Guizhou, China
| |
Collapse
|
16
|
Paskeh MDA, Ghadyani F, Hashemi M, Abbaspour A, Zabolian A, Javanshir S, Razzazan M, Mirzaei S, Entezari M, Goharrizi MASB, Salimimoghadam S, Aref AR, Kalbasi A, Rajabi R, Rashidi M, Taheriazam A, Sethi G. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: Promises and Challenges. Pharmacol Res 2023; 187:106553. [PMID: 36400343 DOI: 10.1016/j.phrs.2022.106553] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Abbaspour
- Cellular and Molecular Research Center,Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhossein Zabolian
- Resident of department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
17
|
Wang Q, Liao C, Tan Z, Li X, Guan X, Li H, Tian Z, Liu J, An J. FUT6 inhibits the proliferation, migration, invasion, and EGF-induced EMT of head and neck squamous cell carcinoma (HNSCC) by regulating EGFR/ERK/STAT signaling pathway. Cancer Gene Ther 2023; 30:182-191. [PMID: 36151332 DOI: 10.1038/s41417-022-00530-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/10/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023]
Abstract
Glycosylation change is one of the landmark events of tumor occurrence and development, and tumor cells may be inhibited by regulating the aberrant expression of glycosyltransferases. Currently, fucosyltransferase VI (FUT6), which is involved in the synthesis of α-1, 3 fucosyl bond, has been detected to be closely associated with multiple tumors, but its function and mechanism in head and neck squamous cell carcinoma (HNSCC) still need further research. In this study, FUT6 knockdown and overexpression strategies were used to investigate the effects of FUT6 on cell proliferation, migration, and invasion, as well as the growth and metastasis of HNSCC in a xenografts mouse model. The protein expression levels of epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK), Signal Transducer and Activator of Transcription (STAT), protein kinase B (AKT), c-Myc, and epithelial-mesenchymal transition (EMT) markers were determined by western blot analysis. Our research found that the mRNA expression of FUT6 was lower in HNSCC tissues than in normal mucosal epithelial tissues. In Cal-27 and FaDu cells, FUT6 overexpression inhibited cell proliferation, migration and invasion, causing upregulation of ZO-1 and E-cadherin, downregulation of N-cadherin and Vimentin, and finally decreased the phosphorylation levels of EGFR, ERK, STAT, and c-Myc. In HSC-3 cells, knockdown of FUT6 promoted cell proliferation, migration and invasion, downregulating ZO-1 and E-cadherin, upregulating N-cadherin and Vimentin, and increased the phosphorylation levels of EGFR, ERK, STAT, and c-Myc. In the HNSCC xenografts mouse, FUT6 overexpression inhibited tumor growth and metastasis. In summary, FUT6 controls the proliferation, migration, invasion, and EGF-induced EMT of HNSCC by regulating EGFR/ERK/STAT signaling pathway, indicating its potential future therapeutic application for HNSCC.
Collapse
Affiliation(s)
- Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, 563000, Zunyi, Guizhou Province, China
| | - Chengcheng Liao
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, 563000, Zunyi, Guizhou Province, China.,Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou Province, China
| | - Zhangxue Tan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou Province, China
| | - Xiaolan Li
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, 563000, Zunyi, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou Province, China
| | - Hao Li
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou Province, China
| | - Zhongjia Tian
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou Province, China
| | - Jianguo Liu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, 563000, Zunyi, Guizhou Province, China.
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou Province, China.
| |
Collapse
|
18
|
Lv Y, Zhang Z, Tian S, Wang W, Li H. Therapeutic potential of fucosyltransferases in cancer and recent development of targeted inhibitors. Drug Discov Today 2023; 28:103394. [PMID: 36223858 DOI: 10.1016/j.drudis.2022.103394] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Fucosyltransferases (FUTs) have significant roles in various pathophysiological events. Their high expression is a signature of malignant cell transformation, contributing to many abnormal events during cancer development, such as uncontrolled cell proliferation, tumor cell invasion, angiogenesis, metastasis, immune evasion, and therapy resistance. Therefore, FUTs have evolved as an attractive therapeutic target for treating solid cancers, and many substrate analogs have been discovered with potential as FUT inhibitors for cancer therapy. Meanwhile, the development of FUT protein structures represents a significant advance in the design of FUT inhibitors with nonsubstrate structures. In this review, we summarize the role of FUTs in cancers, the resolved protein crystal structures and progress in the development of FUT inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Yixin Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhoudong Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Sheng Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
19
|
Duca M, Malagolini N, Dall’Olio F. The Mutual Relationship between Glycosylation and Non-Coding RNAs in Cancer and Other Physio-Pathological Conditions. Int J Mol Sci 2022; 23:ijms232415804. [PMID: 36555445 PMCID: PMC9781064 DOI: 10.3390/ijms232415804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Glycosylation, which consists of the enzymatic addition of sugars to proteins and lipids, is one of the most important post-co-synthetic modifications of these molecules, profoundly affecting their activity. Although the presence of carbohydrate chains is crucial for fine-tuning the interactions between cells and molecules, glycosylation is an intrinsically stochastic process regulated by the relative abundance of biosynthetic (glycosyltransferases) and catabolic (glycosidases) enzymes, as well as sugar carriers and other molecules. Non-coding RNAs, which include microRNAs, long non-coding RNAs and circRNAs, establish a complex network of reciprocally interacting molecules whose final goal is the regulation of mRNA expression. Likewise, these interactions are stochastically regulated by ncRNA abundance. Thus, while protein sequence is deterministically dictated by the DNA/RNA/protein axis, protein abundance and activity are regulated by two stochastic processes acting, respectively, before and after the biosynthesis of the protein axis. Consequently, the worlds of glycosylation and ncRNA are closely interconnected and mutually interacting. In this paper, we will extensively review the many faces of the ncRNA-glycosylation interplay in cancer and other physio-pathological conditions.
Collapse
|
20
|
Zhou H, Xie T, Gao Y, Zhan X, Dong Y, Liu D, Xu Y. A novel prognostic model based on six methylation-driven genes predicts overall survival for patients with clear cell renal cell carcinoma. Front Genet 2022; 13:996291. [PMID: 36330441 PMCID: PMC9623106 DOI: 10.3389/fgene.2022.996291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/05/2022] [Indexed: 12/01/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a lethal urological malignancy. DNA methylation is involved in the regulation of ccRCC occurrence and progression. This study aimed to establish a prognostic model based on DNA methylation to predict the overall survival (OS) of patients with ccRCC. To create this model, we used the transcriptome and DNA methylation data of patients with ccRCC from The Cancer Genome Atlas (TCGA) database. We then used the MethylMix R package to identify methylation-driven genes, and LASSO regression and multivariate Cox regression analyses established the prognostic risk model, from which we derived risk scores. We incorporated these risk scores and clinical parameters to develop a prognostic nomogram to predict 3-, 5-, and 7-year overall survival, and its predictive power was validated using the ArrayExpress cohort. These analyses identified six methylation-driven genes (SAA1, FUT6, SPATA18, SHROOM3, AJAP1, and NPEPL1) that produced risk scores, which were sorted into high- and low-risk patient groups. These two groups differed in nomogram-predicted prognosis, the extent of immune cell infiltration, tumor mutational burden, and expected response to additional therapies. In conclusion, we established a nomogram based on six DNA methylation-driven genes with excellent accuracy for prognostic prediction in ccRCC patients. This nomogram model might provide novel insights into the epigenetic mechanism and individualized treatment of ccRCC.
Collapse
Affiliation(s)
- Hongmin Zhou
- Department of Urology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tiancheng Xie
- Department of Urology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuchen Gao
- Department of Urology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangcheng Zhan
- Department of Urology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yunze Dong
- Department of Urology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ding Liu
- Department of Urology, Shanghai 10th People’s Hospital, Nanjing Medical University, Shanghai, China
| | - Yunfei Xu
- Department of Urology, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yunfei Xu,
| |
Collapse
|
21
|
Li X, Loh TJ, Lim JJ, Er Saw P, Liao Y. Glycan-RNA: a new class of non-coding RNA. BIO INTEGRATION 2022. [DOI: 10.15212/bioi-2021-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Xiuling Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tiing Jen Loh
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jia Jia Lim
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Liao
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, and Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Liang L, Zhu Y, Li J, Zeng J, Wu L. ALKBH5-mediated m6A modification of circCCDC134 facilitates cervical cancer metastasis by enhancing HIF1A transcription. J Exp Clin Cancer Res 2022; 41:261. [PMID: 36028854 PMCID: PMC9413927 DOI: 10.1186/s13046-022-02462-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/09/2022] [Indexed: 01/08/2023] Open
Abstract
Background Metastasis is the main cause of mortality in cervical cancer (CC). Circular RNAs (circRNAs) have been demonstrated to play a crucial role in carcinoma biology. However, the expression and function of circRNAs in cervical cancer metastasis are still unclear. Methods In the present study, we identified a circRNA with an N6-methyladenosine (m6A) modification, circCCDC134, whose expression was increased in CC tissues by circRNA-Seq and qPCR. CircCCDC134 upregulation in CC was fine-tuned by ALKBH5-mediated m6A modification, which enhanced its stability in a YTHDF2-dependent manner. The functional experiments illustrated that circCCDC134 enhanced tumour proliferation and metastasis in vitro and in vivo. For the comprehensive identification of RNA-binding proteins, circRNA pull-down and mass spectrometry (ChIRP-MS), chromatin immunoprecipitation-seq (Chip-seq), RNA binding protein immunoprecipitation (RIP) and luciferase reporter assays were used to perform mechanistic investigations. Results The results revealed that circCCDC134 recruited p65 in the nucleus and acted as a miR-503-5p sponge to regulate the expression of MYB in the cytoplasm, ultimately stimulating HIF1A transcription and facilitating CC growth and metastasis. Conclusion: These findings indicate that circCCDC134 is an important therapeutic target and provide new regulatory model insights for exploring the carcinogenic mechanism of circCCDC134 in CC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02462-7.
Collapse
|
23
|
Lin GR, Chen WR, Zheng PH, Chen WS, Cai GY. Circular RNA circ_0006089 promotes the progression of gastric cancer by regulating the miR-143-3p/PTBP3 axis and PI3K/AKT signaling pathway. J Dig Dis 2022; 23:376-387. [PMID: 35844201 DOI: 10.1111/1751-2980.13116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Circular RNAs (circRNAs) play pivotal roles in malignancies including gastric cancer (GC). We aimed to investigate the biological function and regulatory mechanism of circ_0006089 in GC. METHODS Circ_0006089, microRNA (miR)-143-3p, and polypyrimidine tract-binding protein 3 (PTBP3) expressions were measured via quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in GC cell lines. Cell proliferative capacity was determined by colony formation and CCK-8 assays. Flow cytometry was employed for measuring cell apoptosis. Cell invasion and migration were measured via transwell and wound-healing assays. Western blot analysis was utilized for detecting protein expressions of E-cadherin, N-cadherin, vimentin, PTBP3, PI3K, p-PI3K, AKT, and p-AKT. Dual-reporter luciferase analysis was conducted to confirm the association between miR-143-3p and circ_0006089 or PTBP3. The role of circ_0006089 in vivo was detected via establishing a mice xenograft model. RESULTS Circ_0006089 expression was increased in GC. Circ_0006089 downregulation suppressed the proliferation and metastasis and induced apoptosis of GC cells, which was counteracted by miR-143-3p inhibition or PTBP3 overexpression. In addition, circ_0006089 overexpression could promote GC progression. MiR-143-3p specially bound to circ_0006089 and PTBP3 was targeted by miR-143-3p. Moreover, circ_0006089 could regulate PTBP3 expression and the PI3K/AKT pathway by sponging miR-143-3p. Circ_0006089 knockdown also suppressed tumor growth. CONCLUSION Circ_0006089 regulated miR-143-3p/PTBP3/PI3K/AKT pathway to facilitate GC progression.
Collapse
Affiliation(s)
- Guang Rong Lin
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Wei Rong Chen
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Pei Hong Zheng
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Wei Shan Chen
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Gao Yang Cai
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| |
Collapse
|
24
|
Tong X, Ru Y, Fu J, Wang Y, Zhu J, Ding Y, Lv F, Yang M, Wei X, Liu C, Liu X, Lei L, Wu X, Guo L, Xu Y, Li J, Wu P, Gong H, Chen J, Wu D. Fucosylation Promotes Cytolytic Function and Accumulation of NK Cells in B Cell Lymphoma. Front Immunol 2022; 13:904693. [PMID: 35784355 PMCID: PMC9240281 DOI: 10.3389/fimmu.2022.904693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/11/2022] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells have been demonstrated as a promising cellular therapy as they exert potent anti-tumor immune responses. However, applications of NK cells to tumor immunotherapy, especially in the treatment of advanced hematopoietic and solid malignancies, are still limited due to the compromised survival and short persistence of the transferred NK cells in vivo. Here, we observed that fucosyltransferase (FUT) 7 and 8 were highly expressed on NK cells, and the expression of CLA was positively correlated with the accumulation of NK cells in clinical B cell lymphoma development. Via enzyme-mediated ex vivo cell-surface fucosylation, the cytolytic effect of NK cells against B cell lymphoma was significantly augmented. Fucosylation also promoted NK cell accumulation in B cell lymphoma-targeted tissues by enhancing their binding to E-selectin. Moreover, fucosylation of NK cells also facilitated stronger T cell anti-tumor immune responses. These findings suggest that ex vivo fucosylation contributes to enhancing the effector functions of NK cells and may serve as a novel strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Xing Tong
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhua Ru
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Jianhong Fu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Ying Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Jinjin Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Yiyang Ding
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Fulian Lv
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Menglu Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Xiya Wei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Chenchen Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Xin Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Lei Lei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Xiaojin Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Jie Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
- *Correspondence: Peng Wu, ; Huanle Gong, ; Jia Chen, ; Depei Wu,
| | - Huanle Gong
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
- *Correspondence: Peng Wu, ; Huanle Gong, ; Jia Chen, ; Depei Wu,
| | - Jia Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
- *Correspondence: Peng Wu, ; Huanle Gong, ; Jia Chen, ; Depei Wu,
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
- *Correspondence: Peng Wu, ; Huanle Gong, ; Jia Chen, ; Depei Wu,
| |
Collapse
|
25
|
Qi Y, Shan Y, Li S, Huang Y, Guo Y, Huang T, Zhao X, Jia L. LncRNA LEF1-AS1/LEF1/FUT8 Axis Mediates Colorectal Cancer Progression by Regulating α1, 6-Fucosylationvia Wnt/β-Catenin Pathway. Dig Dis Sci 2022; 67:2182-2194. [PMID: 34021424 DOI: 10.1007/s10620-021-07051-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/11/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Fucosylation alteration is involved in several steps of human cancer pathogenesis. Dysregulated long non-coding RNA (lncRNA) often leads to malignancy in colorectal cancer (CRC). METHODS Differential levels of LEF1-AS1, LEF1 and FUT8 are analyzed by qRT-PCR and western blot. Chip, RIP, EMSA and luciferase reporter assay confirm the direct interaction among LEF1-AS1, MLL1, H3K4me3, LEF1 and FUT8. Functionally, CRC cell proliferation, migration and invasion are analyzed by CCK8 assay, colony formation assay, transwell assay and flow cytometry. The xenografts nude mice models, lung metastasis and liver metastasis are established to determine the effect of LEF1-AS1/LEF1/FUT8 axis on CRC progression in vivo. RESULTS Here, we identify that LEF1-AS1 and LEF1 are higher in CRC tissues than that in adjacent tissues, as well as upregulated in CRC cell lines than that in normal colorectal cells. Altered levels of LEF1-AS1 modulate LEF1 expression, while altered LEF1 could not regulate LEF1-AS1. LEF1-AS1 recruits MLL1 to the promoter region of LEF1, induces H3K4me3 methylation modification and mediates LEF1 transcription. Furthermore, α1-6 fucosyltransferase FUT8 is overexpressed in CRC tissues and positively correlated to LEF1. FUT8 is a direct target of transcription factor LEF1, which regulates FUT8 level. Altered FUT8 also regulates the core fucosylation of CRC cells, and LEF1-AS1 mediates FUT8 level through activation of Wnt/β-catenin/LEF1 pathway, thereby resulting in β-catenin nuclear translocation. In addition, LEF1-AS1 mediates the proliferation, migration and invasion of CRC cells in vitro. LEF1-AS1 silence hinders the tumorigenesis, liver and lung metastasis of SW620 cells in vivo, while overexpressed FUT8 abolishes the suppressive impact of LEF1-AS1 repression on the biological behavior of SW620 cells. CONCLUSION Our studies uncovered a novel mechanism for constitutive LEF1-AS1/LEF1/FUT8 axis in CRC progression by regulating α1, 6-fucosylation via Wnt/β-catenin pathway, and consequently, as a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Yu Qi
- College of Laboratory Medicine, Dalian Medical University, 9 Lvshunnan Road Xiduan, DalianLiaoning Province, 116044, China
| | - Yujia Shan
- College of Laboratory Medicine, Dalian Medical University, 9 Lvshunnan Road Xiduan, DalianLiaoning Province, 116044, China
| | - Shuangda Li
- College of Laboratory Medicine, Dalian Medical University, 9 Lvshunnan Road Xiduan, DalianLiaoning Province, 116044, China
| | - Yiran Huang
- College of Laboratory Medicine, Dalian Medical University, 9 Lvshunnan Road Xiduan, DalianLiaoning Province, 116044, China
| | - Yanru Guo
- College of Laboratory Medicine, Dalian Medical University, 9 Lvshunnan Road Xiduan, DalianLiaoning Province, 116044, China
| | - Tong Huang
- College of Laboratory Medicine, Dalian Medical University, 9 Lvshunnan Road Xiduan, DalianLiaoning Province, 116044, China
| | - Xinyu Zhao
- College of Laboratory Medicine, Dalian Medical University, 9 Lvshunnan Road Xiduan, DalianLiaoning Province, 116044, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, 9 Lvshunnan Road Xiduan, DalianLiaoning Province, 116044, China.
| |
Collapse
|
26
|
An NF-κB- and Therapy-Related Regulatory Network in Glioma: A Potential Mechanism of Action for Natural Antiglioma Agents. Biomedicines 2022; 10:biomedicines10050935. [PMID: 35625673 PMCID: PMC9138293 DOI: 10.3390/biomedicines10050935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 01/27/2023] Open
Abstract
High-grade gliomas are among the most aggressive malignancies, with significantly low median survival. Recent experimental research in the field has highlighted the importance of natural substances as possible antiglioma agents, also known for their antioxidant and anti-inflammatory action. We have previously shown that natural substances target several surface cluster of differentiation (CD) markers in glioma cells, as part of their mechanism of action. We analyzed the genome-wide NF-κB binding sites residing in consensus regulatory elements, based on ENCODE data. We found that NF-κB binding sites reside adjacent to the promoter regions of genes encoding CD markers targeted by antiglioma agents (namely, CD15/FUT4, CD28, CD44, CD58, CD61/SELL, CD71/TFRC, and CD122/IL2RB). Network and pathway analysis revealed that the markers are associated with a core network of genes that, altogether, participate in processes that associate tumorigenesis with inflammation and immune evasion. Our results reveal a core regulatory network that can be targeted in glioblastoma, with apparent implications in individuals that suffer from this devastating malignancy.
Collapse
|
27
|
Yang F, Xuan G, Chen Y, Cao L, Zhao M, Wang C, Chen E. MicroRNAs Are Key Molecules Involved in the Gene Regulation Network of Colorectal Cancer. Front Cell Dev Biol 2022; 10:828128. [PMID: 35465317 PMCID: PMC9023807 DOI: 10.3389/fcell.2022.828128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer and one of the leading causes of mortality worldwide. MicroRNAs (miRNAs) play central roles in normal cell maintenance, development, and other physiological processes. Growing evidence has illustrated that dysregulated miRNAs can participate in the initiation, progression, metastasis, and therapeutic resistance that confer miRNAs to serve as clinical biomarkers and therapeutic targets for CRC. Through binding to the 3′-untranslated region (3′-UTR) of target genes, miRNAs can lead to target mRNA degradation or inhibition at a post-transcriptional level. During the last decade, studies have found numerous miRNAs and their potential targets, but the complex network of miRNA/Targets in CRC remains unclear. In this review, we sought to summarize the complicated roles of the miRNA-target regulation network (Wnt, TGF-β, PI3K-AKT, MAPK, and EMT related pathways) in CRC with up-to-date, high-quality published data. In particular, we aimed to discuss the downstream miRNAs of specific pathways. We hope these data can be a potent supplement for the canonical miRNA-target regulation network.
Collapse
Affiliation(s)
- Fangfang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Guoyun Xuan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Yixin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Lichao Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Min Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Chen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Erfei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
- *Correspondence: Erfei Chen,
| |
Collapse
|
28
|
Liang L, Li J, Yu J, Liu J, Xiu L, Zeng J, Wang T, Li N, Wu L. Establishment and validation of a novel invasion-related gene signature for predicting the prognosis of ovarian cancer. Cancer Cell Int 2022; 22:118. [PMID: 35292033 PMCID: PMC8922755 DOI: 10.1186/s12935-022-02502-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is an invasive gynaecologic cancer with a high cancer-related death rate. The purpose of this study was to establish an invasion-related multigene signature to predict the prognostic risk of OC. METHODS We extracted 97 invasion-related genes from The Cancer Genome Atlas (TCGA) database. Then, the ConsensusClusterPlus and limma packages were used to calculate differentially expressed genes (DEGs). To calculate the immune scores of the molecular subtypes, we used ESTIMATE to evaluate the stromal score, immune score and ESTIMATE score. MCP-counter and the GSVA package ssgsea were used to evaluate the types of infiltrating immune cells. Survival and nomogram analyses were performed to explore the prognostic value of the signature. Finally, qPCR, immunohistochemistry staining and functional assays were used to evaluate the expression and biological abilities of the signature genes in OC. RESULTS Based on the consistent clustering of invasion-related genes, cases in the OC datasets were divided into two subtypes. A significant difference was observed in prognosis between the two subtypes. Most genes were highly expressed in the C1 group. Based on the C1 group genes, we constructed an invasion-related 6-gene prognostic risk model. Furthermore, to verify the signature, we used the TCGA-test and GSE32062 and GSE17260 chip datasets for testing and finally obtained a good risk prediction effect in those datasets. Moreover, the results of the qPCR and immunohistochemistry staining assays revealed that KIF26B, VSIG4 and COL6A6 were upregulated and that FOXJ1, MXRA5 and CXCL9 were downregulated in OC tissues. The functional study showed that the expression of KIF26B, VSIG4, COL6A6, FOXJ1, MXRA5 and CXCL9 can regulate the migration and invasion abilities of OC cells. CONCLUSION We developed a 6-gene prognostic stratification system (FOXJ1, MXRA5, KIF26B, VSIG4, CXCL9 and COL6A6) that is independent of clinical features. These results suggest that the signature could potentially be used to evaluate the prognostic risk of OC patients.
Collapse
Affiliation(s)
- Leilei Liang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jing Yu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jing Liu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Xiu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia Zeng
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tiantian Wang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Lingying Wu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
29
|
Chu J, Fang X, Sun Z, Gai L, Dai W, Li H, Yan X, Du J, Zhang L, Zhao L, Xu D, Yan S. Non-Coding RNAs Regulate the Resistance to Anti-EGFR Therapy in Colorectal Cancer. Front Oncol 2022; 11:801319. [PMID: 35111681 PMCID: PMC8802825 DOI: 10.3389/fonc.2021.801319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third prevalent cancer worldwide, the morbidity and mortality of which have been increasing in recent years. As molecular targeting agents, anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (McAbs) have significantly increased the progression-free survival (PFS) and overall survival (OS) of metastatic CRC (mCRC) patients. Nevertheless, most patients are eventually resistant to anti-EGFR McAbs. With the intensive study of the mechanism of anti-EGFR drug resistance, a variety of biomarkers and pathways have been found to participate in CRC resistance to anti-EGFR therapy. More and more studies have implicated non-coding RNAs (ncRNAs) primarily including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are widely involved in tumorigenesis and tumor progression. They function as essential regulators controlling the expression and function of oncogenes. Increasing data have shown ncRNAs affect the resistance of molecular targeted drugs in CRC including anti-EGFR McAbs. In this paper, we have reviewed the advance in mechanisms of ncRNAs in regulating anti-EGFR McAbs therapy resistance in CRC. It provides insight into exploring ncRNAs as new molecular targets and prognostic markers for CRC.
Collapse
Affiliation(s)
- Jinjin Chu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Xianzhu Fang
- Department of Pathology and Pathophysiology, Weifang Medical University, Weifang, China
| | - Zhonghou Sun
- Department of Pediatrics of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Linlin Gai
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Wenqing Dai
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Haibo Li
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Xinyi Yan
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Jinke Du
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Lili Zhang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Lu Zhao
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Donghua Xu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, China
| |
Collapse
|
30
|
Mai Z, Chen H, Huang M, Zhao X, Cui L. A Robust Metabolic Enzyme-Based Prognostic Signature for Head and Neck Squamous Cell Carcinoma. Front Oncol 2022; 11:770241. [PMID: 35127477 PMCID: PMC8810637 DOI: 10.3389/fonc.2021.770241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is still a menace to public wellbeing globally. However, the underlying molecular events influencing the carcinogenesis and prognosis of HNSCC are poorly known. Methods Gene expression profiles of The Cancer Genome Atlas (TCGA) HNSCC dataset and GSE37991 were downloaded from the TCGA database and gene expression omnibus, respectively. The common differentially expressed metabolic enzymes (DEMEs) between HNSCC tissues and normal controls were screened out. Then a DEME-based molecular signature and a clinically practical nomogram model were constructed and validated. Results A total of 23 commonly upregulated and 9 commonly downregulated DEMEs were identified in TCGA HNSCC and GSE37991. Gene ontology analyses of the common DEMEs revealed that alpha-amino acid metabolic process, glycosyl compound metabolic process, and cellular amino acid metabolic process were enriched. Based on the TCGA HNSCC cohort, we have built up a robust DEME-based prognostic signature including HPRT1, PLOD2, ASNS, TXNRD1, CYP27B1, and FUT6 for predicting the clinical outcome of HNSCC. Furthermore, this prognosis signature was successfully validated in another independent cohort GSE65858. Moreover, a potent prognostic signature-based nomogram model was constructed to provide personalized therapeutic guidance for treating HNSCC. In vitro experiment revealed that the knockdown of TXNRD1 suppressed malignant activities of HNSCC cells. Conclusion Our study has successfully developed a robust DEME-based signature for predicting the prognosis of HNSCC. Moreover, the nomogram model might provide useful guidance for the precision treatment of HNSCC.
Collapse
Affiliation(s)
- Zizhao Mai
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Huan Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xinyuan Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Xinyuan Zhao, ; Li Cui,
| | - Li Cui
- Stomatological Hospital, Southern Medical University, Guangzhou, China
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, United States
- *Correspondence: Xinyuan Zhao, ; Li Cui,
| |
Collapse
|
31
|
Pradhan RK, Ramakrishna W. Transposons: Unexpected players in cancer. Gene 2022; 808:145975. [PMID: 34592349 DOI: 10.1016/j.gene.2021.145975] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Transposons are repetitive DNA sequences encompassing about half of the human genome. They play a vital role in genome stability maintenance and contribute to genomic diversity and evolution. Their activity is regulated by various mechanisms considering the deleterious effects of these mobile elements. Various genetic risk factors and environmental stress conditions affect the regulatory pathways causing alteration of transposon expression. Our knowledge of the biological role of transposons is limited especially in various types of cancers. Retrotransposons of different types (LTR-retrotransposons, LINEs and SINEs) regulate a plethora of genes that have a role in cell reprogramming, tumor suppression, cell cycle, apoptosis, cell adhesion and migration, and DNA repair. The regulatory mechanisms of transposons, their deregulation and different mechanisms underlying transposon-mediated carcinogenesis in humans focusing on the three most prevalent types, lung, breast and colorectal cancers, were reviewed. The modes of regulation employed include alternative splicing, deletion, insertion, duplication in genes and promoters resulting in upregulation, downregulation or silencing of genes.
Collapse
|
32
|
Lu S, Ding X, Wang Y, Hu X, Sun T, Wei M, Wang X, Wu H. The Relationship Between the Network of Non-coding RNAs-Molecular Targets and N6-Methyladenosine Modification in Colorectal Cancer. Front Cell Dev Biol 2021; 9:772542. [PMID: 34938735 PMCID: PMC8685436 DOI: 10.3389/fcell.2021.772542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Recent accumulating researches implicate that non-coding RNAs (ncRNAs) including microRNA (miRNA), circular RNA (circRNA), and long non-coding RNA (lncRNAs) play crucial roles in colorectal cancer (CRC) initiation and development. Notably, N6-methyladenosine (m6A) methylation, the critical posttranscriptional modulators, exerts various functions in ncRNA metabolism such as stability and degradation. However, the interaction regulation network among ncRNAs and the interplay with m6A-related regulators has not been well documented, particularly in CRC. Here, we summarize the interaction networks and sub-networks of ncRNAs in CRC based on a data-driven approach from the publications (IF > 6) in the last quinquennium (2016–2021). Further, we extend the regulatory pattern between the core m6A regulators and m6A-related ncRNAs in the context of CRC metastasis and progression. Thus, our review will highlight the clinical potential of ncRNAs and m6A modifiers as promising biomarkers and therapeutic targets for improving the diagnostic precision and treatment of CRC.
Collapse
Affiliation(s)
- Senxu Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xiangyu Ding
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yuanhe Wang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Shenyang Kangwei Medical Laboratory Analysis Co. Ltd., Liaoning, China
| | - Xiaobin Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
33
|
Fucosylation in Urological Cancers. Int J Mol Sci 2021; 22:ijms222413333. [PMID: 34948129 PMCID: PMC8708646 DOI: 10.3390/ijms222413333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/08/2023] Open
Abstract
Fucosylation is an oligosaccharide modification that plays an important role in immune response and malignancy, and specific fucosyltransferases (FUTs) catalyze the three types of fucosylations: core-type, Lewis type, and H type. FUTs regulate cancer proliferation, invasiveness, and resistance to chemotherapy by modifying the glycosylation of signaling receptors. Oligosaccharides on PD-1/PD-L1 proteins are specifically fucosylated, leading to functional modifications. Expression of FUTs is upregulated in renal cell carcinoma, bladder cancer, and prostate cancer. Aberrant fucosylation in prostate-specific antigen (PSA) could be used as a novel biomarker for prostate cancer. Furthermore, elucidation of the biological function of fucosylation could result in the development of novel therapeutic targets. Further studies are needed in the field of fucosylation glycobiology in urological malignancies.
Collapse
|
34
|
Mehta K, Patel K, Pandya S, Patel P. Altered mRNA Expression of Fucosyltransferases and Fucosidase Predicts Prognosis in Human Oral Carcinoma. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:123-131. [PMID: 34703796 PMCID: PMC8496247 DOI: 10.22088/ijmcm.bums.10.2.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Aberrant protein glycosylation is known to be associated with the development of various cancers. Although fucosylation is essential for normal biological functions, alterations in fucosylation are strongly implicated in cancer and increasing metastatic potential. Altered fucosyltarnsferases (FUTs) and fucosidases are found to be involved in many types of malignancies. In this study, we examined the mRNA expressions of fucosidase (FUCA1) and FUTs (FUTs (FUT3, FUT4, FUT5, FUT6, FUT8) in human oral cancer tissues. All FUTs and FUCA1 were significantly (P ≤0.05) down-regulated in malignant tissues in comparison with their adjacent normal tissues. The relationship between the clinicopathological parameters and the expression of FUTs and FUCA1 revealed that higher mRNA levels of FUT4, FUT5, and FUT8 and lower levels of FUT3 were associated with progression of disease and lymph node metastasis in oral carcinoma indicating their role in oral cancer progression. Collectively, results suggest that elevated mRNA levels of FUT4, FUT5 and FUT8 may be used as worst prognostic indicators for oral carcinoma.
Collapse
Affiliation(s)
- Kruti Mehta
- Molecular Oncology Laboratory, Cancer Biology Department, The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad, Gujarat, India.,Life Science Department, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Kinjal Patel
- Molecular Oncology Laboratory, Cancer Biology Department, The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad, Gujarat, India
| | - Shashank Pandya
- Surgical Oncology Department, The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad, Gujarat, India
| | - Prabhudas Patel
- Molecular Oncology Laboratory, Cancer Biology Department, The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad, Gujarat, India.,Life Science Department, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
35
|
Yang L, Li F, Cao Y, Liu Q, Jing G, Niu J, Sun F, Qian Y, Wang S, Li A. Multifunctional silica nanocomposites prime tumoricidal immunity for efficient cancer immunotherapy. J Nanobiotechnology 2021; 19:328. [PMID: 34663354 PMCID: PMC8524820 DOI: 10.1186/s12951-021-01073-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
The tumor immune microenvironment (TIME) has been demonstrated to be the main cause of cancer immunotherapy failure in various malignant tumors, due to poor immunogenicity and existence of immunosuppressive factors. Thus, establishing effective treatments for hostile TIME remodeling has considerable potential to enhance immune response rates for durable tumor growth retardation. This study aims to develop a novel nanocomposite, polyethyleneimine-modified dendritic mesoporous silica nanoparticles loaded with microRNA-125a (DMSN-PEI@125a) to synergistically enhance immune response and immunosuppression reversion, ultimately generating a tumoricidal environment. Our results showed that DMSN-PEI@125a exhibited excellent ability in cellular uptake by murine macrophages and the cervical cancer cell line TC-1, repolarization of tumor associated macrophages (TAMs) to M1 type in a synergistic manner, and promotion of TC-1 immunogenic death. Intratumor injection of DMSN-PEI@125a facilitated the release of more damage-related molecular patterns and enhanced the infiltration of natural killer and CD8+ T cells. Meanwhile, repolarized TAMs could function as a helper to promote antitumor immunity, thus inhibiting tumor growth in TC-1 mouse models in a collaborative manner. Collectively, this work highlights the multifunctional roles of DMSN-PEI@125a in generating an inflammatory TIME and provoking antitumor immunity, which may serve as a potential agent for cancer immunotherapy.
Collapse
Affiliation(s)
- Linnan Yang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China.,Central Laboratory, First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Feng Li
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yongsheng Cao
- The Second Department of Urology, Anhui Provincial Children's Hospital, Hefei, People's Republic of China
| | - Qiang Liu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Guoxin Jing
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Jintong Niu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Feiyue Sun
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yechang Qian
- Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, People's Republic of China.
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China.
| | - Ang Li
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
36
|
Pi L, Yang L, Fang BR, Meng XX, Qian L. Exosomal microRNA-125a-3p from human adipose-derived mesenchymal stem cells promotes angiogenesis of wound healing through inhibiting PTEN. Mol Cell Biochem 2021; 477:115-127. [PMID: 34581942 DOI: 10.1007/s11010-021-04251-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
Angiogenesis plays a key in the process of tissue repair and wound healing. Human adipose-derived mesenchymal stem cells (HADSCs) have been found to act a promotion role during angiogenesis. Moreover, miR-125a-3p in HADSCs could promote the angiogenesis of HUVECs, but their specific mechanism in wound healing needs further study. Western blotting and qRT-PCR were used for detecting the protein and mRNA level, respectively. Exosomes were isolated successfully, and transmission electron microscope was used to identify exosomes. Angiogenesis, cell migration, and proliferation were detected with tube formation, wound healing, and MTT assays. The interactions of miR-125a-3p and PTEN were validated using dual-luciferase reporter assay. Animal model was used to evaluate the effect of miR-125a-3p on wound healing. HADSCs-exosome remarkably promoted the viability, migration, and angiogenesis of HUVECs. Knockdown of miR-125a-3p in HADSCs could inhibit the effect of HADSCs-exosome, while overexpression of miR-125a-3p could further promote the effect of HADSCs-exosome on HUVECs. MiR-125a-3p from HADSCs-exosome inhibited the expression of PTEN in HUVECs. Knockdown of PTEN promoted the viability, migration, and angiogenesis of HUVECs and reversed the effect of miR-125a-3p knockdown on HUVECs. Finally, miR-125a-3p from HADSCs-exosome could promote wound healing and angiogenesis in mice by inhibiting PTEN in mice wound granulation tissues. MiR-125a-3p from the HADSCs-exosome promoted the wound healing and angiogenesis, and these effects were achieved through regulating PTEN. This study may provide a new thought for the treatment and prevention of tissue repair.
Collapse
Affiliation(s)
- Li Pi
- Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, China
| | - Li Yang
- Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, China
| | - Bai-Rong Fang
- Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, China
| | - Xian-Xi Meng
- Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, China
| | - Li Qian
- Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
37
|
Abstract
Expression of glycosylation-related genes (or glycogenes) is strictly regulated by transcription factors and epigenetic processes, both in normal and in pathological conditions. In fact, glycosylation is an essential mechanism through which proteins and lipids are modified to perform a variety of biological events, to adapt to environment, and to interact with microorganisms.Many glycogenes with a role in normal development are epigenetically regulated. Essential studies were performed in the brain, where expression of glycogenes like MGAT5B, B4GALNT1, and ST8Sia1 are under the control of histone modifications, and in the immune system, where expression of FUT7 is regulated by both DNA methylation and histone modifications. At present, epigenetic regulation of glycosylation is still poorly described under physiological conditions, since the majority of the studies were focused on cancer. In fact, virtually all types of cancers display aberrant glycosylation, because of both genetic and epigenetic modifications on glycogenes. This is also true for many other diseases, such as inflammatory bowel disease, diabetes, systemic lupus erythematosus, IgA nephropathy, multiple sclerosis, and cardiovascular diseases.A deeper knowledge in epigenetic regulation of glycogenes is essential, since research in this field could be helpful in finding novel and personalized therapeutics.
Collapse
|
38
|
miR-125a-5p impairs the metastatic potential in breast cancer via IP 6K1 targeting. Cancer Lett 2021; 520:48-56. [PMID: 34229060 DOI: 10.1016/j.canlet.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
The deregulation of PI3K/Akt signaling is among the most causes in inducing the acquisition of a metastatic phenotype in breast cancer cells, leading to Epithelial-Mesenchymal Transition (EMT). Inhibition of the PI3K/Akt pathway is known to be beneficial in the clinical setting. However, the activation of secondary pathways and toxicity profiles of available inhibitors, hindering optimal therapeutic results. Preliminary studies showed that myo-Inositol inhibits the PI3K/Akt pathway by exerting a pleiotropic anti-tumor action. Herein, we demonstrate that myo-Inositol triggers a prompt and profound remodeling of delineated expression pattern in triple-negative breast cancer cells (MDA-MB-231). Consequently, it inhibits metastasis and tumor progression through miR-125a-5p transcription and the subsequent inhibition of IP6K1. In contrast, hormone-responsive breast cancer cells (MCF-7) are insensitive to myo-Inositol. This is due to the persistence of MDM2 synthesis promoted by estrogen-dependent pathways. Conversely, the counteraction of estrogen effects recovered the sensitivity to myo-Inositol in the hormone-responsive model. Overall, these results identify a novel axis primed by miR-125a-5p to downregulate IP6K1 gene that inhibits metastasis. Thus, administration of myo-Inositol can activate this axis as a molecular target therapy in breast cancer.
Collapse
|
39
|
Cao W, Zeng Z, Pan R, Wu H, Zhang X, Chen H, Nie Y, Yu Z, Lei S. Hypoxia-Related Gene FUT11 Promotes Pancreatic Cancer Progression by Maintaining the Stability of PDK1. Front Oncol 2021; 11:675991. [PMID: 34221996 PMCID: PMC8247946 DOI: 10.3389/fonc.2021.675991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background Hypoxia is associated with the development of pancreatic cancer (PC). However, genes associated with hypoxia response and their regulatory mechanism in PC cells were unclear. The current study aims to investigate the role of the hypoxia associated gene fucosyltransferase 11 (FUT11) in the progression of PC. Methods In the preliminary study, bioinformatics analysis predicted FUT11 as a key hypoxia associated gene in PC. The expression of FUT11 in PC was evaluated using quantitative real-time PCR (qRT-PCR), Western blot and immunohistochemistry. The effects of FUT11 on PC cells proliferation and migration under normoxia and hypoxia were evaluated using Cell Counting Kit 8, 5-ethynyl-2'-deoxyuridine (EDU) assay, colony formation assay and transwell assay. The effects of FUT11 in vivo was examined in mouse tumor models of liver metastasis and subcutaneous xenograft. Furthermore, Western blot, luciferase assay and immunoprecipitation were performed to explore the regulatory relationship among FUT11, hypoxia-inducible factor 1α (HIF1α) and pyruvate dehydrogenase kinase 1 (PDK1) in PC. Results FUT11 was markedly increased of PC cells with hypoxia, upregulated in the PC clinical tissues, and predicted a poor outcome of PC patients. Inhibition of FUT11 reduced PC cell growth and migratory ability of PC cells under normoxia and hypoxia conditions in vitro, and growth and tumor cell metastasis in vivo. FUT11 bound to PDK1 and regulated the expression PDK1 under normoxia and hypoxia. FUT11 interacted with PDK1 and decreased the ubiquitination of PDK1, lead to the activation of AKT/mTOR signaling pathway. FUT11 knockdown significantly increased the degradation of PDK1 under hypoxia, while treatment with MG132 can relieve the degradation of PDK1 induced by FUT11 knockdown. Overexpression of PDK1 in PC cells under hypoxia conditions reversed the suppressive impacts of FUT11 knockdown on PC cell growth and migration. In addition, HIF1α bound to the promoter of FUT11 and increased its expression, as well as co-expressed with FUT11 in PC tissues. Furthermore, overexpression of FUT11 partially rescued the suppressive effects of HIF1α knockdown on PC cell growth and migration in hypoxia condition. Conclusion Our data implicate that hypoxia-induced FUT11 contributes to proliferation and metastasis of PC by maintaining the stability of PDK1, thus mediating activation of AKT/mTOR signaling pathway, and suggest that FUT11 could be a novel and effective target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Runsang Pan
- Department of Orthopedics, Guiyang Maternal and Child Health Care Hospital, Guiyang, China
| | - Hao Wu
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiangyan Zhang
- NHC Key Laboratory of Pulmonary, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hui Chen
- NHC Key Laboratory of Pulmonary, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yingjie Nie
- The Clinical Lab Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zijiang Yu
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
40
|
Yang Y, Mao W, Wang L, Lu L, Pang Y. Circular RNA circLMF1 regulates PDGF-BB-induced proliferation and migration of human aortic smooth muscle cells by regulating the miR-125a-3p/VEGFA or FGF1 axis. Clin Hemorheol Microcirc 2021; 80:167-183. [PMID: 34092624 DOI: 10.3233/ch-211166] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atherosclerosis is a major cause of cardiovascular disease, in which vascular smooth muscle cells (VSMCs) proliferation and migration play a vital role. Circular RNAs (circRNAs) have been reported to be correlated with the VSMCs function. Therefore, this study is designed to explore the role and mechanism of circRNA lipase maturation factor 1 (circLMF1) in Human aortic VSMCs (HASMCs). The microarray was used for detecting the expression of circLMF1 in proliferative and quiescent HASMCs. Levels of circLMF1, microRNA-125a-3p (miR-125a-3p), vascular endothelial growth factor A (VEGFA), and fibroblast growth factor 1 (FGF1) were determined by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, cell cycle progression, and migration were assessed by Cell Counting Kit-8 (CCK-8), flow cytometry, wound healing, and transwell assays, respectively. Western blot assay determined proliferating cell nuclear antigen (PCNA), Cyclin D1, matrix metalloproteinase (MMP2), osteopontin (OPN), VEGFA, and FGF1 protein levels. The possible interactions between miR-125a-3p and circLMF1, and miR-125a-3p and VEGFA or FGF1 were predicted by circbank or targetscan, and then verified by a dual-luciferase reporter, RNA Immunoprecipitation (RIP), RNA pull-down assays. CircLMF1, VEGFA, and FGF1 were increased, and miR-125a-3p was decreased in platelet-derived growth factor-BB (PDGF-BB)-inducted HASMCs. Functionally, circLMF1 knockdown hindered cell viability, cell cycle progression, and migration in PDGF-BB-treated HASMCs. Mechanically, circLMF1 could regulate VEGFA or FGF1 expression through sponging miR-125a-3p. Our findings revealed that circLMF1 deficiency could inhibit cell viability, cell cycle progression, and migration of PDGF-BB stimulated atherosclerosis model partly through the miR-125a-3p/VEGFA or FGF1 axis, suggesting that targeting circLMF1 can be a feasible therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Cardiac Surgery, The Cardio-Cerebro Vascular Disease Specialist Hospital of Qinghai Province, Xining City, China
| | - Wenkai Mao
- Department of Cardiac Surgery, The Cardio-Cerebro Vascular Disease Specialist Hospital of Qinghai Province, Xining City, China
| | - Liming Wang
- Department of Cardiac Surgery, The Cardio-Cerebro Vascular Disease Specialist Hospital of Qinghai Province, Xining City, China
| | - Lin Lu
- Department of Cardiac Surgery, The Cardio-Cerebro Vascular Disease Specialist Hospital of Qinghai Province, Xining City, China
| | - Yunfeng Pang
- Department of Cardiac Surgery, The Cardio-Cerebro Vascular Disease Specialist Hospital of Qinghai Province, Xining City, China
| |
Collapse
|
41
|
Moafian Z, Maghrouni A, Soltani A, Hashemy SI. Cross-talk between non-coding RNAs and PI3K/AKT/mTOR pathway in colorectal cancer. Mol Biol Rep 2021; 48:4797-4811. [PMID: 34057685 DOI: 10.1007/s11033-021-06458-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the third commonest cancer globally, with metastasis being the reason for cancer-associated mortality. Much is still unknown biochemically about CRC, and with current treatments that are not wholly effective over time, new therapeutics are urgently needed. Emerging evidence has shown the importance of non-coding RNAs such as lncRNAs and miRNAs functions in the development and progression of CRC. However, the exact underlying mechanism of these types of RNAs in CRC is still mostly unknown. PI3K/AKT/mTOR pathway contributes to many cellular processes, and dysregulation of this pathway frequently occurs in cancers. In this review, the authors have mostly focused on the significant non-coding RNAs regulators of the PI3K/AKT/mTOR pathway and their contribution to the development or inhibition of CRC and their potential as diagnostic or therapeutic targets in CRC treatment.
Collapse
Affiliation(s)
- Zeinab Moafian
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Maghrouni
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Soltani
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Razavi ZS, Asgarpour K, Mahjoubin-Tehran M, Rasouli S, Khan H, Shahrzad MK, Hamblin MR, Mirzaei H. Angiogenesis-related non-coding RNAs and gastrointestinal cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:220-241. [PMID: 34095461 PMCID: PMC8141508 DOI: 10.1016/j.omto.2021.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) cancers are among the main reasons for cancer death globally. The deadliest types of GI cancer include colon, stomach, and liver cancers. Multiple lines of evidence have shown that angiogenesis has a key role in the growth and metastasis of all GI tumors. Abnormal angiogenesis also has a critical role in many non-malignant diseases. Therefore, angiogenesis is considered to be an important target for improved cancer treatment. Despite much research, the mechanisms governing angiogenesis are not completely understood. Recently, it has been shown that angiogenesis-related non-coding RNAs (ncRNAs) could affect the development of angiogenesis in cancer cells and tumors. The broad family of ncRNAs, which include long non-coding RNAs, microRNAs, and circular RNAs, are related to the development, promotion, and metastasis of GI cancers, especially in angiogenesis. This review discusses the role of ncRNAs in mediating angiogenesis in various types of GI cancers and looks forward to the introduction of mimetics and antagonists as possible therapeutic agents.
Collapse
Affiliation(s)
| | - Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Rasouli
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
43
|
Danac JMC, Uy AGG, Garcia RL. Exosomal microRNAs in colorectal cancer: Overcoming barriers of the metastatic cascade (Review). Int J Mol Med 2021; 47:112. [PMID: 33907829 PMCID: PMC8075282 DOI: 10.3892/ijmm.2021.4945] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
The journey of cancer cells from a primary tumor to distant sites is a multi-step process that involves cellular reprogramming, the breaking or breaching of physical barriers and the preparation of a pre-metastatic niche for colonization. The loss of adhesion between cells, cytoskeletal remodeling, the reduction in size and change in cell shape, the destruction of the extracellular matrix, and the modification of the tumor microenvironment facilitate migration and invasion into surrounding tissues. The promotion of vascular leakiness enables intra- and extravasation, while angiogenesis and immune suppression help metastasizing cells become established in the new site. Tumor-derived exosomes have long been known to harbor microRNAs (miRNAs or miRs) that help prepare secondary sites for metastasis; however, their roles in the early and intermediate steps of the metastatic cascade are only beginning to be characterized. The present review article presents a summary and discussion of the miRNAs that form part of colorectal cancer (CRC)-derived exosomal cargoes and which play distinct roles in epithelial to mesenchymal plasticity and metastatic organotropism. First, an overview of epithelial-to-mesenchymal transition (EMT), metastatic organotropism, as well as exosome biogenesis, cargo sorting and uptake by recipient cells is presented. Lastly, the potential of these exosomal miRNAs as prognostic biomarkers for metastatic CRC, and the blocking of these as a possible therapeutic intervention is discussed.
Collapse
Affiliation(s)
- Joshua Miguel C Danac
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Aileen Geobee G Uy
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Reynaldo L Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines
| |
Collapse
|
44
|
Tang Y, Zong S, Zeng H, Ruan X, Yao L, Han S, Hou F. MicroRNAs and angiogenesis: a new era for the management of colorectal cancer. Cancer Cell Int 2021; 21:221. [PMID: 33865381 PMCID: PMC8052662 DOI: 10.1186/s12935-021-01920-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA molecules containing only 20–22 nucleotides. MiRNAs play a role in gene silencing and translation suppression by targeting and binding to mRNA. Proper control of miRNA expression is very important for maintaining a normal physiological environment because miRNAs can affect most cellular pathways, including cell cycle checkpoint, cell proliferation, and apoptosis pathways, and have a wide range of target genes. With these properties, miRNAs can modulate multiple signalling pathways involved in cancer development, such as cell proliferation, apoptosis, and migration pathways. MiRNAs that activate or inhibit the molecular pathway related to tumour angiogenesis are common topics of research. Angiogenesis promotes tumorigenesis and metastasis by providing oxygen and diffusible nutrients and releasing proangiogenic factors and is one of the hallmarks of tumour progression. CRC is one of the most common tumours, and metastasis has always been a difficult issue in its treatment. Although comprehensive treatments, such as surgery, radiotherapy, chemotherapy, and targeted therapy, have prolonged the survival of CRC patients, the overall response is not optimistic. Therefore, there is an urgent need to find new therapeutic targets to improve CRC treatment. In a series of recent reports, miRNAs have been shown to bidirectionally regulate angiogenesis in colorectal cancer. Many miRNAs can directly act on VEGF or inhibit angiogenesis through other pathways (HIF-1a, PI3K/AKT, etc.), while some miRNAs, specifically many exosomal miRNAs, are capable of promoting CRC angiogenesis. Understanding the mechanism of action of miRNAs in angiogenesis is of great significance for finding new targets for the treatment of tumour angiogenesis. Deciphering the exact role of specific miRNAs in angiogenesis is a challenge due to the high complexity of their actions. Here, we describe the latest advances in the understanding of miRNAs and their corresponding targets that play a role in CRC angiogenesis and discuss possible miRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Yufei Tang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Shaoqi Zong
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.,Graduate School of Shanghai, University of Traditional Chinese Medicine, Shanghai, China
| | - Hailun Zeng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xiaofeng Ruan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Liting Yao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Susu Han
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
45
|
Indellicato R, Trinchera M. Epigenetic Regulation of Glycosylation in Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22062980. [PMID: 33804149 PMCID: PMC7999748 DOI: 10.3390/ijms22062980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
In the last few decades, the newly emerging field of epigenetic regulation of glycosylation acquired more importance because it is unraveling physiological and pathological mechanisms related to glycan functions. Glycosylation is a complex process in which proteins and lipids are modified by the attachment of monosaccharides. The main actors in this kind of modification are the glycoenzymes, which are translated from glycosylation-related genes (or glycogenes). The expression of glycogenes is regulated by transcription factors and epigenetic mechanisms (mainly DNA methylation, histone acetylation and noncoding RNAs). This review focuses only on these last ones, in relation to cancer and other diseases, such as inflammatory bowel disease and IgA1 nephropathy. In fact, it is clear that a deeper knowledge in the fine-tuning of glycogenes is essential for acquiring new insights in the glycan field, especially if this could be useful for finding novel and personalized therapeutics.
Collapse
Affiliation(s)
- Rossella Indellicato
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence:
| | - Marco Trinchera
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
46
|
Zhang N, Hu X, Du Y, Du J. The role of miRNAs in colorectal cancer progression and chemoradiotherapy. Biomed Pharmacother 2021; 134:111099. [DOI: 10.1016/j.biopha.2020.111099] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
|
47
|
Bai L, Sun W, Han Z, Tang H. CircSND1 Regulated by TNF-α Promotes the Migration and Invasion of Cervical Cancer Cells. Cancer Manag Res 2021; 13:259-275. [PMID: 33469369 PMCID: PMC7811455 DOI: 10.2147/cmar.s289032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Aim To explore the role and potential mechanism of circSND1 in cervical cancer (CC). Main Methods qRT-PCR was used to determine the expression of circSND1 in tumor necrosis factor-α (TNF-α)-treated HeLa cells. CircSND1 overexpression and knockdown were performed to indicate the functional role of circSND1 in vitro and in vivo. Luciferase assay was used to analyze promoter activity. The expression and regulation of circSND1, miR-125a-3p and FUT6 were evaluated using EGFP fluorescent reporter assay and rescue experiments. Immunofluorescence and Western blot assays were used to analyze the activation of nuclear factor-κB (NF-κB). Results In HeLa cells, TNF-α up-regulated the expression of circSND1 by activating the NF-κB signaling pathway. Overexpression of circSND1 significantly increased the migration and invasion and the epithelial–mesenchymal transition (EMT) process of CC cells, and promoted tumor metastasis in xenograft nude mouse model, whereas down-regulation of circSND1 exerted opposite effects. Furthermore, circSND1 enhanced the expression of FUT6 via sponging miR-125a-3p, and FUT6 activated NF-κB signaling pathway. Conclusion We found that circSND1 promoted the expression of FUT6 and the malignant behavior of cervical cancer through the ceRNA mechanism, and there was a TNF-α/NF-κB/circSND1/miR-125a-3p/FUT6/NF-κB positive feedback pathway between them, which suggests that circSND1 can be a promising prognostic marker and therapeutical target for cervical cancer.
Collapse
Affiliation(s)
- Lili Bai
- Tianjin Life Science Research Center, Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Wangjie Sun
- Tianjin Life Science Research Center, Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhe Han
- Tianjin Life Science Research Center, Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Hua Tang
- Tianjin Life Science Research Center, Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
48
|
Zhou J, Wang H, Hong F, Hu S, Su X, Chen J, Chu J. CircularRNA circPARP4 promotes glioblastoma progression through sponging miR-125a-5p and regulating FUT4. Am J Cancer Res 2021; 11:138-156. [PMID: 33520365 PMCID: PMC7840713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023] Open
Abstract
Circular RNA (circRNA) is a widely expressed non-coding RNA element characterized by a covalently closed continuous loop. Emerging evidence suggests important roles of circRNAs in the pathogenesis of human cancers. However, the functions and underlying mechanisms of circRNAs in glioma remain largely unclear. Previously, our studies uncovered a batch of abnormally expressed circRNAs in glioma tissue, among which circPARP4 was significantly upregulated with the top fold change. Here, we focused on the functional investigation toward circPARP4 in glioblastoma progression and looked for insight into its underlying mechanisms. The results confirmed the elevated expression of circPARP4 in glioma and found its association with glioma pathological grade. Gain- and loss-of-function strategies showed that circPARP4 could obviously promote glioma cell proliferation, migration, invasion, and epithelial-mesenchymal transition. Mechanistically, in vivo and in vitro studies demonstrated that circPARP4, as a miRNA sponge, directly interacted with miR-125a-5p, which then regulated FUT4 to exert the oncogenic effect on glioma behavior. Our findings illustrate functions of circPARP4 in modulating glioma progression through miR-125a-5p/FUT4 pathway, which provides a novel and potential target for glioma therapy.
Collapse
Affiliation(s)
- Jinxu Zhou
- Department of Neurosurgery, Wuxi Clinical School of Anhui Medical UniversityWuxi 214044, China
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of PLAWuxi 214044, China
| | - Hongxiang Wang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Military Medical UniversityShanghai 200003, China
| | - Fan Hong
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Military Medical UniversityShanghai 200003, China
| | - Shuai Hu
- Department of Neurosurgery, Wuxi Clinical School of Anhui Medical UniversityWuxi 214044, China
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of PLAWuxi 214044, China
| | - Xin Su
- Department of Neurosurgery, Wuxi Clinical School of Anhui Medical UniversityWuxi 214044, China
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of PLAWuxi 214044, China
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Military Medical UniversityShanghai 200003, China
| | - Junsheng Chu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing 100070, China
| |
Collapse
|
49
|
Zhang Z, Reiding KR, Wu J, Li Z, Xu X. Distinguishing Benign and Malignant Thyroid Nodules and Identifying Lymph Node Metastasis in Papillary Thyroid Cancer by Plasma N-Glycomics. Front Endocrinol (Lausanne) 2021; 12:692910. [PMID: 34248851 PMCID: PMC8267918 DOI: 10.3389/fendo.2021.692910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/04/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Biomarkers are needed for patient stratification between benign thyroid nodules (BTN) and thyroid cancer (TC) and identifying metastasis in TC. Though plasma N-glycome profiling has shown potential in the discovery of biomarkers and can provide new insight into the mechanisms involved, little is known about it in TC and BTN. Besides, several studies have indicated associations between abnormal glycosylation and TC. Here, we aimed to explore plasma protein N-glycome of a TC cohort with regard to their applicability to serve as biomarkers. METHODS Plasma protein N-glycomes of TC, BTN, and matched healthy controls (HC) were obtained using a robust quantitative strategy based on MALDI-TOF MS and included linkage-specific sialylation information. RESULTS Plasma N-glycans were found to differ between BTN, TC, and HC in main glycosylation features, namely complexity, galactosylation, fucosylation, and sialylation. Four altered glycan traits, which were consecutively decreased in BTN and TC, and classification models based on them showed high potential as biomarkers for discrimination between BTN and TC ("moderately accurate" to "accurate"). Additionally, strong associations were found between plasma N-glycans and lymph node metastasis in TC, which added the accuracy of predicting metastasis before surgery to the existing method. CONCLUSIONS We comprehensively evaluated the plasma N-glycomic changes in patients with TC or BTN for the first time. We determined several N-glycan biomarkers, some of them have potential in the differential diagnosis of TC, and the others can help to stratify TC patients to low or high risk of lymph node metastasis. The findings enhanced the understanding of TC.
Collapse
Affiliation(s)
- Zejian Zhang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Karli R. Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Jianqiang Wu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zepeng Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiequn Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiequn Xu,
| |
Collapse
|
50
|
Adil MS, Khulood D, Somanath PR. Targeting Akt-associated microRNAs for cancer therapeutics. Biochem Pharmacol 2020; 189:114384. [PMID: 33347867 DOI: 10.1016/j.bcp.2020.114384] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
The uncontrolled growth and spread of abnormal cells because of activating protooncogenes and/or inactivating tumor suppressor genes are the hallmarks of cancer. The PI3K/Akt signaling is one of the most frequently activated pathways in cancer cells responsible for the regulation of cell survival and proliferation in stress and hypoxic conditions during oncogenesis. Non-coding RNAs are a large family of RNAs that are not involved in protein-coding, and microRNAs (miRNAs) are a sub-set of non-coding RNAs with a single strand of 18-25 nucleotides. miRNAs are extensively involved in the post-transcriptional regulation of gene expression and play an extensive role in the regulatory mechanisms including cell differentiation, proliferation, apoptosis, and tumorigenesis. The impact of cancer on mRNA stability and translation efficiency is extensive and therefore, cancerous tissues exhibit drastic alterations in the expression of miRNAs. miRNAs can be modulated by utilizing techniques such as miRNA mimics, miRNA antagonists, or CRISPR/Cas9. In addition to their capacity as potential targets in cancer therapy, they can be used as reliable biomarkers to diagnose the disease at the earliest stage. Recent evidence indicates that microRNA-mediated gene regulation intersects with the Akt pathway, forming an Akt-microRNA regulatory network. miRNAs and Akt in this network operate together to exert their cellular tasks. In the current review, we discuss the Akt-associated miRNAs in several cancers, their molecular regulation, and how this newly emerging knowledge may contribute greatly to revolutionize cancer therapy.
Collapse
Affiliation(s)
- Mir S Adil
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Daulat Khulood
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|