1
|
Dahrizal D, Aziz IM, Dudin GA, Bhat R. ONCOLYTIC ACTIVITY OF HUMAN RESPIRATORY SYNCYTIAL VIRUS. Exp Oncol 2024; 46:81-86. [PMID: 39396176 DOI: 10.15407/exp-oncology.2024.02.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Oncolytic viruses (OVs) are emerging as novel tools in cancer therapy. Oncolytic virotherapy offers an attractive therapeutic combination of tumor-specific killing and immune co-stimulation, therefore amplifying the host immune response against tumors. Moreover, OVs can be engineered for the expression of different immunostimulatory molecules to optimize and enhance the efficacy of oncolytic virotherapy. The effectiveness of OVs has been demonstrated in many preclinical studies for different types of cancers to achieve the aim of personalized cancer therapy. Human respiratory syncytial virus (RSV), an RNA virus of the Pneumoviridae family causes severe lower respiratory tract infections in infants and immunocompromised individuals. Interestingly, the oncolytic activity of RSV demonstrated in human prostate, hepatocellular, and dermal cancer cells is mostly mediated via apoptotic cell death associated with the impaired NF-κB activation or with the defect of the IFNα/β-induced STAT-1 activation. At the same time, the studies on cervical cancer revealed that RSV infection resulted in autophagy activation and apoptosis through the ROS-BAX and TNF- α-mediated pathways. The rational combinations of OVs, including RSV, with other approaches may benefit patients whose response to conventional therapies is limited. Here, we discuss the oncolytic activity of RSV and its potential use against different types of cancer.
Collapse
Affiliation(s)
- D Dahrizal
- Politeknik Kesehatan Kemenkes Bengkulu, Indonesia
| | - Ibrahim M Aziz
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - R Bhat
- College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Samadi M, Mokhtari-Azad T, Nejati A, Norooz-Babaei Z, Foroushani AR, Haghshenas MR, Adjaminejad F, Zargaran H, Salimi V, Ghaemi A. The antitumor effect of oncolytic respiratory syncytial virus via the tumor necrosis factor-alpha induction and ROS-bax-mediated mechanisms. BMC Cancer 2023; 23:803. [PMID: 37641004 PMCID: PMC10464077 DOI: 10.1186/s12885-023-11326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Cervical cancer represents one of the most prevalent cancers among women worldwide, particularly in low- and middle-income nations. Oncolytic viruses (OVs) can infect cancer cells selectively and lethally without harming normal cells. Respiratory syncytial virus (RSV) is an oncolytic virus for anticancer therapy because of its propensity to multiply within tumor cells. This research aimed to assess the in vitro antitumor activities and molecular basis processes of the oncolytic RSV-A2 on the TC-1 cancer cells as a model for HPV‑related cervical cancers. METHODS Cellular proliferation (MTT) and lactate dehydrogenase (LDH) release assays were used to investigate the catalytic impacts of RSV-A2 by the ELISA method. Real-time PCR and flow cytometry assays were utilized to assess apoptosis, autophagy, intracellular concentrations of reactive oxygen species (ROS), and cell cycle inhibition. RESULTS Our MTT and LDH results demonstrated that TC-1 cell viability after oncolytic RSV-A2 treatment was MOI-dependently and altered significantly with increasing RSV-A2 virus multiplicity of infection (MOI). Other findings showed that the RSV-A2 potentially resulted in apoptosis and autophagy induction, caspase-3 activation, ROS generation, and cell cycle inhibition in the TC-1 cell line. Real-time PCR assay revealed that RSV-A2 infection significantly elevated the Bax and decreased the Bcl2 expression. CONCLUSIONS The results indicated that oncolytic RSV-A2 has cytotoxic and inhibiting effects on HPV-associated cervical cancer cells. Our findings revealed that RSV-A2 is a promising treatment candidate for cervical cancer.
Collapse
Affiliation(s)
- Mehdi Samadi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nejati
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Norooz-Babaei
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi Foroushani
- Department of Statistics and Epidemiology, School of Public Health, Tehran University of medical sciences, Tehran, Iran
| | - Mohammad Reza Haghshenas
- Department of Microbiology, Molecular, and Cell-Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Adjaminejad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hedieh Zargaran
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Salimi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Wang G, Liu Y, Liu S, Lin Y, Hu C. Oncolyic Virotherapy for Prostate Cancer: Lighting a Fire in Winter. Int J Mol Sci 2022; 23:12647. [PMID: 36293504 PMCID: PMC9603894 DOI: 10.3390/ijms232012647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
As the most common cancer of the genitourinary system, prostate cancer (PCa) is a global men's health problem whose treatments are an urgent research issue. Treatment options for PCa include active surveillance (AS), surgery, endocrine therapy, chemotherapy, radiation therapy, immunotherapy, etc. However, as the cancer progresses, the effectiveness of treatment options gradually decreases, especially in metastatic castration-resistant prostate cancer (mCRPC), for which there are fewer therapeutic options and which have a shorter survival period and worse prognosis. For this reason, oncolytic viral therapy (PV), with its exceptional properties of selective tumor killing, relatively good safety in humans, and potential for transgenic delivery, has attracted increasing attention as a new form of anti-tumor strategy for PCa. There is growing evidence that OV not only kills tumor cells directly by lysis but can also activate anticancer immunity by acting on the tumor microenvironment (TME), thereby preventing tumor growth. In fact, evidence of the efficacy of this strategy has been observed since the late 19th century. However, subsequently, interest waned. The renewed interest in this therapy was due to advances in biotechnological methods and innovations at the end of the 20th century, which was also the beginning of PCa therapy with OV. Moreover, in combination with chemotherapy, radiotherapy, gene therapy or immunotherapy, OV viruses can have a wide range of applications and can provide an effective therapeutic result in the treatment of PCa.
Collapse
Affiliation(s)
- Gongwei Wang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shuoru Liu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yuan Lin
- Department of Pharmacology, Sun Yat-sen University, Guangzhou 528478, China
| | - Cheng Hu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
4
|
Tang C, Li L, Mo T, Na J, Qian Z, Fan D, Sun X, Yao M, Pan L, Huang Y, Zhong L. Oncolytic viral vectors in the era of diversified cancer therapy: from preclinical to clinical. Clin Transl Oncol 2022; 24:1682-1701. [PMID: 35612653 PMCID: PMC9131313 DOI: 10.1007/s12094-022-02830-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022]
Abstract
With the in-depth research and wide application of immunotherapy recently, new therapies based on oncolytic viruses are expected to create new prospects for cancer treatment via eliminating the suppression of the immune system by tumors. Currently, an increasing number of viruses are developed and engineered, and various virus vectors based on effectively stimulating human immune system to kill tumor cells have been approved for clinical treatment. Although the virus can retard the proliferation of tumor cells, the choice of oncolytic viruses in biological cancer therapy is equally critical given their therapeutic efficacy, safety and adverse effects. Moreover, previously known oncolytic viruses have not been systematically classified. Therefore, in this review, we summarized and distinguished the characteristics of several common types of oncolytic viruses: herpes simplex virus, adenovirus, measles virus, Newcastle disease virus, reovirus and respiratory syncytial virus. Subsequently, we outlined that these oncolytic viral vectors have been transformed from preclinical studies in combination with immunotherapy, radiotherapy, chemotherapy, and nanoparticles into clinical therapeutic strategies for various advanced solid malignancies or circulatory system cancers.
Collapse
Affiliation(s)
- Chao Tang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lan Li
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tong Mo
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jintong Na
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhangbo Qian
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dianfa Fan
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xinjun Sun
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Min Yao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lina Pan
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Liping Zhong
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
5
|
Development of Group B Coxsackievirus as an Oncolytic Virus: Opportunities and Challenges. Viruses 2021; 13:v13061082. [PMID: 34198859 PMCID: PMC8227215 DOI: 10.3390/v13061082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses have emerged as a promising strategy for cancer therapy due to their dual ability to selectively infect and lyse tumor cells and to induce systemic anti-tumor immunity. Among various candidate viruses, coxsackievirus group B (CVBs) have attracted increasing attention in recent years. CVBs are a group of small, non-enveloped, single-stranded, positive-sense RNA viruses, belonging to species human Enterovirus B in the genus Enterovirus of the family Picornaviridae. Preclinical studies have demonstrated potent anti-tumor activities for CVBs, particularly type 3, against multiple cancer types, including lung, breast, and colorectal cancer. Various approaches have been proposed or applied to enhance the safety and specificity of CVBs towards tumor cells and to further increase their anti-tumor efficacy. This review summarizes current knowledge and strategies for developing CVBs as oncolytic viruses for cancer virotherapy. The challenges arising from these studies and future prospects are also discussed in this review.
Collapse
|
6
|
Abstract
Tumors represent a hostile environment for the effector cells of cancer immunosurveillance. Immunosuppressive receptors and soluble or membrane-bound ligands are abundantly exposed and released by malignant entities and their stromal accomplices. As a consequence, executioners of antitumor immunity inefficiently navigate across cancer tissues and fail to eliminate malignant targets. By inducing immunogenic cancer cell death, oncolytic viruses profoundly reshape the tumor microenvironment. They trigger the local spread of danger signals and tumor-associated (as well as viral) antigens, thus attracting antigen-presenting cells, promoting the activation and expansion of lymphocytic populations, facilitating their infiltration in the tumor bed, and reinvigorating cytotoxic immune activity. The present review recapitulates key chemokines, growth factors and other cytokines that orchestrate this ballet of antitumoral leukocytes upon oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France.
| | - Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
7
|
NF-κB Signaling in Targeting Tumor Cells by Oncolytic Viruses-Therapeutic Perspectives. Cancers (Basel) 2018; 10:cancers10110426. [PMID: 30413032 PMCID: PMC6265863 DOI: 10.3390/cancers10110426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, oncolytic virotherapy became a promising therapeutic approach, leading to the introduction of a novel generation of anticancer drugs. However, despite evoking an antitumor response, introducing an oncolytic virus (OV) to the patient is still inefficient to overcome both tumor protective mechanisms and the limitation of viral replication by the host. In cancer treatment, nuclear factor (NF)-κB has been extensively studied among important therapeutic targets. The pleiotropic nature of NF-κB transcription factor includes its involvement in immunity and tumorigenesis. Therefore, in many types of cancer, aberrant activation of NF-κB can be observed. At the same time, the activity of NF-κB can be modified by OVs, which trigger an immune response and modulate NF-κB signaling. Due to the limitation of a monotherapy exploiting OVs only, the antitumor effect can be enhanced by combining OV with NF-κB-modulating drugs. This review describes the influence of OVs on NF-κB activation in tumor cells showing NF-κB signaling as an important aspect, which should be taken into consideration when targeting tumor cells by OVs.
Collapse
|
8
|
Shetab Boushehri MA, Lamprecht A. TLR4-Based Immunotherapeutics in Cancer: A Review of the Achievements and Shortcomings. Mol Pharm 2018; 15:4777-4800. [DOI: 10.1021/acs.molpharmaceut.8b00691] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, D-53121 Bonn, Germany
- PEPITE EA4267, Univ. Bourgonge Franch-Comte, 25030 Besançon, France
| |
Collapse
|
9
|
Zhu M, Geng L, Shen W, Wang Y, Liu J, Cheng Y, Wang C, Dai J, Jin G, Hu Z, Ma H, Shen H. Exome-Wide Association Study Identifies Low-Frequency Coding Variants in 2p23.2 and 7p11.2 Associated with Survival of Non-Small Cell Lung Cancer Patients. J Thorac Oncol 2017; 12:644-656. [PMID: 28104536 DOI: 10.1016/j.jtho.2016.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/23/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023]
Abstract
INTRODUCTION A growing body of evidence has suggested that low-frequency or rare coding variants might have strong effects on the development and prognosis of cancer. Here, we aim to assess the role of low-frequency and rare coding variants in the survival of NSCLC in Chinese populations. METHODS We performed an exome-wide scan of 247,870 variants in 1008 patients with NSCLC and replicated the promising variants by using imputed genotype data of The Cancer Genome Atlas (TCGA) with a Cox regression model. Gene-based and pathway-based analysis were also performed for nonsynonymous or splice site variants. Additionally, analysis of gene expression data in the TCGA was used to increase the reliability of candidate loci and genes. RESULTS A low-frequency missense variant in chaperonin containing TCP1 subunit 6A gene (CCT6A) (rs33922584: adjusted hazard ratio [HRadjusted] = 1.75, p = 6.06 × 10-4) was significantly related to the survival of patients with NSCLC, which was further replicated by the TCGA samples (HRadjusted = 4.19, p = 0.015). Interestingly, the G allele of rs33922584 was significantly associated with high expression of CCT6A (p = 0.019) that might induce the worse survival in the TCGA samples (HRadjusted = 1.15, p = 0.047). Besides, rs117512489 in gene phospholipase B1 gene (PLB1) (HR = 2.02, p = 7.28 × 10-4) was also associated with survival of the patients with NSCLC in our samples, but it was supported only by gene expression analysis in the TCGA (HRadjusted = 1.15, p = 0.023). Gene-based and pathway-based analysis revealed a total of 32 genes, including CCT6A and 34 potential pathways might account for the survival of NSCLC, respectively. CONCLUSION These results provided more evidence for the important role of low-frequency or rare variants in the survival of patients with NSCLC.
Collapse
Affiliation(s)
- Meng Zhu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Liguo Geng
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Shen
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuzhuo Wang
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jia Liu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yang Cheng
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Cheng Wang
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Choi SH, Park BK, Lee KW, Chang J, Lee Y, Kwon HJ. Effect of respiratory syncytial virus on the growth of hepatocellular carcinoma cell-lines. BMB Rep 2016; 48:565-70. [PMID: 25739391 PMCID: PMC4911183 DOI: 10.5483/bmbrep.2015.48.10.268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Indexed: 01/10/2023] Open
Abstract
In several reports, the respiratory syncytial virus (RSV) was identified as an oncolytic virus in cancer cells (e.g., lung and prostate cancer). However, the effects of RSV in hepatocellular carcinoma (HCC) cells have not yet been investigated. Here, we observed the inhibitory effects of RSV infection in HCC cell-lines. Cell growth was significantly decreased by RSV infection in BNL-HCC, Hep3B, Huh-7 and SNU-739 cells. After RSV infection, plaque formation and syncytial formation were observed in affected Hep3B and Huh-7 cells. RSV protein-expression was also detected in Hep3B and Huh-7 cells; however, only Huh-7 cells showed apoptosis after RSV infection. Furthermore, inhibition of cell migration by RSV infection was observed in BNL-HCC, Hep3B, Huh-7 and SNU-739 cells. Therefore, further investigation is required to clarify the molecular mechanism of RSV-mediated inhibition of HCC cell growth, and to develop potential RSV oncolytic viro-therapeutics. [BMB Reports 2015; 48(10): 565-570]
Collapse
Affiliation(s)
- Song Hee Choi
- Departments of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Byoung Kwon Park
- Departments of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Keun-Wook Lee
- Departments of Biomedical Science, College of Natural Science, Hallym University, Chuncheon 24252, Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Hyung-Joo Kwon
- Departments of Microbiology, College of Medicine, Hallym University, Chuncheon 24252; Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
11
|
Abstract
Caspase-1 is activated by the inflammasome complex to process cytokines like interleukin-1β (IL-1β). Pro-caspase-1 consists of three domains, CARD, p20, and p10. Association of pro-caspase-1 with the inflammasome results in initiation of its autocatalytic activity, culminating in self-cleavage that generates catalytically active subunits (p10 and p20). In the current study, we show that Nedd8 is required for efficient self-cleavage of pro-caspase-1 to generate its catalytically active subunits. Nedd8 silencing or treating cells with the neddylation inhibitor MLN4924 led to diminished caspase-1 processing and reduced IL-1β maturation following inflammasome activation. Coimmunoprecipitation and mass spectrometric analysis of 293 cells overexpressing pro-caspase-1 (and CARD) and Nedd8 suggested possible neddylation of caspase-1 CARD. Following inflammasome activation in primary macrophages, we observed colocalization of endogenous Nedd8 with caspase-1. Similarly, interaction of endogenous Nedd8 with caspase-1 CARD was detected in inflammasome-activated macrophages. Furthermore, enhanced autocatalytic activity of pro-caspase-1 was observed following Nedd8 overexpression in 293 cells, and such activity in inflammasome-activated macrophages was drastically diminished upon treatment of cells with MLN4924. Thus, our studies demonstrate a role of Nedd8 in regulating caspase-1 activation following inflammasome activation, presumably via augmenting autoprocessing/cleavage of pro-caspase-1 into its corresponding catalytically active subunits.
Collapse
|
12
|
Elankumaran S. Genetically engineered Newcastle disease virus for prostate cancer: a magic bullet or a misfit. Expert Rev Anticancer Ther 2014; 13:769-72. [PMID: 23875655 DOI: 10.1586/14737140.2013.811062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Tsai SY, Segovia JA, Chang TH, Morris IR, Berton MT, Tessier PA, Tardif MR, Cesaro A, Bose S. DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation during influenza A virus infection: role of DDX21-TRIF-TLR4-MyD88 pathway. PLoS Pathog 2014; 10:e1003848. [PMID: 24391503 PMCID: PMC3879357 DOI: 10.1371/journal.ppat.1003848] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 11/08/2013] [Indexed: 12/13/2022] Open
Abstract
Pathogen-associated molecular patterns (PAMPs) trigger host immune response by activating pattern recognition receptors like toll-like receptors (TLRs). However, the mechanism whereby several pathogens, including viruses, activate TLRs via a non-PAMP mechanism is unclear. Endogenous “inflammatory mediators” called damage-associated molecular patterns (DAMPs) have been implicated in regulating immune response and inflammation. However, the role of DAMPs in inflammation/immunity during virus infection has not been studied. We have identified a DAMP molecule, S100A9 (also known as Calgranulin B or MRP-14), as an endogenous non-PAMP activator of TLR signaling during influenza A virus (IAV) infection. S100A9 was released from undamaged IAV-infected cells and extracellular S100A9 acted as a critical host-derived molecular pattern to regulate inflammatory response outcome and disease during infection by exaggerating pro-inflammatory response, cell-death and virus pathogenesis. Genetic studies showed that the DDX21-TRIF signaling pathway is required for S100A9 gene expression/production during infection. Furthermore, the inflammatory activity of extracellular S100A9 was mediated by activation of the TLR4-MyD88 pathway. Our studies have thus, underscored the role of a DAMP molecule (i.e. extracellular S100A9) in regulating virus-associated inflammation and uncovered a previously unknown function of the DDX21-TRIF-S100A9-TLR4-MyD88 signaling network in regulating inflammation during infection. The lung disease severity following influenza A virus (IAV) infection is dependent on the extent of inflammation in the respiratory tract. Severe inflammation in the lung manifests in development of pneumonia. Therefore, it is very critical to identify cellular factors and dissect the molecular/cellular mechanism controlling inflammation in the respiratory tract during IAV infection. Knowledge derived from these studies will be instrumental in development of therapeutics to combat the lung disease associated with IAV infection. Towards that end, in the current study we have identified a cellular factor S100A9 which is responsible for enhanced inflammation during IAV infection. In addition, we have characterized a signal transduction pathway involving various cellular receptors and signaling adaptors that are involved in mediating S100A9-dependent inflammatory response. Thus, our studies have illuminated a cellular/molecular mechanism that can be intervened by therapeutics to reduce and control IAV-associated lung inflammatory disease like pneumonia.
Collapse
Affiliation(s)
- Su-Yu Tsai
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jesus A. Segovia
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Te-Hung Chang
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Ian R. Morris
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Michael T. Berton
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Philippe A. Tessier
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec, and Faculté de Médecine, Université Laval, Quebec, Canada
| | - Mélanie R. Tardif
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec, and Faculté de Médecine, Université Laval, Quebec, Canada
| | - Annabelle Cesaro
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec, and Faculté de Médecine, Université Laval, Quebec, Canada
| | - Santanu Bose
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Mgbemena V, Segovia J, Chang TH, Bose S. KLF6 and iNOS regulates apoptosis during respiratory syncytial virus infection. Cell Immunol 2013; 283:1-7. [PMID: 23831683 DOI: 10.1016/j.cellimm.2013.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/24/2013] [Accepted: 06/05/2013] [Indexed: 01/01/2023]
Abstract
Human respiratory syncytial virus (RSV) is a highly pathogenic lung-tropic virus that causes severe respiratory diseases. Enzymatic activity of inducible nitric oxide (iNOS) is required for NO generation. Although NO contributes to exaggerated lung disease during RSV infection, the role of NO in apoptosis during infection is not known. In addition, host trans-activator(s) required for iNOS gene expression during RSV infection is unknown. In the current study we have uncovered the mechanism of iNOS gene induction by identifying kruppel-like factor 6 (KLF6) as a critical transcription factor required for iNOS gene expression during RSV infection. Furthermore, we have also uncovered the role of iNOS as a critical host factor regulating apoptosis during RSV infection.
Collapse
Affiliation(s)
- Victoria Mgbemena
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | | | | | | |
Collapse
|
15
|
Salimi V, Tavakoli-Yaraki M, Mahmoodi M, Shahabi S, Gharagozlou MJ, Shokri F, Mokhtari-Azad T. The Oncolytic Effect of Respiratory Syncytial Virus (RSV) in Human Skin Cancer Cell Line, A431. IRANIAN RED CRESCENT MEDICAL JOURNAL 2013; 15:62-7. [PMID: 23487261 PMCID: PMC3589781 DOI: 10.5812/ircmj.4722] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 05/19/2012] [Accepted: 05/28/2012] [Indexed: 12/02/2022]
Abstract
Background Oncolytic viruses have become of noticeable interest as a novel biological approach for selectively infecting cancer cells and triggering apoptosis in a number of malignant cells. Many researches are devoted to characterize more viruses with oncolytic properties. Objectives Evidences on the oncolytic feature of respiratory syncytial virus (RSV) are conflicting; therefore, this study was designed to elucidate the possible role of RSV on the modulation of cell growth and apoptosis in the skin cancer cells. Materials and Methods Plaque assay was used to determine RSV titers. The cytotoxic effect of RSV in A431 (skin carcinoma cell line) was determined using MTT assay. The detection of apoptosis was performed via Annexin-V-FITC staining method and analyzed with flow cytometry. Results The results indicated that A431 cell growth was inhibited following infection by RSV in a dose- and time-dependent manner. The most growth inhibitory effect of RSV was occurred at the MOI of 3, and 48 hour after infection. The inhibitory effect of RSV on the cell growth was accompanied by the induction of apoptosis in the skin cancer cells. The percentages of early and late apoptotic cells were increased following exposure to RSV in a concentration- and time-dependent manner. Conclusions This study delineated the beneficial role of RSV for growth regulation of skin cancer cells and highlighted the involvement of RSV in the induction of apoptosis in A431 cells. These findings might conduct evidence into the oncolytic properties of RSV in the skin cancer. Further studies are required to indicate intracellular targets for RSV-induced apoptosis in skin cancer cells.
Collapse
Affiliation(s)
- Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Clinical Biochemistry, School of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Mahmood Mahmoodi
- Department of Biostatic and Epidemiology, School of Public Health Tehran University of Medical Sciences, Tehran, IR Iran
| | - Shahram Shahabi
- Department of Microbiology, Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, IR Iran
| | | | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Talat Mokhtari Azad, Department of Virology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 6446, Tehran, IR Iran. Tel.: +98-2188962343, Fax: +98-2188962343, E-mail:
| |
Collapse
|
16
|
Mgbemena V, Segovia JA, Chang TH, Tsai SY, Cole GT, Hung CY, Bose S. Transactivation of inducible nitric oxide synthase gene by Kruppel-like factor 6 regulates apoptosis during influenza A virus infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:606-15. [PMID: 22711891 DOI: 10.4049/jimmunol.1102742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Influenza A virus (flu) is a respiratory tract pathogen causing high morbidity and mortality among the human population. NO is a cellular mediator involved in tissue damage through its apoptosis of target cells and resulting enhancement of local inflammation. Inducible NO synthase (iNOS) is involved in the production of NO following infection. Although NO is a key player in the development of exaggerated lung disease during flu infection, the underlying mechanism, including the role of NO in apoptosis during infection, has not been reported. Similarly, the mechanism of iNOS gene induction during flu infection is not well defined in terms of the host transactivator(s) required for iNOS gene expression. In the current study, we identified Kruppel-like factor 6 (KLF6) as a critical transcription factor essential for iNOS gene expression during flu infection. We also underscored the requirement for iNOS in inducing apoptosis during infection. KLF6 gene silencing in human lung epithelial cells resulted in the drastic loss of NO production, iNOS promoter-specific luciferase activity, and expression of iNOS mRNA following flu infection. Chromatin immunoprecipitation assay revealed a direct interaction of KLF6 with iNOS promoter during in vitro and in vivo flu infection of human lung cells and mouse respiratory tract, respectively. A significant reduction in flu-mediated apoptosis was noted in KLF6-silenced cells, cells treated with iNOS inhibitor, and primary murine macrophages derived from iNOS knockout mice. A similar reduction in apoptosis was noted in the lungs following intratracheal flu infection of iNOS knockout mice.
Collapse
Affiliation(s)
- Victoria Mgbemena
- Department of Microbiology and Immunology, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Segovia J, Sabbah A, Mgbemena V, Tsai SY, Chang TH, Berton MT, Morris IR, Allen IC, Ting JPY, Bose S. TLR2/MyD88/NF-κB pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection. PLoS One 2012; 7:e29695. [PMID: 22295065 PMCID: PMC3266238 DOI: 10.1371/journal.pone.0029695] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/02/2011] [Indexed: 12/02/2022] Open
Abstract
Human respiratory syncytial virus (RSV) constitute highly pathogenic virus that cause severe respiratory diseases in newborn, children, elderly and immuno-compromised individuals. Airway inflammation is a critical regulator of disease outcome in RSV infected hosts. Although “controlled” inflammation is required for virus clearance, aberrant and exaggerated inflammation during RSV infection results in development of inflammatory diseases like pneumonia and bronchiolitis. Interleukin-1β (IL-1β) plays an important role in inflammation by orchestrating the pro-inflammatory response. IL-1β is synthesized as an immature pro-IL-1β form. It is cleaved by activated caspase-1 to yield mature IL-1β that is secreted extracellularly. Activation of caspase-1 is mediated by a multi-protein complex known as the inflammasome. Although RSV infection results in IL-1β release, the mechanism is unknown. Here in, we have characterized the mechanism of IL-1β secretion following RSV infection. Our study revealed that NLRP3/ASC inflammasome activation is crucial for IL-1β production during RSV infection. Further studies illustrated that prior to inflammasome formation; the “first signal” constitutes activation of toll-like receptor-2 (TLR2)/MyD88/NF-κB pathway. TLR2/MyD88/NF-κB signaling is required for pro-IL-1β and NLRP3 gene expression during RSV infection. Following expression of these genes, two “second signals” are essential for triggering inflammasome activation. Intracellular reactive oxygen species (ROS) and potassium (K+) efflux due to stimulation of ATP-sensitive ion channel promote inflammasome activation following RSV infection. Thus, our studies have underscored the requirement of TLR2/MyD88/NF-κB pathway (first signal) and ROS/potassium efflux (second signal) for NLRP3/ASC inflammasome formation, leading to caspase-1 activation and subsequent IL-1β release during RSV infection.
Collapse
Affiliation(s)
- Jesus Segovia
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Ahmed Sabbah
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Victoria Mgbemena
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Su-Yu Tsai
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Te-Hung Chang
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Michael T. Berton
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Ian R. Morris
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Irving C. Allen
- Department of Microbiology-Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jenny P.-Y. Ting
- Department of Microbiology-Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Santanu Bose
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Vesicular stomatitis virus as an oncolytic agent against pancreatic ductal adenocarcinoma. J Virol 2012; 86:3073-87. [PMID: 22238308 DOI: 10.1128/jvi.05640-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is a promising oncolytic agent against a variety of cancers. However, it has never been tested in any pancreatic cancer model. Pancreatic ductal adenocarcinoma (PDA) is the most common and aggressive form of pancreatic cancer. In this study, the oncolytic potentials of several VSV variants were analyzed in a panel of 13 clinically relevant human PDA cell lines and compared to conditionally replicative adenoviruses (CRAds), Sendai virus and respiratory syncytial virus. VSV variants showed oncolytic abilities superior to those of other viruses, and some cell lines that exhibited resistance to other viruses were successfully killed by VSV. However, PDA cells were highly heterogeneous in their susceptibility to virus-induced oncolysis, and several cell lines were resistant to all tested viruses. Resistant cells showed low levels of very early VSV RNA synthesis, indicating possible defects at initial stages of infection. In addition, unlike permissive PDA cell lines, most of the resistant cell lines were able to both produce and respond to interferon, suggesting that intact type I interferon responses contributed to their resistance phenotype. Four cell lines that varied in their permissiveness to VSV-ΔM51 and CRAd dl1520 were tested in mice, and the in vivo results closely mimicked those in vitro. While our results demonstrate that VSV is a promising oncolytic agent against PDA, further studies are needed to better understand the molecular mechanisms of resistance of some PDAs to oncolytic virotherapy.
Collapse
|
19
|
Echchgadda I, Chang TH, Sabbah A, Bakri I, Ikeno Y, Hubbard GB, Chatterjee B, Bose S. Oncolytic targeting of androgen-sensitive prostate tumor by the respiratory syncytial virus (RSV): consequences of deficient interferon-dependent antiviral defense. BMC Cancer 2011; 11:43. [PMID: 21276246 PMCID: PMC3038980 DOI: 10.1186/1471-2407-11-43] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 01/28/2011] [Indexed: 11/12/2022] Open
Abstract
Background Oncolytic virotherapy for cancer treatment utilizes viruses for selective infection and death of cancer cells without any adverse effect on normal cells. We previously reported that the human respiratory syncytial virus (RSV) is a novel oncolytic virus against androgen-independent PC-3 human prostate cancer cells. The present study extends the result to androgen-dependent prostate cancer, and explores the underlying mechanism that triggers RSV-induced oncolysis of prostate cancer cells. Methods The oncolytic effect of RSV on androgen-sensitive LNCaP human prostate cancer cells and on androgen-independent RM1 murine prostate cancer cells was studied in vitro in culture and in vivo in a xenograft or allograft tumor model. In vitro, cell viability, infectivity and apoptosis were monitored by MTT assay, viral plaque assay and annexin V staining, respectively. In vivo studies involved virus administration to prostate tumors grown in immune compromised nude mice and in syngeneic immune competent C57BL/6J mice. Anti-tumorogenic oncolytic activity was monitored by measuring tumor volume, imaging bioluminescent tumors in live animals and performing histopathological analysis and TUNEL assay with tumors Results We show that RSV imposes a potent oncolytic effect on LNCaP prostate cancer cells. RSV infectivity was markedly higher in LNCaP cells compared to the non-tumorigenic RWPE-1 human prostate cells. The enhanced viral burden led to LNCaP cell apoptosis and growth inhibition of LNCaP xenograft tumors in nude mice. A functional host immune response did not interfere with RSV-induced oncolysis, since growth of xenograft tumors in syngeneic C57BL/6J mice from murine RM1 cells was inhibited upon RSV administration. LNCaP cells failed to activate the type-I interferon (IFNα/β)-induced transcription factor STAT-1, which is required for antiviral gene expression, although these cells could produce IFN in response to RSV infection. The essential role of IFN in restricting infection was further borne out by our finding that neutralizing IFN activity resulted in enhanced RSV infection in non-tumorigenic RWPE-1 prostate cells. Conclusions We demonstrated that RSV is potentially a useful therapeutic tool in the treatment of androgen-sensitive and androgen-independent prostate cancer. Moreover, impaired IFN-mediated antiviral response is the likely cause of higher viral burden and resulting oncolysis of androgen-sensitive prostate cancer cells.
Collapse
Affiliation(s)
- Ibtissam Echchgadda
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC-7758, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | |
Collapse
|