1
|
Liu YX, Song JL, Li XM, Lin H, Cao YN. Identification of target genes co-regulated by four key histone modifications of five key regions in hepatocellular carcinoma. Methods 2024; 231:165-177. [PMID: 39349287 DOI: 10.1016/j.ymeth.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a cancer with high morbidity and mortality. Studies have shown that histone modification plays an important regulatory role in the occurrence and development of HCC. However, the specific regulatory effects of histone modifications on gene expression in HCC are still unclear. This study focuses on HepG2 cell lines and hepatocyte cell lines. First, the distribution of histone modification signals in the two cell lines was calculated and analyzed. Then, using the random forest algorithm, we analyzed the effects of different histone modifications and their modified regions on gene expression in the two cell lines, four key histone modifications (H3K36me3, H3K4me3, H3K79me2, and H3K9ac) and five key regions that co-regulate gene expression were obtained. Subsequently, target genes regulated by key histone modifications in key regions were screened. Combined with clinical data, Cox regression analysis and Kaplan-Meier survival analysis were performed on the target genes, and four key target genes (CBX2, CEBPZOS, LDHA, and UMPS) related to prognosis were identified. Finally, through immune infiltration analysis and drug sensitivity analysis of key target genes, the potential role of key target genes in HCC was confirmed. Our results provide a theoretical basis for exploring the occurrence of HCC and propose potential biomarkers associated with histone modifications, which may be potential drug targets for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Yu-Xian Liu
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China.
| | - Jia-Le Song
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China
| | - Xiao-Ming Li
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, Center for Informational Biology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yan-Ni Cao
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China.
| |
Collapse
|
2
|
Hussain MS, Moglad E, Afzal M, Gupta G, Hassan Almalki W, Kazmi I, Alzarea SI, Kukreti N, Gupta S, Kumar D, Chellappan DK, Singh SK, Dua K. Non-coding RNA mediated regulation of PI3K/Akt pathway in hepatocellular carcinoma: Therapeutic perspectives. Pathol Res Pract 2024; 258:155303. [PMID: 38728793 DOI: 10.1016/j.prp.2024.155303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is among the primary reasons for fatalities caused by cancer globally, highlighting the need for comprehensive knowledge of its molecular aetiology to develop successful treatment approaches. The PI3K/Akt system is essential in the course of HCC, rendering it an intriguing candidate for treatment. Non-coding RNAs (ncRNAs), such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are important mediators of the PI3K/Akt network in HCC. The article delves into the complex regulatory functions of ncRNAs in influencing the PI3K/Akt system in HCC. The study explores how lncRNAs, miRNAs, and circRNAs impact the expression as well as the function of the PI3K/Akt network, either supporting or preventing HCC growth. Additionally, treatment strategies focusing on ncRNAs in HCC are examined, such as antisense oligonucleotide-based methods, RNA interference, and small molecule inhibitor technologies. Emphasizing the necessity of ensuring safety and effectiveness in clinical settings, limitations, and future approaches in using ncRNAs as therapies for HCC are underlined. The present study offers useful insights into the complex regulation system of ncRNAs and the PI3K/Akt cascade in HCC, suggesting possible opportunities for developing innovative treatment approaches to address this lethal tumor.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Khandwa Road, Village Umrikheda, Near Toll Booth, Indore, Madhya Pradesh 452020, India
| | - Dinesh Kumar
- School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
3
|
Ramirez-Perez S, Vekariya R, Gautam S, Reyes-Perez IV, Drissi H, Bhattaram P. MyD88 dimerization inhibitor ST2825 targets the aggressiveness of synovial fibroblasts in rheumatoid arthritis patients. Arthritis Res Ther 2023; 25:180. [PMID: 37749630 PMCID: PMC10519089 DOI: 10.1186/s13075-023-03145-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Dimerization of the myeloid differentiation primary response 88 protein (MyD88) plays a pivotal role in the exacerbated response to innate immunity-dependent signaling in rheumatoid arthritis (RA). ST2825 is a highly specific inhibitor of MyD88 dimerization, previously shown to inhibit the pro-inflammatory gene expression in peripheral blood mononuclear cells from RA patients (RA PBMC). In this study, we elucidated the effect of disrupting MyD88 dimerization by ST2825 on the pathological properties of synovial fibroblasts from RA patients (RA SFs). METHODS RA SFs were treated with varying concentrations of ST2825 in the presence or absence of bacterial lipopolysaccharides (LPS) to activate innate immunity-dependent TLR signaling. The DNA content of the RA SFs was quantified by imaging cytometry to investigate the effect of ST2825 on different phases of the cell cycle and apoptosis. RNA-seq was used to assess the global response of the RA SF toward ST2825. The invasiveness of RA SFs in Matrigel matrices was measured in organoid cultures. SFs from osteoarthritis (OA SFs) patients and healthy dermal fibroblasts were used as controls. RESULTS ST2825 reduced the proliferation of SFs by arresting the cells in the G0/G1 phase of the cell cycle. In support of this finding, transcriptomic analysis by RNA-seq showed that ST2825 may have induced cell cycle arrest by primarily inhibiting the expression of critical cell cycle regulators Cyclin E2 and members of the E2F family transcription factors. Concurrently, ST2825 also downregulated the genes encoding for pain, inflammation, and joint catabolism mediators while upregulating the genes required for the translocation of nuclear proteins into the mitochondria and members of the mitochondrial respiratory complex 1. Finally, we demonstrated that ST2825 inhibited the invasiveness of RA SFs, by showing decreased migration of LPS-treated RA SFs in spheroid cultures. CONCLUSIONS The pathological properties of the RA SFs, in terms of their aberrant proliferation, increased invasiveness, upregulation of pain and inflammation mediators, and disruption of mitochondrial homeostasis, were attenuated by ST2825 treatment. Taken together with the previously reported anti-inflammatory effects of ST2825 in RA PBMC, this study strongly suggests that targeting MyD88 dimerization could mitigate both systemic and synovial pathologies in a variety of inflammatory arthritic diseases.
Collapse
Affiliation(s)
- Sergio Ramirez-Perez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA.
| | - Rushi Vekariya
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA
| | - Surabhi Gautam
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA
| | - Itzel Viridiana Reyes-Perez
- Department of Molecular Biology and Genomics, University Center for Health Science, University of Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA
- Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Pallavi Bhattaram
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA.
| |
Collapse
|
4
|
Wang Z, Gao P, Sun W, Rehman AU, Jiang J, Xu S, Xue C, Zhu C, Qin X. Long noncoding RNA MyD88 functions as a promising diagnostic biomarker in hepatocellular carcinoma. Front Endocrinol (Lausanne) 2023; 14:938102. [PMID: 36793272 PMCID: PMC9922760 DOI: 10.3389/fendo.2023.938102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most frequent malignancies. Alpha-fetoprotein (AFP) has some limitations in diagnosing early HCC. Recently, long noncoding RNAs (lncRNAs) showed great potential as tumor diagnostic biomarkers, and lnc-MyD88 was previously identified as a carcinogen in HCC. Here, we explored its diagnostic value as a plasma biomarker. MATERIALS AND METHODS Quantitative real-time PCR was adopted to detect lnc-MyD88 expression in plasma samples of 98 HCC patients, 52 liver cirrhosis (LC) patients, and 105 healthy people. The correlation between lnc-MyD88 and clinicopathological factors was analyzed through chi-square test. The receiver operating characteristic (ROC) curve was used to analyze the sensitivity, specificity, Youden index, and area under the curve (AUC) of lnc-MyD88 and AFP alone and in combination for the diagnosis of HCC. The relationship between MyD88 and immune infiltration was analyzed by single sample gene set enrichment analysis (ssGSEA) algorithm. RESULTS Lnc-MyD88 was highly expressed in plasma samples of HCC and hepatitis B virus (HBV)-associated HCC patients. Lnc-MyD88 had better diagnostic value than AFP in HCC patients using healthy people or LC patients as control (healthy people, AUC: 0.776 vs. 0.725; LC patients, AUC: 0.753 vs. 0.727). The multivariate analysis showed that lnc-MyD88 had great diagnostic value for distinguishing HCC from LC and healthy people. Lnc-MyD88 had no correlation with AFP. Lnc-MyD88 and AFP were independent diagnostic factors for HBV-associated HCC. The AUC, sensitivity, and Youden index of the combined diagnosis of lnc-MyD88 and AFP combined were higher than those of lnc-MyD88 and AFP alone. The ROC curve of lnc-MyD88 for the diagnosis of AFP-negative HCC was plotted with a sensitivity of 80.95%, a specificity of 79.59%, and an AUC value of 0.812 using healthy people as control. The ROC curve also presented its great diagnostic value using LC patients as control (sensitivity: 76.19%, specificity: 69.05%, AUC value: 0.769). Lnc-MyD88 expression was correlated with microvascular invasion in HBV-associated HCC patients. MyD88 was positively correlated with infiltrating immune cells and immune-related genes. CONCLUSION The high expression of plasma lnc-MyD88 in HCC is distinct and could be utilized as a promising diagnostic biomarker. Lnc-MyD88 had great diagnostic value for HBV-associated HCC and AFP-negative HCC, and it had higher efficacy in combination with AFP.
Collapse
Affiliation(s)
- Zhihuai Wang
- Department of General Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China
- Graduate School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Peng Gao
- Department of General Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Weijun Sun
- Department of General Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Adeel ur Rehman
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiakai Jiang
- Department of General Surgery, The Changzhou No.3 People’s Hospital, Changzhou, China
| | - Suobao Xu
- Department of General Surgery, The Changzhou No.3 People’s Hospital, Changzhou, China
| | - Cailin Xue
- Department of General Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Chunfu Zhu
- Department of General Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China
- Graduate School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- *Correspondence: Chunfu Zhu, ; Xihu Qin,
| | - Xihu Qin
- Department of General Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China
- Graduate School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- *Correspondence: Chunfu Zhu, ; Xihu Qin,
| |
Collapse
|
5
|
Zhang Y, Shao J, Li S, Liu Y, Zheng M. The Crosstalk Between Regulatory Non-Coding RNAs and Nuclear Factor Kappa B in Hepatocellular Carcinoma. Front Oncol 2021; 11:775250. [PMID: 34804980 PMCID: PMC8602059 DOI: 10.3389/fonc.2021.775250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal type of malignancies that possesses great loss of life safety to human beings worldwide. However, few effective means of curing HCC exist and its specific molecular basis is still far from being fully elucidated. Activation of nuclear factor kappa B (NF-κB), which is often observed in HCC, is considered to play a significant part in hepatocarcinogenesis and development. The emergence of regulatory non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), is a defining advance in cancer biology, and related research in this branch has yielded many diagnostic and therapeutic opportunities. Recent studies have suggested that regulatory ncRNAs act as inhibitors or activators in the initiation and progression of HCC by targeting components of NF-κB signaling or regulating NF-κB activity. In this review, we attach importance to the role and function of regulatory ncRNAs in NF-κB signaling of HCC and NF-κB-associated chemoresistance in HCC, then propose future research directions and challenges of regulatory ncRNAs mediated-regulation of NF-κB pathway in HCC.
Collapse
Affiliation(s)
- Yina Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiajia Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuangshuang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Ahmad S, Abbas M, Ullah MF, Aziz MH, Beylerli O, Alam MA, Syed MA, Uddin S, Ahmad A. Long non-coding RNAs regulated NF-κB signaling in cancer metastasis: Micromanaging by not so small non-coding RNAs. Semin Cancer Biol 2021; 85:155-163. [PMID: 34314819 DOI: 10.1016/j.semcancer.2021.07.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Cancer metastasis is a major reason for the cancer-associated deaths and a role of long non-coding RNAs (lncRNAs) in cancer metastasis is increasingly being realized. Among the many oncogenic pathways, NF-κB signalling's involvement in cancer metastasis as a key inflammation-regulatory transcription factor has been a subject of interest for long time. Accumulating data from in vitro as well as in vivo studies along with analysis of clinical cancer tissues points to regulation of NF-κB signalling by lncRNAs with implications toward the onset of cancer metastasis. LncRNAs FOXD2-AS1, KRT19P3 and the NF-κB interacting lncRNA (NKILA) associate with lymph node metastasis and poor prognosis of individual cancers. The role of epithelial-mesenchymal transition (EMT) in cancer metastasis is well known. EMT is regulated by NF-κB and regulation of NF-κB/EMT-induced metastasis by lncRNAs remains a hot topic of research with indications for such roles of lncRNAs MALAT1, SNHG15, CRNDE and AC007271.3. Among the many lncRNAs, NKILA stands out as the most investigated lncRNA for its regulation of NF-κB. This tumor suppressive lncRNA has been reported downregulated in clinical samples representing different human cancers. Mechanistically, NKILA has been consistently shown to inhibit NF-κB activation via inhibition of IκBα phosphorylation and the resulting suppression of EMT. NKILA is also a target of natural anticancer compounds. Given the importance of NF-κB as a master regulatory transcription factor, lncRNAs, as the modulators of NF-κB signaling, can provide alternate targets for metastatic cancers with constitutively active NF-κB.
Collapse
Affiliation(s)
- Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Madiha Abbas
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohammad Fahad Ullah
- Prince Fahd Research Chair, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Tabuk, Saudi Arabia
| | - Moammir H Aziz
- James H. Quillen VA Medical Center, Johnson City, TN, 37604, USA
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Majid Ali Alam
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shahab Uddin
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory of Animal Center, Qatar University, Doha, Qatar
| | - Aamir Ahmad
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
7
|
Zeng H, Li L, Gao Y, Wu G, Hou Z, Liu S. Long noncoding RNA UCA1 regulates HCV replication and antiviral response via miR-145-5p/SOCS7/IFN pathway. Int J Biol Sci 2021; 17:2826-2840. [PMID: 34345210 PMCID: PMC8326114 DOI: 10.7150/ijbs.59227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
Hepatitis C virus (HCV) infection involves a variety of viral and host factors, which leads to the dysregulation of number of relevant genes including long noncoding RNAs (LncRNAs). LncRNA urothelial carcinoma-associated 1 (UCA1) has been reported to be upregulated in HCV-infected individuals. In a bid to elucidate on the contribution of UCA1 on HCV replication, we infected Huh7.5 cells with cell culture-derived HCV and found that UCA1 expression was elevated in time- and dose-dependent manners. Functionally, UCA1 knockdown by siRNA upregulated interferon (IFN) responses, thereby increasing the expression of interferon-stimulating genes (ISGs), and subsequently suppressing HCV replication. Bioinformatics analysis and experimental results indicated that, functioning as competitive endogenous RNA, UCA1 could sponge microRNA (miR)-145-5p, which targeted suppressor of cytokine signaling 7 (SOCS7) mRNA and subsequently mediated SOCS7 silencing. Moreover, SOCS7 protein exerted an inhibitory effect on IFN responses, thereby facilitating HCV replication. Taken together, at first, our findings demonstrate that UCA1 can counteract the expression of miR-145-5p, thereby upregulating the level of SOCS7, and in turn leading to the suppression of antiviral response in Huh7.5 cells.
Collapse
Affiliation(s)
- Haiyan Zeng
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Lei Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100010, China
| | - Yi Gao
- Department of Infectious Disease, the Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Guojun Wu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Zhouhua Hou
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shuiping Liu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
8
|
Ghafouri-Fard S, Gholipour M, Hussen BM, Taheri M. The Impact of Long Non-Coding RNAs in the Pathogenesis of Hepatocellular Carcinoma. Front Oncol 2021; 11:649107. [PMID: 33968749 PMCID: PMC8097102 DOI: 10.3389/fonc.2021.649107] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the utmost deadly human malignancies. This type of cancer has been associated with several environmental, viral, and lifestyle risk factors. Among the epigenetic factors which contribute in the pathogenesis of HCC is dysregulation of long non-coding RNAs (lncRNAs). These transcripts modulate expression of several tumor suppressor genes and oncogenes and alter the activity of cancer-related signaling axes. Several lncRNAs such as NEAT1, MALAT1, ANRIL, and SNHG1 have been up-regulated in HCC samples. On the other hand, a number of so-called tumor suppressor lncRNAs namely CASS2 and MEG3 are down-regulated in HCC. The interaction between lncRNAs and miRNAs regulate expression of a number of mRNA coding genes which are involved in the pathogenesis of HCC. H19/miR-15b/CDC42, H19/miR-326/TWIST1, NEAT1/miR-485/STAT3, MALAT1/miR-124-3p/Slug, MALAT1/miR-195/EGFR, MALAT1/miR-22/SNAI1, and ANRIL/miR-144/PBX3 axes are among functional axes in the pathobiology of HCC. Some genetic polymorphisms within non-coding regions of the genome have been associated with risk of HCC in certain populations. In the current paper, we describe the recent finding about the impact of lncRNAs in HCC.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Zhang Q, Ye F, Guo S, Xiao W, Zhang J, Qu Y, Zhang J. Knockdown of lncRNA RMST protect against myocardial infarction through regulating miR-5692 and MAGI3 axis. Am J Transl Res 2021; 13:3906-3916. [PMID: 34017581 PMCID: PMC8129307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
AIMS Myocardial infarction is the leading cause of death worldwide. The aim of this study was to investigate the function and mechanism of lncRNA RMST in myocardial infarction. MATERIALS AND METHODS H/R and H2O2 models were established to assess the function of lncRNA RMST in vitro. Mouse myocardial infarction was used to analyze the function of lncRNA RMST in vivo. Bioinformatics analysis was performed to predict the potential binding target of lncRNA RMST. Rescue experiments were performed to verify the relationship between RMST and its target. RESULTS The expression of lncRNA RMST was significantly increased with H/R or H2O2 treatment. Knockdown of lncRNA RMST improved cell death and protected mitochondria from H/R injury in vitro. In vivo, cardiac function was significantly attenuated by knockdown of lncRNA RMST. We also provided evidence that miR-5692 was a direct target of lncRNA RMST. Rescue experiments showed that knockdown of miR-5692 could restore the function of RMST. CONCLUSION Our study is the first to prove the function and mechanism of lncRNA RMST in myocardial infarction. Thus, a deeper understanding of the role of lncRNA RMST in myocardial infarction may provide new insights for the clinical intervention of MI.
Collapse
Affiliation(s)
- Qiaoling Zhang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University Zhengzhou, Henan, China
| | - Famin Ye
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University Zhengzhou, Henan, China
| | - Suping Guo
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University Zhengzhou, Henan, China
| | - Wentao Xiao
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University Zhengzhou, Henan, China
| | - Jingjing Zhang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University Zhengzhou, Henan, China
| | - Yongsheng Qu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University Zhengzhou, Henan, China
| | - Jing Zhang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University Zhengzhou, Henan, China
| |
Collapse
|
10
|
Zhang W, Han L, Xing P, Liu B, Sun Z, Zhou W, Dong J. LncRNA RHPN1-AS1 accelerates proliferation, migration, and invasion via regulating miR-485-5p/BSG axis in hepatocellular carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2543-2551. [PMID: 32435875 DOI: 10.1007/s00210-020-01889-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
Abstract
It is reported that long noncoding RNA RHPN1-AS1 (lncRNA RHPN1-AS1) functions as an oncogene among multiple types of cancers; however, the effect of lncRNA RHPN1-AS1 in hepatocellular carcinoma (HCC) is left to be investigated. The main purpose of this work was to study the effects of lncRNA RHPN1-AS1/miR-485-5p system on proliferation, migration, and invasion in HCC and future investigate the latent mechanisms. Our work found that lncRNA RHPN1-AS1 was observably up-regulated in HCC tissues and cell lines, especially HCCLM3 and SMMC-7721 cells. LncRNA RHPN1-AS1 knockdown decreased the capacity of proliferation, invasion, and migration in HCCLM3 and SMMC-7721 cells, which could be crippled by miR-485-5p inhibitor. Besides, the expression of basigin (BSG) was decreased after lncRNA RHPN1-AS1 silence, indicating the function of lncRNA RHPN1-AS1/miR-485-5p/BSG axis in HCC progression. Our study opens novel insights to help understand the mechanisms of lncRNA RHPN1-AS1/miR-485-5p/BSG axis in HCC progression, which may provide a new therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
- Post-doctoral Station, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Lei Han
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Peng Xing
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Bailiang Liu
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Zhongqi Sun
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Wenping Zhou
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Wu Y, Zhang Y, Qin X, Geng H, Zuo D, Zhao Q. PI3K/AKT/mTOR pathway-related long non-coding RNAs: roles and mechanisms in hepatocellular carcinoma. Pharmacol Res 2020; 160:105195. [PMID: 32916254 DOI: 10.1016/j.phrs.2020.105195] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide with high prevalence and lethality. The oncogenic phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway is a classic dysregulated pathway involved in the pathogenesis of HCC. However, the underlying mechanism for how PI3K/AKT/mTOR pathway aberrantly activates HCC has not been entirely elucidated. The recognition of the functional roles of long non-coding RNAs (lncRNAs) in PI3K/AKT/mTOR signaling axis sheds light on a new dimension to our understanding of hepatocarcinogenesis. In this review, we comprehensively summarize 67 dysregulated PI3K/AKT/mTOR pathway-related lncRNAs in HCC. Many studies have indicated that the 67 dysregulated lncRNAs show oncogenic or anti-oncogenic effects in HCC by regulation on epigenetic, transcriptional and post-transcriptional levels and they play pivotal roles in the initiation of HCC in diverse biological processes like proliferation, metastasis, drug resistance, radio-resistance, energy metabolism, autophagy and so on. Besides, many of these lncRNAs are associated with clinicopathological features and clinical prognosis in HCC, which may provide a potential future application in the diagnosis and therapy of HCC.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Yingshi Zhang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Xiaochun Qin
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Haobin Geng
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Qingchun Zhao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang 110840, China.
| |
Collapse
|
12
|
Song F, Liu J, Feng Y, Jin Y. Propofol‑induced HOXA11‑AS promotes proliferation, migration and invasion, but inhibits apoptosis in hepatocellular carcinoma cells by targeting miR‑4458. Int J Mol Med 2020; 46:1135-1145. [PMID: 32705160 PMCID: PMC7387087 DOI: 10.3892/ijmm.2020.4667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Propofol is a commonly used drug for the induction and maintenance of anesthesia. Previous studies have reported that propofol is involved in the progression of numerous human cancer types, including hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms in HCC are yet to be elucidated. The present study aimed to investigate the potential mechanism of propofol in HCC development. MTT assay, flow cytometry analysis and Transwell assays were conducted to examine cell proliferation, apoptosis, migration and invasion, respectively. Western blotting was also performed to determine the protein expression levels of Bcl‑2 and cleaved‑caspase 3. An in vivo experiment was performed to assess the effect of propofol on tumor growth. Moreover, reverse transcription‑quantitative PCR was conducted to measure the mRNA expression levels of HOMEOBOX A11 (HOXA11) antisense RNA (HOXA11‑AS) and microRNA (miR)‑4458. Dual‑luciferase reporter and RNA pull‑down assays were performed to evaluate the target relationship between HOXA11‑AS and miR‑4458. It was demonstrated that propofol inhibited HCC cell proliferation, migration and invasion, and promoted cell apoptosis in vitro. Furthermore, propofol could suppress tumor growth in vivo. Propofol suppressed the expression of HOXA11‑AS in HCC cells, while HOXA11‑AS overexpression reversed the inhibitory effect of propofol treatment on cell progression in HCC. In addition, miR‑4458 was identified as a target of HOXA11‑AS, and miR‑4458 inhibition reversed the effect of HOXA11‑AS knockdown on HCC cell progression. The results also indicated that propofol promoted the expression of miR‑4458, while HOXA11‑AS restored this effect in HCC. Thus, it was suggested that propofol suppressed cell progression by modulating the HOXA11‑AS/miR‑4458 axis in HCC.
Collapse
Affiliation(s)
- Furong Song
- Department of Anesthesiology
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jun Liu
- Department of Anesthesiology
| | | | - Yi Jin
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
13
|
Long noncoding RNA AC092171.4 promotes hepatocellular carcinoma progression by sponging microRNA-1271 and upregulating GRB2. Aging (Albany NY) 2020; 12:14141-14156. [PMID: 32692718 PMCID: PMC7425487 DOI: 10.18632/aging.103419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 05/19/2020] [Indexed: 12/22/2022]
Abstract
In this study, we investigated the mechanistic role of the long non-coding RNA (lncRNA) AC092171.4 in hepatocellular carcinoma (HCC). AC092171.4 was significantly upregulated in HCC tumor tissues compared to normal liver tissues. HCC patients with high AC092171.4 expression showed poorer overall survival (OS) and disease-free survival (DFS) than those with low AC092171.4 expression. In vitro cell proliferation, migration and invasiveness were all higher in AC092171.4-overexpressing HCC cells, but lower in AC092171.4-silenced HCC cells, than in controls. Balb/c nude mice injected with AC092171.4-silenced HCC cells had smaller xenograft tumors, which showed less growth and pulmonary metastasis than control tumors. Bioinformatics analyses and dual luciferase reporter assays confirmed that AC092171.4 binds directly to miR-1271, which targets the 3’UTR of GRB2 mRNA. AC092171.4 expression correlates negatively with miR1271 expression and correlates positively with GRB2 mRNA expression in HCC tissues from patients. HCC cells co-transfected with miR-1271 mimics and sh-AC092171.4 show less proliferation, migration, invasiveness, GRB2 protein, and epithelial to mesencyhmal transition (EMT) than sh-AC092171.4-transfected HCC cells. These findings demonstrate that AC092171.4 promotes growth and progression of HCC by sponging miR-1271 and upregulating GRB2. This makes AC092171.4 a potential prognostic indicator and therapeutic target for HCC patients.
Collapse
|
14
|
Sheng Y, Hu R, Zhang Y, Luo W. MicroRNA-4317 predicts the prognosis of breast cancer and inhibits tumor cell proliferation, migration, and invasion. Clin Exp Med 2020; 20:417-425. [PMID: 32279128 DOI: 10.1007/s10238-020-00625-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Previous researches have indicated that miR-4317 was aberrantly expressed in several tumors. However, the potential role of miR-4317 in breast cancer is still unclear. The aim of this study was to investigate the potential role of miR-4317 in breast cancer. The relative expression levels of miR-4317 were detected in breast cancer tissues and cell lines using qRT-PCR analysis. The Kaplan-Meier survival curve and multivariate Cox regression analyses were used to investigate the prognostic significance of miR-4317 in breast cancer. CCK-8 and Transwell assays were performed to evaluate the effects of miR-4317 on cell proliferation, migration, and invasion. The results showed that miR-4317 expression was decreased in breast cancer tissues and cell lines. Downregulation of miR-4317 was significantly associated with lymph node metastasis, TNM stage, and poor prognosis. Overexpression of miR-4317 inhibited proliferation, migration, and invasion of breast cancer cells, while downregulation of miR-4317 exhibited the opposite effects. MYD88 may be a direct target of miR-4317. The results suggest miR-4317 may play a tumor suppressor role in breast cancer and inhibit proliferation, migration, and invasion of breast cancer cells by targeting MYD88. The findings provide novel evidence of miR-4317 as a potential prognostic biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yuwei Sheng
- Department of Thyroid and Breast Surgery, Shanghai First People's Hospital Baoshan Branch, No. 101, North Tongtai Road, Shanghai, 200940, China
| | - Rong Hu
- Department of Pharmacy, Shanghai First People's Hospital Baoshan Branch, Shanghai, 200940, China
| | - Yi Zhang
- Department of Thyroid and Breast Surgery, Shanghai First People's Hospital Baoshan Branch, No. 101, North Tongtai Road, Shanghai, 200940, China
| | - Wenjie Luo
- Department of Thyroid and Breast Surgery, Shanghai First People's Hospital Baoshan Branch, No. 101, North Tongtai Road, Shanghai, 200940, China.
| |
Collapse
|
15
|
Zhou Y, Zhou Z, Ji Z, Yan W, Li H, Yu X. Tetramethylpyrazine reduces prostate cancer malignancy through inactivation of the DPP10‑AS1/CBP/FOXM1 signaling pathway. Int J Oncol 2020; 57:314-324. [PMID: 32319592 DOI: 10.3892/ijo.2020.5036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/06/2020] [Indexed: 11/05/2022] Open
Abstract
Tetramethylpyrazine (TMP), a Chinese herbal medicine, has been reported to possess anticancer effects. Emerging evidence suggests that various long noncoding RNAs (lncRNAs) serve important roles in cancer initiation and progression. In the present study, the tumor‑suppressive effects of TMP in human PCa cells was examined and the underlying mechanisms of its actions were determined. The data showed that TMP treatment reduced cell viability and increased apoptosis in a dose‑dependent manner. Reverse transcription‑quantitative PCR showed TMP treatment increased the expression of lncRNA DPP10‑AS1 in PCa cells. Furthermore, DPP10‑AS1 was also upregulated in TMP‑resistant PCa cells. Knockdown of DPP10‑AS1 reversed TMP resistance, whereas increased expression of DPP10‑AS1 abrogated the TMP‑mediated cytotoxicity in PCa cells. In addition, forkhead box M1 (FOXM1) was verified as the functional target of DPP10‑AS1, and knockdown of FOXM1 reversed the TMP/DPP10‑AS1‑induced cell cytotoxicity. Mechanistically, DPP10‑AS1 was associated with CREB binding protein, thereby induced H3K27ac enrichment at the promoter region of the FOXM1 gene. In conclusion, the present study showed that TMP may be a promising treatment agent for PCa and lncRNA DPP10‑AS1 may be a promising therapeutic target for TMP treatment.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100000, P.R. China
| | - Zhien Zhou
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100000, P.R. China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100000, P.R. China
| | - Weigang Yan
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100000, P.R. China
| | - Hanzhong Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100000, P.R. China
| | - Xiao Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100000, P.R. China
| |
Collapse
|
16
|
Sun Y, Zhao H, Wu M, Xu J, Zhu S, Gao J. Identifying critical states of hepatocellular carcinoma based on landscape dynamic network biomarkers. Comput Biol Chem 2020; 85:107202. [PMID: 31951859 DOI: 10.1016/j.compbiolchem.2020.107202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/17/2019] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the major histological form of primary liver cancer. It has usually reached the disease state once the patient is diagnosed since there are no specific symptoms in the early stages of HCC. This fact increases the difficulty of curing HCC. Recently, quantities of evidence have shown that many mathematical methods (such as dynamic network biomarkers, DNB) can be used to detect critical states or tipping points of complex diseases. However, it is difficult to apply the DNB theory to the clinic since multiple samples are generally unavailable for individual patient. This paper constructs a novel method based on landscape dynamic network biomarkers (L-DNB), which aims to detect early warning signals from cirrhosis state to very advanced HCC state in individual patient. The selected dataset contains multiple samples for each HCC state. A score that indicates the disease characteristics is calculated for each sample by RNA-seq data, and several scores constitute a distribution in the same state. Quantifying the statistical characteristics of these distributions and determining that low-grade dysplastic and high-grade dysplastic are the critical states of HCC. These results can provide scientific advice for early warning indicators and optimal treatment time for HCC.
Collapse
Affiliation(s)
- Yichen Sun
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Hongqian Zhao
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Min Wu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Junhua Xu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Shanshan Zhu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Jie Gao
- School of Science, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
17
|
Chen J, Huang X, Wang W, Xie H, Li J, Hu Z, Zheng Z, Li H, Teng L. LncRNA CDKN2BAS predicts poor prognosis in patients with hepatocellular carcinoma and promotes metastasis via the miR-153-5p/ARHGAP18 signaling axis. Aging (Albany NY) 2019; 10:3371-3381. [PMID: 30510148 PMCID: PMC6286843 DOI: 10.18632/aging.101645] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/04/2018] [Indexed: 01/25/2023]
Abstract
Background: Growing evidence shows that long noncoding RNAs (lncRNAs) play a crucial role in cancer progression. However, whether lncRNA CDKN2BAS is involved in human hepatocellular carcinoma (HCC) metastasis remains unclear. Methods: Human lncRNA microarray analysis was performed to detect differential expression levels of lncRNAs in metastatic HCC tissues. Effects of CDKN2BAS on cell proliferation, migration, and apoptosis were determined by MTT assay, colony formation assay, migration assay, scratch assay, and flow cytometry. The xenograft experiment was used to confirm the effect of CDKN2BAS on HCC in vivo. qRT-PCR and Western blot were performed to determine the expression levels of mRNAs and proteins. Luciferase reporter assay was used to identify the specific target relationships. Results: CDKN2BAS was remarkably up-regulated in metastatic HCC tissues compared with the adjacent non-tumor tissues. CDKN2BAS promotes HCC cell growth and migration in vitro and in vivo. Additionally, CDKN2BAS upregulated the expression of Rho GTPase activating protein 18 (ARHGAP18) by sponging microRNA-153-5p (miR-153-5p), and thus promoted HCC cell migration. Besides, CDKN2BAS downregulated the expression of Krüppel-like factor 13 (KLF13) and activated MEK-ERK1/2 signaling, thus reducing apoptosis in HCC cells. Conclusions: Our study revealed that lncRNA CDKN2BAS promotes HCC metastasis by regulating the miR-153-5p/ARHGAP18 signaling.
Collapse
Affiliation(s)
- Junzheng Chen
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Xitian Huang
- Department of Hepatology, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Weijun Wang
- Department of Hepatobiliary Surgery, Sanxinmeide Geriatrics Hospital of Wenling, Wenling 317500, Zhejiang Province, China
| | - Hongcheng Xie
- Department of Hepatology, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Jianfeng Li
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Zhenfen Hu
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Zhijian Zheng
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Huiyong Li
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Lingfang Teng
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| |
Collapse
|
18
|
Zhu G, Cheng Z, Huang Y, Zheng W, Yang S, Lin C, Ye J. MyD88 mediates colorectal cancer cell proliferation, migration and invasion via NF‑κB/AP‑1 signaling pathway. Int J Mol Med 2019; 45:131-140. [PMID: 31746347 PMCID: PMC6889924 DOI: 10.3892/ijmm.2019.4390] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
The role of myeloid differentiation factor 88 (MyD88) in malignant tumors is largely unknown. Therefore, in this study, we aimed to examine the function and underlying mechanism of MyD88 in colorectal carcinoma in vitro using SW480 and HCT116 cell lines and in vivo using a nude mouse model. SW480 and HCT116 cells were infected with a lentiviral-based effective MyD88 siRNA virus. CCK-8 and colony formation assay were used to assess cell proliferation. Transwell and scratch assays were used to test the migration of colorectal cancer cells, and the Transwell assay was further used to analyze the invasiveness of colorectal cancer cells. Western blotting was performed to analyze the underlying mechanism of MyD88 regulation. In vitro experiments demonstrated that silencing MyD88 in SW480 and HCT116 cells markedly suppressed growth and invasion. Furthermore, MyD88 knockdown affected the MyD88-NF-κB/AP-1 signaling pathways in SW480 and HCT116 cells. In vivo, MyD88 knockdown inhibited tumor growth in a HCT116 cell subcutaneous nude model. We found that knockdown of the MyD88 gene can affect proliferation, invasion, and migration of colorectal cancer cells. We further verified that MyD88 knockdown can reduce the activity of NF-κB and AP-1 pathways. These results show that MyD88 gene plays an important role in promoting colorectal cancer, and thus can be exploited as a potential diagnostic and prognostic biomarker for colorectal cancer.
Collapse
Affiliation(s)
- Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Zhibin Cheng
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yongjian Huang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Wei Zheng
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Shugang Yang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Chunlin Lin
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
19
|
Duan J, Wu Y, Liu J, Zhang J, Fu Z, Feng T, Liu M, Han J, Li Z, Chen S. Genetic Biomarkers For Hepatocellular Carcinoma In The Era Of Precision Medicine. J Hepatocell Carcinoma 2019; 6:151-166. [PMID: 31696097 PMCID: PMC6805787 DOI: 10.2147/jhc.s224849] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/24/2022] Open
Abstract
Being one of the most lethal cancers that exhibit high levels of heterogeneity, hepatocellular carcinoma (HCC) is associated with diverse oncogenic pathways underpinned by varied driver genes. HCC can be induced by different etiological factors including virus infection, toxin exposure or metabolic disorders. Consequently, patients may display varied genetic profiles, and may respond differently to the treatments involving inhibition of target pathways. These DNA/RNA mutations, copy number variations, chromatin structural changes, aberrant expression of non-coding RNAs and epigenetic modifications were considered as biomarkers in the application of precision medication. To explore how genetic testing could contribute to early diagnosis, prognosis, treatment and postoperative monitoring of HCC, we conducted a systematic review of genetic markers associated with different pathologies. Moreover, we summarized on-going clinical trials for HCC treatment, including the trials for multiple kinase inhibitors and immune checkpoint blockade (ICB). The efficacy of ICB treatment in HCC is not as good as what was observed in lung cancer and melanoma, which might be due to the heterogeneity of the microenvironment of the liver.
Collapse
Affiliation(s)
- Jingxian Duan
- Department of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - Yuling Wu
- Department of Oncology, HaploX Biotechnology Co. Ltd, Shenzhen518000, People’s Republic of China
| | - Jikui Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen518036, People’s Republic of China
| | - Jiajia Zhang
- Department of Oncology, HaploX Biotechnology Co. Ltd, Shenzhen518000, People’s Republic of China
| | - Zhichao Fu
- Department of Oncology, HaploX Biotechnology Co. Ltd, Shenzhen518000, People’s Republic of China
| | - Tieshan Feng
- Department of Oncology, HaploX Biotechnology Co. Ltd, Shenzhen518000, People’s Republic of China
| | - Ming Liu
- Department of Oncology, HaploX Biotechnology Co. Ltd, Shenzhen518000, People’s Republic of China
| | - Jie Han
- Department of Oncology, HaploX Biotechnology Co. Ltd, Shenzhen518000, People’s Republic of China
| | - Zhicheng Li
- Department of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - Shifu Chen
- Department of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
- Department of Oncology, HaploX Biotechnology Co. Ltd, Shenzhen518000, People’s Republic of China
| |
Collapse
|
20
|
Epigenetic regulation of histone H3 in the process of hepatocellular tumorigenesis. Biosci Rep 2019; 39:BSR20191815. [PMID: 31320544 PMCID: PMC6680372 DOI: 10.1042/bsr20191815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
Better understanding of epigenetic regulation of hepatocellular carcinoma (HCC) will help us to cure this most common malignant liver cancer worldwide. The underlying mechanisms of HCC tumorigenesis are genomic aberrations regulated by genetic and epigenetic modifications. Histone H3 lysine modifications regulate histone structure and modulate transcriptional factor binding with target gene promoters. Targetting genes include VASH2, fatty acids synthase, RIZ1, FBP1, MPP1/3, YAP, which affect tumorigenesis, metabolisms, angiogenesis, and metastasis. Signal pathway studies demonstrate that the HGF-MET-MLL axis, phosphatase and tensin homolog (PTEN)-PI3K-Akt axis; WNT-β-catenin signal pathway is involved in histone H3 modification. A variety of factors such as virus infection, reactive oxygen species, food-borne toxins, irradiation, or non-coding RNA cause hepatocellular DNA damage or modification. Dysfunctional DNA repair mechanisms, including those at the epigenetic level are also major causes of HCC tumorigenesis. The development of therapies based on epigenetic regulatory mechanisms has great potential to advance the care of HCC patients in the future.
Collapse
|
21
|
Li W, Fu Q, Man W, Guo H, Yang P. LncRNA OR3A4 participates in the angiogenesis of hepatocellular carcinoma through modulating AGGF1/akt/mTOR pathway. Eur J Pharmacol 2019; 849:106-114. [DOI: 10.1016/j.ejphar.2019.01.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
|
22
|
Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer 2019; 18:26. [PMID: 30782187 PMCID: PMC6379961 DOI: 10.1186/s12943-019-0954-x] [Citation(s) in RCA: 981] [Impact Index Per Article: 163.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling is one of the most important intracellular pathways, which can be considered as a master regulator for cancer. Enormous efforts have been dedicated to the development of drugs targeting PI3K signaling, many of which are currently employed in clinical trials evaluation, and it is becoming increasingly clear that PI3K inhibitors are effective in inhibiting tumor progression. PI3K inhibitors are subdivided into dual PI3K/mTOR inhibitors, pan-PI3K inhibitors and isoform-specific inhibitors. In this review, we performed a critical review to summarize the role of the PI3K pathway in tumor development, recent PI3K inhibitors development based on clinical trials, and the mechanisms of resistance to PI3K inhibition.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Peng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
23
|
Guo G, Zhou J, Yang X, Feng J, Shao Y, Jia T, Huang Q, Li Y, Zhong Y, Nagarkatti PS, Nagarkatti M. Role of MicroRNAs Induced by Chinese Herbal Medicines Against Hepatocellular Carcinoma: A Brief Review. Integr Cancer Ther 2018; 17:1059-1067. [PMID: 30343602 PMCID: PMC6247546 DOI: 10.1177/1534735418805564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are highly conserved, noncoding small RNAs that regulate gene
expression, and consequently several important functions including early embryo
development, cell cycle, programmed cell death, cell differentiation, and
metabolism. While there are no effective treatments available against
hepatocellular carcinoma (HCC), some Chinese herbal medicines have been shown to
regulate growth, differentiation, invasion, and metastasis of HCC. Many studies
have shown that Chinese herbal medicines regulate the expression of miRNAs and
this may be associated with their ability to control the development of HCC. In
this article, the effects of Chinese herbal medicines on the expression of
miRNAs and their functions in the regulation of HCC have been reviewed and
discussed. miRNAs such as miRNA-221 and miRNA-222 mediated by Chinese herbal
medicines may be good biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Ge Guo
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Juhua Zhou
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Xiaogaung Yang
- 2 Hangzhou Hesti Biotechnology Co, Ltd, Hangzhou, Zhejiang, People's Republic of China
| | - Jiang Feng
- 2 Hangzhou Hesti Biotechnology Co, Ltd, Hangzhou, Zhejiang, People's Republic of China
| | - Yanxia Shao
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Tingting Jia
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Qingrong Huang
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Yanmin Li
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Yin Zhong
- 3 University of South Carolina, Columbia, SC, USA
| | | | | |
Collapse
|
24
|
Dong H, Wang W, Mo S, Chen R, Zou K, Han J, Zhang F, Hu J. SP1-induced lncRNA AGAP2-AS1 expression promotes chemoresistance of breast cancer by epigenetic regulation of MyD88. J Exp Clin Cancer Res 2018; 37:202. [PMID: 30157918 PMCID: PMC6114182 DOI: 10.1186/s13046-018-0875-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/13/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Resistance to trastuzumab has become a leading cause of mortality in breast cancer patients and is one of the major obstacles for improving the clinical outcome. Cell behavior can be modulated by long non-coding RNAs (lncRNAs), but the contribution of lncRNAs in trastuzumab resistance to breast cancer is largely unknown. To this end, the involvement and regulatory function of lncRNA AGAP2-AS1 in human breast cancer are yet to be investigated. METHODS Trastuzumab-resistant SKBR-3 and BT474 cells were obtained by continuous culture with 5 mg/mL trastuzumab for 6 months. RT-qPCR assay was used to determine the expression of AGAP2-AS1 in tissues and cells. RNA fluorescence in situ hybridization was used to investigate the subcellular location of AGAP2-AS1 in breast cancer cells. Bioinformatic analysis, chromatin immunoprecipitation (ChIP), RNA immunoprecipitation (RIP), western blotting, and immunofluorescence were carried out to verify the regulatory interaction of AGAP2-AS1, CREB-binding protein (CBP), and MyD88. In addition, a series of in vitro assays and a xenograft tumor model were used to analyze the functions of AGAP2-AS1 in breast cancer cells. RESULTS AGAP2-AS1 was upregulated and transcriptionally induced by SP1 in breast cancer. Overexpression of AGAP2-AS1 promoted cell growth, suppressed apoptosis, and caused trastuzumab resistance, whereas knockdown of AGAP2-AS1 showed an opposite effect. MyD88 was identified as a downstream target of AGAP2-AS1 and mediated the AGAP2-AS1-induced oncogenic effects. Mechanistically, the RIP assay revealed that AGAP2-AS1 could bind to CBP, a transcriptional co-activator. ChIP assays showed that AGAP2-AS1-bound CBP increased the enrichment of H3K27ac at the promoter region of MyD88, thus resulting in the upregulation of MyD88. Gain- and loss-of-function assays confirmed that the NF-κB pathway was activated by MyD88 and AGAP2-AS1. Furthermore, high AGAP2-AS1 expression was associated with poor clinical response to trastuzumab therapy in breast cancer patients. CONCLUSION AGAP2-AS1 could promote breast cancer growth and trastuzumab resistance by activating the NF-κB signaling pathway and upregulating MyD88 expression. Therefore, AGAP2-AS1 may serve as a novel biomarker for prognosis and act as a therapeutic target for the trastuzumab treatment.
Collapse
Affiliation(s)
- Huaying Dong
- Department of General Surgery, Hainan General Hospital, Jinan University, No.19 Xiu Hua Road, Xiuying District, Haikou city, 570311 Hainan Province China
| | - Wei Wang
- Department of General Surgery, Hainan General Hospital, Jinan University, No.19 Xiu Hua Road, Xiuying District, Haikou city, 570311 Hainan Province China
| | - Shaowei Mo
- Department of Science and Education, Hainan Maternal and Child health hospital, Haikou, 570206 Hainan China
| | - Ru Chen
- Department of General Surgery, Hainan General Hospital, Jinan University, No.19 Xiu Hua Road, Xiuying District, Haikou city, 570311 Hainan Province China
| | - Kejian Zou
- Department of General Surgery, Hainan General Hospital, Jinan University, No.19 Xiu Hua Road, Xiuying District, Haikou city, 570311 Hainan Province China
| | - Jing Han
- Department of General Surgery, Hainan General Hospital, Jinan University, No.19 Xiu Hua Road, Xiuying District, Haikou city, 570311 Hainan Province China
| | - Fan Zhang
- Department of General Surgery, Hainan General Hospital, Jinan University, No.19 Xiu Hua Road, Xiuying District, Haikou city, 570311 Hainan Province China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010 China
| |
Collapse
|
25
|
Wang L, Yu K, Zhang X, Yu S. Dual functional roles of the MyD88 signaling in colorectal cancer development. Biomed Pharmacother 2018; 107:177-184. [PMID: 30086464 DOI: 10.1016/j.biopha.2018.07.139] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
The myeloid differentiation factor 88 (MyD88), an adaptor protein in regulation of the innate immunity, functions to regulate immune responses against viral and bacterial infections in the human body. Toll-like receptors (TLRs) and interleukin 1 receptors (IL-1R) can recognize microbes or endogenous ligands and then recruit MyD88 to activate the MyD88-dependent pathway, while MyD88 mutation associated with lymphoma development and altered MyD88 signaling also involved in cancer-associated cell intrinsic and extrinsic inflammation progression and carcinogenesis. Detection of MyD88 expression was to predict prognosis of various human cancers, e.g., lymphoid, liver, and colorectal cancers. In human cancers, MyD88 protein acts as a bridge between the inflammatory signaling from the TLR/IL-1R and Ras oncogenic signaling pathway. However, the MyD88 signaling played dual functional roles in colorectal cancer, i.e., the tumor-promoting role that enhances cancer inflammation and intestinal flora imbalance to induce tumor invasion and tumor cell self-renewal, and the anti-tumor role that helps to maintain the host-microbiota homeostasis to induce tumor cell cycle arrest and immune responses against cancer cells. This review precisely discusses the up to date literature for these contrasting effects of MyD88 signaling on colorectal cancer development and progression.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Kewei Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiang Zhang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Shuwen Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
26
|
Prospects of Noncoding RNAs in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6579436. [PMID: 30148169 PMCID: PMC6083484 DOI: 10.1155/2018/6579436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/16/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a global health problem and one of the most common malignant tumors. Recent studies have shown that noncoding RNAs (ncRNAs) contribute to the pathogenesis of hepatocellular carcinoma (HCC). These RNAs may be involved in a variety of pathological processes such as cell proliferation, apoptosis, angiogenesis, invasion, and metastasis. In addition, abnormal expression of ncRNAs in HCC may provide potential prognostic or diagnostic biomarkers. This review provides an overview of the role and potential applications of ncRNAs, miRNAs, lncRNAs, circRNAs, and snoRNAs in liver cancer.
Collapse
|