1
|
Xu L, Sun H, Lemoine NR, Xuan Y, Wang P. Oncolytic vaccinia virus and cancer immunotherapy. Front Immunol 2024; 14:1324744. [PMID: 38283361 PMCID: PMC10811104 DOI: 10.3389/fimmu.2023.1324744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Oncolytic virotherapy (OVT) is a promising form of cancer treatment that uses genetically engineered viruses to replicate within cancer cells and trigger anti-tumor immune response. In addition to killing cancer cells, oncolytic viruses can also remodel the tumor microenvironment and stimulate a long-term anti-tumor immune response. Despite achieving positive results in cellular and organismal studies, there are currently only a few approved oncolytic viruses for clinical use. Vaccinia virus (VACV) has emerged as a potential candidate due to its ability to infect a wide range of cancer cells. This review discusses the mechanisms, benefits, and clinical trials of oncolytic VACVs. The safety and efficacy of different viral backbones are explored, as well as the effects of oncolytic VACVs on the tumor microenvironment. The potential combination of oncolytic VACVs with immunotherapy or traditional therapies is also highlighted. The review concludes by addressing prospects and challenges in the field of oncolytic VACVs, with the aim of promoting further research and application in cancer therapy.
Collapse
Affiliation(s)
- Lihua Xu
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huihui Sun
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Nicholas R. Lemoine
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yujing Xuan
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengju Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Shakiba Y, Vorobyev PO, Mahmoud M, Hamad A, Kochetkov DV, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recombinant Strains of Oncolytic Vaccinia Virus for Cancer Immunotherapy. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:823-841. [PMID: 37748878 DOI: 10.1134/s000629792306010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 09/27/2023]
Abstract
Cancer virotherapy is an alternative therapeutic approach based on the viruses that selectively infect and kill tumor cells. Vaccinia virus (VV) is a member of the Poxviridae, a family of enveloped viruses with a large linear double-stranded DNA genome. The proven safety of the VV strains as well as considerable transgene capacity of the viral genome, make VV an excellent platform for creating recombinant oncolytic viruses for cancer therapy. Furthermore, various genetic modifications can increase tumor selectivity and therapeutic efficacy of VV by arming it with the immune-modulatory genes or proapoptotic molecules, boosting the host immune system, and increasing cross-priming recognition of the tumor cells by T-cells or NK cells. In this review, we summarized the data on bioengineering approaches to develop recombinant VV strains for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Yasmin Shakiba
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Marah Mahmoud
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Azzam Hamad
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Gaukhar M Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Vladimir P Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
3
|
Truong CS, Yoo SY. Oncolytic Vaccinia Virus in Lung Cancer Vaccines. Vaccines (Basel) 2022; 10:240. [PMID: 35214699 PMCID: PMC8875327 DOI: 10.3390/vaccines10020240] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/26/2022] Open
Abstract
Therapeutic cancer vaccines represent a promising therapeutic modality via the induction of long-term immune response and reduction in adverse effects by specifically targeting tumor-associated antigens. Oncolytic virus, especially vaccinia virus (VV) is a promising cancer treatment option for effective cancer immunotherapy and thus can also be utilized in cancer vaccines. Non-small cell lung cancer (NSCLC) is likely to respond to immunotherapy, such as immune checkpoint inhibitors or cancer vaccines, since it has a high tumor mutational burden. In this review, we will summarize recent applications of VV in lung cancer treatment and discuss the potential and direction of VV-based therapeutic vaccines.
Collapse
Affiliation(s)
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
4
|
Drug Development in Neuroendocrine Tumors: What Is on the Horizon? Curr Treat Options Oncol 2021; 22:43. [PMID: 33786683 DOI: 10.1007/s11864-021-00834-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 02/08/2023]
Abstract
OPINION STATEMENT Neuroendocrine neoplasms (NENs) constitute a heterogenous group of malignancies. Translational research into NEN cell biology is the cornerstone for drug development strategies in this field. Somatostatin receptor type 2 (SSTR2) expression is the hallmark of well-differentiated neuroendocrine tumors (NETs). Somatostatin analogs and peptide receptor radionuclide therapy (PRRT) form the basis of anti-SSTR2 treatment onto new combination strategies, antibody-drug conjugates and bispecific antibodies. Classical pathways involved in NET development (PI3K-Akt-mTOR and antiangiogenics) are reviewed but new potential targets for NET treatment will be explored. Epigenetic drugs have shown clinical activity in monotherapy and preclinical combination strategies are more than attractive. Immunotherapy has shown opposite results in different NEN settings. Although the NOTCH pathway has been targeted with disappointing results, new strategies are being developed. Finally, after years of solid preclinical evidence on different genetically engineered oncolytic viruses, clinical trials for refractory NET patients are now ongoing.
Collapse
|
5
|
Conrad SJ, Liu J. Poxviruses as Gene Therapy Vectors: Generating Poxviral Vectors Expressing Therapeutic Transgenes. Methods Mol Biol 2019; 1937:189-209. [PMID: 30706397 DOI: 10.1007/978-1-4939-9065-8_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Treatments with poxvirus vectors can have long-lasting immunological impact in the host, and thus they have been extensively studied to treat diseases and for vaccine development. More importantly, the oncolytic properties of poxviruses have led to their development as cancer therapeutics. Two poxviruses, vaccinia virus (VACV) and myxoma virus (MYXV), have been extensively studied as virotherapeutics with promising results. Vaccinia virus vectors have advanced to the clinic and have been tested as oncolytic therapeutics for several cancer types with successes in phase I/II clinical trials. In addition to oncolytic applications, MYXV has been explored for additional applications including immunotherapeutics, purging of cancer progenitor cells, and treatments for graft-versus-host diseases. These novel therapeutic applications have encouraged its advancement into clinical trials. To meet the demands of different treatment needs, VACV and MYXV can be genetically engineered to express therapeutic transgenes. The engineering process used in poxvirus vectors can be very different from that of other DNA virus vectors (e.g., the herpesviruses). This chapter is intended to serve as a guide to those wishing to engineer poxvirus vectors for therapeutic transgene expression and to produce viral preparations for preclinical studies.
Collapse
Affiliation(s)
- Steven J Conrad
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA. .,The Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
6
|
Asha K, Sharma-Walia N. Virus and tumor microenvironment induced ER stress and unfolded protein response: from complexity to therapeutics. Oncotarget 2018; 9:31920-31936. [PMID: 30159133 PMCID: PMC6112759 DOI: 10.18632/oncotarget.25886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/21/2018] [Indexed: 12/28/2022] Open
Abstract
Endoplasmic reticulum (ER) stress can be activated by various pathological and physiological conditions including the unfolded protein response (UPR) to restore homeostasis. The UPR signaling pathways initiated by double-stranded RNA-activated protein kinase (PKR) like ER kinase (PERK), inositol requiring enzyme 1 α (IRE1α), and activating transcription factor 6 (ATF6) are vital for tumor growth, aggressiveness, microenvironment remodeling, and resistance to cancer therapeutics. This review focuses on the role of ER stress and activity of UPR signaling pathways involved in tumor formation and uncontrolled cell proliferation during various cancers and viral malignancies.
Collapse
Affiliation(s)
- Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, U.S.A
| | - Neelam Sharma-Walia
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, U.S.A
| |
Collapse
|
7
|
Recombinant viruses with other anti-cancer therapeutics: a step towards advancement of oncolytic virotherapy. Cancer Gene Ther 2018; 25:216-226. [PMID: 29735993 DOI: 10.1038/s41417-018-0018-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 01/15/2023]
Abstract
Cancer as a disease is a multifaceted foe which sometimes succumbs to the prescribed treatment and sometimes develops resistance against various therapies. Conventional cancer therapies suffer from many limitations, the least of which is their specificity and systemic side effects. In a majority of cases, acquired mutations render the cancer cells resistant to therapy and lower the prognostic outcome. In the constant effort to devise a therapeutic moiety which can comprehensively eliminate cancer cells, oncolytic viruses provide an attractive avenue as they selectively infect and lyse cancer cells sparing normal cells from their effects. Viruses can be engineered for their host specificity and toxicity as a promising anti-cancer tool. As it is essential to devise a strategy to address all targets involved in cancer development and progression, the idea of using oncolytic viruses with enhanced anti-cancer activity through arming with foreign genes gained merit and is showing promising advent in clinical studies. The use of oncolytic viruses as an agent of combination therapy for cancer treatment also gained much attention in the recent past. This review focuses on the emerging role of oncolytic viruses as vital components of anti-cancer regimen presenting a new dimension in an ever-changing cancer therapy scenario.
Collapse
|
8
|
O’Bryan SM, Mathis JM. Oncolytic Virotherapy for Breast Cancer Treatment. Curr Gene Ther 2018; 18:192-205. [PMID: 30207220 PMCID: PMC7499349 DOI: 10.2174/1566523218666180910163805] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/20/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022]
Abstract
Breast cancer continues to be a leading cause of mortality among women. While at an early stage, localized breast cancer is easily treated; however, advanced stages of disease continue to carry a high mortality rate. The discrepancy in treatment success highlights that current treatments are insufficient to treat advanced-stage breast cancer. As new and improved treatments have been sought, one therapeutic approach has gained considerable attention. Oncolytic viruses are uniquely capable of targeting cancer cells through intrinsic or engineered means. They come in many forms, mainly from four major virus groups as defined by the Baltimore classification system. These vectors can target and kill cancer cells, and even stimulate immunotherapeutic effects in patients. This review discusses not only individual oncolytic viruses pursued in the context of breast cancer treatment but also the emergence of combination therapies with current or new therapies, which has become a particularly promising strategy for treatment of breast cancer. Overall, oncolytic virotherapy is a promising strategy for increased treatment efficacy for advanced breast cancer and consequently provides a unique platform for personalized treatments in patients.
Collapse
Affiliation(s)
- Samia M. O’Bryan
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - J. Michael Mathis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
9
|
Haddad D. Genetically Engineered Vaccinia Viruses As Agents for Cancer Treatment, Imaging, and Transgene Delivery. Front Oncol 2017; 7:96. [PMID: 28589082 PMCID: PMC5440573 DOI: 10.3389/fonc.2017.00096] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/27/2017] [Indexed: 01/08/2023] Open
Abstract
Despite advances in technology, the formidable challenge of treating cancer, especially if advanced, still remains with no significant improvement in survival rates, even with the most common forms of cancer. Oncolytic viral therapies have shown great promise for the treatment of various cancers, with the possible advantages of stronger treatment efficacy compared to conventional therapy due to higher tumor selectivity, and less toxicity. They are able to preferentially and selectively propagate in cancer cells, consequently destroying tumor tissue mainly via cell lysis, while leaving non-cancerous tissues unharmed. Several wild-type and genetically engineered vaccinia virus (VACV) strains have been tested in both preclinical and clinical trials with promising results. Greater understanding and advancements in molecular biology have enabled the generation of genetically engineered oncolytic viruses for safer and more efficacious treatment, including arming VACVs with cytokines and immunostimulatory molecules, anti-angiogenic agents, and enzyme prodrug therapy, in addition to combining VACVs with conventional external and systemic radiotherapy, chemotherapy, immunotherapy, and other virus strains. Furthermore, novel oncolytic vaccinia virus strains have been generated that express reporter genes for the tracking and imaging of viral therapy and monitoring of therapeutic response. Further study is needed to unlock VACVs’ full potential as part of the future of cancer therapy.
Collapse
Affiliation(s)
- Dana Haddad
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
10
|
Yu Z, Zhao J, Hua Z, Wang X, Wang X, Wang H, Yu JX. Novel 19 F-MRS β-galactosidase reporter molecules incorporated nitrogen mustard analogues. Chem Biol Drug Des 2017; 90:719-729. [PMID: 28419749 DOI: 10.1111/cbdd.12992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/19/2016] [Accepted: 03/09/2017] [Indexed: 11/27/2022]
Abstract
In this study, we propose a novel molecular platform-integrated fluorinated antitumor nitrogen mustards for 19 F-MRS assay of β-galactosidase (β-gal) activity. Following this idea, we have designed, synthesized, and characterized 2-fluoro-4-[bis(2'-chloroethyl)amino]phenyl β-D-galactopyranoside 5, 2-fluoro-4-{bis[2'-O-(β-D-galactopyranosyl)ethyl]amino}phenyl β-D-galactopyranoside 8, 2-fluoro-4-{bis[[1″-(β-D-galactopyranosyl)-1″, 2″, 3″-triazol-4″-yl]methyl] amino}phenyl β-D-galactopyranoside 14 and 2-fluoro-4-{bis[[1″-(β-D-glucopyranosyl)-1″, 2″, 3″-triazol-4″-yl]methyl]amino}phenyl β-D-galactopyranoside 15 through glycosylation and click reaction strategies, and their structures were confirmed by NMR and HRMS or elemental analysis data. Among them, 2-fluoro-4-[bis(2'-chloroethyl)amino]phenyl β-D-galacto-pyranoside 5 was found very sensitive to β-gal (E801A) in PBS at 37°C with big ΔδF response. Here, we demonstrated the feasibility of this platform for assessing β-gal activity in solution, and in vitro with lacZ-transfected human MCF7 breast and PC3 prostate tumor cells, by the characterization of β-gal-responsive 19 F-chemical shift changes ΔδF and hydrolytic kinetics.
Collapse
Affiliation(s)
- Zijun Yu
- Center of Translational Medicine, 5th School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| | - Jianru Zhao
- College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, Xinjiang, China
| | - Zhiming Hua
- College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, Xinjiang, China
| | - Xinping Wang
- Department of Chemistry and Chemical Engineering, Foshan University School of Sciences, Foshan, Guangdong, China
| | - Xiaobo Wang
- Center of Translational Medicine, 5th School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| | - Hanqin Wang
- Center of Translational Medicine, 5th School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| | - Jian-Xin Yu
- Center of Translational Medicine, 5th School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| |
Collapse
|
11
|
Oncolytic viruses: emerging options for the treatment of breast cancer. Med Oncol 2017; 34:43. [PMID: 28185165 DOI: 10.1007/s12032-017-0899-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/02/2017] [Indexed: 01/05/2023]
Abstract
Breast cancer (BC) is the most common type of cancer among women and is the second most common cause of cancer-related deaths, following lung cancer. Severe toxicity associated with a long-term use of BC chemo- and radiotherapy makes it essential to look for newer therapeutics. Additionally, molecular heterogeneity at both intratumoral and intertumoral levels among BC subtypes is known to result in a differential response to standard therapeutics. Oncolytic viruses (OVs) have emerged as one of the most promising treatment options for BC. Many preclinical and clinical studies have shown that OVs are effective in treating BC, both as a single therapeutic agent and as a part of combination therapies. Combination therapies involving multimodal therapeutics including OVs are becoming popular as they allow to achieve the synergistic therapeutic effects, while minimizing the associated toxicities. Here, we review the OVs for BC therapy in preclinical studies and in clinical trials, both as a monotherapy and as part of a combination therapy. We also briefly discuss the potential therapeutic targets for BC, as these are likely to be critical for the development of new OVs.
Collapse
|
12
|
Abstract
New therapies for metastatic breast cancer patients are urgently needed. The long-term survival rates remain unacceptably low for patients with recurrent disease or disseminated metastases. In addition, existing therapies often cause a variety of debilitating side effects that severely impact quality of life. Oncolytic viruses constitute a developing therapeutic modality in which interest continues to build due to their ability to spare normal tissue while selectively destroying tumor cells. A number of different viruses have been used to develop oncolytic agents for breast cancer, including herpes simplex virus, adenovirus, vaccinia virus, measles virus, reovirus, and others. In general, clinical trials for several cancers have demonstrated excellent safety records and evidence of efficacy. However, the impressive tumor responses often observed in preclinical studies have yet to be realized in the clinic. In order for the promise of oncolytic virotherapy to be fully realized for breast cancer patients, effectiveness must be demonstrated in metastatic disease. This review provides a summary of oncolytic virotherapy strategies being developed to target metastatic breast cancer.
Collapse
Affiliation(s)
| | - Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Abstract
Current standard treatments of cancer can prolong survival of many cancer patients but usually do not effectively cure the disease. Oncolytic virotherapy is an emerging therapeutic for the treatment of cancer that exploits replication-competent viruses to selectively infect and destroy cancerous cells while sparing normal cells and tissues. Clinical and/or preclinical studies on oncolytic viruses have revealed that the candidate viruses being tested in trials are remarkably safe and offer potential for treating many classes of currently incurable cancers. Among these candidates are vaccinia and myxoma viruses, which belong to the family Poxviridae and possess promising oncolytic features. This article describes poxviruses that are being developed for oncolytic virotherapy and summarizes the outcomes of both clinical and preclinical studies. Additionally, studies demonstrating superior efficacy when poxvirus oncolytic virotherapy is combined with conventional therapies are described.
Collapse
Affiliation(s)
- Winnie M. Chan
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
14
|
Hofmann E, Weibel S, Szalay AA. Combination treatment with oncolytic Vaccinia virus and cyclophosphamide results in synergistic antitumor effects in human lung adenocarcinoma bearing mice. J Transl Med 2014; 12:197. [PMID: 25030093 PMCID: PMC4105246 DOI: 10.1186/1479-5876-12-197] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 07/10/2014] [Indexed: 12/27/2022] Open
Abstract
Background The capacity of the recombinant Vaccinia virus GLV-1h68 as a single agent to efficiently treat different human or canine cancers has been shown in several preclinical studies. Currently, its human safety and efficacy are investigated in phase I/II clinical trials. In this study we set out to evaluate the oncolytic activity of GLV-1h68 in the human lung adenocarcinoma cell line PC14PE6-RFP in cell cultures and analyzed the antitumor potency of a combined treatment strategy consisting of GLV-1h68 and cyclophosphamide (CPA) in a mouse model of PC14PE6-RFP lung adenocarcinoma. Methods PC14PE6-RFP cells were treated in cell culture with GLV-1h68. Viral replication and cell survival were determined by plaque assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. Subcutaneously implanted PC14PE6-RFP xenografts were treated by systemic injection of GLV-1h68, CPA or a combination of both. Tumor growth and viral biodistribution were monitored and immune-related antigen profiling of tumor lysates was performed. Results GLV-1h68 efficiently infected, replicated in and lysed human PC14PE6-RFP cells in cell cultures. PC14PE6-RFP tumors were efficiently colonized by GLV-1h68 leading to much delayed tumor growth in PC14PE6-RFP tumor-bearing nude mice. Combination treatment with GLV-1h68 and CPA significantly improved the antitumor efficacy of GLV-1h68 and led to an increased viral distribution within the tumors. Pro-inflammatory cytokines and chemokines were distinctly elevated in tumors of GLV-1h68-treated mice. Factors expressed by endothelial cells or present in the blood were decreased after combination treatment. A complete loss in the hemorrhagic phenotype of the PC14PE6-RFP tumors and a decrease in the number of blood vessels after combination treatment could be observed. Conclusions CPA and GLV-1h68 have synergistic antitumor effects on PC14PE6-RFP xenografts. We strongly suppose that in the PC14PE6-RFP model the enhanced tumor growth inhibition achieved by combining GLV-1h68 with CPA is due to an effect on the vasculature rather than an immunosuppressive action of CPA. These results provide evidence to support further preclinical studies of combining GLV-1h68 and CPA in other highly angiogenic tumor models. Moreover, data presented here demonstrate that CPA can be combined successfully with GLV-1h68 based oncolytic virus therapy and therefore might be promising as combination therapy in human clinical trials.
Collapse
Affiliation(s)
| | | | - Aladar A Szalay
- Department of Biochemistry, Biocenter, University of Wuerzburg, D-97074 Wuerzburg, Germany.
| |
Collapse
|
15
|
Sen D, Balakrishnan B, Jayandharan GR. Cellular unfolded protein response against viruses used in gene therapy. Front Microbiol 2014; 5:250. [PMID: 24904562 PMCID: PMC4033601 DOI: 10.3389/fmicb.2014.00250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/07/2014] [Indexed: 01/21/2023] Open
Abstract
Viruses are excellent vehicles for gene therapy due to their natural ability to infect and deliver the cargo to specific tissues with high efficiency. Although such vectors are usually "gutted" and are replication defective, they are subjected to clearance by the host cells by immune recognition and destruction. Unfolded protein response (UPR) is a naturally evolved cyto-protective signaling pathway which is triggered due to endoplasmic reticulum (ER) stress caused by accumulation of unfolded/misfolded proteins in its lumen. The UPR signaling consists of three signaling pathways, namely PKR-like ER kinase, activating transcription factor 6, and inositol-requiring protein-1. Once activated, UPR triggers the production of ER molecular chaperones and stress response proteins to help reduce the protein load within the ER. This occurs by degradation of the misfolded proteins and ensues in the arrest of protein translation machinery. If the burden of protein load in ER is beyond its processing capacity, UPR can activate pro-apoptotic pathways or autophagy leading to cell death. Viruses are naturally evolved in hijacking the host cellular translation machinery to generate a large amount of proteins. This phenomenon disrupts ER homeostasis and leads to ER stress. Alternatively, in the case of gutted vectors used in gene therapy, the excess load of recombinant vectors administered and encountered by the cell can trigger UPR. Thus, in the context of gene therapy, UPR becomes a major roadblock that can potentially trigger inflammatory responses against the vectors and reduce the efficiency of gene transfer.
Collapse
Affiliation(s)
- Dwaipayan Sen
- Department of Hematology, Christian Medical College Vellore, India
| | | | - Giridhara R Jayandharan
- Department of Hematology, Christian Medical College Vellore, India ; Centre for Stem Cell Research, Christian Medical College Vellore, India
| |
Collapse
|
16
|
Ruiz-Hernández E, Hess M, Melen GJ, Theek B, Talelli M, Shi Y, Ozbakir B, Teunissen EA, Ramírez M, Moeckel D, Kiessling F, Storm G, Scheeren HW, Hennink WE, Szalay AA, Stritzker J, Lammers T. PEG-pHPMAm-based polymeric micelles loaded with doxorubicin-prodrugs in combination antitumor therapy with oncolytic vaccinia viruses. Polym Chem 2014:1674-1681. [PMID: 24518685 DOI: 10.1039/c3py01097j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An enzymatically activatable prodrug of doxorubicin was covalently coupled, using click-chemistry, to the hydrophobic core of poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl)-methacrylamide-lactate] micelles. The release and cytotoxic activity of the prodrug was evaluated in vitro in A549 non-small-cell lung cancer cells after adding β-glucuronidase, an enzyme which is present intracellularly in lysosomes and extracellularly in necrotic areas of tumor lesions. The prodrug-containing micelles alone and in combination with standard and β-glucuronidase-producing oncolytic vaccinia viruses were also evaluated in vivo, in mice bearing A549 xenograft tumors. When combined with the oncolytic viruses, the micelles completely blocked tumor growth. Moreover, a significantly better antitumor efficacy as compared to virus treatment alone was observed when β-glucuronidase virus treated tumor-bearing mice received the prodrug-containing micelles. These findings show that combining tumor-targeted drug delivery systems with oncolytic vaccinia viruses holds potential for improving anticancer therapy.
Collapse
Affiliation(s)
- Eduardo Ruiz-Hernández
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michael Hess
- Department of Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Gustavo J Melen
- Department of Hematooncology & Stem Cell Transplantation Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Benjamin Theek
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Center for Biomedical Engineering, Aachen, Germany
| | - Marina Talelli
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Inorganic and Bioinorganic Chemistry, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Yang Shi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Burcin Ozbakir
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Erik A Teunissen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Manuel Ramírez
- Department of Hematooncology & Stem Cell Transplantation Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Diana Moeckel
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Center for Biomedical Engineering, Aachen, Germany
| | - Fabian Kiessling
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Center for Biomedical Engineering, Aachen, Germany
| | - Gert Storm
- Department of Controlled Drug Delivery, Targeted Therapeutics Section, University of Twente and MIRA Institute for Biomedical Engineering and Technical Medicine, Enschede, The Netherlands
| | - Hans W Scheeren
- Department of Organic Chemistry, Radboud Univ Nijmegen, Heyendaalse weg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Aladar A Szalay
- Department of Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany.,Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA.,Department of Radiation Oncology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jochen Stritzker
- Department of Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany.,Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA
| | - Twan Lammers
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Experimental Molecular Imaging, University Clinic and Helmholtz Center for Biomedical Engineering, Aachen, Germany.,Department of Controlled Drug Delivery, Targeted Therapeutics Section, University of Twente and MIRA Institute for Biomedical Engineering and Technical Medicine, Enschede, The Netherlands
| |
Collapse
|
17
|
Li X, Zhang Z, Yu Z, Magnusson J, Yu JX. Novel molecular platform integrated iron chelation therapy for 1H-MRI detection of β-galactosidase activity. Mol Pharm 2013; 10:1360-7. [PMID: 23391334 DOI: 10.1021/mp300627t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Targeting the increased Fe(3+) content in tumors, we propose a novel molecular platform integrated cancer iron chelation therapy for (1)H-magnetic resonance imaging (MRI) detection of β-galactosidase (β-gal) activity. Following this idea, we have designed, synthesized, and characterized a series of β-d-galactosides conjugated with various chelators and demonstrated the feasibility of this concept for assessing β-gal activity in solution by (1)H-MRI T1 and T2 relaxation mapping.
Collapse
Affiliation(s)
- Xiaojin Li
- Xinjiang Institute of Medicinal Development, Chinese Academy of Medical Sciences, 9 Xinming Road, Urumqi, Xinjiang 830002, China
| | | | | | | | | |
Collapse
|
18
|
Schäfer S, Weibel S, Donat U, Zhang Q, Aguilar RJ, Chen NG, Szalay AA. Vaccinia virus-mediated intra-tumoral expression of matrix metalloproteinase 9 enhances oncolysis of PC-3 xenograft tumors. BMC Cancer 2012; 12:366. [PMID: 22917220 PMCID: PMC3495867 DOI: 10.1186/1471-2407-12-366] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 08/20/2012] [Indexed: 11/21/2022] Open
Abstract
Background Oncolytic viruses, including vaccinia virus (VACV), are a promising alternative to classical mono-cancer treatment methods such as surgery, chemo- or radiotherapy. However, combined therapeutic modalities may be more effective than mono-therapies. In this study, we enhanced the effectiveness of oncolytic virotherapy by matrix metalloproteinase (MMP-9)-mediated degradation of proteins of the tumoral extracellular matrix (ECM), leading to increased viral distribution within the tumors. Methods For this study, the oncolytic vaccinia virus GLV-1h255, containing the mmp-9 gene, was constructed and used to treat PC-3 tumor-bearing mice, achieving an intra-tumoral over-expression of MMP-9. The intra-tumoral MMP-9 content was quantified by immunohistochemistry in tumor sections. Therapeutic efficacy of GLV-1h255 was evaluated by monitoring tumor growth kinetics and intra-tumoral virus titers. Microenvironmental changes mediated by the intra-tumoral MMP-9 over-expression were investigated by microscopic quantification of the collagen IV content, the blood vessel density (BVD) and the analysis of lymph node metastasis formation. Results GLV-1h255-treatment of PC-3 tumors led to a significant over-expression of intra-tumoral MMP-9, accompanied by a marked decrease in collagen IV content in infected tumor areas, when compared to GLV-1h68-infected tumor areas. This led to considerably elevated virus titers in GLV-1h255 infected tumors, and to enhanced tumor regression. The analysis of the BVD, as well as the lumbar and renal lymph node volumes, revealed lower BVD and significantly smaller lymph nodes in both GLV-1h68- and GLV-1h255- injected mice compared to those injected with PBS, indicating that MMP-9 over-expression does not alter the metastasis-reducing effect of oncolytic VACV. Conclusions Taken together, these results indicate that a GLV-1h255-mediated intra-tumoral over-expression of MMP-9 leads to a degradation of collagen IV, facilitating intra-tumoral viral dissemination, and resulting in accelerated tumor regression. We propose that approaches which enhance the oncolytic effect by increasing the intra-tumoral viral load, may be an effective way to improve therapeutic outcome.
Collapse
Affiliation(s)
- Simon Schäfer
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, 97074, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Wang H, Chen NG, Minev BR, Szalay AA. Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells. J Transl Med 2012; 10:167. [PMID: 22901246 PMCID: PMC3478222 DOI: 10.1186/1479-5876-10-167] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 08/02/2012] [Indexed: 12/18/2022] Open
Abstract
Background Recent data suggest that cancer stem cells (CSCs) play an important role in cancer, as these cells possess enhanced tumor-forming capabilities and are responsible for relapses after apparently curative therapies have been undertaken. Hence, novel cancer therapies will be needed to test for both tumor regression and CSC targeting. The use of oncolytic vaccinia virus (VACV) represents an attractive anti-tumor approach and is currently under evaluation in clinical trials. The purpose of this study was to demonstrate whether VACV does kill CSCs that are resistant to irradiation and chemotherapy. Methods Cancer stem-like cells were identified and separated from the human breast cancer cell line GI-101A by virtue of increased aldehyde dehydrogenase 1 (ALDH1) activity as assessed by the ALDEFLUOR assay and cancer stem cell-like features such as chemo-resistance, irradiation-resistance and tumor-initiating were confirmed in cell culture and in animal models. VACV treatments were applied to both ALDEFLUOR-positive cells in cell culture and in xenograft tumors derived from these cells. Moreover, we identified and isolated CD44+CD24+ESA+ cells from GI-101A upon an epithelial-mesenchymal transition (EMT). These cells were similarly characterized both in cell culture and in animal models. Results We demonstrated for the first time that the oncolytic VACV GLV-1h68 strain replicated more efficiently in cells with higher ALDH1 activity that possessed stem cell-like features than in cells with lower ALDH1 activity. GLV-1h68 selectively colonized and eventually eradicated xenograft tumors originating from cells with higher ALDH1 activity. Furthermore, GLV-1h68 also showed preferential replication in CD44+CD24+ESA+ cells derived from GI-101A upon an EMT induction as well as in xenograft tumors originating from these cells that were more tumorigenic than CD44+CD24-ESA+ cells. Conclusions Taken together, our findings indicate that GLV-1h68 efficiently replicates and kills cancer stem-like cells. Thus, GLV-1h68 may become a promising agent for eradicating both primary and metastatic tumors, especially tumors harboring cancer stem-like cells that are resistant to chemo and/or radiotherapy and may be responsible for recurrence of tumors.
Collapse
Affiliation(s)
- Huiqiang Wang
- Institute of Biochemistry, Biocenter, University of Würzburg, Am hubland, D-97074, Würzburg, Germany
| | | | | | | |
Collapse
|
20
|
Gentschev I, Adelfinger M, Josupeit R, Rudolph S, Ehrig K, Donat U, Weibel S, Chen NG, Yu YA, Zhang Q, Heisig M, Thamm D, Stritzker J, MacNeill A, Szalay AA. Preclinical evaluation of oncolytic vaccinia virus for therapy of canine soft tissue sarcoma. PLoS One 2012; 7:e37239. [PMID: 22615950 PMCID: PMC3352892 DOI: 10.1371/journal.pone.0037239] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 04/18/2012] [Indexed: 12/27/2022] Open
Abstract
Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS) using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS.
Collapse
Affiliation(s)
- Ivaylo Gentschev
- Genelux Corporation, San Diego Science Center, San Diego, California, United States of America
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Marion Adelfinger
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Rafael Josupeit
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Stephan Rudolph
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Klaas Ehrig
- Genelux Corporation, San Diego Science Center, San Diego, California, United States of America
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Ulrike Donat
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Stephanie Weibel
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Nanhai G. Chen
- Genelux Corporation, San Diego Science Center, San Diego, California, United States of America
- Department of Radiation Oncology, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Yong A. Yu
- Genelux Corporation, San Diego Science Center, San Diego, California, United States of America
- Department of Radiation Oncology, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Qian Zhang
- Genelux Corporation, San Diego Science Center, San Diego, California, United States of America
- Department of Radiation Oncology, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Martin Heisig
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Wuerzburg, Wuerzburg, Germany
| | - Douglas Thamm
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jochen Stritzker
- Genelux Corporation, San Diego Science Center, San Diego, California, United States of America
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Amy MacNeill
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, United States of America
| | - Aladar A. Szalay
- Genelux Corporation, San Diego Science Center, San Diego, California, United States of America
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany
- Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
- Department of Radiation Oncology, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Sturm JB, Hess M, Weibel S, Chen NG, Yu YA, Zhang Q, Donat U, Reiss C, Gambaryan S, Krohne G, Stritzker J, Szalay AA. Functional hyper-IL-6 from vaccinia virus-colonized tumors triggers platelet formation and helps to alleviate toxicity of mitomycin C enhanced virus therapy. J Transl Med 2012; 10:9. [PMID: 22236378 PMCID: PMC3268093 DOI: 10.1186/1479-5876-10-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/11/2012] [Indexed: 01/08/2023] Open
Abstract
Background Combination of oncolytic vaccinia virus therapy with conventional chemotherapy has shown promise for tumor therapy. However, side effects of chemotherapy including thrombocytopenia, still remain problematic. Methods Here, we describe a novel approach to optimize combination therapy of oncolytic virus and chemotherapy utilizing virus-encoding hyper-IL-6, GLV-1h90, to reduce chemotherapy-associated side effects. Results We showed that the hyper-IL-6 cytokine was successfully produced by GLV-1h90 and was functional both in cell culture as well as in tumor-bearing animals, in which the cytokine-producing vaccinia virus strain was well tolerated. When combined with the chemotherapeutic mitomycin C, the anti-tumor effect of the oncolytic virotherapy was significantly enhanced. Moreover, hyper-IL-6 expression greatly reduced the time interval during which the mice suffered from chemotherapy-induced thrombocytopenia. Conclusion Therefore, future clinical application would benefit from careful investigation of additional cytokine treatment to reduce chemotherapy-induced side effects.
Collapse
Affiliation(s)
- Julia B Sturm
- Department of Biochemistry, University of Würzburg, 97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ascierto ML, Worschech A, Yu Z, Adams S, Reinboth J, Chen NG, Pos Z, Roychoudhuri R, Di Pasquale G, Bedognetti D, Uccellini L, Rossano F, Ascierto PA, Stroncek DF, Restifo NP, Wang E, Szalay AA, Marincola FM. Permissivity of the NCI-60 cancer cell lines to oncolytic Vaccinia Virus GLV-1h68. BMC Cancer 2011; 11:451. [PMID: 22011439 PMCID: PMC3213037 DOI: 10.1186/1471-2407-11-451] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 10/19/2011] [Indexed: 01/04/2023] Open
Abstract
Background Oncolytic viral therapy represents an alternative therapeutic strategy for the treatment of cancer. We previously described GLV-1h68, a modified Vaccinia Virus with exclusive tropism for tumor cells, and we observed a cell line-specific relationship between the ability of GLV-1h68 to replicate in vitro and its ability to colonize and eliminate tumor in vivo. Methods In the current study we surveyed the in vitro permissivity to GLV-1h68 replication of the NCI-60 panel of cell lines. Selected cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain. In order to identify correlates of permissity to viral infection, we measured transcriptional profiles of the cell lines prior infection. Results We observed highly heterogeneous permissivity to VACV infection amongst the cell lines. The heterogeneity of permissivity was independent of tissue with the exception of B cell derivation. Cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain and a significant correlation was found suggesting a common permissive phenotype. While no clear transcriptional pattern could be identified as predictor of permissivity to infection, some associations were observed suggesting multifactorial basis permissivity to viral infection. Conclusions Our findings have implications for the design of oncolytic therapies for cancer and offer insights into the nature of permissivity of tumor cells to viral infection.
Collapse
Affiliation(s)
- Maria Libera Ascierto
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center and trans-NIH Center of Human Immunology, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hess M, Stritzker J, Härtl B, Sturm JB, Gentschev I, Szalay AA. Bacterial glucuronidase as general marker for oncolytic virotherapy or other biological therapies. J Transl Med 2011; 9:172. [PMID: 21989091 PMCID: PMC3207905 DOI: 10.1186/1479-5876-9-172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/11/2011] [Indexed: 11/23/2022] Open
Abstract
Background Oncolytic viral tumor therapy is an emerging field in the fight against cancer with rising numbers of clinical trials and the first clinically approved product (Adenovirus for the treatment of Head and Neck Cancer in China) in this field. Yet, until recently no general (bio)marker or reporter gene was described that could be used to evaluate successful tumor colonization and/or transgene expression in other biological therapies. Methods Here, a bacterial glucuronidase (GusA) encoded by biological therapeutics (e.g. oncolytic viruses) was used as reporter system. Results Using fluorogenic probes that were specifically activated by glucuronidase we could show 1) preferential activation in tumors, 2) renal excretion of the activated fluorescent compounds and 3) reproducible detection of GusA in the serum of oncolytic vaccinia virus treated, tumor bearing mice in several tumor models. Time course studies revealed that reliable differentiation between tumor bearing and healthy mice can be done as early as 9 days post injection of the virus. Regarding the sensitivity of the newly developed assay system, we could show that a single infected tumor cell could be reliably detected in this assay. Conclusion GusA therefore has the potential to be used as a general marker in the preclinical and clinical evaluation of (novel) biological therapies as well as being useful for the detection of rare cells such as circulating tumor cells.
Collapse
Affiliation(s)
- Michael Hess
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Chen NG, Yu YA, Zhang Q, Szalay AA. Replication efficiency of oncolytic vaccinia virus in cell cultures prognosticates the virulence and antitumor efficacy in mice. J Transl Med 2011; 9:164. [PMID: 21951588 PMCID: PMC3192684 DOI: 10.1186/1479-5876-9-164] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 09/27/2011] [Indexed: 01/09/2023] Open
Abstract
Background We have shown that insertion of the three vaccinia virus (VACV) promoter-driven foreign gene expression cassettes encoding Renilla luciferase-Aequorea GFP fusion protein, β-galactosidase, and β-glucuronidase into the F14.5L, J2R, and A56R loci of the VACV LIVP genome, respectively, results in a highly attenuated mutant strain GLV-1h68. This strain shows tumor-specific replication and is capable of eradicating tumors with little or no virulence in mice. This study aimed to distinguish the contribution of added VACV promoter-driven transcriptional units as inserts from the effects of insertional inactivation of three viral genes, and to determine the correlation between replication efficiency of oncolytic vaccinia virus in cell cultures and the virulence and antitumor efficacy in mice Methods A series of recombinant VACV strains was generated by replacing one, two, or all three of the expression cassettes in GLV-1h68 with short non-coding DNA sequences. The replication efficiency and tumor cell killing capacity of these newly generated VACV strains were compared with those of the parent virus GLV-1h68 in cell cultures. The virus replication efficiency in tumors and antitumor efficacy as well as the virulence were evaluated in nu/nu (nude) mice bearing human breast tumor xenografts. Results we found that virus replication efficiency increased with removal of each of the expression cassettes. The increase in virus replication efficiency was proportionate to the strength of removed VACV promoters linked to foreign genes. The replication efficiency of the new VACV strains paralleled their cytotoxicity in cell cultures. The increased replication efficiency in tumor xenografts resulted in enhanced antitumor efficacy in nude mice. Similarly, the enhanced virus replication efficiency was indicative of increased virulence in nude mice. Conclusions These data demonstrated that insertion of VACV promoter-driven transcriptional units into the viral genome for the purpose of insertional mutagenesis did modulate the efficiency of virus replication together with antitumor efficacy as well as virulence. Replication efficiency of oncolytic VACV in cell cultures can predict the virulence and therapeutic efficacy in nude mice. These findings may be essential for rational design of safe and potent VACV strains for vaccination and virotherapy of cancer in humans and animals.
Collapse
Affiliation(s)
- Nanhai G Chen
- Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA
| | | | | | | |
Collapse
|
25
|
Hartkopf AD, Fehm T, Wallwiener D, Lauer UM. Oncolytic virotherapy of breast cancer. Gynecol Oncol 2011; 123:164-71. [PMID: 21764108 DOI: 10.1016/j.ygyno.2011.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 01/02/2023]
Abstract
The use of replication competent viruses that selectively target and destroy cancer cells has rapidly evolved over the past decade and numerous innovative oncolytic viruses have been created. Many of these promising anti-cancer agents have recently entered into clinical trials (including those on breast cancer) and demonstrated encouraging safety and efficacy. Virotherapeutic strategies are thus of considerable interest to combat breast cancer in both (i) the primary disease situation in which relapse should be avoided as good as possible and (ii) in the metastatic situation which remains incurable to date. Here, we summarize data from preclinical and clinical trials using oncolytic virotherapy to treat breast cancer. This includes strategies to specifically target breast cancer cells, to arm oncolytic viruses with additional therapeutic transgenes and an outlining of future challenges when translating these promising therapeutics "from bench to bedside".
Collapse
Affiliation(s)
- Andreas D Hartkopf
- Department of Obstetrics and Gynecology, University Clinic of Tuebingen, Tuebingen, Germany.
| | | | | | | |
Collapse
|
26
|
Zhou F, Zhang J, Li P, Niu F, Wu X, Wang G, Roberts MS. Toward a new age of cellular pharmacokinetics in drug discovery. Drug Metab Rev 2011; 43:335-45. [PMID: 21395404 DOI: 10.3109/03602532.2011.560607] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pharmacokinetics, pharmacology, and toxicology are the major determinants of the success or failure of candidates during drug development. Because inappropriate pharmacokinetics often leads to inefficacy, even toxicity, pharmacokinetics studies have been regarded as crucial components in drug preclinical and clinical research. However, new data increasingly reveal that drug concentrations in plasma or tissues cannot totally explain the efficacy of drug on the target organ. For most drugs that interact with targets localized in cells, intracellular penetration, accumulation, distribution, and elimination are important parameters governing the efficacy in the target cells. So, there is a pressing need to clarify the cellular pharmacokinetics and thus evaluate the efficacy of drugs in the target cells. This review provides a general overview regarding current knowledge about cellular pharmacokinetics in some specific cells and also summarizes the factors that can influence cellular pharmacokinetics. It concludes by discussing potential strategies for optimizing cellular pharmacokinetics and advocating that global cellular pharmacokinetics studies be conducted in future research toward improving drug efficacy.
Collapse
Affiliation(s)
- Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing
| | | | | | | | | | | | | |
Collapse
|