1
|
Jin X, Min Q, Wang D, Wang Y, Li G, Wang Z, Guo Y, Zhou Y. FV-429 induces apoptosis by regulating nuclear translocation of PKM2 in pancreatic cancer cells. Heliyon 2024; 10:e29515. [PMID: 38638982 PMCID: PMC11024618 DOI: 10.1016/j.heliyon.2024.e29515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Of all malignancies, pancreatic ductal adenocarcinoma (PDAC), constituting 90% of pancreatic cancers, has the worst prognosis. Glycolysis is overactive in PDAC patients and is associated with poor prognosis. Drugs that inhibit glycolysis as well as induce cell death need to be identified. However, glycolysis inhibitors often fail to induce cell death. We here found that FV-429, a derivative of the natural flavonoid wogonin, can induce mitochondrial apoptosis and inhibit glycolysis in PDAC in vivo and in vitro. In vitro, FV-429 inhibited intracellular ATP content, glucose uptake, and lactate generation, consequently leading to mitochondrial dysfunction and apoptosis in PDAC cells. Furthermore, it decreased the expression of PKM2 (a specific form of pyruvate kinase) through the ERK signaling pathway and enhanced PKM2 nuclear translocation. TEPP-46, the activator of PKM2, reversed FV-429-induced glycolysis inhibition and mitochondrial apoptosis in the PDAC cells. In addition, FV-429 exhibited significant tumor suppressor activity and high safety in BxPC-3 cell xenotransplantation models. These results thus demonstrated that FV-429 decreases PKM2 expression through the ERK signaling pathway and enhances PKM2 nuclear translocation, thereby resulting in glycolysis inhibition and mitochondrial apoptosis in PDAC in vitro and in vivo, which makes FV-429 a promising candidate for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xifan Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Qi Min
- Nanjing University of Chinese Medicine, China
- Department of Oncology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, China
| | - Dechao Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Guangming Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Zhiying Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yongjian Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| |
Collapse
|
2
|
Panahi Meymandi AR, Akbari B, Soltantoyeh T, Shahosseini Z, Hosseini M, Hadjati J, Mirzaei HR. PX-478, an HIF-1α inhibitor, impairs mesoCAR T cell antitumor function in cervical cancer. Front Oncol 2024; 14:1357801. [PMID: 38425341 PMCID: PMC10903365 DOI: 10.3389/fonc.2024.1357801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Chimeric Antigen Receptor (CAR) T cell therapy has demonstrated remarkable success in treating hematological malignancies. However, its efficacy against solid tumors, including cervical cancer, remains a challenge. Hypoxia, a common feature of the tumor microenvironment, profoundly impacts CAR T cell function, emphasizing the need to explore strategies targeting hypoxia-inducible factor-1α (HIF-1α). Methods In this study, we evaluated the effects of the HIF-1α inhibitor PX-478 on mesoCAR T cell function through in-silico and in vitro experiments. We conducted comprehensive analyses of HIF-1α expression in cervical cancer patients and examined the impact of PX-478 on T cell proliferation, cytokine production, cytotoxicity, and exhaustion markers. Results Our in-silico analyses revealed high expression of HIF-1α in cervical cancer patients, correlating with poor prognosis. PX-478 effectively reduced HIF-1α levels in T and HeLa cells. While PX-478 exhibited dose-dependent inhibition of antigen-nonspecific T and mesoCAR T cell proliferation, it had minimal impact on antigen-specific mesoCAR T cell proliferation. Notably, PX-478 significantly impaired the cytotoxic function of mesoCAR T cells and induced terminally exhausted T cells. Discussion Our results underscore the significant potential and physiological relevance of the HIF-1α pathway in determining the fate and function of both T and CAR T cells. However, we recognize the imperative for further molecular investigations aimed at unraveling the intricate downstream targets associated with HIF-1α and its influence on antitumor immunity, particularly within the context of hypoxic tumors. These insights serve as a foundation for the careful development of combination therapies tailored to counter immunosuppressive pathways within hypoxic environments and fine-tune CAR T cell performance in the intricate tumor microenvironment.
Collapse
Affiliation(s)
- Ahmad Reza Panahi Meymandi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shahosseini
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Virology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mina Hosseini
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Asnaashari S, Amjad E, Sokouti B. Synergistic effects of flavonoids and paclitaxel in cancer treatment: a systematic review. Cancer Cell Int 2023; 23:211. [PMID: 37743502 PMCID: PMC10518113 DOI: 10.1186/s12935-023-03052-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/03/2023] [Indexed: 09/26/2023] Open
Abstract
Paclitaxel is a natural anticancer compound with minimal toxicity, the capacity to stabilize microtubules, and high efficiency that has remained the standard of treatment alongside platinum-based therapy as a remedy for a variety of different malignancies. In contrast, polyphenols such as flavonoids are also efficient antioxidant and anti-inflammatory and have now been shown to possess potent anticancer properties. Therefore, the synergistic effects of paclitaxel and flavonoids against cancer will be of interest. In this review, we use a Boolean query to comprehensively search the well-known Scopus database for literature research taking the advantage of paclitaxel and flavonoids simultaneously while treating various types of cancer. After retrieving and reviewing the intended investigations based on the input keywords, the anticancer mechanisms of flavonoids and paclitaxel and their synergistic effects on different targets raging from cell lines to animal models are discussed in terms of the corresponding involved signaling transduction. Most studies demonstrated that these signaling pathways will induce apoptotic / pro-apoptotic proteins, which in turn may activate several caspases leading to apoptosis. Finally, it can be concluded that the results of this review may be beneficial in serving as a theoretical foundation and reference for future studies of paclitaxel synthesis, anticancer processes, and clinical applications involving different clinical trials.
Collapse
Affiliation(s)
- Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Amjad
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Cai J, Hu Q, He Z, Chen X, Wang J, Yin X, Ma X, Zeng J. Scutellaria baicalensis Georgi and Their Natural Flavonoid Compounds in the Treatment of Ovarian Cancer: A Review. Molecules 2023; 28:5082. [PMID: 37446743 DOI: 10.3390/molecules28135082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common types of cancer in women with a high mortality rate, and the treatment of OC is prone to high recurrence rates and side effects. Scutellaria baicalensis (SB) is a herbal medicine with good anti-cancer activity, and several studies have shown that SB and its flavonoids have some anti-OC properties. This paper elucidated the common pathogenesis of OC, including cell proliferation and cell cycle regulation, cell invasion and metastasis, apoptosis and autophagy, drug resistance and angiogenesis. The mechanisms of SB and its flavonoids, wogonin, baicalein, baicalin, Oroxylin A, and scutellarein, in the treatment of OC, are revealed, such as wogonin inhibits proliferation, induces apoptosis, inhibits invasion and metastasis, and increases the cytotoxicity of the drug. Baicalein also inhibits vascular endothelial growth factor (VEGF) expression etc. Analyzing their advantages and disadvantages in treating OC provides a new perspective on the role of SB and its flavonoids in OC treatment. It serves as a resource for future OC research and development.
Collapse
Affiliation(s)
- Jiaying Cai
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhelin He
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiaoyan Chen
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Jian Wang
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiang Yin
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
5
|
Poh AR, Ernst M. Functional roles of SRC signaling in pancreatic cancer: Recent insights provide novel therapeutic opportunities. Oncogene 2023:10.1038/s41388-023-02701-x. [PMID: 37120696 DOI: 10.1038/s41388-023-02701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant disease with a 5-year survival rate of <10%. Aberrant activation or elevated expression of the tyrosine kinase c-SRC (SRC) is frequently observed in PDAC and is associated with a poor prognosis. Preclinical studies have revealed a multifaceted role for SRC activation in PDAC, including promoting chronic inflammation, tumor cell proliferation and survival, cancer cell stemness, desmoplasia, hypoxia, angiogenesis, invasion, metastasis, and drug resistance. Strategies to inhibit SRC signaling include suppressing its catalytic activity, inhibiting protein stability, or by interfering with signaling components of the SRC signaling pathway including suppressing protein interactions of SRC. In this review, we discuss the molecular and immunological mechanisms by which aberrant SRC activity promotes PDAC tumorigenesis. We also provide a comprehensive update of SRC inhibitors in the clinic, and discuss the clinical challenges associated with targeting SRC in pancreatic cancer.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| |
Collapse
|
6
|
Reimche I, Yu H, Ariantari NP, Liu Z, Merkens K, Rotfuß S, Peter K, Jungwirth U, Bauer N, Kiefer F, Neudörfl JM, Schmalz HG, Proksch P, Teusch N. Phenanthroindolizidine Alkaloids Isolated from Tylophora ovata as Potent Inhibitors of Inflammation, Spheroid Growth, and Invasion of Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms231810319. [PMID: 36142230 PMCID: PMC9499467 DOI: 10.3390/ijms231810319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC), representing the most aggressive form of breast cancer with currently no targeted therapy available, is characterized by an inflammatory and hypoxic tumor microenvironment. To date, a broad spectrum of anti-tumor activities has been reported for phenanthroindolizidine alkaloids (PAs), however, their mode of action in TNBC remains elusive. Thus, we investigated six naturally occurring PAs extracted from the plant Tylophora ovata: O-methyltylophorinidine (1) and its five derivatives tylophorinidine (2), tylophoridicine E (3), 2-demethoxytylophorine (4), tylophoridicine D (5), and anhydrodehydrotylophorinidine (6). In comparison to natural (1) and for more-in depth studies, we also utilized a sample of synthetic O-methyltylophorinidine (1s). Our results indicate a remarkably effective blockade of nuclear factor kappa B (NFκB) within 2 h for compounds (1) and (1s) (IC50 = 17.1 ± 2.0 nM and 3.3 ± 0.2 nM) that is different from its effect on cell viability within 24 h (IC50 = 13.6 ± 0.4 nM and 4.2 ± 1 nM). Furthermore, NFκB inhibition data for the additional five analogues indicate a structure–activity relationship (SAR). Mechanistically, NFκB is significantly blocked through the stabilization of its inhibitor protein kappa B alpha (IκBα) under normoxic as well as hypoxic conditions. To better mimic the TNBC microenvironment in vitro, we established a 3D co-culture by combining the human TNBC cell line MDA-MB-231 with primary murine cancer-associated fibroblasts (CAF) and type I collagen. Compound (1) demonstrates superiority against the therapeutic gold standard paclitaxel by diminishing spheroid growth by 40% at 100 nM. The anti-proliferative effect of (1s) is distinct from paclitaxel in that it arrests the cell cycle at the G0/G1 state, thereby mediating a time-dependent delay in cell cycle progression. Furthermore, (1s) inhibited invasion of TNBC monoculture spheroids into a matrigel®-based environment at 10 nM. In conclusion, PAs serve as promising agents with presumably multiple target sites to combat inflammatory and hypoxia-driven cancer, such as TNBC, with a different mode of action than the currently applied chemotherapeutic drugs.
Collapse
Affiliation(s)
- Irene Reimche
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Haiqian Yu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ni Putu Ariantari
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Udayana University, Bali 80361, Indonesia
| | - Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kay Merkens
- Department of Chemistry, University of Cologne, 50923 Cologne, Germany
| | - Stella Rotfuß
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
| | - Karin Peter
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
| | - Ute Jungwirth
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Nadine Bauer
- European Institute of Molecular Imaging, University of Münster, 48149 Münster, Germany
| | - Friedemann Kiefer
- European Institute of Molecular Imaging, University of Münster, 48149 Münster, Germany
- Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | | | | | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Nicole Teusch
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Correspondence: ; Tel.: +49-211-81-14163
| |
Collapse
|
7
|
Jin W, Zhao J, Yang E, Wang Y, Wang Q, Wu Y, Tong F, Tan Y, Zhou J, Kang C. Neuronal STAT3/HIF-1α/PTRF axis-mediated bioenergetic disturbance exacerbates cerebral ischemia-reperfusion injury via PLA2G4A. Theranostics 2022; 12:3196-3216. [PMID: 35547748 PMCID: PMC9065197 DOI: 10.7150/thno.71029] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 11/05/2022] Open
Abstract
Ischemic stroke is an acute and severe neurological disease with high mortality and disability rates worldwide. Polymerase I and transcript release factor (PTRF) plays a pivotal role in regulating cellular senescence, glucose intolerance, lipid metabolism, and mitochondrial bioenergetics, but its mechanism, characteristics, and functions in neuronal cells following the cerebral ischemia-reperfusion (I/R) injury remain to be determined. Methods: Transcription factor motif analysis, chromatin immunoprecipitation (ChIP), luciferase and co-Immunoprecipitation (co-IP) assays were performed to investigate the mechanisms of PTRF in neuronal cells after I/R injury. Lentiviral-sgRNA against PTRF gene was introduced to HT22 cells, and adeno-associated virus (AAV) encoding a human synapsin (hSyn) promoter-driven construct was transduced a short hairpin RNA (shRNA) against PTRF mRNA in primary neuronal cells and the cortex of the cerebral I/R mice for investigating the role of PTRF in neuronal damage and PLA2G4A change induced by the cerebral I/R injury. Results: Here, we reported that neuronal PTRF was remarkably increased in the cerebral penumbra after I/R injury, and HIF-1α and STAT3 regulated the I/R-dependent expression of PTRF via binding to its promoter in neuronal cells. Moreover, overexpression of neuronal PTRF enhanced the activity and stability of PLA2G4A by decreasing its proteasome-mediated degradation pathway. Subsequently, PTRF promoted reprogramming of lipid metabolism and altered mitochondrial bioenergetics, which could lead to oxidative damage, involving autophagy, lipid peroxidation, and ferroptosis via PLA2G4A in neuronal cells. Furthermore, inhibition of neuronal PTRF/PLA2G4A-axis markedly reduced the neurological deficits, cerebral infarct volumes, and mortality rates in the mice following cerebral I/R injury. Conclusion: Our results thus identify that the STAT3/HIF-1α/PTRF-axis in neurons, aggravating cerebral I/R injury by regulating the activity and stability of PLA2G4A, might be a novel therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Weili Jin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Jixing Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Eryan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Yunfei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Ye Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Fei Tong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Yanli Tan
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Junhu Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| |
Collapse
|
8
|
Banik K, Khatoon E, Harsha C, Rana V, Parama D, Thakur KK, Bishayee A, Kunnumakkara AB. Wogonin and its analogs for the prevention and treatment of cancer: A systematic review. Phytother Res 2022; 36:1854-1883. [DOI: 10.1002/ptr.7386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/18/2021] [Accepted: 01/08/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Choudhary Harsha
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Varsha Rana
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Dey Parama
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Anupam Bishayee
- College of Osteopathic medicine Lake Erie College of Osteopathic Medicine Bradenton Florida USA
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| |
Collapse
|
9
|
Wang X, Du ZW, Xu TM, Wang XJ, Li W, Gao JL, Li J, Zhu H. HIF-1α Is a Rational Target for Future Ovarian Cancer Therapies. Front Oncol 2022; 11:785111. [PMID: 35004308 PMCID: PMC8739787 DOI: 10.3389/fonc.2021.785111] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer is the eighth most commonly diagnosed cancer among women worldwide. Even with the development of novel drugs, nearly one-half of the patients with ovarian cancer die within five years of diagnosis. These situations indicate the need for novel therapeutic agents for ovarian cancer. Increasing evidence has shown that hypoxia-inducible factor-1α(HIF-1α) plays an important role in promoting malignant cell chemoresistance, tumour metastasis, angiogenesis, immunosuppression and intercellular interactions. The unique microenvironment, crosstalk and/or interaction between cells and other characteristics of ovarian cancer can influence therapeutic efficiency or promote the disease progression. Inhibition of the expression or activity of HIF-1α can directly or indirectly enhance the therapeutic responsiveness of tumour cells. Therefore, it is reasonable to consider HIF-1α as a potential therapeutic target for ovarian cancer. In this paper, we summarize the latest research on the role of HIF-1α and molecules which can inhibit HIF-1α expression directly or indirectly in ovarian cancer, and drug clinical trials about the HIF-1α inhibitors in ovarian cancer or other solid malignant tumours.
Collapse
Affiliation(s)
- Xin Wang
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Zhen-Wu Du
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China.,Research Center, The Second Hospital of Jilin University, Changchun, China
| | - Tian-Min Xu
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Xiao-Jun Wang
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Jia-Li Gao
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Jing Li
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Yun BD, Son SW, Choi SY, Kuh HJ, Oh TJ, Park JK. Anti-Cancer Activity of Phytochemicals Targeting Hypoxia-Inducible Factor-1 Alpha. Int J Mol Sci 2021; 22:ijms22189819. [PMID: 34575983 PMCID: PMC8467787 DOI: 10.3390/ijms22189819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is overexpressed in cancer, leading to a poor prognosis in patients. Diverse cellular factors are able to regulate HIF-1α expression in hypoxia and even in non-hypoxic conditions, affecting its progression and malignant characteristics by regulating the expression of the HIF-1α target genes that are involved in cell survival, angiogenesis, metabolism, therapeutic resistance, et cetera. Numerous studies have exhibited the anti-cancer effect of HIF-1α inhibition itself and the augmentation of anti-cancer treatment efficacy by interfering with HIF-1α-mediated signaling. The anti-cancer effect of plant-derived phytochemicals has been evaluated, and they have been found to possess significant therapeutic potentials against numerous cancer types. A better understanding of phytochemicals is indispensable for establishing advanced strategies for cancer therapy. This article reviews the anti-cancer effect of phytochemicals in connection with HIF-1α regulation.
Collapse
Affiliation(s)
- Ba Da Yun
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea;
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
11
|
Llorente-González C, González-Rodríguez M, Vicente-Manzanares M. Targeting cytoskeletal phosphorylation in cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:292-308. [PMID: 36046434 PMCID: PMC9400739 DOI: 10.37349/etat.2021.00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation of cytoskeletal proteins regulates the dynamics of polymerization, stability, and disassembly of the different types of cytoskeletal polymers. These control the ability of cells to migrate and divide. Mutations and alterations of the expression levels of multiple protein kinases are hallmarks of most forms of cancer. Thus, altered phosphorylation of cytoskeletal proteins is observed in most cancer cells. These alterations potentially control the ability of cancer cells to divide, invade and form distal metastasis. This review highlights the emergent role of phosphorylation in the control of the function of the different cytoskeletal polymers in cancer cells. It also addresses the potential effect of targeted inhibitors in the normalization of cytoskeletal function.
Collapse
Affiliation(s)
- Clara Llorente-González
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Marta González-Rodríguez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
12
|
Wu DP, Zhou Y, Hou LX, Zhu XX, Yi W, Yang SM, Lin TY, Huang JL, Zhang B, Yin XX. Cx43 deficiency confers EMT-mediated tamoxifen resistance to breast cancer via c-Src/PI3K/Akt pathway. Int J Biol Sci 2021; 17:2380-2398. [PMID: 34326682 PMCID: PMC8315014 DOI: 10.7150/ijbs.55453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/30/2021] [Indexed: 12/25/2022] Open
Abstract
Tamoxifen (TAM) resistance has indicated a significant challenge during endocrine therapy for hormone-sensitive breast cancer. Thus, it is significant to elucidate the molecular events endowing TAM resistance to endocrine therapy. In this study, we found that epithelial-mesenchymal transition (EMT) was an important event to confer TAM resistance, and attenuating EMT by elevating connexin (Cx) 43 expression could reverse TAM resistance. Specifically, Cx43 overexpression improved TAM sensitivity, while Cx43 depletion facilitated TAM insensitivity by modulating EMT in T47D TAM-resistant and -sensitive cells, and transplanted xenografts. Importantly, we found a novel reciprocal regulation between Cx43 and c-Src/PI3K/Akt pathway contributing to EMT and TAM resistance in breast cancer. Moreover, we identified that Cx43 deficiency was significantly correlated with poor relapse-free survival in patients undergoing TAM treatment. Therefore, Cx43 represents a prognostic marker and an attractive target for breast cancer treatments. Therapeutic strategies designed to increase or maintain Cx43 function may be beneficial to overcome TAM resistance.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| | - Yan Zhou
- Clinical Pharmacy, Jingjiang People's Hospital, 214500, Jingjiang City, Jiangsu Province, P.R. China
| | - Li-Xiang Hou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Xiao-Xiao Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Wen Yi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Si-Man Yang
- Scientific research center of traditional Chinese medicine, Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, P.R. China
| | - Tian-Yu Lin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| | - Bei Zhang
- Department of gynaecology and obstetrics, Xuzhou Central Hospital, 221009, Xuzhou City, Jiangsu Province, P.R. China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| |
Collapse
|
13
|
Hypoxia-sensing CAR T cells provide safety and efficacy in treating solid tumors. CELL REPORTS MEDICINE 2021; 2:100227. [PMID: 33948568 PMCID: PMC8080111 DOI: 10.1016/j.xcrm.2021.100227] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
Utilizing T cells expressing chimeric antigen receptors (CARs) to identify and attack solid tumors has proven challenging, in large part because of the lack of tumor-specific targets to direct CAR binding. Tumor selectivity is crucial because on-target, off-tumor activation of CAR T cells can result in potentially lethal toxicities. This study presents a stringent hypoxia-sensing CAR T cell system that achieves selective expression of a pan-ErbB-targeted CAR within a solid tumor, a microenvironment characterized by inadequate oxygen supply. Using murine xenograft models, we demonstrate that, despite widespread expression of ErbB receptors in healthy organs, the approach provides anti-tumor efficacy without off-tumor toxicity. This dynamic on/off oxygen-sensing safety switch has the potential to facilitate unlimited expansion of the CAR T cell target repertoire for treating solid malignancies. A dual oxygen-sensing switch provides stringent hypoxia-dependent regulation of a CAR HypoxiCAR T cells deliver tumor-selective CAR expression and anti-tumor efficacy HypoxiCAR T cells prevent on-target, off-tumor activation and cytokine release syndrome HypoxiCAR provides a strategy to expand the CAR repertoire for solid malignancies
Collapse
|
14
|
Hypoxia-induced up-regulation of miR-27a promotes paclitaxel resistance in ovarian cancer. Biosci Rep 2021; 40:222414. [PMID: 32190895 PMCID: PMC7109003 DOI: 10.1042/bsr20192457] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/03/2020] [Accepted: 03/14/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OC) is a malignant tumor with high mortality in women. Although cancer patients initially respond to paclitaxel chemotherapy following surgery, most patients will relapse after 12-24 months and gradually die from chemotherapy resistance. In OC, cancer cells become resistant to paclitaxel chemotherapy under hypoxic environment. The miR-27a has been identified as an oncogenic molecular in ovarian cancer, prostate cancer, liver cancer etc. In addition, the miR-27a is involved in hypoxia-induced chemoresistance in various cancers. However, the role of miR-27a in hypoxia-induced OC resistance remains unclear. The aim of the present study was to investigate the regulatory mechanism of miR-27a in hypoxia-induced OC resistance. The expression of HIF-1α induced Hypoxia overtly up-regulated. At the same time, hypoxia increased viability of Skov3 cells and decreased cell apoptosis when treated with paclitaxel. The expression of the miR-27a was obviously up-regulated under hypoxia and involved in hypoxia-induced paclitaxel resistance. Follow-up experiments portray that miR-27a improved paclitaxel resistance by restraining the expression of APAF1 in OC. Finally, we further elucidated the important regulatory role of the miR-27a-APAF1 axis in OC through in vivo experiments. According to our knowledge, we first reported the regulation of miR-27a in hypoxia-induced chemoresistance in OC, providing a possible target for chemoresistance treatment of OC.
Collapse
|
15
|
FV-429 induces autophagy blockage and lysosome-dependent cell death of T-cell malignancies via lysosomal dysregulation. Cell Death Dis 2021; 12:80. [PMID: 33441536 PMCID: PMC7806986 DOI: 10.1038/s41419-021-03394-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
It is widely accepted that lysosomes are essential for cell homeostasis, and autophagy plays an important role in tumor development. Here, we found FV-429, a synthetic flavonoid compound, inhibited autophagy flux, promoted autophagosomes accumulation, and inhibited lysosomal degradation in T-cell malignancies. These effects were likely to be achieved by lysosomal dysregulation. The destructive effects of FV-429 on lysosomes resulted in blockage of lysosome-associated membrane fusion, lysosomal membrane permeabilization (LMP), and cathepsin-mediated caspase-independent cell death (CICD). Moreover, we initially investigated the effects of autophagy inhibition by FV-429 on the therapeutic efficacy of chemotherapy and found that FV-429 sensitized cancer cells to chemotherapy agents. Our findings suggest that FV-429 could be a potential novel autophagy inhibitor with notable antitumor efficacy as a single agent.
Collapse
|
16
|
Hypoxia-Mediated Decrease of Ovarian Cancer Cells Reaction to Treatment: Significance for Chemo- and Immunotherapies. Int J Mol Sci 2020; 21:ijms21249492. [PMID: 33327450 PMCID: PMC7764929 DOI: 10.3390/ijms21249492] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Hypoxia, a common factor ruling the microenvironment composition, leads to tumor progression. In this hypoxic context, cytokines and cells cooperate to favor cancer development and metastasis. Tumor hypoxia is heterogeneously distributed. Oxygen gradients depend on the vicinity, functionality of blood vessels, and oxygen ability to diffuse into surrounding tissues. Thus, the vasculature state modulates the microenvironment of the tumor cells. Cells sense and react to small variations in oxygen tension, which explains the lack of tumor cells’ unicity in their reaction to drugs. Ovarian cancers are highly hypoxia-dependent, ascites worsening the access to oxygen, in their reactions to both chemotherapy and new immunotherapy. Consequently, hypoxia affects the results of immunotherapy, and is thus, crucial for the design of treatments. Controlling key immunosuppressive factors and receptors, as well as immune checkpoint molecule expression on tumor, immune and stromal cells, hypoxia induces immunosuppression. Consequently, new approaches to alleviate hypoxia in the tumor microenvironment bring promises for ovarian cancer immunotherapeutic strategies. This review focuses on the effects of hypoxia in the microenvironment and its consequences on tumor treatments. This opens the way to innovative combined treatments to the advantage of immunotherapy outcome in ovarian cancers.
Collapse
|
17
|
Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of Taxane Resistance. Cancers (Basel) 2020; 12:E3323. [PMID: 33182737 PMCID: PMC7697134 DOI: 10.3390/cancers12113323] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.
Collapse
Affiliation(s)
- Sara M. Maloney
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Camden A. Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Lorena V. Morejon-Lasso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Jenifer R. Prosperi
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| |
Collapse
|
18
|
Chen X, Wei L, Yang L, Guo W, Guo Q, Zhou Y. Glycolysis inhibition and apoptosis induction in human prostate cancer cells by FV-429-mediated regulation of AR-AKT-HK2 signaling network. Food Chem Toxicol 2020; 143:111517. [PMID: 32619556 DOI: 10.1016/j.fct.2020.111517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/22/2023]
Abstract
Prostate cancer (PCa) depends on androgen receptor (AR) signaling to regulate cell metabolism, including glycolysis, and thereby promotes tumor growth. Glycolysis is overactive in PCa and associated with poor prognosis, but the therapeutic efficacy of glycolysis inhibitors has thus far been limited by their inability to induce cell death. FV-429, a flavonoid derivative of Wogonin, is a glycolysis inhibitor that has shown anti-cancer promise. In this study, we used FV-429 as an anti-PCa agent and investigated its mechanisms of action. In vitro, both the glycolytic ability and the viability of PCa cells were inhibited by FV-429. We found that FV-429 could induce mitochondrial dysfunction and apoptosis, with AKT-HK2 signaling pathway playing a key role. In addition, FV-429 had a pro-apoptotic effect on human prostate cancer cells that relied on the inhibition of AR expression and activity. In vivo, FV-429 exerted significant tumor-repressing activity with high safety in the xenograft model using LNCaP cells. In summary, we demonstrated that FV-429 induced glycolysis inhibition and apoptosis in human prostate cancer cells by downregulating the AR-AKT-HK2 signaling network, making FV-429 a promising candidate as one therapeutic agent for advanced PCa.
Collapse
Affiliation(s)
- Xian Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Liliang Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Wenjing Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
19
|
Xiao W, Wang S, Zhang R, Sohrabi A, Yu Q, Liu S, Ehsanipour A, Liang J, Bierman RD, Nathanson DA, Seidlits SK. Bioengineered scaffolds for 3D culture demonstrate extracellular matrix-mediated mechanisms of chemotherapy resistance in glioblastoma. Matrix Biol 2020; 85-86:128-146. [PMID: 31028838 PMCID: PMC6813884 DOI: 10.1016/j.matbio.2019.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
Originating in the brain, glioblastoma (GBM) is a highly lethal and virtually incurable cancer, in large part because it readily develops resistance to treatments. While numerous studies have investigated mechanisms enabling GBM cells to evade chemotherapy-induced apoptosis, few have addressed how their surrounding extracellular matrix (ECM) acts to promote their survival. Here, we employed a biomaterial-based, 3D culture platform to investigate systematically how interactions between patient-derived GBM cells and the brain ECM promote resistance to alkylating chemotherapies - including temozolomide, which is used routinely in clinical practice. Scaffolds for 3D culture were fabricated from hyaluronic acid (HA) - a major structural and bioactive component of the brain ECM - and functionalized with the RGD (arginine-glycine-aspartic acid) tripeptide to provide sites for integrin engagement. Data demonstrate that cooperative engagement of CD44, through HA, and integrin αV, through RGD, facilitates resistance to alkylating chemotherapies through co-activation of Src, which inhibited downstream expression of BCL-2 family pro-apoptotic factors. In sum, a bioengineered, 3D culture platform was used to gain new mechanistic insights into how ECM in the brain tumor microenvironment promotes resistance to chemotherapy and suggests potential avenues for the development of novel, matrix-targeted combination therapies designed to suppress chemotherapy resistance in GBM.
Collapse
Affiliation(s)
- Weikun Xiao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Shanshan Wang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rongyu Zhang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alireza Sohrabi
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Qi Yu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sihan Liu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arshia Ehsanipour
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jesse Liang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca D Bierman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - David A Nathanson
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie K Seidlits
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA; Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
20
|
Wu CJ, Sundararajan V, Sheu BC, Huang RYJ, Wei LH. Activation of STAT3 and STAT5 Signaling in Epithelial Ovarian Cancer Progression: Mechanism and Therapeutic Opportunity. Cancers (Basel) 2019; 12:cancers12010024. [PMID: 31861720 PMCID: PMC7017004 DOI: 10.3390/cancers12010024] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal of all gynecologic malignancies. Despite advances in surgical and chemotherapeutic options, most patients with advanced EOC have a relapse within three years of diagnosis. Unfortunately, recurrent disease is generally not curable. Recent advances in maintenance therapy with anti-angiogenic agents or Poly ADP-ribose polymerase (PARP) inhibitors provided a substantial benefit concerning progression-free survival among certain women with advanced EOC. However, effective treatment options remain limited in most recurrent cases. Therefore, validated novel molecular therapeutic targets remain urgently needed in the management of EOC. Signal transducer and activator of transcription-3 (STAT3) and STAT5 are aberrantly activated through tyrosine phosphorylation in a wide variety of cancer types, including EOC. Extrinsic tumor microenvironmental factors in EOC, such as inflammatory cytokines, growth factors, hormones, and oxidative stress, can activate STAT3 and STAT5 through different mechanisms. Persistently activated STAT3 and, to some extent, STAT5 increase EOC tumor cell proliferation, survival, self-renewal, angiogenesis, metastasis, and chemoresistance while suppressing anti-tumor immunity. By doing so, the STAT3 and STAT5 activation in EOC controls properties of both tumor cells and their microenvironment, driving multiple distinct functions during EOC progression. Clinically, increasing evidence indicates that the activation of the STAT3/STAT5 pathway has significant correlation with reduced survival of recurrent EOC, suggesting the importance of STAT3/STAT5 as potential therapeutic targets for cancer therapy. This review summarizes the distinct role of STAT3 and STAT5 activities in the progression of EOC and discusses the emerging therapies specifically targeting STAT3 and STAT5 signaling in this disease setting.
Collapse
Affiliation(s)
- Chin-Jui Wu
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (C.-J.W.); (B.-C.S.)
| | - Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore 117599, Singapore;
| | - Bor-Ching Sheu
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (C.-J.W.); (B.-C.S.)
| | - Ruby Yun-Ju Huang
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore 119077, Singapore;
- School of Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Lin-Hung Wei
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (C.-J.W.); (B.-C.S.)
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 71570); Fax: +886-2-2311-4965
| |
Collapse
|
21
|
Marx S, Van Gysel M, Breuer A, Dal Maso T, Michiels C, Wouters J, Le Calvé B. Potentialization of anticancer agents by identification of new chemosensitizers active under hypoxia. Biochem Pharmacol 2019; 162:224-236. [DOI: 10.1016/j.bcp.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022]
|