1
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
2
|
Ander SE, Li FS, Carpentier KS, Morrison TE. Innate immune surveillance of the circulation: A review on the removal of circulating virions from the bloodstream. PLoS Pathog 2022; 18:e1010474. [PMID: 35511797 PMCID: PMC9070959 DOI: 10.1371/journal.ppat.1010474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Many viruses utilize the lymphohematogenous route for dissemination; however, they may not freely use this highway unchecked. The reticuloendothelial system (RES) is an innate defense system that surveys circulating blood, recognizing and capturing viral particles. Examination of the literature shows that the bulk of viral clearance is mediated by the liver; however, the precise mechanism(s) mediating viral vascular clearance vary between viruses and, in many cases, remains poorly defined. Herein, we summarize what is known regarding the recognition and capture of virions from the circulation prior to the generation of a specific antibody response. We also discuss the consequences of viral capture on viral pathogenesis and the fate of the captor cell. Finally, this understudied topic has implications beyond viral pathogenesis, including effects on arbovirus ecology and the application of virus-vectored gene therapies.
Collapse
Affiliation(s)
- Stephanie E. Ander
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Frances S. Li
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kathryn S. Carpentier
- Department of Natural Sciences, Greensboro College, Greensboro, North Carolina, United States of America
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
3
|
Naumenko VA, Stepanenko AA, Lipatova AV, Vishnevskiy DA, Chekhonin VP. Infection of non-cancer cells: A barrier or support for oncolytic virotherapy? MOLECULAR THERAPY - ONCOLYTICS 2022; 24:663-682. [PMID: 35284629 PMCID: PMC8898763 DOI: 10.1016/j.omto.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses are designed to specifically target cancer cells, sparing normal cells. Although numerous studies demonstrate the ability of oncolytic viruses to infect a wide range of non-tumor cells, the significance of this phenomenon for cancer virotherapy is poorly understood. To fill the gap, we summarize the data on infection of non-cancer targets by oncolytic viruses with a special focus on tumor microenvironment and secondary lymphoid tissues. The review aims to address two major questions: how do attenuated viruses manage to infect normal cells, and whether it is of importance for oncolytic virotherapy.
Collapse
Affiliation(s)
- Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Corresponding author Victor A. Naumenko, PhD, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia.
| | - Aleksei A. Stepanenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Anastasiia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
4
|
Silva LMR, Velásquez ZD, López-Osorio S, Hermosilla C, Taubert A. Novel Insights Into Sterol Uptake and Intracellular Cholesterol Trafficking During Eimeria bovis Macromeront Formation. Front Cell Infect Microbiol 2022; 12:809606. [PMID: 35223543 PMCID: PMC8878908 DOI: 10.3389/fcimb.2022.809606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
Apicomplexan parasites are considered as defective in cholesterol synthesis. Consequently, they need to scavenge cholesterol from the host cell by either enhancing the uptake of extracellular cholesterol sources or by upregulating host cellular de-novo biosynthesis. Given that Eimeria bovis macromeront formation in bovine lymphatic endothelial host cells in vivo is a highly cholesterol-demanding process, we here examined host parasite interactions based on host cellular uptake of different low-density lipoprotein (LDL) types, i.e., of non-modified (LDL), oxidized (oxLDL), and acetylated LDL (acLDL). Furthermore, the expression of lipoprotein-oxidized receptor 1 (LOX-1), which mediates acLDL and oxLDL internalization, was monitored throughout first merogony, in vitro and ex vivo. Moreover, the effects of inhibitors blocking exogenous sterol uptake or intracellular transport were studied during E. bovis macromeront formation in vitro. Hence, E. bovis-infected primary bovine umbilical vein endothelial cells (BUVEC) were treated with inhibitors of sterol uptake (ezetimibe, poly-C, poly-I, sucrose) and of intracellular sterol transport and release from endosomes (progesterone, U18666A). As a read-out system, the size and number of macromeronts as well as merozoite I production were estimated. Overall, the internalization of all LDL modifications (LDL, oxLDL, acLDL) was observed in E. bovis-infected BUVEC but to different extents. Supplementation with oxLDL and acLDL at lower concentrations (5 and 10 µg/ml, respectively) resulted in a slight increase of both macromeront numbers and size; however, at higher concentrations (25-50 µg/ml), merozoite I production was diminished. LOX-1 expression was enhanced in E. bovis-infected BUVEC, especially toward the end of merogony. As an interesting finding, ezetimibe treatments led to a highly significant blockage of macromeront development and merozoite I production confirming the relevance of sterol uptake for intracellular parasite development. Less prominent effects were induced by non-specific inhibition of LDL internalization via sucrose, poly-I, and poly-C. In addition, blockage of cholesterol transport via progesterone and U18666A treatments resulted in significant inhibition of parasite development. Overall, current data underline the relevance of exogenous sterol uptake and intracellular cholesterol transport for adequate E. bovis macromeront development, unfolding new perspectives for novel drug targets against E. bovis.
Collapse
Affiliation(s)
- Liliana M. R. Silva
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Zahady D. Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Sara López-Osorio
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
- Veterinary Medicine School, CIBAV Investigation Group, University of Antioquia, Medellin, Colombia
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Hovhannisyan L, Czechowska E, Gutowska-Owsiak D. The Role of Non-Immune Cell-Derived Extracellular Vesicles in Allergy. Front Immunol 2021; 12:702381. [PMID: 34489951 PMCID: PMC8417238 DOI: 10.3389/fimmu.2021.702381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), and especially exosomes, have been shown to mediate information exchange between distant cells; this process directly affects the biological characteristics and functionality of the recipient cell. As such, EVs significantly contribute to the shaping of immune responses in both physiology and disease states. While vesicles secreted by immune cells are often implicated in the allergic process, growing evidence indicates that EVs from non-immune cells, produced in the stroma or epithelia of the organs directly affected by inflammation may also play a significant role. In this review, we provide an overview of the mechanisms of allergy to which those EVs contribute, with a particular focus on small EVs (sEVs). Finally, we also give a clinical perspective regarding the utilization of the EV-mediated communication route for the benefit of allergic patients.
Collapse
Affiliation(s)
- Lilit Hovhannisyan
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Gdansk, Poland
| | - Ewa Czechowska
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Danuta Gutowska-Owsiak
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Jin KT, Du WL, Liu YY, Lan HR, Si JX, Mou XZ. Oncolytic Virotherapy in Solid Tumors: The Challenges and Achievements. Cancers (Basel) 2021; 13:cancers13040588. [PMID: 33546172 PMCID: PMC7913179 DOI: 10.3390/cancers13040588] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy (OVT) is a promising approach in cancer immunotherapy. Oncolytic viruses (OVs) could be applied in cancer immunotherapy without in-depth knowledge of tumor antigens. The capability of genetic modification makes OVs exciting therapeutic tools with a high potential for manipulation. Improving efficacy, employing immunostimulatory elements, changing the immunosuppressive tumor microenvironment (TME) to inflammatory TME, optimizing their delivery system, and increasing the safety are the main areas of OVs manipulations. Recently, the reciprocal interaction of OVs and TME has become a hot topic for investigators to enhance the efficacy of OVT with less off-target adverse events. Current investigations suggest that the main application of OVT is to provoke the antitumor immune response in the TME, which synergize the effects of other immunotherapies such as immune-checkpoint blockers and adoptive cell therapy. In this review, we focused on the effects of OVs on the TME and antitumor immune responses. Furthermore, OVT challenges, including its moderate efficiency, safety concerns, and delivery strategies, along with recent achievements to overcome challenges, are thoroughly discussed.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China;
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China;
| | - Jing-Xing Si
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| |
Collapse
|
7
|
Measles Virus as an Oncolytic Immunotherapy. Cancers (Basel) 2021; 13:cancers13030544. [PMID: 33535479 PMCID: PMC7867054 DOI: 10.3390/cancers13030544] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Measles virus (MeV) preferentially replicates in malignant cells, leading to tumor lysis and priming of antitumor immunity. Live attenuated MeV vaccine strains are therefore under investigation as cancer therapeutics. The versatile MeV reverse genetics systems allows for engineering of advanced targeted, armed, and shielded oncolytic viral vectors. Therapeutic efficacy can further be enhanced by combination treatments. An emerging focus in this regard is combination immunotherapy, especially with immune checkpoint blockade. Despite challenges arising from antiviral immunity, availability of preclinical models, and GMP production, early clinical trials have demonstrated safety of oncolytic MeV and yielded promising efficacy data. Future clinical trials with engineered viruses, rational combination regimens, and comprehensive translational research programs will realize the potential of oncolytic immunotherapy.
Collapse
|
8
|
Howard F, Muthana M. Designer nanocarriers for navigating the systemic delivery of oncolytic viruses. Nanomedicine (Lond) 2020; 15:93-110. [PMID: 31868115 DOI: 10.2217/nnm-2019-0323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nanotechnology is paving the way for new carrier systems designed to overcome the greatest challenges of oncolytic virotherapy; systemic administration and subsequent implications of immune responses and specific cell binding and entry. Systemic administration of oncolytic agents is vital for disseminated neoplasms, however transition of nanoparticles (NP) to virotherapy has yielded modest results. Their success relies on how they navigate the merry-go-round of often-contradictory phases of NP delivery: circulatory longevity, tissue permeation and cellular interaction, with many studies postulating design features optimal for each phase. This review discusses the optimal design of NPs for the transport of oncolytic viruses within these phases, to determine whether improved virotherapeutic efficacy lies in the pharmacokinetic/pharmacodynamics characteristics of the NP-oncolytic viruses complexes rather than manipulation of the virus and targeting ligands.
Collapse
|
9
|
Mühlebach MD. Measles virus in cancer therapy. Curr Opin Virol 2020; 41:85-97. [PMID: 32861945 DOI: 10.1016/j.coviro.2020.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Over the last years, the development of viruses to treat cancer patients has re-gained considerable attention. A genetically modified herpesvirus, Talimogene laherparepvec, has already been authorized for the treatment of melanoma patients. Also recombinant measles virus (MeV) is developed as an oncolytic virus. Because of its high genetic flexibility, a number of different MeV strains have been the basis for the generation of targeted, armed, or shielded viruses that are highly specific for a given tumor target, more effective, or protected against serum neutralization. Such MeV have been extensively tested in vitro and in vivo, whereby remarkable oncolytic potency is accompanied by safety also in non-human primates. Therefore, MeV has been introduced into 19 different clinical trials and has reached phase II against two different tumor entities, multiple myeloma and ovarian carcinoma. Remarkably, one patient with advanced stage myeloma experienced long-term remission after treatment, visualizing the potency of this approach.
Collapse
Affiliation(s)
- Michael D Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany.
| |
Collapse
|
10
|
Schcolnik-Cabrera A, Juárez M, Oldak B, Cruz-Rivera M, Flisser A, Dueñas-González A, Buzoianu-Anguiano V, Orozco-Suarez S, Mendlovic F. In Vitro Employment of Recombinant Taenia solium Calreticulin as a Novel Strategy Against Breast and Ovarian Cancer Stem-like Cells. Arch Med Res 2020; 51:65-75. [PMID: 32097797 DOI: 10.1016/j.arcmed.2019.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Calreticulin is a chaperone and master regulator of intracellular calcium homeostasis. Several additional functions have been discovered. Human and parasite calreticulin have been shown to suppress mammary tumor growth in vivo. Here, we explored the capacity of recombinant Taenia solium calreticulin (rTsCRT) to modulate cancer cell growth in vitro. METHODS We used different concentrations of rTsCRT to treat cancer cell lines and analyzed viability and colony formation capacity. We also tested the combination of the IC20 or IC50 doses of rTsCRT and of the chemotherapeutic drug 5-fluorouracil on MCF7 and SKOV3 cell lines. As a control, the non-tumorigenic cell line MCF10-A was employed. The effect of the drug combinations was also assessed in cancer stem-like cells. Additionally, scavenger receptor ligands were employed to identify the role of this receptor in the rTsCRT anti-tumoral effect. RESULTS rTsCRT has a dose-dependent in vitro anti-tumoral effect, being SKOV3 the most sensitive cell line followed by MCF7. When rTsCRT/5-fluorouracil were used, MCF7 and SKOV3 showed a 60% reduction in cell viability; colony formation capacity was also diminished. Treatment of cancer stem-like cells from MCF7 showed a higher reduction in cell viability, while those from SKOV3 were more sensitive to colony disaggregation. Finally, pharmacological inhibition of the scavenger receptor, abrogated the reduction in viability induced by rTsCRT in both the parental and stem-like cells. CONCLUSION Our data suggest that rTsCRT alone or in combination with 5-fluorouracil inhibits the growth of breast and ovarian cancer cell lines through its interaction with scavenger receptors.
Collapse
Affiliation(s)
| | - Mandy Juárez
- División de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Bernardo Oldak
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico
| | - Mayra Cruz-Rivera
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana Flisser
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alfonso Dueñas-González
- División de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico; Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México/Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Vinnitsa Buzoianu-Anguiano
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades CMN Siglo XXI, Ciudad de México, Mexico
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades CMN Siglo XXI, Ciudad de México, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico.
| |
Collapse
|
11
|
Abstract
With the recognition of oncolytic virotherapy as an immunotherapy, the distinct interactions between oncolytic agents and the immune system have come into focus. The role of the immune system in oncolytic virotherapy is somewhat ambiguous: While preexisting or arising immunity directed against viral antigens may preclude efficient viral replication and spread, immunity directed against tumor antigens is considered essential for long-term treatment success. Aside from the antiviral and antitumor immune status of the patient, the specific immunological microenvironment in a given tumor adds an additional layer of complexity.In this review we focus on the case of measles virus, which has long been known for its multifaceted interplay with the immune system. The high prevalence of measles-neutralizing antibodies in the general population may pose additional challenges. The oncolytic measles virus vector platform offers manifold opportunities for tumor-targeted immunomodulation. This review provides a survey of immunomodulation in the context of measles virotherapy including strategies to suppress or circumvent antiviral immunity as well as enhance antitumor immunity that have been pursued in preclinical and clinical studies. Understanding and selective manipulation of the intricate balance between antiviral and antitumor immunity will be crucial to develop the full potential of oncolytic virotherapy.
Collapse
|
12
|
Guerrero-Fonseca CA, López-Baquero MA, Bedoya-Rodríguez AA. Virus oncolíticos: un arma contra el cáncer. REVISTA DE LA FACULTAD DE MEDICINA 2019. [DOI: 10.15446/revfacmed.v67n2.68347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. Los virus oncolíticos son virus atenuados, mutados o que por naturaleza se dirigen y matan específicamente células tumorales, sin afectar a las células normales. La administración intratumoral del virus ofrece la oportunidad de tratar el tumor primario pero no focos metastásicos, los cuales pueden ser alcanzados mediante la administración intravenosa. Sin embargo, su eficiencia puede disminuir por la presencia de una respuesta inmunológica preexistente en los sujetos tratados.Objetivo. Exponer las técnicas utilizadas para envolver y transportar los virus con el fin de eludir el sistema inmunológico antes de que el virus llegue al tumor.Materiales y métodos. Se realizó una búsqueda narrativa de la literatura original y de revisión en las bases de datos PubMed, JSTOR y EBSCO sobre métodos o técnicas utilizadas para el tratamiento del cáncer mediante el uso de virus oncolíticos.Resultados. La formación de nanocomplejos entre los virus oncolíticos y biopolímeros —ya sea mediante la unión química o mediante la unión a través de interacciones electrostáticas o el uso de micropartículas, células transportadoras, liposomas, ultrasonido o terapias combinadas– es eficaz para evitar la respuesta inmunológica del huésped contra el virus.Conclusión. Para evitar la respuesta inmunológica del huésped contra los virus oncolíticos se han desarrollo diversos métodos que permiten la liberación controlada y especifica de los mismos. Sin embargo, debido a la diversidad de los virus, se debe tener en cuenta que la eficacia de los métodos de protección y transporte depende de las características bioquímicas tanto del biomaterial como del virus.
Collapse
|
13
|
Uchida S, Kataoka K. Design concepts of polyplex micelles for in vivo therapeutic delivery of plasmid DNA and messenger RNA. J Biomed Mater Res A 2019; 107:978-990. [PMID: 30665262 DOI: 10.1002/jbm.a.36614] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022]
Abstract
Nonviral delivery of plasmid (p)DNA or messenger (m)RNA is a safe and promising therapeutic option to continuously supply therapeutic proteins into diseased tissues. In most cases of in vivo pDNA and mRNA delivery, these nucleic acids are loaded into carriers based on cationic polymers and/or lipids to prevent nuclease-mediated degradation before reaching target cells. The carriers should also evade host clearance mechanisms, including uptake by scavenger cells and filtration in the spleen. Installation of ligands onto the carriers can facilitate their rapid uptake into target cells. Meanwhile, carrier toxicity should be minimized not only for preventing undesirable adverse responses in patients, but also for preserving the function of transfected cells to exert therapeutic effects. Long-term progressive improvement of platform technologies has helped overcome most of these issues, though some still remain hindering the widespread clinical application of nonviral pDNA and mRNA delivery. This review discusses design concepts of nonviral carriers for in vivo delivery and the issues to be overcome, focusing especially on our own efforts using polyplex micelles. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 978-990, 2019.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.,Policy Alternatives Research Institute, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Allen RJ, Mathew B, Rice KG. PEG-Peptide Inhibition of Scavenger Receptor Uptake of Nanoparticles by the Liver. Mol Pharm 2018; 15:3881-3891. [PMID: 30052459 DOI: 10.1021/acs.molpharmaceut.8b00355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PEGylated polylysine peptides represent a new class of scavenger receptor inhibitors that may find utility at inhibiting DNA nanoparticle uptake by Kupffer cells in the liver. PEG-peptides inhibit scavenger receptors in the liver by a novel mechanism involving in situ formation of albumin nanoparticles. The present study developed a new in vivo assay used to explore the structure-activity-relationships of PEG-peptides to find potent scavenger receptor inhibitors. Radio-iodinated PEG-peptides were dosed i.v. in mice and shown to saturate liver uptake in a dose-dependent fashion. The inhibition potency (IC50) was dependent on both the length of a polylysine repeat and PEG molecular weight. PEG30kda-Cys-Tyr-Lys25 was confirmed to be a high molecular weight (33.5 kDa) scavenger receptor inhibitor with an IC50 of 18 μM. Incorporation of multiple Leu residues improved potency, allowing a decrease in PEG MW and Lys repeat, resulting in PEG5kda-Cys-Tyr-Lys-(Leu-Lys4)3-Leu-Lys that inhibited scavenger receptors with an IC50 = 20 μM. A further decrease in PEG MW to 2 kDa increased potency further, resulting in a low molecular weight (4403 g/mol) PEG-peptide with an IC50 of 3 μM. Optimized low molecular weight PEG-peptides also demonstrated potency when inhibiting the uptake of radio-iodinated DNA nanoparticles by the liver. This study demonstrates an approach to discover low molecular weight PEG-peptides that serve as potent scavenger receptor inhibitors to block nanoparticle uptake by the liver.
Collapse
Affiliation(s)
- Rondine J Allen
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Basil Mathew
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy , University of Iowa , Iowa City , Iowa 52242 , United States
| |
Collapse
|
15
|
Abstract
Multiple myeloma (MM) is a clonal malignancy of plasma cells that is newly diagnosed in ~30,000 patients in the US each year. While recently developed therapies have improved the prognosis for MM patients, relapse rates remain unacceptably high. To overcome this challenge, researchers have begun to investigate the therapeutic potential of oncolytic viruses as a novel treatment option for MM. Preclinical work with these viruses has demonstrated that their infection can be highly specific for MM cells and results in impressive therapeutic efficacy in a variety of preclinical models. This has led to the recent initiation of several human trials. This review summarizes the current state of oncolytic therapy as a therapeutic option for MM and highlights a variety of areas that need to be addressed as the field moves forward.
Collapse
Affiliation(s)
- Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
16
|
Maroun J, Muñoz-Alía M, Ammayappan A, Schulze A, Peng KW, Russell S. Designing and building oncolytic viruses. Future Virol 2017; 12:193-213. [PMID: 29387140 PMCID: PMC5779534 DOI: 10.2217/fvl-2016-0129] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Oncolytic viruses (OVs) are engineered and/or evolved to propagate selectively in cancerous tissues. They have a dual mechanism of action; direct killing of infected cancer cells cross-primes anticancer immunity to boost the killing of uninfected cancer cells. The goal of the field is to develop OVs that are easily manufactured, efficiently delivered to disseminated sites of cancer growth, undergo rapid intratumoral spread, selectively kill tumor cells, cause no collateral damage and pose no risk of transmission in the population. Here we discuss the many virus engineering strategies that are being pursued to optimize delivery, intratumoral spread and safety of OVs derived from different virus families. With continued progress, OVs have the potential to transform the paradigm of cancer care.
Collapse
Affiliation(s)
- Justin Maroun
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Miguel Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Arun Ammayappan
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Autumn Schulze
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Stephen Russell
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
17
|
Measles to the Rescue: A Review of Oncolytic Measles Virus. Viruses 2016; 8:v8100294. [PMID: 27782084 PMCID: PMC5086626 DOI: 10.3390/v8100294] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapeutic agents are likely to become serious contenders in cancer treatment. The vaccine strain of measles virus is an agent with an impressive range of oncolytic activity in pre-clinical trials with increasing evidence of safety and efficacy in early clinical trials. This paramyxovirus vaccine has a proven safety record and is amenable to careful genetic modification in the laboratory. Overexpression of the measles virus (MV) receptor CD46 in many tumour cells may direct the virus to preferentially enter transformed cells and there is increasing awareness of the importance of nectin-4 and signaling lymphocytic activation molecule (SLAM) in oncolysis. Successful attempts to retarget MV by inserting genes for tumour-specific ligands to antigens such as carcinoembryonic antigen (CEA), CD20, CD38, and by engineering the virus to express synthetic microRNA targeting sequences, and "blinding" the virus to the natural viral receptors are exciting measures to increase viral specificity and enhance the oncolytic effect. Sodium iodine symporter (NIS) can also be expressed by MV, which enables in vivo tracking of MV infection. Radiovirotherapy using MV-NIS, chemo-virotherapy to convert prodrugs to their toxic metabolites, and immune-virotherapy including incorporating antibodies against immune checkpoint inhibitors can also increase the oncolytic potential. Anti-viral host immune responses are a recognized barrier to the success of MV, and approaches such as transporting MV to the tumour sites by carrier cells, are showing promise. MV Clinical trials are producing encouraging preliminary results in ovarian cancer, myeloma and cutaneous non-Hodgkin lymphoma, and the outcome of currently open trials in glioblastoma multiforme, mesothelioma and squamous cell carcinoma are eagerly anticipated.
Collapse
|
18
|
Baumhover NJ, Duskey JT, Khargharia S, White CW, Crowley ST, Allen RJ, Rice KG. Structure-Activity Relationship of PEGylated Polylysine Peptides as Scavenger Receptor Inhibitors for Non-Viral Gene Delivery. Mol Pharm 2015; 12:4321-8. [PMID: 26485572 DOI: 10.1021/acs.molpharmaceut.5b00513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PEGylated polylysine peptides of the general structure PEG30 kDa-Cys-Trp-LysN (N = 10 to 30) were used to form fully condensed plasmid DNA (pGL3) polyplexes at a ratio of 1 nmol of peptide per μg of DNA (ranging from N:P 3:1 to 10:1 depending on Lys repeat). Co-administration of 5 to 80 nmols of excess PEG-peptide with fully formed polyplexes inhibited the liver uptake of (125)I-pGL3-polyplexes. The percent inhibition was dependent on the PEG-peptide dose and was saturable, consistent with inhibition of scavenger receptors. The scavenger receptor inhibition potency of PEG-peptides was dependent on the length of the Lys repeat, which increased 10-fold when comparing PEG30 kDa-Cys-Trp-Lys10 (IC50 of 20.2 μM) with PEG30 kDa-Cys-Trp-Lys25 (IC50 of 2.1 μM). We hypothesize that PEG-peptides inhibit scavenger receptors by spontaneously forming small 40 to 60 nm albumin nanoparticles that bind to and saturate the receptor. Scavenger receptor inhibition delayed the metabolism of pGL3-polyplexes, resulting in efficient gene expression in liver hepatocytes following delayed hydrodynamic dosing. PEG-peptides represent a new class of scavenger inhibitors that will likely have broad utility in blocking unwanted liver uptake and metabolism of a variety of nanoparticles.
Collapse
Affiliation(s)
- Nicholas J Baumhover
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa , Iowa City, Iowa 52242, United States
| | - Jason T Duskey
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa , Iowa City, Iowa 52242, United States
| | - Sanjib Khargharia
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa , Iowa City, Iowa 52242, United States
| | - Christopher W White
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa , Iowa City, Iowa 52242, United States
| | - Samuel T Crowley
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa , Iowa City, Iowa 52242, United States
| | - Rondine J Allen
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa , Iowa City, Iowa 52242, United States
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
19
|
Crowley ST, Rice KG. "Evolving nanoparticle gene delivery vectors for the liver: What has been learned in 30 years". J Control Release 2015; 219:457-470. [PMID: 26439664 DOI: 10.1016/j.jconrel.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022]
Abstract
Nonviral gene delivery to the liver has been under evolution for nearly 30years. Early demonstrations established relatively simple nonviral vectors could mediate gene expression in HepG2 cells which understandably led to speculation that these same vectors would be immediately successful at transfecting primary hepatocytes in vivo. However, it was soon recognized that the properties of a nonviral vector resulting in efficient transfection in vitro were uncorrelated with those needed to achieve efficient nonviral transfection in vivo. The discovery of major barriers to liver gene transfer has set the field on a course to design biocompatible vectors that demonstrate increased DNA stability in the circulation with correlating expression in liver. The improved understanding of what limits nonviral vector gene transfer efficiency in vivo has resulted in more sophisticated, low molecular weight vectors that allow systematic optimization of nanoparticle size, charge and ligand presentation. While the field has evolved DNA nanoparticles that are stable in the circulation, target hepatocytes, and deliver DNA to the cytosol, breaching the nucleus remains the last major barrier to a fully successful nonviral gene transfer system for the liver. The lessons learned along the way are fundamentally important to the design of all systemically delivered nanoparticle nonviral gene delivery systems.
Collapse
Affiliation(s)
- Samuel T Crowley
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA.
| |
Collapse
|
20
|
Studebaker AW, Hutzen B, Pierson CR, Shaffer TA, Raffel C, Jackson EM. Oncolytic measles virus efficacy in murine xenograft models of atypical teratoid rhabdoid tumors. Neuro Oncol 2015; 17:1568-77. [PMID: 25838138 DOI: 10.1093/neuonc/nov058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/11/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Atypical teratoid rhabdoid tumor (AT/RT) is a rare, highly malignant pediatric tumor of the central nervous system that is usually refractory to available treatments. The aggressive growth, propensity to disseminate along the neuroaxis, and young age at diagnosis contribute to the poor prognosis. Previous studies have demonstrated the efficacy of using oncolytic measles virus (MV) against localized and disseminated models of medulloblastoma. The purpose of this study was to evaluate the oncolytic potential of MV in experimental models of AT/RT. METHODS Following confirmation of susceptibility to MV infection and killing of AT/RT cells in vitro, nude mice were injected with BT-12 and BT-16 AT/RT cells stereotactically into the caudate nucleus (primary tumor model) or lateral ventricle (disseminated tumor model). Recombinant MV was administered either intratumorally or intravenously. Survival was determined for treated and control animals. Necropsy was performed on animals showing signs of progressive disease. RESULTS All cell lines exhibited significant killing when infected with MV, all formed syncytia with infection, and all generated infectious virus after infection. Orthotopic xenografts displayed cells with rhabdoid-like cellular morphology, were negative for INI1 expression, and showed dissemination within the intracranial and spinal subarachnoid spaces. Intratumoral injection of live MV significantly prolonged the survival of animals with intracranial and metastatic tumors. CONCLUSION These data demonstrate that AT/RT is susceptible to MV killing and suggest that the virus may have a role in treating this tumor in the clinical setting.
Collapse
Affiliation(s)
- Adam W Studebaker
- Center for Childhood Cancer and Blood Diseases, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (A.W.S., B.H.); Nationwide Children's Hospital Department of Pathology and Laboratory Medicine and Departments of Pathology and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio (C.R.P.); Animal Resources Core, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (T.A.S.); Department of Neurological Surgery and Pediatrics, University of California, San Francisco, California (C.R.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland (E.M.J.)
| | - Brian Hutzen
- Center for Childhood Cancer and Blood Diseases, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (A.W.S., B.H.); Nationwide Children's Hospital Department of Pathology and Laboratory Medicine and Departments of Pathology and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio (C.R.P.); Animal Resources Core, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (T.A.S.); Department of Neurological Surgery and Pediatrics, University of California, San Francisco, California (C.R.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland (E.M.J.)
| | - Christopher R Pierson
- Center for Childhood Cancer and Blood Diseases, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (A.W.S., B.H.); Nationwide Children's Hospital Department of Pathology and Laboratory Medicine and Departments of Pathology and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio (C.R.P.); Animal Resources Core, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (T.A.S.); Department of Neurological Surgery and Pediatrics, University of California, San Francisco, California (C.R.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland (E.M.J.)
| | - Terri A Shaffer
- Center for Childhood Cancer and Blood Diseases, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (A.W.S., B.H.); Nationwide Children's Hospital Department of Pathology and Laboratory Medicine and Departments of Pathology and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio (C.R.P.); Animal Resources Core, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (T.A.S.); Department of Neurological Surgery and Pediatrics, University of California, San Francisco, California (C.R.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland (E.M.J.)
| | - Corey Raffel
- Center for Childhood Cancer and Blood Diseases, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (A.W.S., B.H.); Nationwide Children's Hospital Department of Pathology and Laboratory Medicine and Departments of Pathology and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio (C.R.P.); Animal Resources Core, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (T.A.S.); Department of Neurological Surgery and Pediatrics, University of California, San Francisco, California (C.R.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland (E.M.J.)
| | - Eric M Jackson
- Center for Childhood Cancer and Blood Diseases, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (A.W.S., B.H.); Nationwide Children's Hospital Department of Pathology and Laboratory Medicine and Departments of Pathology and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio (C.R.P.); Animal Resources Core, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (T.A.S.); Department of Neurological Surgery and Pediatrics, University of California, San Francisco, California (C.R.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland (E.M.J.)
| |
Collapse
|
21
|
Duskey JT, Rice KG. Nanoparticle ligand presentation for targeting solid tumors. AAPS PharmSciTech 2014; 15:1345-54. [PMID: 24927668 PMCID: PMC4179653 DOI: 10.1208/s12249-014-0143-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/07/2014] [Indexed: 01/10/2023] Open
Abstract
Among the many scientific advances to come from the study of nanoscience, the development of ligand-targeted nanoparticles to eliminate solid tumors is predicted to have a major impact on human health. There are many reports describing novel designs and testing of targeted nanoparticles to treat cancer. While the principles of the technology are well demonstrated in controlled lab experiments, there are still many hurdles to overcome for the science to mature into truly efficacious targeted nanoparticles that join the arsenal of agents currently used to treat cancer in humans. One of these hurdles is overcoming unwanted biodistribution to the liver while maximizing delivery to the tumor. This almost certainly requires advances in both nanoparticle stealth technology and targeting. Currently, it continues to be a challenge to control the loading of ligands onto polyethylene glycol (PEG) to achieve maximal targeting. Nanoparticle cellular uptake and subcellular targeting of genes and siRNA also remain a challenge. This review examines the types of ligands that have been most often used to target nanoparticles to solid tumors. As the science matures over the coming decade, careful control over ligand presentation on nanoparticles of precise size, shape, and charge will likely play a major role in achieving success.
Collapse
Affiliation(s)
- Jason T. Duskey
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242 USA
| | - Kevin G. Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242 USA
| |
Collapse
|
22
|
Khargharia S, Baumhover NJ, Crowley ST, Duskey J, Rice KG. The uptake mechanism of PEGylated DNA polyplexes by the liver influences gene expression. Gene Ther 2014; 21:1021-8. [DOI: 10.1038/gt.2014.81] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/03/2014] [Accepted: 07/25/2014] [Indexed: 12/19/2022]
|
23
|
Viral oncolysis - can insights from measles be transferred to canine distemper virus? Viruses 2014; 6:2340-75. [PMID: 24921409 PMCID: PMC4074931 DOI: 10.3390/v6062340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022] Open
Abstract
Neoplastic diseases represent one of the most common causes of death among humans and animals. Currently available and applied therapeutic options often remain insufficient and unsatisfactory, therefore new and innovative strategies and approaches are highly needed. Periodically, oncolytic viruses have been in the center of interest since the first anecdotal description of their potential usefulness as an anti-tumor treatment concept. Though first reports referred to an incidental measles virus infection causing tumor regression in a patient suffering from lymphoma several decades ago, no final treatment concept has been developed since then. However, numerous viruses, such as herpes-, adeno- and paramyxoviruses, have been investigated, characterized, and modified with the aim to generate a new anti-cancer treatment option. Among the different viruses, measles virus still represents a highly interesting candidate for such an approach. Numerous different tumors of humans including malignant lymphoma, lung and colorectal adenocarcinoma, mesothelioma, and ovarian cancer, have been studied in vitro and in vivo as potential targets. Moreover, several concepts using different virus preparations are now in clinical trials in humans and may proceed to a new treatment option. Surprisingly, only few studies have investigated viral oncolysis in veterinary medicine. The close relationship between measles virus (MV) and canine distemper virus (CDV), both are morbilliviruses, and the fact that numerous tumors in dogs exhibit similarities to their human counterpart, indicates that both the virus and species dog represent a highly interesting translational model for future research in viral oncolysis. Several recent studies support such an assumption. It is therefore the aim of the present communication to outline the mechanisms of morbillivirus-mediated oncolysis and to stimulate further research in this potentially expanding field of viral oncolysis in a highly suitable translational animal model for the benefit of humans and dogs.
Collapse
|
24
|
Saha K, Kim ST, Yan B, Miranda OR, Alfonso FS, Shlosman D, Rotello VM. Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:300-305. [PMID: 22972519 PMCID: PMC4070423 DOI: 10.1002/smll.201201129] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/04/2012] [Indexed: 04/14/2023]
Abstract
Nanoparticles (NPs) are versatile scaffolds for numerous biomedical applications including drug delivery and bioimaging. The surface functionality of NPs essentially dictates intracellular NP uptake and controls their therapeutic action. Using several pharmacological inhibitors, it is demonstrated that the cellular uptake mechanisms of cationic gold NPs in both cancer (HeLa) and normal cells (MCF10A) strongly depend on the NP surface monolayer, and mostly involve caveolae and dynamin-dependent pathways as well as specific cell surface receptors (scavenger receptors). Moreover, these NPs show different uptake mechanisms in cancer and normal cells, providing an opportunity to develop NPs with improved selectivity for delivery applications.
Collapse
|
25
|
Msaouel P, Opyrchal M, Domingo Musibay E, Galanis E. Oncolytic measles virus strains as novel anticancer agents. Expert Opin Biol Ther 2013; 13:483-502. [PMID: 23289598 DOI: 10.1517/14712598.2013.749851] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Replication-competent oncolytic measles virus (MV) strains preferentially infect and destroy a wide variety of cancer tissues. Clinical translation of engineered attenuated MV vaccine derivatives is demonstrating the therapeutic potential and negligible pathogenicity of these strains in humans. AREAS COVERED The present review summarizes the mechanisms of MV tumor selectivity and cytopathic activity as well as the current data on the oncolytic efficacy and preclinical testing of MV strains. Investigational strategies to reprogram MV selectivity, escape antiviral immunity and modulate the immune system to enhance viral delivery and tumor oncolysis are also discussed. EXPERT OPINION Clinical viral kinetic data derived from noninvasive monitoring of reporter transgene expression will guide future protocols to enhance oncolytic MV efficacy. Anti-measles immunity is a major challenge of measles-based therapeutics and various strategies are being investigated to modulate immunity. These include the combination of MV therapy with immunosuppressive drugs, such as cyclophosphamide, the use of cell carriers and the introduction of immunomodulatory transgenes and wild-type virulence genes. Available MV retargeting technologies can address safety considerations that may arise as more potent oncolytic MV vectors are being developed.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Albert Einstein College of Medicine, Jacobi Medical Center, Department of Internal Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|