1
|
Jia G, Liu J, Hou X, Jiang Y, Li X. Biological function and small molecule inhibitors of histone deacetylase 11. Eur J Med Chem 2024; 276:116634. [PMID: 38972077 DOI: 10.1016/j.ejmech.2024.116634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
HDAC11, as a rising star in the histone deacetylase (HDAC) family, has attracted widespread interest in the biomedical field in recent years specially owing to its high defatty-acylase activity compared its innate deacetylase activity. Numerous studies have provided evidence indicating the crucial involvement of HDAC11 in cancers, immune responses, and metabolic processes. Several potent and selective HDAC11 inhibitors have been discovered and identified, which is crucial for exploring the function of HDAC11 and its potential therapeutic applications. Herein, we present a critical overview of the current advances in the biological function of HDAC11 and its inhibitors. We initially discuss the physiological functions of HDAC11 and its pathological roles in relevant diseases. Subsequently, our main focus centers on the design strategy and development process of HDAC11 inhibitors. Additionally, we address significant challenges and outline future directions in this field. This perspective may provide guidance for the further development of HDAC11 inhibitors and their prospects in disease treatment.
Collapse
Affiliation(s)
- Geng Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Jinyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xinlu Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Baselious F, Hilscher S, Hagemann S, Tripathee S, Robaa D, Barinka C, Hüttelmaier S, Schutkowski M, Sippl W. Utilization of an optimized AlphaFold protein model for structure-based design of a selective HDAC11 inhibitor with anti-neuroblastoma activity. Arch Pharm (Weinheim) 2024; 357:e2400486. [PMID: 38996352 DOI: 10.1002/ardp.202400486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
AlphaFold is an artificial intelligence approach for predicting the three-dimensional (3D) structures of proteins with atomic accuracy. One challenge that limits the use of AlphaFold models for drug discovery is the correct prediction of folding in the absence of ligands and cofactors, which compromises their direct use. We have previously described the optimization and use of the histone deacetylase 11 (HDAC11) AlphaFold model for the docking of selective inhibitors such as FT895 and SIS17. Based on the predicted binding mode of FT895 in the optimized HDAC11 AlphaFold model, a new scaffold for HDAC11 inhibitors was designed, and the resulting compounds were tested in vitro against various HDAC isoforms. Compound 5a proved to be the most active compound with an IC50 of 365 nM and was able to selectively inhibit HDAC11. Furthermore, docking of 5a showed a binding mode comparable to FT895 but could not adopt any reasonable poses in other HDAC isoforms. We further supported the docking results with molecular dynamics simulations that confirmed the predicted binding mode. 5a also showed promising activity with an EC50 of 3.6 µM on neuroblastoma cells.
Collapse
Affiliation(s)
- Fady Baselious
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Sebastian Hilscher
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Sven Hagemann
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sunita Tripathee
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Mike Schutkowski
- Charles Tanford Protein Center, Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
3
|
Chen J, Li Q. Emerging role of HDAC11 in skeletal muscle biology. Front Cell Dev Biol 2024; 12:1368171. [PMID: 38859964 PMCID: PMC11163118 DOI: 10.3389/fcell.2024.1368171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
HDAC11 is an epigenetic repressor of gene transcription, acting through its deacetylase activity to remove functional acetyl groups from the lysine residues of histones at genomic loci. It has been implicated in the regulation of different immune responses, metabolic activities, as well as cell cycle progression. Recent studies have also shed lights on the impact of HDAC11 on myogenic differentiation and muscle development, indicating that HDAC11 is important for histone deacetylation at the promoters to inhibit transcription of cell cycle related genes, thereby permitting myogenic activation at the onset of myoblast differentiation. Interestingly, the upstream networks of HDAC11 target genes are mainly associated with cell cycle regulators and the acetylation of histones at the HDAC11 target promoters appears to be residue specific. As such, selective inhibition, or activation of HDAC11 presents a potential therapeutic approach for targeting distinct epigenetic pathways in clinical applications.
Collapse
Affiliation(s)
- Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiao Li
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Jin W, Zhang Y, Zhao Z, Gao M. Developing targeted therapies for neuroblastoma by dissecting the effects of metabolic reprogramming on tumor microenvironments and progression. Theranostics 2024; 14:3439-3469. [PMID: 38948053 PMCID: PMC11209723 DOI: 10.7150/thno.93962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/18/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Synergic reprogramming of metabolic dominates neuroblastoma (NB) progression. It is of great clinical implications to develop an individualized risk prognostication approach with stratification-guided therapeutic options for NB based on elucidating molecular mechanisms of metabolic reprogramming. Methods: With a machine learning-based multi-step program, the synergic mechanisms of metabolic reprogramming-driven malignant progression of NB were elucidated at single-cell and metabolite flux dimensions. Subsequently, a promising metabolic reprogramming-associated prognostic signature (MPS) and individualized therapeutic approaches based on MPS-stratification were developed and further validated independently using pre-clinical models. Results: MPS-identified MPS-I NB showed significantly higher activity of metabolic reprogramming than MPS-II counterparts. MPS demonstrated improved accuracy compared to current clinical characteristics [AUC: 0.915 vs. 0.657 (MYCN), 0.713 (INSS-stage), and 0.808 (INRG-stratification)] in predicting prognosis. AZD7762 and etoposide were identified as potent therapeutics against MPS-I and II NB, respectively. Subsequent biological tests revealed AZD7762 substantially inhibited growth, migration, and invasion of MPS-I NB cells, more effectively than that of MPS-II cells. Conversely, etoposide had better therapeutic effects on MPS-II NB cells. More encouragingly, AZD7762 and etoposide significantly inhibited in-vivo subcutaneous tumorigenesis, proliferation, and pulmonary metastasis in MPS-I and MPS-II samples, respectively; thereby prolonging survival of tumor-bearing mice. Mechanistically, AZD7762 and etoposide-induced apoptosis of the MPS-I and MPS-II cells, respectively, through mitochondria-dependent pathways; and MPS-I NB resisted etoposide-induced apoptosis by addiction of glutamate metabolism and acetyl coenzyme A. MPS-I NB progression was fueled by multiple metabolic reprogramming-driven factors including multidrug resistance, immunosuppressive and tumor-promoting inflammatory microenvironments. Immunologically, MPS-I NB suppressed immune cells via MIF and THBS signaling pathways. Metabolically, the malignant proliferation of MPS-I NB cells was remarkably supported by reprogrammed glutamate metabolism, tricarboxylic acid cycle, urea cycle, etc. Furthermore, MPS-I NB cells manifested a distinct tumor-promoting developmental lineage and self-communication patterns, as evidenced by enhanced oncogenic signaling pathways activated with development and self-communications. Conclusions: This study provides deep insights into the molecular mechanisms underlying metabolic reprogramming-mediated malignant progression of NB. It also sheds light on developing targeted medications guided by the novel precise risk prognostication approaches, which could contribute to a significantly improved therapeutic strategy for NB.
Collapse
Affiliation(s)
- Wenyi Jin
- Department of Orthopedics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China, 325041
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, China, 430060
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China, 999077
| | - Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, China, 430060
| | - Zhijie Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, China, 200011
| | - Mingyong Gao
- Department of Orthopedics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China, 325041
| |
Collapse
|
5
|
Gerges A, Canning U. Neuroblastoma and its Target Therapies: A Medicinal Chemistry Review. ChemMedChem 2024; 19:e202300535. [PMID: 38340043 DOI: 10.1002/cmdc.202300535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Neuroblastoma (NB) is a childhood malignant tumour belonging to a group of embryonic tumours originating from progenitor cells of the sympathoadrenal lineage. The heterogeneity of NB is reflected in the survival rates of those with low and intermediate risk diseases who have survival rates ranging from 85 to 90 %. However, for those identified with high-risk Stage 4 NB, the treatment options are much more limited. For this group, current treatment consists of immunotherapy (monoclonal antibodies) in combination with anti-cancer drugs and has a 40 to 50 % survival rate. The purpose of this review is to summarise NB research from a medicinal chemistry perspective and to highlight advances in targeted drug therapy in the field. The review examines the medicinal chemistry of a number of drugs tested in research, some of which are currently under clinical trial. It concludes by proposing that future medicinal chemistry research into NB should consider other possible target therapies and adopt a multi-target drug approach rather than a one-drug-one-target approach for improved efficacy and less drug-drug interaction for the treatment of NB Stage 4 (NBS4) patients.
Collapse
Affiliation(s)
- A Gerges
- Bioscience Department, London Metropolitan University, 166-220 Holloway Road, London, N7 8DB, England, United Kingdom
| | - U Canning
- Bioscience Department, London Metropolitan University, 166-220 Holloway Road, London, N7 8DB, England, United Kingdom
| |
Collapse
|
6
|
Karati D, Mukherjee S, Roy S. Emerging therapeutic strategies in cancer therapy by HDAC inhibition as the chemotherapeutic potent and epigenetic regulator. Med Oncol 2024; 41:84. [PMID: 38438564 DOI: 10.1007/s12032-024-02303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/16/2024] [Indexed: 03/06/2024]
Abstract
In developing new cancer medications, attention has been focused on novel epigenetic medicines called histone deacetylase (HDAC) inhibitors. Our understanding of cancer behavior is being advanced by research on epigenetics, which also supplies new targets for improving the effectiveness of cancer therapy. Most recently published patents emphasize HDAC selective drugs and multitarget HDAC inhibitors. Though significant progress has been made in emerging HDAC selective antagonists, it is urgently necessary to find new HDAC blockers with novel zinc-binding analogues to avoid the undesirable pharmacological characteristics of hydroxamic acid. HDAC antagonists have lately been explored as a novel approach to treating various diseases, including cancer. The complicated terrain of HDAC inhibitor development is summarized in this article, starting with a discussion of the many HDAC isotypes and their involvement in cancer biology, followed by a discussion of the mechanisms of action of HDAC inhibitors, their current level of development, effect of miRNA, and their combination with immunotherapeutic.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
7
|
Baselious F, Hilscher S, Robaa D, Barinka C, Schutkowski M, Sippl W. Comparative Structure-Based Virtual Screening Utilizing Optimized AlphaFold Model Identifies Selective HDAC11 Inhibitor. Int J Mol Sci 2024; 25:1358. [PMID: 38279359 PMCID: PMC10816272 DOI: 10.3390/ijms25021358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
HDAC11 is a class IV histone deacylase with no crystal structure reported so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms, which makes conventional homology modeling less reliable. AlphaFold is a machine learning approach that can predict the 3D structure of proteins with high accuracy even in absence of similar structures. However, the fact that AlphaFold models are predicted in the absence of small molecules and ions/cofactors complicates their utilization for drug design. Previously, we optimized an HDAC11 AlphaFold model by adding the catalytic zinc ion and minimization in the presence of reported HDAC11 inhibitors. In the current study, we implement a comparative structure-based virtual screening approach utilizing the previously optimized HDAC11 AlphaFold model to identify novel and selective HDAC11 inhibitors. The stepwise virtual screening approach was successful in identifying a hit that was subsequently tested using an in vitro enzymatic assay. The hit compound showed an IC50 value of 3.5 µM for HDAC11 and could selectively inhibit HDAC11 over other HDAC subtypes at 10 µM concentration. In addition, we carried out molecular dynamics simulations to further confirm the binding hypothesis obtained by the docking study. These results reinforce the previously presented AlphaFold optimization approach and confirm the applicability of AlphaFold models in the search for novel inhibitors for drug discovery.
Collapse
Affiliation(s)
- Fady Baselious
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.B.); (S.H.); (D.R.)
| | - Sebastian Hilscher
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.B.); (S.H.); (D.R.)
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.B.); (S.H.); (D.R.)
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Czech Republic;
| | - Mike Schutkowski
- Charles Tanford Protein Center, Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.B.); (S.H.); (D.R.)
| |
Collapse
|
8
|
Baselious F, Robaa D, Sippl W. Utilization of AlphaFold models for drug discovery: Feasibility and challenges. Histone deacetylase 11 as a case study. Comput Biol Med 2023; 167:107700. [PMID: 37972533 DOI: 10.1016/j.compbiomed.2023.107700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Histone deacetylase 11 (HDAC11), an enzyme that cleaves acyl groups from acylated lysine residues, is the sole member of class IV of HDAC family with no reported crystal structure so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms which complicates the conventional template-based homology modeling. AlphaFold is a neural network machine learning approach for predicting the 3D structures of proteins with atomic accuracy even in absence of similar structures. However, the structures predicted by AlphaFold are missing small molecules as ligands and cofactors. In our study, we first optimized the HDAC11 AlphaFold model by adding the catalytic zinc ion followed by assessment of the usability of the model by docking of the selective inhibitor FT895. Minimization of the optimized model in presence of transplanted inhibitors, which have been described as HDAC11 inhibitors, was performed. Four complexes were generated and proved to be stable using three replicas of 50 ns MD simulations and were successfully utilized for docking of the selective inhibitors FT895, MIR002 and SIS17. For SIS17, The most reasonable pose was selected based on structural comparison between HDAC6, HDAC8 and the HDAC11 optimized AlphaFold model. The manually optimized HDAC11 model is thus able to explain the binding behavior of known HDAC11 inhibitors and can be used for further structure-based optimization.
Collapse
Affiliation(s)
- Fady Baselious
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
9
|
Zhou Z, Zhong L, Chu X, Wan P, Dan W, Shao X, Chen S, Zhang Z, Lu Y, Liu B. HDAC11 mediates the ubiquitin-dependent degradation of p53 and inhibits the anti-leukemia effect of PD0166285. Med Oncol 2023; 40:325. [PMID: 37805625 DOI: 10.1007/s12032-023-02196-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/12/2023] [Indexed: 10/09/2023]
Abstract
Cytarabine-resistant acute myeloid leukemia (AML) is a common phenomenon, necessitating the search for new chemotherapeutics. WEE1 participates in cell cycle checkpoint signaling and inhibitors targeting WEE1 (WEE1i) constitute a potential novel strategy for AML treatment. HDAC (histone deacetylase) inhibitors have been shown to enhance the anti-tumor effects of WEE1i but molecular mechanisms of HDAC remain poorly characterized. In this study, the WEE1 inhibitor PD0166285 showed a relatively good anti-leukemia effect. Notably, PD0166285 can arise the expression of HDAC11 which was negatively correlated with survival of AML patients. Moreover, HDAC11 can reduced the anti-tumor effect of PD0166285 through an effect on p53 stability and the changes in phosphorylation levels of MAPK pathways. Overall, the cell cycle inhibitor, PD0166285, is a potential chemotherapeutic drug for AML. These fundings contribute to a functional understanding of HDAC11 in AML.
Collapse
Affiliation(s)
- Ziwei Zhou
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xuan Chu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Peng Wan
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Wenran Dan
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xin Shao
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Shuyu Chen
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Zhonghui Zhang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Yang Lu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China.
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
10
|
Zhao H, Zhang XM, Xiao S, Wu ZR, Shi YJ, Xie MJ. HDAC11 is related to breast cancer prognosis and inhibits invasion and proliferation of breast cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2023; 16:172-183. [PMID: 37559686 PMCID: PMC10408431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/09/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVE Histone deacetylases (HDACs) not only regulate histone acetylation but also participate in many pathophysiologic processes, especially the development of cancer, including breast cancer. However, whether Histone deacetylase 11 can influence breast cancer is still unknown. This study investigated the relationship between HDAC11 expression in breast cancers and clinicopathologic parameters, and used small interference RNA (siRNA) to determine the biological behavioural changes after knockdown of HDAC11. METHODS Immunohistochemical (IHC) staining was employed to detect the expression of HDAC11 in a tissue microarray (TMA) of 145 patients with invasive ductal breast carcinoma. Transwell and wound healing assays were employed to analyze cell invasion and migration. The proliferation ability of cells was determined by Cell Counting Kit (CCK8). RESULTS The results show that the expression of HDAC11 was positively correlated with the overall survival (OS) of breast cancer patients. Specific HDAC11 knockdown enhanced MDA-MB-231 cell proliferation, migration, and invasion. CONCLUSION In conclusion, this study found that HDAC11 expression is positively correlated with the overall survival rate of patients. HDAC11 can inhibit the invasion and proliferation of breast cancer cells to a certain extent and can be used as a good prognosis marker.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Thyroid Breast Surgery, Zigong Fourth People’s Hospital, Southwestern Medical UniversityZigong 643000, Sichuan, P. R. China
| | - Xu-Ming Zhang
- Department of Oncology, Bazhong Central HospitalBazhong 636000, Sichuan, P. R. China
| | - Sheng Xiao
- Department of Breast Surgery, The First People’s Hospital of YibinYibin 644000, Sichuan, P. R. China
| | - Zhen-Ru Wu
- Laboratory of Pathology, West China Hospital of Sichuan UniversityChengdu 610000, Sichuan, P. R. China
| | - Yu-Jun Shi
- Laboratory of Pathology, West China Hospital of Sichuan UniversityChengdu 610000, Sichuan, P. R. China
| | - Ming-Jun Xie
- School of Clinical Medicine, Southwest Medical UniversityLuzhou 646000, Sichuan, P. R. China
| |
Collapse
|
11
|
Sriramareddy SN, Faião-Flores F, Emmons MF, Saha B, Chellappan S, Wyatt C, Smalley I, Licht JD, Durante MA, Harbour JW, Smalley KS. HDAC11 activity contributes to MEK inhibitor escape in uveal melanoma. Cancer Gene Ther 2022; 29:1840-1846. [PMID: 35332245 PMCID: PMC9508287 DOI: 10.1038/s41417-022-00452-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 01/25/2023]
Abstract
We previously demonstrated that pan-HDAC inhibitors could limit escape from MEK inhibitor (MEKi) therapy in uveal melanoma (UM) through suppression of AKT and YAP/TAZ signaling. Here, we focused on the role of specific HDACs in therapy adaptation. Class 2 UM displayed higher expression of HDACs 1, 2, and 3 than Class 1, whereas HDACs 6, 8, and 11 were uniformly expressed. Treatment of UM cells with MEKi led to modulation of multiple HDACs, with the strongest increases observed in HDAC11. RNA-seq analysis showed MEKi to decrease the expression of multiple HDAC11 target genes. Silencing of HDAC11 significantly reduced protein deacetylation, enhanced the apoptotic response to MEKi and reduced growth in long-term colony formation assays across multiple UM cell lines. Knockdown of HDAC11 led to decreased expression of TAZ in some UM cell lines, accompanied by decreased YAP/TAZ transcriptional activity and reduced expression of multiple YAP/TAZ target genes. Further studies showed this decrease in TAZ expression to be associated with increased LKB1 activation and modulation of glycolysis. In an in vivo model of uveal melanoma, silencing of HDAC11 limited the escape to MEKi therapy, an effect associated with reduced levels of Ki67 staining and increased cleaved caspase-3. We have demonstrated a novel role for adaptive HDAC11 activity in UM cells, that in some cases modulates YAP/TAZ signaling leading to MEKi escape.
Collapse
Affiliation(s)
- Sathya Neelature Sriramareddy
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Fernanda Faião-Flores
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Michael F. Emmons
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Biswarup Saha
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Srikumar Chellappan
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Clayton Wyatt
- Department of Cancer Physiology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Inna Smalley
- Department of Cancer Physiology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | | | | | | | - Keiran S.M. Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA.,To whom correspondence should be addressed, Tel: 813-745-8725, Fax: 813-449-8260,
| |
Collapse
|
12
|
Wu H, Yin X, Zhao X, Wu Z, Xiao Y, Di Q, Sun P, Tang H, Quan J, Chen W. HDAC11 negatively regulates antifungal immunity by inhibiting Nos2 expression via binding with transcriptional repressor STAT3. Redox Biol 2022; 56:102461. [PMID: 36087429 PMCID: PMC9465110 DOI: 10.1016/j.redox.2022.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Han Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiaofan Yin
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Zherui Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yue Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qianqian Di
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Ping Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Haimei Tang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jiazheng Quan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Weilin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
13
|
Lu D, Ma Z, Huang D, Zhang J, Li J, Zhi P, Zhang L, Feng Y, Ge X, Zhai J, Jiang M, Zhou X, Simone CB, Neal JW, Patel SR, Yan X, Hu Y, Wang J. Clinicopathological characteristics and prognostic significance of HDAC11 protein expression in non-small cell lung cancer: a retrospective study. Transl Lung Cancer Res 2022; 11:1119-1131. [PMID: 35832445 PMCID: PMC9271448 DOI: 10.21037/tlcr-22-403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 12/09/2022]
Abstract
Background Although the prognosis of non-small cell lung cancer (NSCLC) can be assessed based on pathological type, disease stage and inflammatory indicators, the prognostic scoring model of NSCLC still needs to improve. HDAC11 is associated with poor prognosis of partial tumors, but its prognostic relationship with NSCLC is poorly understood. In this study, the role of HDAC11 in NSCLC was studied to evaluate relationship with disease prognosis and potential therapeutic target. Methods The clinicopathological and paracancerous tissues of patients with NSCLC primarily diagnosed in Tangdu Hospital from 2009 to 2013 were collected. Follow-up of patients were made every three months and the last follow-up period was December 2018. The expression of HDAC11 was assessed by immunohistochemistry (IHC). Then, weighted gene co-expression network analysis (WGCNA) was used to analyze the relationship between HDAC11 expression and the prognosis of lung adenocarcinoma (LUAD) patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Kaplan-Meier plotter database was used to verify the connection between hub genes and tumor stage and prognosis. We accessed the relationship between HDAC11 expression and clinicopathological features, and impact on the prognosis. Results The study assessed 326 patients with NSCLC. Compared with adjacent tissues, HDAC11 expression was upregulated (HR =1.503, 95% CI: 1.172 to 1.927, P=0.001). Kaplan-Meier survival analyses showed that HDAC11 expression was closely related to OS of NSCLC patients (P=0.0011). Univariate and multivariate analyses showed that the independent risk factors of OS were clinical stage, HDAC11 expression, and HDAC11 differentiation (all P≤0.001). HDAC11 was significantly associated with prognosis in LUAD. A total of 1,174 differential genes and WGCNA were obtained to construct a co-expression network in LUAD. The GO and KEGG pathway enrichment analyses showed the relevance with staphylococcus aureus infection, NOD-like receptor signaling pathway, and others. The results of LUAD survival analysis showed that HDAC11-related genes NKX2-5 and FABP7 were significantly associated with LUAD prognosis. Conclusions The high expression of HDAC11 is related to the poor prognosis of LUAD, and it is expected to become a therapeutic target and prognostic evaluation therapy for LUAD in the future. However, the relevant results need to be further studied and verified.
Collapse
Affiliation(s)
- Di Lu
- Medical School of Chinese PLA, Beijing, China.,Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Di Huang
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jundong Zhang
- Medical School of Chinese PLA, Beijing, China.,Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jinfeng Li
- Institute of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Zhi
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, Beijing, China.,Shanxi Medical University, Taiyuan, China
| | - Lizhong Zhang
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, Beijing, China.,Shanxi Medical University, Taiyuan, China
| | - Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiangwei Ge
- Medical School of Chinese PLA, Beijing, China.,Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jinzhao Zhai
- Medical School of Chinese PLA, Beijing, China.,Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Zhou
- Medical School of Chinese PLA, Beijing, China.,Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Charles B Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Radiation Oncology, New York Proton Center, New York, NY, USA
| | - Joel W Neal
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Shruti Rajesh Patel
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Hu
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jinliang Wang
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
HDACs and the epigenetic plasticity of cancer cells: Target the complexity. Pharmacol Ther 2022; 238:108190. [PMID: 35430294 DOI: 10.1016/j.pharmthera.2022.108190] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
Cancer cells must adapt to the hostile conditions of the microenvironment in terms of nutrition, space, and immune system attack. Mutations of DNA are the drivers of the tumorigenic process, but mutations must be able to hijack cellular functions to sustain the spread of mutant genomes. Transcriptional control is a key function in this context and is controlled by the rearrangement of the epigenome. Unlike genomic mutations, the epigenome of cancer cells can in principle be reversed. The discovery of the first epigenetic drugs triggered a contaminating enthusiasm. Unfortunately, the complexity of the epigenetic machinery has frustrated this enthusiasm. To develop efficient patient-oriented epigenetic therapies, we need to better understand the nature of this complexity. In this review, we will discuss recent advances in understanding the contribution of HDACs to the maintenance of the transformed state and the rational for their selective targeting.
Collapse
|
15
|
Abstract
In mammalian cells, genomic DNA is packaged with histone proteins and condensed into chromatin. To gain access to the DNA, chromatin remodelling is required that is enhanced through histone post-translational modifications, which subsequently stimulate processes including DNA repair and transcription. Histone acetylation is one of the most well understood modifications and is controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). These enzymes play critical roles in normal cellular functioning, and the dysregulation of HDAC expression in particular has been linked with the development of a number of different cancer types. Conversely, tumour cell killing following radiotherapy is triggered through DNA damage and HDACs can help co-ordinate the cellular DNA damage response which promotes radioresistance. Consequently, HDAC inhibitors have been investigated as potential radiosensitizers in vitro and in vivo to improve the efficacy or radiotherapy in specific tumour types. In this review, we provide an up-to-date summary of HDACs and their cellular functions, including in DNA damage repair. We also review evidence demonstrating that HDAC inhibitors can effectively enhance tumour radiosensitisation, and which therefore show potential for translation into the clinic for cancer patient benefit.
Collapse
|
16
|
Li J, Yan X, Liang C, Chen H, Liu M, Wu Z, Zheng J, Dang J, La X, Liu Q. Comprehensive Analysis of the Differential Expression and Prognostic Value of Histone Deacetylases in Glioma. Front Cell Dev Biol 2022; 10:840759. [PMID: 35359455 PMCID: PMC8961059 DOI: 10.3389/fcell.2022.840759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 12/25/2022] Open
Abstract
Gliomas are the most common and aggressive malignancies of the central nervous system. Histone deacetylases (HDACs) are important targets in cancer treatment. They regulate complex cellular mechanisms that influence tumor biology and immunogenicity. However, little is known about the function of HDACs in glioma. The Oncomine, Human Protein Atlas, Gene Expression Profiling Interactive Analysis, Broad Institute Cancer Cell Line Encyclopedia, Chinese Glioma Genome Atlas, OmicShare, cBioPortal, GeneMANIA, STRING, and TIMER databases were utilized to analyze the differential expression, prognostic value, and genetic alteration of HDAC and immune cell infiltration in patients with glioma. HDAC1/2 were considerable upregulated whereas HDAC11 was significantly downregulated in cancer tissues. HDAC1/2/3/4/5/7/8/11 were significantly correlated with the clinical glioma stage. HDAC1/2/3/10 were strongly upregulated in 11 glioma cell lines. High HDCA1/3/7 and low HDAC4/5/11 mRNA levels were significantly associated with overall survival and disease-free survival in glioma. HDAC1/2/3/4/5/7/9/10/11 are potential useful biomarkers for predicting the survival of patients with glioma. The functions of HDACs and 50 neighboring genes were primarily related to transcriptional dysregulation in cancers and the Notch, cGMP-PKG, and thyroid hormone signaling pathways. HDAC expression was significantly correlated with the infiltration of B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and dendritic cells in glioma. Our study indicated that HDACs are putative precision therapy targets and prognostic biomarkers of survival in glioma patients.
Collapse
Affiliation(s)
- Jinwei Li
- Department of Neurosurgery, The Fourth Affliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xianlei Yan
- Department of Neurosurgery, The Fourth Affliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Cong Liang
- Department of Neurosurgery, The Fourth Affliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Hongmou Chen
- Department of Neurosurgery, The Fourth Affliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Meimei Liu
- Department of Neurosurgery, The Fourth Affliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Zhikang Wu
- Department of Neurosurgery, The Fourth Affliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jiemin Zheng
- Department of Neurosurgery, The Fourth Affliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Junsun Dang
- Department of Neurosurgery, The Fourth Affliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xiaojin La
- College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Quan Liu
- Department of Neurosurgery, The Fourth Affliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
17
|
Multi-omic characterization of genome-wide abnormal DNA methylation reveals diagnostic and prognostic markers for esophageal squamous-cell carcinoma. Signal Transduct Target Ther 2022; 7:53. [PMID: 35210398 PMCID: PMC8873499 DOI: 10.1038/s41392-022-00873-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/23/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
This study investigates aberrant DNA methylations as potential diagnosis and prognosis markers for esophageal squamous-cell carcinoma (ESCC), which if diagnosed at advanced stages has <30% five-year survival rate. Comparing genome-wide methylation sites of 91 ESCC and matched adjacent normal tissues, we identified 35,577 differentially methylated CpG sites (DMCs) and characterized their distribution patterns. Integrating whole-genome DNA and RNA-sequencing data of the same samples, we found multiple dysregulated transcription factors and ESCC-specific genomic correlates of identified DMCs. Using featured DMCs, we developed a 12-marker diagnostic panel with high accuracy in our dataset and the TCGA ESCC dataset, and a 4-marker prognostic panel distinguishing high-risk patients. In-vitro experiments validated the functions of 4 marker host genes. Together these results provide additional evidence for the important roles of aberrant DNA methylations in ESCC development and progression. Our DMC-based diagnostic and prognostic panels have potential values for clinical care of ESCC, laying foundations for developing targeted methylation assays for future non-invasive cancer detection methods.
Collapse
|
18
|
Huang PY, Shih IA, Liao YC, You HL, Lee MJ. A novel HDAC11 inhibitor potentiates the tumoricidal effects of cordycepin against malignant peripheral nerve sheath tumor through the Hippo signaling pathway. Am J Cancer Res 2022; 12:873-892. [PMID: 35261809 PMCID: PMC8899988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant neurocutaneous disorder. Clinically, the hallmarks of NF1 include skin pigmentation and cutaneous neurofibroma. Some NF1 patients develop plexiform neurofibroma (PN) since early childhood. Pathologically, PN contains abundant Schwann cells, blood vessels and connective tissues, which may transform into a malignant peripheral nerve sheath tumor (MPNST). MPNST is a highly invasive sarcoma without any effective therapy. Recently, both in vitro and in vivo studies showed that cordycepin can inhibit the growth of MPNST cells. Cordycepin causes cell cycle arrest at G2/M phase and downregulates the protein levels of α-tubulin, p53 and Sp1. Herein, the present study revealed that the HDAC11 inhibitor, FT895, can synergistically enhance the tumoricidal effect of cordycepin against MPNST cells in vitro. Treatment with the combination of cordycepin and FT895 reduced the size of MPNST in the xenograft mouse model. The combined treatment decreased the protein levels of α-tubulin and KIF18A, which may disrupt the microtubule organization leading to the mis-segregation of chromosomes and aneuploidy. Moreover, the expression levels of TEAD1 and its co-activator TAZ, the candidate proteins in hippo signaling pathway, were suppressed after combined treatment. Sequence analysis found a few binding sites for the transcription factor, TEAD1 in the promoter regions of TUBA1B, KIF18A, TEAD1, TAZ, YAP, TP53 and SP1 genes. ChIP-qPCR assay showed that the combined treatment decreases the binding of TEAD1 to the promoters of TUBA1B, KIF18A, TEAD1, TAZ and YAP genes in STS26T cells. The reduced binding to TP53 and SP1 promoters was also found in S462TY cells, which was further confirmed by immunoblotting. The down-regulation of these important transcriptional factors may contribute to the vulnerability of MPNST. In summary, HDAC11 inhibitor, FT895 can potentiate the tumoricidal effect of cordycepin to suppress the MPNST cell growth, which was probably mediated by the dysfunction of hippo-signaling pathway.
Collapse
Affiliation(s)
- Po-Yuan Huang
- Department of Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine Taipei, Taiwan
| | - I-An Shih
- Department of Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine Taipei, Taiwan
| | - Ying-Chih Liao
- Department of Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine Taipei, Taiwan
| | - Huey-Ling You
- Department of Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine Taipei, Taiwan
| | - Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine Taipei, Taiwan
| |
Collapse
|
19
|
Morales-Tarré O, Alonso-Bastida R, Arcos-Encarnación B, Pérez-Martínez L, Encarnación-Guevara S. Protein lysine acetylation and its role in different human pathologies: a proteomic approach. Expert Rev Proteomics 2021; 18:949-975. [PMID: 34791964 DOI: 10.1080/14789450.2021.2007766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Lysine acetylation is a reversible post-translational modification (PTM) regulated through the action of specific types of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (HDACs), in addition to bromodomains, which are a group of conserved domains which identify acetylated lysine residues, several of the players in the process of protein acetylation, including enzymes and bromodomain-containing proteins, have been related to the progression of several diseases. The combination of high-resolution mass spectrometry-based proteomics, and immunoprecipitation to enrich acetylated peptides has contributed in recent years to expand the knowledge about this PTM described initially in histones and nuclear proteins, and is currently reported in more than 5000 human proteins, that are regulated by this PTM. AREAS COVERED This review presents an overview of the main participant elements, the scenario in the development of protein lysine acetylation, and its role in different human pathologies. EXPERT OPINION Acetylation targets are practically all cellular processes in eukaryotes and prokaryotes organisms. Consequently, this modification has been linked to many pathologies like cancer, viral infection, obesity, diabetes, cardiovascular, and nervous system-associated diseases, to mention a few relevant examples. Accordingly, some intermediate mediators in the acetylation process have been projected as therapeutic targets.
Collapse
Affiliation(s)
- Orlando Morales-Tarré
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ramiro Alonso-Bastida
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Bolivar Arcos-Encarnación
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
20
|
Khwaja S, Kumar K, Das R, Negi AS. Microtubule associated proteins as targets for anticancer drug development. Bioorg Chem 2021; 116:105320. [PMID: 34492559 DOI: 10.1016/j.bioorg.2021.105320] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/28/2022]
Abstract
The dynamic equilibrium of tubulin-microtubule is an essential aspect of cell survivality. Modulation of this dynamics has become an important target for the cancer drug development. Tubulin exists in the alpha-beta dimer form which polymerizes to form microtubule and further depolymerizes back to tubulin dimer. The microtubule plays an essential role in mitosis and cell multiplication. Antitubulin drugs disturb the microtubule dynamics which is essentially required for DNA segregation and cell division during mitosis so killing the cancerous cells. Microtubule Associated Proteins (MAPs) interact with cellular cytoskeletal microtubules. MAPs bind to the either polymerized or depolymerized tubulin dimers within the cell and mostly causing stabilization of microtubules. Some of the tubulin binding drugs are in clinical use and others in clinical trial. MAPs inhibitors are also in clinical trial. Post-translational modification of lysine-40 either in histone or in alpha tubulin has an important role in gene expression and is balanced between histone deacetylases (HDACs) and histone acetyltransferases (HATs). HDAC inhibitors have the anticancer properties to form a drug for the treatment of cancer. They act by inducing cell cycle arrest and cell death. Some of the HDAC inhibitors are approved to be used as anticancer drug while others are under different phases of clinical trial. The present review updates on various MAPs, their role in cancer progression, MAPs inhibitors and their future prospects.
Collapse
Affiliation(s)
- Sadiya Khwaja
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kapil Kumar
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India
| | - Ranjana Das
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India
| | - Arvind Singh Negi
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
21
|
Komaniecki G, Lin H. Lysine Fatty Acylation: Regulatory Enzymes, Research Tools, and Biological Function. Front Cell Dev Biol 2021; 9:717503. [PMID: 34368168 PMCID: PMC8339906 DOI: 10.3389/fcell.2021.717503] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
Post-translational acylation of lysine side chains is a common mechanism of protein regulation. Modification by long-chain fatty acyl groups is an understudied form of lysine acylation that has gained increasing attention recently due to the characterization of enzymes that catalyze the addition and removal this modification. In this review we summarize what has been learned about lysine fatty acylation in the approximately 30 years since its initial discovery. We report on what is known about the enzymes that regulate lysine fatty acylation and their physiological functions, including tumorigenesis and bacterial pathogenesis. We also cover the effect of lysine fatty acylation on reported substrates. Generally, lysine fatty acylation increases the affinity of proteins for specific cellular membranes, but the physiological outcome depends greatly on the molecular context. Finally, we will go over the experimental tools that have been used to study lysine fatty acylation. While much has been learned about lysine fatty acylation since its initial discovery, the full scope of its biological function has yet to be realized.
Collapse
Affiliation(s)
- Garrison Komaniecki
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Hening Lin
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States
| |
Collapse
|
22
|
Zhang J, Zhang C, Jiang H, Jiang H, Yuan Y. Molecular Characterization and Clinical Relevance of Lysine Acetylation Regulators in Urological Cancers. Front Oncol 2021; 11:647221. [PMID: 34136387 PMCID: PMC8202406 DOI: 10.3389/fonc.2021.647221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lysine acetylation and deacetylation are posttranslational modifications that are able to link extracellular signals to intracellular responses. However, knowledge regarding the status of lysine regulators in urological cancers is still unknown. Methods We first systematically analyzed the genetic and expression alterations of 31 lysine acetylation regulators in urological cancers. The correlation between lysine acetylation regulators and activation of cancer pathways was explored. The clinical relevance of lysine acetylation regulators was further analyzed. Results We identified that there are widespread genetic alterations of lysine acetylation regulators, and that their expression levels are significantly associated with the activity of cancer hallmark-related pathways. Moreover, lysine acetylation regulators were found to be potentially useful for prognostic stratification. HDAC11 may act as a potential oncogene in cell cycle and oxidative phosphorylation of urological cancers. Conclusion Lysine acetylation regulators are involved in tumorigenesis and progression. Our results provide a valuable resource that will guide both mechanistic and therapeutic analyses of the role of lysine acetylation regulators in urological cancers.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Chunning Zhang
- The First Tumor Department, Maoming People's Hospital, Maoming, China
| | - Huali Jiang
- Department of Cardiovascularology, Tungwah Hospital of Sun Yat-sen University, Dongguan, China
| | - Hualong Jiang
- Department of Urology, Tungwah Hospital of Sun Yat-sen University, Dongguan, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| |
Collapse
|
23
|
Núñez-Álvarez Y, Suelves M. HDAC11: a multifaceted histone deacetylase with proficient fatty deacylase activity and its roles in physiological processes. FEBS J 2021; 289:2771-2792. [PMID: 33891374 DOI: 10.1111/febs.15895] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
The histone deacetylases (HDACs) family of enzymes possess deacylase activity for histone and nonhistone proteins; HDAC11 is the latest discovered HDAC and the only member of class IV. Besides its shared HDAC family catalytical activity, recent studies underline HDAC11 as a multifaceted enzyme with a very efficient long-chain fatty acid deacylase activity, which has open a whole new field of action for this protein. Here, we summarize the importance of HDAC11 in a vast array of cellular pathways, which has been recently highlighted by discoveries about its subcellular localization, biochemical features, and its regulation by microRNAs and long noncoding RNAs, as well as its new targets and interactors. Additionally, we discuss the recent work showing the consequences of HDAC11 dysregulation in brain, skeletal muscle, and adipose tissue, and during regeneration in response to kidney, skeletal muscle, and vascular injuries, underscoring HDAC11 as an emerging hub protein with physiological functions that are much more extensive than previously thought, and with important implications in human diseases.
Collapse
Affiliation(s)
| | - Mònica Suelves
- Germans Trias i Pujol Research Institute, Badalona, Spain
| |
Collapse
|
24
|
Huang R, Sui L, Fu C, Zhai Y, Dai X, Zhang S, Li Z. HDAC11 inhibition disrupts porcine oocyte meiosis via regulating α-tubulin acetylation and histone modifications. Aging (Albany NY) 2021; 13:8849-8864. [PMID: 33742608 PMCID: PMC8034937 DOI: 10.18632/aging.202697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/01/2021] [Indexed: 11/25/2022]
Abstract
HDAC11, the sole member of HDAC class IV family, plays vital roles in activating mitosis and apoptosis of tumor cells, but its functions in meiosis are rarely investigated. In the present study, the effect of HDAC11 on meiosis during porcine oocytes maturation was fully studied. The results showed that HDAC11 inhibition by its specific inhibitor JB-3-22 dramatically decreased the porcine oocyte maturation rate by disturbing spindle organization and chromosomes alignment without affecting the cytoplasmic maturation. Further study indicated that HDAC11 inhibition significantly elevated the acetylation levels of α-tubulin and H4K16, which are crucial for spindle organization and chromosomes alignment. Moreover, immunofluorescence staining results showed that HDAC11 inhibition also disturbed other meiosis-related histone modifications, such as increased H3S10pho, H4K5ac and H4K12ac levels and reduced H3T3pho level. Furthermore, RNA-seq analysis results indicated that HDAC11 inhibition disturbed porcine oocytes transcriptome (157 up-regulation, 106 down-regulation). In addition, HDAC11 inhibition compromised oocytes quality and subsequent development after parthenogenetic activation, which may be caused by the aberrant nuclear maturation and transcriptome expression profile during oocytes maturation. Therefore, our results elucidate the function of HDAC11 in porcine oocytes maturation and embryos development through regulating α-tubulin acetylation, meiosis-related histone modifications and transcriptome.
Collapse
Affiliation(s)
- Rong Huang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, Jilin, China
| | - Liyan Sui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, Jilin, China
| | - Cong Fu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, Jilin, China
| | - Yanhui Zhai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, Jilin, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, Jilin, China
| | - Sheng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, Jilin, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
25
|
Bi L, Ren Y, Feng M, Meng P, Wang Q, Chen W, Jiao Q, Wang Y, Du L, Zhou F, Jiang Y, Chen F, Wang C, Tang B, Wang Y. HDAC11 Regulates Glycolysis through the LKB1/AMPK Signaling Pathway to Maintain Hepatocellular Carcinoma Stemness. Cancer Res 2021; 81:2015-2028. [PMID: 33602787 DOI: 10.1158/0008-5472.can-20-3044] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/30/2020] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) contains a subset of cancer stem cells (CSC) that cause tumor recurrence, metastasis, and chemical resistance. Histone deacetylase 11 (HDAC11) mediates diverse immune functions and metabolism, yet little is known about its role in HCC CSCs. In this study, we report that HDAC11 is highly expressed in HCC and is closely related to disease prognosis. Depletion of HDAC11 in a conditional knockout mouse model reduced hepatocellular tumorigenesis and prolonged survival. Loss of HDAC11 increased transcription of LKB1 by promoting histone acetylation in its promoter region, thereby activating the AMPK signaling pathway and inhibiting the glycolysis pathway, which in turn leads to the suppression of cancer stemness and HCC progression. Furthermore, HDAC11 overexpression reduced HCC sensitivity to sorafenib. Collectively, these data propose HDAC11 as a new target for combination therapy in patients with kinase-resistant HCC. SIGNIFICANCE: This study finds that HDAC11 suppresses LKB1 expression in HCC to promote cancer stemness, progression, and sorafenib resistance, suggesting the potential of targeting HDAC11 to treat HCC and overcome kinase inhibitor resistance.
Collapse
Affiliation(s)
- Lei Bi
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Maoxiao Feng
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peng Meng
- Burning Rock Biotech, International Biotech Island, Guangzhou, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weiping Chen
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qinlian Jiao
- Shandong Quality Inspection Center for Medical Devices, Jinan, Shandong, China
| | - Yuli Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fuqiong Zhou
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yucui Jiang
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Feiyan Chen
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bo Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China. .,Department of Health Sciences, Hiroshima Shudo University, Hiroshima, Japan
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
26
|
Su M, Gong X, Liu F. An update on the emerging approaches for histone deacetylase (HDAC) inhibitor drug discovery and future perspectives. Expert Opin Drug Discov 2021; 16:745-761. [PMID: 33530771 DOI: 10.1080/17460441.2021.1877656] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION HDACs catalyze the removal of acetyl groups from the ε-N-acetylated lysine residues of various protein substrates including both histone and nonhistone proteins. Different HDACs have distinct biological functions and are recruited to specific regions of the genome. HDAC inhibitors have attracted much attention in recent decades; indeed, there have been more than thirty HDAC inhibitors investigated in clinic trials with five approvals being achieved. AREAS COVERED This review covers the emerging approaches for HDAC inhibitor drug discovery from the past five years and includes discussion of structure-based rational design, isoform selectivity, and dual mechanism/multi-targeting. Chemical structures in addition to the in vitro and in vivo inhibiting activity of these compounds have also been discussed. EXPERT OPINION The exact role and biological functions of HDACs is still under investigation with a variety of HDAC inhibitors having been designed and evaluated. HDAC inhibitors have shown promise in treating cancer, AD, metabolic disease, viral infection, and multiple sclerosis, but there is still a lot of room for clinical improvement. In the future, more efforts should be put into (i) HDAC isoform identification (ii) the optimization of selectivity, activity, and pharmacokinetics; and (iii) unconventional approaches for discovering different effective scaffolds and pharmacophores.
Collapse
Affiliation(s)
- Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Xingyu Gong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| |
Collapse
|
27
|
Hontecillas-Prieto L, Flores-Campos R, Silver A, de Álava E, Hajji N, García-Domínguez DJ. Synergistic Enhancement of Cancer Therapy Using HDAC Inhibitors: Opportunity for Clinical Trials. Front Genet 2020; 11:578011. [PMID: 33024443 PMCID: PMC7516260 DOI: 10.3389/fgene.2020.578011] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy is one of the most established and effective treatments for almost all types of cancer. However, the elevated toxicity due to the non-tumor-associated effects, development of secondary malignancies, infertility, radiation-induced fibrosis and resistance to treatment limit the effectiveness and safety of treatment. In addition, these multiple factors significantly impact quality of life. Over the last decades, our increased understanding of cancer epigenetics has led to new therapeutic approaches and the promise of improved patient outcomes. Epigenetic alterations are commonly found in cancer, especially the increased expression and activity of histone deacetylases (HDACs). Dysregulation of HDACs are critical to the development and progression of the majority of tumors. Hence, HDACs inhibitors (HDACis) were developed and now represent a very promising treatment strategy. The use of HDACis as monotherapy has shown very positive pre-clinical results, but clinical trials have had only limited success. However, combinatorial regimens with other cancer drugs have shown synergistic effects both in pre-clinical and clinical studies. At the same time, these combinations have enhanced the efficacy, reduced the toxicity and tumor resistance to therapy. In this review, we will examine examples of HDACis used in combination with other cancer drugs and highlight the synergistic effects observed in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Lourdes Hontecillas-Prieto
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain
| | - Rocío Flores-Campos
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Enrique de Álava
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain.,Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | - Nabil Hajji
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Daniel J García-Domínguez
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain
| |
Collapse
|
28
|
Liu SS, Wu F, Jin YM, Chang WQ, Xu TM. HDAC11: a rising star in epigenetics. Biomed Pharmacother 2020; 131:110607. [PMID: 32841898 DOI: 10.1016/j.biopha.2020.110607] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 02/08/2023] Open
Abstract
Epigenetic mechanisms, such as acetylation, methylation, and succinylation, play pivotal roles in the regulation of multiple normal biological processes, including neuron regulation, hematopoiesis, bone cell maturation, and metabolism. In addition, epigenetic mechanisms are closely associated with the pathological processes of various diseases, such as metabolic diseases, autoimmune diseases and cancers. Epigenetic changes may precede genetic mutation, so research on epigenetic changes and regulation may be important for the early detection and diagnosis of disease. Histone deacetylase11 (HDAC11) is the newest member of the histone deacetylase (HDAC) family and the only class IV histone deacetylase. HDAC11 has different expression levels and biological functions in different systems of the human body and is among the top 1 to 4% of genes overexpressed in cancers, such as breast cancer, hepatocellular carcinoma and renal pelvis urothelial carcinoma. This article analyzes the role and mechanism of HDAC11 in disease, especially in tumorigenesis, in an attempt to provide new ideas for clinical and basic research.
Collapse
Affiliation(s)
- Shan-Shan Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| | - Fei Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| | - Yue-Mei Jin
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| | - Wei-Qin Chang
- Department of Surgery, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, 130041, Jilin Province, China.
| | - Tian-Min Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| |
Collapse
|
29
|
Simon Serrano S, Sime W, Abassi Y, Daams R, Massoumi R, Jemaà M. Inhibition of mitotic kinase Mps1 promotes cell death in neuroblastoma. Sci Rep 2020; 10:11997. [PMID: 32686724 PMCID: PMC7371706 DOI: 10.1038/s41598-020-68829-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022] Open
Abstract
Neuroblastoma is the most common paediatric cancer type. Patients diagnosed with high-risk neuroblastoma have poor prognosis and occasionally tumours relapse. As a result, novel treatment strategies are needed for relapse and refractory neuroblastoma patients. Here, we found that high expression of Mps1 kinase (mitotic kinase Monopolar Spindle 1) was associated with relapse-free neuroblastoma patient outcomes and poor overall survival. Silencing and inhibition of Mps1 in neuroblastoma or PDX-derived cells promoted cell apoptosis via the caspase-dependent mitochondrial apoptotic pathway. The mechanism of cell death upon Mps1 inhibition was dependent on the polyploidization/aneuploidization of the cells before undergoing mitotic catastrophe. Furthermore, tumour growth retardation was confirmed in a xenograft mouse model after Mps1-inhibitor treatment. Altogether, these results suggest that Mps1 expression and inhibition can be considered as a novel prognostic marker as well as a therapeutic strategy for the treatment of high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Sonia Simon Serrano
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden
| | - Wondossen Sime
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden
| | - Yasmin Abassi
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden
| | - Renée Daams
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden.
| | - Mohamed Jemaà
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden.
| |
Collapse
|
30
|
George S, Palli SR. Histone Deacetylase 11 Knockdown Blocks Larval Development and Metamorphosis in the Red Flour Beetle, Tribolium castaneum. Front Genet 2020; 11:683. [PMID: 32719718 PMCID: PMC7348043 DOI: 10.3389/fgene.2020.00683] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Post-translational modifications (PTM) such as methylation, acetylation, phosphorylation, and ubiquitination of histones and other proteins regulate expression of genes. The acetylation levels of these proteins are determined by the balance of expression of histone acetyltransferase (HATs) and histone deacetylases (HDACs). We recently reported that class I HDACs (HDAC1 and HDAC3) play important roles in juvenile hormone (JH) suppression of metamorphosis in the red flour beetle, Tribolium castaneum. Here, we report on the function of a single class IV HDAC member, HDAC11. Injection of dsRNA targeting T. castaneum HDAC11 gene into newly molted last instar larvae induced knockdown of the target gene and arrested larval development and prevented metamorphosis into the pupal stage. Dark melanized areas were detected in larvae that showed developmental arrest and mortality. Developmental expression studies showed an increase in HDAC11 mRNA levels beginning at the end of the penultimate larval stage. These higher levels were maintained during the final instar larval and pupal stages. A JH analog, hydroprene, suppressed HDAC11 expression in the larvae. Sequencing of RNA isolated from control and dsHDAC11 injected larvae identified several differentially expressed genes, including those involved in JH action, ecdysone response, and melanization. The acetylation levels of core histones showed an increase in TcA cells exposed to dsHDAC11. Also, an increase in histone H3 acetylation, specifically H3K9, H3K18 and H3K27, were detected in HDAC11 knockdown larvae. These studies report the function of HDAC11 in insects other than Drosophila for the first time and show that HDAC11 influences the acetylation levels of histones and expression of multiple genes involved in T. castaneum larval development.
Collapse
Affiliation(s)
- Smitha George
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
31
|
Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes (Basel) 2020; 11:genes11050556. [PMID: 32429325 PMCID: PMC7288346 DOI: 10.3390/genes11050556] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) are evolutionary conserved enzymes which operate by removing acetyl groups from histones and other protein regulatory factors, with functional consequences on chromatin remodeling and gene expression profiles. We provide here a review on the recent knowledge accrued on the zinc-dependent HDAC protein family across different species, tissues, and human pathologies, specifically focusing on the role of HDAC inhibitors as anti-cancer agents. We will investigate the chemical specificity of different HDACs and discuss their role in the human interactome as members of chromatin-binding and regulatory complexes.
Collapse
|
32
|
Li J, Li Z, Zhao S, Song Y, Si L, Wang X. Identification key genes, key miRNAs and key transcription factors of lung adenocarcinoma. J Thorac Dis 2020; 12:1917-1933. [PMID: 32642095 PMCID: PMC7330310 DOI: 10.21037/jtd-19-4168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most common cancers worldwide. The etiology and pathophysiology of LUAD remain unclear. The aim of the present study was to identify the key genes, miRNAs and transcription factors (TFs) associated with the pathogenesis and prognosis of LUAD. Methods Three gene expression profiles (GSE43458, GSE32863, GSE74706) of LUAD were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified by GEO2R.The Gene Ontology (GO) terms, pathways, and protein-protein interactions (PPIs) of these DEGs were analyzed. Bases on DEGs, the miRNAs and TFs were predicted. Furthermore, TF-gene-miRNA co-expression network was constructed to identify key genes, miRNAs and TFs by bioinformatic methods. The expressions and prognostic values of key genes, miRNAs and TFs were carried out through The Cancer Genome Atlas (TCGA) database and Kaplan Meier-plotter (KM) online dataset. Results A total of 337 overlapped DEGs (75 upregulated and 262 downregulated) of LUAD were identified from the three GSE datasets. Moreover, 851 miRNAs and 29 TFs were identified to be associated with these DEGs. In total, 10 hub genes, 10 key miRNAs and 10 key TFs were located in the central hub of the TF-gene-miRNA co-expression network, and validated using The Cancer Genome Atlas (TCGA) database. Specifically, seven genes (PHACTR2, MSRB3, GHR, PLSCR4, EPB41L2, NPNT, FBXO32), two miRNAs (hsa-let-7e-5p, hsa-miR-17-5p) and four TFs (STAT6, E2F1, ETS1, JUN) were identified to be associated with prognosis of LUAD, which have significantly different expressions between LUAD and normal lung tissue. Additionally, the miRNA/gene co-expression analysis also revealed that hsa-miR-17-5p and PLSCR4 have a significant negative co-expression relationship (r=−0.33, P=1.67e-14) in LUAD. Conclusions Our study constructed a regulatory network of TF-gene-miRNA in LUAD, which may provide new insights about the interaction between genes, miRNAs and TFs in the pathogenesis of LUAD, and identify potential biomarkers or therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Jinghang Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhi Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Sheng Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuanyuan Song
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Linjie Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
33
|
HDAC11 deficiency disrupts oncogene-induced hematopoiesis in myeloproliferative neoplasms. Blood 2020; 135:191-207. [PMID: 31750881 DOI: 10.1182/blood.2019895326] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 11/02/2019] [Indexed: 12/19/2022] Open
Abstract
Protein acetylation is an important contributor to cancer initiation. Histone deacetylase 6 (HDAC6) controls JAK2 translation and protein stability and has been implicated in JAK2-driven diseases best exemplified by myeloproliferative neoplasms (MPNs). By using novel classes of highly selective HDAC inhibitors and genetically deficient mouse models, we discovered that HDAC11 rather than HDAC6 is necessary for the proliferation and survival of oncogenic JAK2-driven MPN cells and patient samples. Notably, HDAC11 is variably expressed in primitive stem cells and is expressed largely upon lineage commitment. Although Hdac11is dispensable for normal homeostatic hematopoietic stem and progenitor cell differentiation based on chimeric bone marrow reconstitution, Hdac11 deficiency significantly reduced the abnormal megakaryocyte population, improved splenic architecture, reduced fibrosis, and increased survival in the MPLW515L-MPN mouse model during primary and secondary transplantation. Therefore, inhibitors of HDAC11 are an attractive therapy for treating patients with MPN. Although JAK2 inhibitor therapy provides substantial clinical benefit in MPN patients, the identification of alternative therapeutic targets is needed to reverse MPN pathogenesis and control malignant hematopoiesis. This study establishes HDAC11 as a unique type of target molecule that has therapeutic potential in MPN.
Collapse
|
34
|
dos Santos PWDS, Machado ART, De Grandis RA, Ribeiro DL, Tuttis K, Morselli M, Aissa AF, Pellegrini M, Antunes LMG. Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol 2020; 136:111047. [DOI: 10.1016/j.fct.2019.111047] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
|
35
|
Sui L, Zhang S, Huang R, Li Z. HDAC11 promotes meiotic apparatus assembly during mouse oocyte maturation via decreasing H4K16 and α-tubulin acetylation. Cell Cycle 2020; 19:354-362. [PMID: 31910069 DOI: 10.1080/15384101.2019.1711315] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The smallest histone deacetylase (HDAC) and the solely member of class IV, HDAC11, is reported to regulate mitosis process and tumorigenesis, yet its roles in meiosis process remain unknown. In the present study, we first analyzed the expression of HDAC11 in mouse oocytes. HDAC11 showed gradual lower expression from GV (Germinal Vesicle) to MII (Metaphase II) stage oocytes. Then, the specific inhibitor of HDAC11, JB3-22 was used to explore the role of HDAC11 during mouse oocytes maturation. We found that inhibition of HDAC11 significantly interrupted mouse oocytes meiosis progress, caused abnormal spindle organization and misaligned chromosomes, impaired kinetochore-microtubule attachment and spindle assembly checkpoint (SAC) function. Moreover, HDAC11 inhibition significantly increased the acetylation level of α-tubulin that is associated with microtubule stability, and increased acetylation level of H4K16 that is important for kinetochore function. In conclusion, our study indicates that HDAC11 is an essential factor for oocytes maturation and it promotes meiotic process most likely though decreasing acetylation status of α-tubulin and H4K16.
Collapse
Affiliation(s)
- Liyan Sui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, Jilin, China
| | - Sheng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, Jilin, China
| | - Rong Huang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, Jilin, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
36
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 619] [Impact Index Per Article: 103.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Yi Z, Wenwen L, Kun W, Jian S. [Overexpression of histone deacetylase 11 suppresses basal-like breast cancer cell invasion and metastasis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:751-759. [PMID: 31340905 DOI: 10.12122/j.issn.1673-4254.2019.07.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Histone deacetylase 11 (HDAC11) is a class Ⅳ member of histone deacetylase family, and its role in regulating cancer cell invasion and metastasis remains unclear. We aimed to investigate the role of HDAC11 in regulating the biological behaviors of basal-like breast cancer (BLBC) cells. METHODS We analyzed the expression of HDAC11 based on Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA). The effects of HDAC11 on the cell invasion and metastasis were examined using Transwell assay and in a mouse model. The interaction between HDAC11 and Twist was detected with immunoprecipitation. We identified HAS2 as a target gene of Twist using promoter luciferase assay and chromatin immunoprecipitation assay. RESULTS HDAC11 was lowly expressed in BLBC cells. HDAC11 overexpression suppressed BLBC cell invasion in vitro and their metastasis in nude mice. Mechanistically, HDAC11 directly interacted with Twist protein, antagonized its pro-invasive function and repressed Twist-induced HAS2 gene transcription. CONCLUSIONS Our data suggest that HDAC11 acts as a negative modulator of invasion and metastasis of BLBC cells.
Collapse
Affiliation(s)
- Zhang Yi
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Second Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Luo Wenwen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wang Kun
- Second Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shi Jian
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
38
|
Son SI, Cao J, Zhu CL, Miller SP, Lin H. Activity-Guided Design of HDAC11-Specific Inhibitors. ACS Chem Biol 2019; 14:1393-1397. [PMID: 31264832 DOI: 10.1021/acschembio.9b00292] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mammalian histone deacetylases (HDACs) are a class of enzymes that play important roles in biological pathways. Existing HDAC inhibitors target multiple HDACs without much selectivity. Inhibitors that target one particular HDAC will be useful for investigating the biological functions of HDACs and for developing better therapeutics. Here, we report the development of HDAC11-specific inhibitors using an activity-guided rational design approach. The enzymatic activity and biological function of HDAC11 have been little known, but recent reports suggest that it has efficient defatty-acylation activity and that inhibiting it could be useful for treating a variety of human diseases, including viral infection, multiple sclerosis, and metabolic diseases. Our best inhibitor, SIS17, is active in cells and inhibited the demyristoylation of a known HDAC11 substrate, serine hydroxymethyl transferase 2, without inhibiting other HDACs. The activity-guided design may also be useful for the development of isoform-specific inhibitors for other classes of enzymes.
Collapse
Affiliation(s)
- Se In Son
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ji Cao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheng-Liang Zhu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Seth P. Miller
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
39
|
Tang C, Du Y, Liang Q, Cheng Z, Tian J. Development of a Novel Histone Deacetylase-Targeted Near-Infrared Probe for Hepatocellular Carcinoma Imaging and Fluorescence Image-Guided Surgery. Mol Imaging Biol 2019; 22:476-485. [DOI: 10.1007/s11307-019-01389-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Revisiting Histone Deacetylases in Human Tumorigenesis: The Paradigm of Urothelial Bladder Cancer. Int J Mol Sci 2019; 20:ijms20061291. [PMID: 30875794 PMCID: PMC6471041 DOI: 10.3390/ijms20061291] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/24/2022] Open
Abstract
Urinary bladder cancer is a common malignancy, being characterized by substantial patient mortality and management cost. Its high somatic-mutation frequency and molecular heterogeneity usually renders tumors refractory to the applied regimens. Hitherto, methotrexate-vinblastine-adriamycin-cisplatin and gemcitabine-cisplatin represent the backbone of systemic chemotherapy. However, despite the initial chemosensitivity, the majority of treated patients will eventually develop chemoresistance, which severely reduces their survival expectancy. Since chromatin regulation genes are more frequently mutated in muscle-invasive bladder cancer, as compared to other epithelial tumors, targeted therapies against chromatin aberrations in chemoresistant clones may prove beneficial for the disease. “Acetyl-chromatin” homeostasis is regulated by the opposing functions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). The HDAC/SIRT (super-)family contains 18 members, which are divided in five classes, with each family member being differentially expressed in normal urinary bladder tissues. Since a strong association between irregular HDAC expression/activity and tumorigenesis has been previously demonstrated, we herein attempt to review the accumulated published evidences that implicate HDACs/SIRTs as critical regulators in urothelial bladder cancer. Moreover, the most extensively investigated HDAC inhibitors (HDACis) are also analyzed, and the respective clinical trials are also described. Interestingly, it seems that HDACis should be preferably used in drug-combination therapeutic schemes, including radiation.
Collapse
|
41
|
Zhou L, Xu X, Liu H, Hu X, Zhang W, Ye M, Zhu X. Prognosis Analysis of Histone Deacetylases mRNA Expression in Ovarian Cancer Patients. J Cancer 2018; 9:4547-4555. [PMID: 30519361 PMCID: PMC6277648 DOI: 10.7150/jca.26780] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022] Open
Abstract
Histone deacetylases modulate the dynamic balance of histone acetylation and deacetylation in cells, which participate in epigenetic regulations. Accumulated evidence has demonstrated that histone deacetylases are associated with angiogenesis, cell proliferation and survival in a variety of human cancers. However, the expression and distinct prognostic value of histone deacetylases in ovarian cancer have not been well elucidated. In the present study, we collected the overall survival (OS), progress free survival (PFS), and histone deacetylases (HDAC1-11) mRNA expression in ovarian cancer from the Kaplan-Meier plotter online database. We investigated the relationship between histone deacetylases mRNA level and the clinicopathological parameters of the ovarian cancer patients, such as histology subtypes, clinical stages, grades and TP53 mutation. Our analysis data showed that over-expression of HDAC1, HDAC2, HDAC4, HDAC5 and HDAC11 were correlated to poor overall survival and unfavorable progress free survival in all ovarian cancer patients. Notably, the higher level of HDAC11 was associated with the worse OS and PFS for serous/ stage III+IV/ grade III/ TP53 mutation ovarian cancer patients. In conclusion, HDACs may play a crucial role in the prognosis of ovarian cancer, but it is worth noting that HDAC11 may be a biomarker for poor prognosis in ovarian cancer patients.
Collapse
Affiliation(s)
- Lulu Zhou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaohui Xu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hailing Liu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
42
|
Jubierre L, Jiménez C, Rovira E, Soriano A, Sábado C, Gros L, Llort A, Hladun R, Roma J, Toledo JSD, Gallego S, Segura MF. Targeting of epigenetic regulators in neuroblastoma. Exp Mol Med 2018; 50:1-12. [PMID: 29700278 PMCID: PMC5938021 DOI: 10.1038/s12276-018-0077-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/13/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Approximately 15,000 new cases of pediatric cancer are diagnosed yearly in Europe, with 8–10% corresponding to neuroblastoma, a rare disease with an incidence of 8–9 cases per million children <15 years of age. Although the survival rate for low-risk and intermediate-risk patients is excellent, half of children with high-risk, refractory, or relapsed tumors will be cured, and two-thirds of the other half will suffer major side effects and life-long disabilities. Epigenetic therapies aimed at reversing the oncogenic alterations in chromatin structure and function are an emerging alternative against aggressive tumors that are or will become resistant to conventional treatments. This approach proposes targeting epigenetic regulators, which are proteins that are involved in the creation, detection, and interpretation of epigenetic signals, such as methylation or histone post-translational modifications. In this review, we focused on the most promising epigenetic regulators for targeting and current drugs that have already reached clinical trials. Treatments that target chromatin, the combination of DNA and proteins, are emerging as alternative ways to treat aggressive neuroblastomas, cancers of neural tissue. Altering the structure and function of chromatin is a form of “epigenetic therapy”, treatment that affects inheritable molecular signals controlling the activity of genes, rather than targeting the genes directly. Researchers in Spain led by Miguel Segura at the Vall d’Hebron Research Institute in Barcelona review progress in developing epigenetic therapies for neuroblastomas. A growing body of fundamental research and evidence from clinical trials suggest this approach could open promising new avenues to treating aggressive and drug-resistant cancers. The authors recommend an increased effort to identify and explore the activities of small molecules that could form the basis of effective epigenetic therapies for various cancers.
Collapse
Affiliation(s)
- Luz Jubierre
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Carlos Jiménez
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Eric Rovira
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Aroa Soriano
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Constantino Sábado
- Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Luis Gros
- Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Anna Llort
- Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Raquel Hladun
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain.,Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Josep Roma
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Josep Sánchez de Toledo
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain.,Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Soledad Gallego
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain.,Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain.
| |
Collapse
|
43
|
Agarwal S, Milazzo G, Rajapakshe K, Bernardi R, Chen Z, Barbieri E, Koster J, Perini G, Coarfa C, Shohet JM. MYCN acts as a direct co-regulator of p53 in MYCN amplified neuroblastoma. Oncotarget 2018; 9:20323-20338. [PMID: 29755654 PMCID: PMC5945521 DOI: 10.18632/oncotarget.24859] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/06/2018] [Indexed: 12/30/2022] Open
Abstract
The MYC oncogenes and p53 have opposing yet interrelated roles in normal development and tumorigenesis. How MYCN expression alters the biology and clinical responsiveness of pediatric neuroblastoma remains poorly defined. Neuroblastoma is p53 wild type at diagnosis and repression of p53 signaling is required for tumorigenesis. Here, we tested the hypothesis that MYCN amplification alters p53 transcriptional activity in neuroblastoma. Interestingly, we found that MYCN directly binds to the tetrameric form of p53 at its C-terminal domain, and this interaction is independent of MYCN/MAX heterodimer formation. Chromatin analysis of MYCN and p53 targets reveals dramatic changes in binding, as well as co-localization of the MYCN-p53 complex at p53-REs and E-boxes of genes critical to DNA damage responses and cell cycle progression. RNA sequencing studies show that MYCN-p53 co-localization significantly modulated the expression of p53 target genes. Furthermore, MYCN-p53 interaction leads to regulation of alternative p53 targets not regulated in the presence of low MYCN levels. These novel targets include a number of genes involved in lipid metabolism, DNA repair, and apoptosis. Taken together, our findings demonstrate a novel oncogenic role of MYCN as a transcriptional co-regulator of p53 in high-risk MYCN amplified neuroblastoma. Targeting this novel oncogenic function of MYCN may enhance p53-mediated responses and sensitize MYCN amplified tumors to chemotherapy.
Collapse
Affiliation(s)
- Saurabh Agarwal
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Kimal Rajapakshe
- Dan L Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald Bernardi
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Zaowen Chen
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Eveline Barbieri
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Cristian Coarfa
- Dan L Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason M Shohet
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
44
|
Liu SL, Liu Z, Zhang LD, Zhu HQ, Guo JH, Zhao M, Wu YL, Liu F, Gao FH. GSK3β-dependent cyclin D1 and cyclin E1 degradation is indispensable for NVP-BEZ235 induced G0/G1 arrest in neuroblastoma cells. Cell Cycle 2017; 16:2386-2395. [PMID: 28980866 DOI: 10.1080/15384101.2017.1383577] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cyclin D1 and cyclin E1, as vital regulatory factors of G1-S phase cell cycle progression, are frequently constitutive expressed and associated with pathogenesis and tumorigenesis in most human cancers and they have been regarded as promising targets for cancer therapy. In this study, we established NVP-BEZ235, a potent dual kinase inhibitor, could induce neuroblastoma cells proliferation inhibition without apoptosis activation. Moreover, we showed NVP-BEZ235 could induce neuroblastoma cells arrested at G0/G1 phase accompanied with significant reduction of the cyclin D1 and E1 proteins in a dose dependent manner at nanomole concentration. Additionally we found that GSK3β was dephosphorylated and activated by NVP-BEZ235 and then triggered cyclin D1 and cyclin E1 degradation through ubiquitination proteasome pathway, based on the evidences that NVP-BEZ235 induced downregulation of cyclin D1 and cyclin E1 were obviously recovered by proteasome inhibitor and the blockade of GSK3β contributed to remarkable rescue of cyclin D1 and cyclin E1. Analogous results about its anti-proliferation effects and molecular mechanism were observed on neuroblastoma xenograft mouse model in vivo. Therefore, these results indicate that NVP-BEZ235-induced cyclin D1 and cyclin E1 degradation, which happened through activating GSK3β, and GSK3β-dependent down-regulation of cyclin D1 and cyclin E1 should be available for anticancer therapeutics.
Collapse
Affiliation(s)
- Shan-Ling Liu
- a Department of Oncology , Shanghai 9th People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhi Zao Ju Rd, Shanghai , China
| | - Zhen Liu
- a Department of Oncology , Shanghai 9th People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhi Zao Ju Rd, Shanghai , China.,b Department of Clinical Laboratory , Shanghai Pudong Hospital , Fudan University Pudong Medical Center , 2800 Gongwei Road, Pudong, Shanghai , China
| | - Li-Di Zhang
- a Department of Oncology , Shanghai 9th People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhi Zao Ju Rd, Shanghai , China
| | - Han-Qing Zhu
- a Department of Oncology , Shanghai 9th People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhi Zao Ju Rd, Shanghai , China
| | - Jia-Hui Guo
- a Department of Oncology , Shanghai 9th People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhi Zao Ju Rd, Shanghai , China
| | - Mei Zhao
- c Department of Reproductive Medicine , Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Ying-Li Wu
- d Dept. of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education , Shanghai Jiao-Tong University School of Medicine (SJTU-SM) , Shanghai , China
| | - Feng Liu
- a Department of Oncology , Shanghai 9th People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhi Zao Ju Rd, Shanghai , China
| | - Feng-Hou Gao
- a Department of Oncology , Shanghai 9th People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhi Zao Ju Rd, Shanghai , China
| |
Collapse
|
45
|
Bryant DT, Landles C, Papadopoulou AS, Benjamin AC, Duckworth JK, Rosahl T, Benn CL, Bates GP. Disruption to schizophrenia-associated gene Fez1 in the hippocampus of HDAC11 knockout mice. Sci Rep 2017; 7:11900. [PMID: 28928414 PMCID: PMC5605701 DOI: 10.1038/s41598-017-11630-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/25/2017] [Indexed: 12/18/2022] Open
Abstract
Histone Deacetylase 11 (HDAC11) is highly expressed in the central nervous system where it has been reported to have roles in neural differentiation. In contrast with previous studies showing nuclear and cytoplasmic localisation, we observed synaptic enrichment of HDAC11. Knockout mouse models for HDACs 1-9 have been important for guiding the development of isoform specific HDAC inhibitors as effective therapeutics. Given the close relationship between HDAC11 and neural cells in vitro, we examined neural tissue in a previously uncharacterised Hdac11 knockout mouse (Hdac11 KO/KO). Loss of HDAC11 had no obvious impact on brain morphology and neural stem/precursor cells isolated from Hdac11 KO/KO mice had comparable proliferation and differentiation characteristics. However, in differentiating neural cells we observed decreased expression of schizophrenia-associated gene Fez1 (fasciculation and elongation protein zeta 1), a gene previously reported to be regulated by HDAC11 activity. FEZ1 has been associated with the dendritic growth of neurons and risk of schizophrenia via its interaction with DISC1 (disrupted in schizophrenia 1). Examination of cortical, cerebellar and hippocampal tissue reveal decreased Fez1 expression specifically in the hippocampus of adult mice. The results of this study demonstrate that loss of HDAC11 has age dependent and brain-region specific consequences.
Collapse
Affiliation(s)
- Dale T Bryant
- UCL Huntington's Disease Centre, Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom.,Neusentis, Pfizer Ltd, The Portway, Granta Park, Abington, Cambridge, United Kingdom
| | - Christian Landles
- UCL Huntington's Disease Centre, Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Aikaterini S Papadopoulou
- UCL Huntington's Disease Centre, Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Agnesska C Benjamin
- UCL Huntington's Disease Centre, Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Joshua K Duckworth
- Neusentis, Pfizer Ltd, The Portway, Granta Park, Abington, Cambridge, United Kingdom
| | | | - Caroline L Benn
- Neusentis, Pfizer Ltd, The Portway, Granta Park, Abington, Cambridge, United Kingdom
| | - Gillian P Bates
- UCL Huntington's Disease Centre, Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|