1
|
Trautmann T, Yakobian N, Nguyen R. CAR T-cells for pediatric solid tumors: where to go from here? Cancer Metastasis Rev 2024; 43:1445-1461. [PMID: 39317919 PMCID: PMC11554711 DOI: 10.1007/s10555-024-10214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Despite the great success that chimeric antigen receptor (CAR) T-cells have had in patients with B-cell malignancies and multiple myeloma, they continue to have limited efficacy against most solid tumors. Especially in the pediatric population, pre- and post-treatment biopsies are rarely performed due to ethical reasons, and thus, our understanding is still very limited regarding the mechanisms in the tumor microenvironment by which tumor cells exclude effectors and attract immune-suppressive cells. Nevertheless, based on the principles that are known, current T-cell engineering has leveraged some of these processes and created more potent CAR T-cells. The recent discovery of new oncofetal antigens and progress made in CAR design have expanded the potential pool of candidate antigens for therapeutic development. The most promising approaches to enhance CAR T-cells are novel CAR gating strategies, creative ways of cytokine delivery to the TME without enhancing systemic toxicity, and hijacking the chemokine axis of tumors for migratory purposes. With these new modifications, the next step in the era of CAR T-cell development will be the clinical validation of these promising preclinical findings.
Collapse
Affiliation(s)
- Tina Trautmann
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Natalia Yakobian
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Rosa Nguyen
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Robinson MJ, Davis EJ. Neoadjuvant Chemotherapy for Adults with Osteogenic Sarcoma. Curr Treat Options Oncol 2024; 25:1366-1373. [PMID: 39417976 PMCID: PMC11541244 DOI: 10.1007/s11864-024-01269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
OPINION STATEMENT Osteosarcoma is the most common primary malignant bone tumor in adolescents and adults. The 5-year survival rate is 65% when localized; however, survival drops dramatically to 10-20% in cases of metastatic disease. Therapy for osteosarcoma saw its first significant advancement in the 1970-80's, with the introduction of our current standard of care, consisting of the neo/adjuvant treatment regimen methotrexate, doxorubicin (Adriamycin), and cisplatin (collectively referred to as MAP) and surgical resection. Since MAP, development of a better therapeutic approach has stalled, creating a plateau in patient outcomes that has persisted for 40 years. Despite substantial research into a variety of pathways for novel treatment options, clinical trials have not produced sizeable improvements in outcomes. In this article, we discuss our current neoadjuvant standard of care therapy, followed by a review of contemporary therapeutic options, including tyrosine kinase inhibitors (TKIs), immune checkpoint inhibitors (ICIs), monoclonal antibodies (mAbs), and chimeric antigen receptor (CAR) T cells. Lastly, we consider the challenges hindering the success of novel treatment options and future research directions.
Collapse
Affiliation(s)
- Michael J Robinson
- Vanderbilt-Ingram Cancer Center, 2220 Pierce Ave, PRB 777, Nashville, TN, 37232, USA
| | - Elizabeth J Davis
- Vanderbilt-Ingram Cancer Center, 2220 Pierce Ave, PRB 777, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Young EP, Marinoff AE, Lopez-Fuentes E, Sweet-Cordero EA. Osteosarcoma through the Lens of Bone Development, Signaling, and Microenvironment. Cold Spring Harb Perspect Med 2024; 14:a041635. [PMID: 38565264 PMCID: PMC11444254 DOI: 10.1101/cshperspect.a041635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this work, we review the multifaceted connections between osteosarcoma (OS) biology and normal bone development. We summarize and critically analyze existing research, highlighting key areas that merit further exploration. The review addresses several topics in OS biology and their interplay with normal bone development processes, including OS cell of origin, genomics, tumor microenvironment, and metastasis. We examine the potential cellular origins of OS and how their roles in normal bone growth may contribute to OS pathogenesis. We survey the genomic landscape of OS, highlighting the developmental roles of genes frequently altered in OS. We then discuss the OS microenvironment, emphasizing the transformation of the bone niche in OS to facilitate tumor growth and metastasis. The role of stromal and immune cells is examined, including their impact on tumor progression and therapeutic response. We further provide insights into potential development-informed opportunities for novel therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth P Young
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Amanda E Marinoff
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Eunice Lopez-Fuentes
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - E Alejandro Sweet-Cordero
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
4
|
Barzegari A, Salemi F, Kamyab A, Aratikatla A, Nejati N, Valizade M, Eltouny E, Ebrahimi A. The efficacy and applicability of chimeric antigen receptor (CAR) T cell-based regimens for primary bone tumors: A comprehensive review of current evidence. J Bone Oncol 2024; 48:100635. [PMID: 39381633 PMCID: PMC11460493 DOI: 10.1016/j.jbo.2024.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Primary bone tumors (PBT), although rare, could pose significant mortality and morbidity risks due to their high incidence of lung metastasis. Survival rates of patients with PBTs may vary based on the tumor type, therapeutic interventions, and the time of diagnosis. Despite advances in the management of patients with these tumors over the past four decades, the survival rates seem not to have improved significantly, implicating the need for novel therapeutic interventions. Surgical resection with wide margins, radiotherapy, and systemic chemotherapy are the main lines of treatment for PBTs. Neoadjuvant and adjuvant chemotherapy, along with emerging immunotherapeutic approaches such as chimeric antigen receptor (CAR)-T cell therapy, have the potential to improve the treatment outcomes for patients with PBTs. CAR-T cell therapy has been introduced as an option in hematologic malignancies, with FDA approval for several CD19-targeting CAR-T cell products. This review aims to highlight the potential of immunotherapeutic strategies, specifically CAR T cell therapy, in managing PBTs.
Collapse
Affiliation(s)
| | - Fateme Salemi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Adarsh Aratikatla
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, County Dublin, Ireland
| | - Negar Nejati
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Iran
| | - Mojgan Valizade
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehab Eltouny
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alireza Ebrahimi
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Nguyen HTX, Song Y, Kumar S, Liang FS. A Customizable Platform to Integrate CAR and Conditional Expression of Immunotherapeutics in T Cells. Int J Mol Sci 2024; 25:10568. [PMID: 39408896 PMCID: PMC11476998 DOI: 10.3390/ijms251910568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The potential of chimeric antigen receptor (CAR)-based immunotherapy as a promising therapeutic approach is often hindered by the presence of highly immunosuppressive tumor microenvironments (TME). Combination therapies with either co-administration or built-in expression of additional TME-modulating therapeutic molecules to potentiate the functions of CAR-T cells can cause systemic toxicities due to the lack of control over the delivery of biologics. Here, we present a proof-of-concept engineered platform in human Jurkat T cells that combines CAR with a therapeutic gene circuit capable of sensing β-galactosidase (a reported cancer-associated signal) and subsequently activate the production of customized therapeutic gene products. We have demonstrated the integration of the chemically induced proximity (CIP) and associated signal sensing technologies with CAR in this study. A β-galactosidase-activatable prodrug was designed by conjugating a galactose moiety with a CIP inducer abscisic acid (ABA). We showed that Jurkat T cells engineered with CAR and the ABA-inducible genetic circuits can respond to recombinant β-galactosidase to drive the production and secretion of various immunotherapeutics including an anti-cancer agent, an immunomodulatory cytokine, and immune checkpoint inhibitors. Our design is highly modular and could be adapted to sense different cancer-related signals to locally produce antitumor therapeutics that can potentially boost CAR-T efficacy and persistence.
Collapse
Affiliation(s)
- Huong T. X. Nguyen
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA; (H.T.X.N.); (S.K.)
| | - Yabin Song
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87106, USA;
| | - Satendra Kumar
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA; (H.T.X.N.); (S.K.)
| | - Fu-Sen Liang
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA; (H.T.X.N.); (S.K.)
| |
Collapse
|
6
|
Yu S, Yao X. Advances on immunotherapy for osteosarcoma. Mol Cancer 2024; 23:192. [PMID: 39245737 PMCID: PMC11382402 DOI: 10.1186/s12943-024-02105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
Osteosarcoma is the most common primary bone cancer in children and young adults. Limited progress has been made in improving the survival outcomes in patients with osteosarcoma over the past four decades. Especially in metastatic or recurrent osteosarcoma, the survival rate is extremely unsatisfactory. The treatment of osteosarcoma urgently needs breakthroughs. In recent years, immunotherapy has achieved good therapeutic effects in various solid tumors. Due to the low immunogenicity and immunosuppressive microenvironment of osteosarcoma, immunotherapy has not yet been approved in osteosarcoma patients. However, immune-based therapies, including immune checkpoint inhibitors, chimeric antigen receptor T cells, and bispecfic antibodies are in active clinical development. In addition, other immunotherapy strategies including modified-NK cells/macrophages, DC vaccines, and cytokines are still in the early stages of research, but they will be hot topics for future study. In this review, we showed the functions of cell components including tumor-promoting and tumor-suppressing cells in the tumor microenvironment of osteosarcoma, and summarized the preclinical and clinical research results of various immunotherapy strategies in osteosarcoma, hoping to provide new ideas for future research in this field.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Yao
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Shalaby N, Xia Y, Kelly JJ, Sanchez-Pupo R, Martinez F, Fox MS, Thiessen JD, Hicks JW, Scholl TJ, Ronald JA. Imaging CAR-NK cells targeted to HER2 ovarian cancer with human sodium-iodide symporter-based positron emission tomography. Eur J Nucl Med Mol Imaging 2024; 51:3176-3190. [PMID: 38722382 PMCID: PMC11368970 DOI: 10.1007/s00259-024-06722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/14/2024] [Indexed: 09/03/2024]
Abstract
Chimeric antigen receptor (CAR) cell therapies utilize CARs to redirect immune cells towards cancer cells expressing specific antigens like human epidermal growth factor receptor 2 (HER2). Despite their potential, CAR T cell therapies exhibit variable response rates and adverse effects in some patients. Non-invasive molecular imaging can aid in predicting patient outcomes by tracking infused cells post-administration. CAR-T cells are typically autologous, increasing manufacturing complexity and costs. An alternative approach involves developing CAR natural killer (CAR-NK) cells as an off-the-shelf allogeneic product. In this study, we engineered HER2-targeted CAR-NK cells co-expressing the positron emission tomography (PET) reporter gene human sodium-iodide symporter (NIS) and assessed their therapeutic efficacy and PET imaging capability in a HER2 ovarian cancer mouse model.NK-92 cells were genetically modified to express a HER2-targeted CAR, the bioluminescence imaging reporter Antares, and NIS. HER2-expressing ovarian cancer cells were engineered to express the bioluminescence reporter Firefly luciferase (Fluc). Co-culture experiments demonstrated significantly enhanced cytotoxicity of CAR-NK cells compared to naive NK cells. In vivo studies involving mice with Fluc-expressing tumors revealed that those treated with CAR-NK cells exhibited reduced tumor burden and prolonged survival compared to controls. Longitudinal bioluminescence imaging demonstrated stable signals from CAR-NK cells over time. PET imaging using the NIS-targeted tracer 18F-tetrafluoroborate ([18F]TFB) showed significantly higher PET signals in mice treated with NIS-expressing CAR-NK cells.Overall, our study showcases the therapeutic potential of HER2-targeted CAR-NK cells in an aggressive ovarian cancer model and underscores the feasibility of using human-derived PET reporter gene imaging to monitor these cells non-invasively in patients.
Collapse
Affiliation(s)
- Nourhan Shalaby
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Ying Xia
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - John J Kelly
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Rafael Sanchez-Pupo
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Francisco Martinez
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Matthew S Fox
- Lawson Health Research Institute, London, ON, Canada
- Saint Joseph's Health Care, London, ON, Canada
| | - Jonathan D Thiessen
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Cyclotron and Radiochemistry Facility, London, ON, Canada
- Saint Joseph's Health Care, London, ON, Canada
| | - Justin W Hicks
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Lawson Cyclotron and Radiochemistry Facility, London, ON, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Ontario Institute for Cancer Research, London, ON, Canada
| | - John A Ronald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
8
|
Zeng S, Jin N, Yu B, Ren Q, Yan Z, Fu S. Chimeric antigen receptor-T cells targeting epithelial cell adhesion molecule antigens are effective in the treatment of colorectal cancer. BMC Gastroenterol 2024; 24:249. [PMID: 39107717 PMCID: PMC11302356 DOI: 10.1186/s12876-024-03286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/07/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVE To construct chimeric antigen receptor (CAR)-T cells targeting epithelial cell adhesion molecule (EpCAM) antigen (anti-EpCAM-CAR-T). METHODS A third-generation CAR-T cell construct used a single-chain variable fragment derived from monoclonal antibody against human EpCAM. Peripheral blood mononuclear cells were extracted from volunteers. The proportion of cluster of differentiation 8 positive (CD8+) and CD4 + T cells was measured using flow cytometry. Western blot was used to detect the expression of EpCAM-CAR. The killing efficiency was detected using the MTT assay and transwell assay, and the secretion of killer cytokines tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) was detected using the ELISA. The inhibitory effect of EpCAM-CAR-T on colorectal cancer in vivo was detected using xenografts. RESULTS It was found that T cells expanded greatly, and the proportion of CD3+, CD8 + and CD4 + T cells was more than 60%. Furthermore, EpCAM-CAR-T cells had a higher tumour inhibition rate in the EpCAM expression positive group than in the negative group (P < 0.05). The secretion of killer cytokines TNF-α and IFN-γ in the EpCAM expression positive cell group was higher than that in the negative group (P < 0.05). In the experimental group treated with EpCAM-CAR-T cells, the survival rate of nude mice was higher (P < 0.05), and the tumour was smaller than that in the blank and control groups (P < 0.05). The secretion of serum killer cytokines TNF-α and IFN-γ in tumour-bearing nude mice in the experimental group treated with EpCAM-CAR-T cells was higher than that in the blank and control groups (P < 0.05). CONCLUSION This study successfully constructed EpCAM-CAR cells and found that they can target and recognise EpCAM-positive tumour cells, secrete killer cytokines TNF-α and IFN-γ and better inhibit the growth and metastasis of colorectal cancer in vitro and in vivo than unmodified T cells.
Collapse
Affiliation(s)
- Siheng Zeng
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, China
- Birth Defects and Regenerative Medicine Laboratory, Department of Biochemistry & Molecular Biology, Biomedicine and Health Graduate Education Innovation Center, Shanxi Medical University, No. 56, Xinjian South Road, Taiyuan, Shanxi, 030001, China
| | - Ning Jin
- Birth Defects and Regenerative Medicine Laboratory, Department of Biochemistry & Molecular Biology, Biomedicine and Health Graduate Education Innovation Center, Shanxi Medical University, No. 56, Xinjian South Road, Taiyuan, Shanxi, 030001, China
| | - Baofeng Yu
- Birth Defects and Regenerative Medicine Laboratory, Department of Biochemistry & Molecular Biology, Biomedicine and Health Graduate Education Innovation Center, Shanxi Medical University, No. 56, Xinjian South Road, Taiyuan, Shanxi, 030001, China
| | - Qing Ren
- Department of Gynecology, Hainan West Central Hospital, Danzhou, Hainan, 571700, China
| | - Zhiqiang Yan
- Department of Gynecology, Hainan West Central Hospital, Danzhou, Hainan, 571700, China
| | - Songtao Fu
- Birth Defects and Regenerative Medicine Laboratory, Department of Biochemistry & Molecular Biology, Biomedicine and Health Graduate Education Innovation Center, Shanxi Medical University, No. 56, Xinjian South Road, Taiyuan, Shanxi, 030001, China.
- Biomedicine and Health Graduate Education Innovation Center, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
9
|
Li S, Zhang H, Shang G. Current status and future challenges of CAR-T cell therapy for osteosarcoma. Front Immunol 2023; 14:1290762. [PMID: 38187386 PMCID: PMC10766856 DOI: 10.3389/fimmu.2023.1290762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Osteosarcoma, the most common bone malignancy in children and adolescents, poses considerable challenges in terms of prognosis, especially for patients with metastatic or recurrent disease. While surgical intervention and adjuvant chemotherapy have improved survival rates, limitations such as impractical tumor removal or chemotherapy resistance hinder the treatment outcomes. Chimeric antigen receptor (CAR)-T cell therapy, an innovative immunotherapy approach that involves targeting tumor antigens and releasing immune factors, has shown significant advancements in the treatment of hematological malignancies. However, its application in solid tumors, including osteosarcoma, is constrained by factors such as low antigen specificity, limited persistence, and the complex tumor microenvironment. Research on osteosarcoma is ongoing, and some targets have shown promising results in pre-clinical studies. This review summarizes the current status of research on CAR-T cell therapy for osteosarcoma by compiling recent literature. It also proposes future research directions to enhance the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Shizhe Li
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - He Zhang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guanning Shang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Zhang Y, Ru N, Xue Z, Gan W, Pan R, Wu Z, Chen Z, Wang H, Zheng X. The role of mitochondria-related lncRNAs in characterizing the immune landscape and supervising the prognosis of osteosarcoma. J Bone Oncol 2023; 43:100506. [PMID: 37868616 PMCID: PMC10585401 DOI: 10.1016/j.jbo.2023.100506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Mitochondrial damage is related to the functional properties of immune cells as well as to tumorigenesis and progression. Nevertheless, there is an absence concerning the systematic evaluation of mitochondria-associated lncRNAs (MALs) in the immune profile and tumor microenvironment of osteosarcoma patients. Based on transcriptomic and clinicopathological data from the TARGET database, MAL-related patterns were ascertained by consistent clustering, and gene set variation analysis of the different patterns was completed. Next, a MAL-derived scoring system was created using Cox and LASSO regression analyses and validated by Kaplan-Meier and ROC curves. The GSEA, ESTIMATE, and CIBERSORT algorithms were utilized to characterize the immune status and underlying biological functions in the different MAL score groups. MAL-derived risk scores were well stabilized and outperformed traditional clinicopathological features to reliably predict 5-year survival in osteosarcoma cohorts. Moreover, patients with increased MAL scores were observed to suffer from poorer prognosis, higher tumor purity, and an immunosuppressive microenvironment. Based on estimated half-maximal inhibitory concentrations, the low-MAL score group benefited more from gemcitabine and docetaxel, and less from thapsigargin and sunitinib compared to the high-MAL score group. Pan-cancer analysis demonstrated that six hub MALs were strongly correlated with clinical outcomes, immune subtypes, and tumor stemness indices in various common cancers. Finally, we verified the expression patterns of hub MALs in osteosarcoma with qRT-PCR. In summary, we identified the crosstalk between prognostic MALs and tumor-infiltrating immune cells in osteosarcoma, providing a potential strategy to ameliorate clinical stratification management.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Nan Ru
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and NewDrugs Research, Guangzhou, China
| | - Zhaowen Xue
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Wenyi Gan
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ruilin Pan
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Zelin Wu
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Zihang Chen
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
- Department of psychology, Li Ka Shing Faculty of Medicine, State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Zappa E, Vitali A, Anders K, Molenaar JJ, Wienke J, Künkele A. Adoptive cell therapy in paediatric extracranial solid tumours: current approaches and future challenges. Eur J Cancer 2023; 194:113347. [PMID: 37832507 PMCID: PMC10695178 DOI: 10.1016/j.ejca.2023.113347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 10/15/2023]
Abstract
Immunotherapy has ignited hope to cure paediatric solid tumours that resist traditional therapies. Among the most promising methods is adoptive cell therapy (ACT). Particularly, ACT using T cells equipped with chimeric antigen receptors (CARs) has moved into the spotlight in clinical studies. However, the efficacy of ACT is challenged by ACT-intrinsic factors, like lack of activation or T cell exhaustion, as well as immune evasion strategies of paediatric solid tumours, such as their highly immunosuppressive microenvironment. Novel strategies, including ACT using innate-like lymphocytes, innovative cell engineering techniques, and ACT combination therapies, are being developed and will be crucial to overcome these challenges. Here, we discuss the main classes of ACT for the treatment of paediatric extracranial solid tumours, reflect on the available preclinical and clinical evidence supporting promising strategies, and address the challenges that ACT is still facing. Ultimately, we highlight state-of-the-art developments and opportunities for new therapeutic options, which hold great potential for improving outcomes in this challenging patient population.
Collapse
Affiliation(s)
- Elisa Zappa
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Alice Vitali
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
| | - Kathleen Anders
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Judith Wienke
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Park JA, Cheung NKV. Promise and Challenges of T Cell Immunotherapy for Osteosarcoma. Int J Mol Sci 2023; 24:12520. [PMID: 37569894 PMCID: PMC10419531 DOI: 10.3390/ijms241512520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The cure rate for metastatic or relapsed osteosarcoma has not substantially improved over the past decades despite the exploitation of multimodal treatment approaches, allowing long-term survival in less than 30% of cases. Patients with osteosarcoma often develop resistance to chemotherapeutic agents, where personalized targeted therapies should offer new hope. T cell immunotherapy as a complementary or alternative treatment modality is advancing rapidly in general, but its potential against osteosarcoma remains largely unexplored. Strategies incorporating immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR) modified T cells, and T cell engaging bispecific antibodies (BsAbs) are being explored to tackle relapsed or refractory osteosarcoma. However, osteosarcoma is an inherently heterogeneous tumor, both at the intra- and inter-tumor level, with no identical driver mutations. It has a pro-tumoral microenvironment, where bone cells, stromal cells, neovasculature, suppressive immune cells, and a mineralized extracellular matrix (ECM) combine to derail T cell infiltration and its anti-tumor function. To realize the potential of T cell immunotherapy in osteosarcoma, an integrated approach targeting this complex ecosystem needs smart planning and execution. Herein, we review the current status of T cell immunotherapies for osteosarcoma, summarize the challenges encountered, and explore combination strategies to overcome these hurdles, with the ultimate goal of curing osteosarcoma with less acute and long-term side effects.
Collapse
Affiliation(s)
- Jeong A Park
- Department of Pediatrics, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Nai-Kong V. Cheung
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
13
|
CAR T-Cell Therapy in Children with Solid Tumors. J Clin Med 2023; 12:jcm12062326. [PMID: 36983330 PMCID: PMC10051963 DOI: 10.3390/jcm12062326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The limited efficacy of traditional cancer treatments, including chemotherapy, radiotherapy, and surgery, emphasize the significance of employing innovative methods. CAR (Chimeric Antigen Receptor) T-cell therapy remains the most revolutionizing treatment of pediatric hematological malignancies and solid tumors. Patient’s own lymphocytes are modified ex-vivo using gene transfer techniques and programmed to recognize and destroy specific tumor cells regardless of MHC receptor, which probably makes CAR-T the most personalized therapy for the patient. With continued refinement and optimization, CAR-T cell therapy has the potential to significantly improve outcomes and quality of life for children with limited treatment options. It has shown remarkable success in treating hematological malignancies, such as acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphoma (NHL). However, its effectiveness in treating solid tumors is still being investigated and remains an area of active research. In this review we focus on solid tumors and explain the concept of CAR modified T cells, and discuss some novel CAR designs that are being considered to enhance the safety of CAR T-cell therapy in under-mentioned cancers. Furthermore, we summarize the most crucial recent reports concerning the solid tumors treatment in children. In the end we provide a short summary of many challenges that limit the therapeutic efficacy of CAR-T in solid tumors, such as antigen escape, immunosuppressive microenvironment, poor trafficking, and tumor infiltration, on-target off-tumor effects and general toxicity.
Collapse
|
14
|
Tarone L, Mareschi K, Tirtei E, Giacobino D, Camerino M, Buracco P, Morello E, Cavallo F, Riccardo F. Improving Osteosarcoma Treatment: Comparative Oncology in Action. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122099. [PMID: 36556464 PMCID: PMC9783386 DOI: 10.3390/life12122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Osteosarcoma (OSA) is the most common pediatric malignant bone tumor. Although surgery together with neoadjuvant/adjuvant chemotherapy has improved survival for localized OSA, most patients develop recurrent/metastatic disease with a dismally poor outcome. Therapeutic options have not improved for these OSA patients in recent decades. As OSA is a rare and "orphan" tumor, with no distinct targetable driver antigens, the development of new efficient therapies is still an unmet and challenging clinical need. Appropriate animal models are therefore critical for advancement in the field. Despite the undoubted relevance of pre-clinical mouse models in cancer research, they present some intrinsic limitations that may be responsible for the low translational success of novel therapies from the pre-clinical setting to the clinic. From this context emerges the concept of comparative oncology, which has spurred the study of pet dogs as a uniquely valuable model of spontaneous OSA that develops in an immune-competent system with high biological and clinical similarities to corresponding human tumors, including in its metastatic behavior and resistance to conventional therapies. For these reasons, the translational power of studies conducted on OSA-bearing dogs has seen increasing recognition. The most recent and relevant veterinary investigations of novel combinatorial approaches, with a focus on immune-based strategies, that can most likely benefit both canine and human OSA patients have been summarized in this commentary.
Collapse
Affiliation(s)
- Lidia Tarone
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Katia Mareschi
- Department of Public Health and Paediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Department, Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy
| | - Elisa Tirtei
- Department of Public Health and Paediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Department, Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Mariateresa Camerino
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Federica Cavallo
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Correspondence: (F.C.); (F.R.)
| | - Federica Riccardo
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Correspondence: (F.C.); (F.R.)
| |
Collapse
|
15
|
Simpson S, Rizvanov AA, Jeyapalan JN, de Brot S, Rutland CS. Canine osteosarcoma in comparative oncology: Molecular mechanisms through to treatment discovery. Front Vet Sci 2022; 9:965391. [PMID: 36570509 PMCID: PMC9773846 DOI: 10.3389/fvets.2022.965391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is a leading cause of non-communicable morbidity and mortality throughout the world, similarly, in dogs, the most frequent cause of mortality is tumors. Some types of cancer, including osteosarcoma (OSA), occur at much higher rates in dogs than people. Dogs therefore not only require treatment themselves but can also act as an effective parallel patient population for the human disease equivalent. It should be noted that although there are many similarities between canine and human OSA, there are also key differences and it is important to research and highlight these features. Despite progress using chorioallantoic membrane models, 2D and 3D in vitro models, and rodent OSA models, many more insights into the molecular and cellular mechanisms, drug development, and treatment are being discovered in a variety of canine OSA patient populations.
Collapse
Affiliation(s)
- Siobhan Simpson
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A. Rizvanov
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Jennie N. Jeyapalan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simone de Brot
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Comparative Pathology Platform (COMPATH), Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Catrin S. Rutland
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
16
|
Zhang Q, Zhang Z, Liu G, Li D, Gu Z, Zhang L, Pan Y, Cui X, Wang L, Liu G, Tian X, Zhang Z. B7-H3 targeted CAR-T cells show highly efficient anti-tumor function against osteosarcoma both in vitro and in vivo. BMC Cancer 2022; 22:1124. [PMID: 36320072 PMCID: PMC9628043 DOI: 10.1186/s12885-022-10229-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) mainly happens in children and youths. Surgery, radiotherapy and chemotherapy are the common therapies for osteosarcoma treatment but all their anti-tumor effects are limited. In recent years, a new cellular therapy, CAR-T, a cellular immunotherapy with genetically engineered T cells bearing chimeric antigen receptor targeting specific tumor-associated antigen, has been proved to be an effective therapy against acute lymphoblastic leukemia. Thus, CAR-T is a potentially effective therapy for osteosarcoma treatment. METHODS A CAR gene targeting B7-H3 antigen was constructed into lentiviral vector through molecular biology techniques. Then, the CAR gene was transferred to T cells through lentiviral delivery system, and the CAR-T cells were largely expanded using in vitro culture technology. The in vitro anti-tumor effect of CAR-T cells was evaluated through Real Time Cell Analysis system (RTCA) and ELISA assay. The in vivo anti-tumor capabilities of CAR-T cells were evaluated using the patient-derived xenografts (PDX) model of osteosarcoma. RESULTS The third-generation CAR-T cells we constructed could target the B7-H3 antigen, and the phenotype of CAR-T cells was consistent with normal T cells; The CAR-T cells showed superior antitumor effects both in vitro and in vivo. CONCLUSION Our study showed that B7-H3 targeted CAR-T cells had high anti-tumor efficacy against osteosarcoma both in vitro and in vivo, which proved that B7-H3 targeted CAR-T therapy is potentially effective for osteosarcoma treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China
| | - Zhiqiang Zhang
- grid.411333.70000 0004 0407 2968Department of Pediatric Orthopedics, National Children’s Medical Center & Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Guodi Liu
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China ,grid.28056.390000 0001 2163 4895State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Dehua Li
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China
| | - Zhangjie Gu
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China
| | - Linsong Zhang
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China
| | - Yingjiao Pan
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China
| | - Xingbing Cui
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China
| | - Lu Wang
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China
| | - Guoping Liu
- grid.411525.60000 0004 0369 1599Department of General Surgery, Changhai Hospital, Shanghai, 200433 China
| | - Xiaoli Tian
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China ,Shanghai Beautiful Life Medical Technology Co., Ltd., Shanghai, 200231 China
| | - Ziming Zhang
- grid.412987.10000 0004 0630 1330Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092 China ,grid.415625.10000 0004 0467 3069Department of Orthopaedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China
| |
Collapse
|
17
|
Zhang Z, Tan X, Jiang Z, Wang H, Yuan H. Immune checkpoint inhibitors in osteosarcoma: A hopeful and challenging future. Front Pharmacol 2022; 13:1031527. [PMID: 36324681 PMCID: PMC9618820 DOI: 10.3389/fphar.2022.1031527] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma (OS), the most common malignant tumor in the musculoskeletal system, mainly occurs in adolescents. OS results in high mortality and disability rates due to a fatal metastatic tendency and subsequent iatrogenic damage caused by surgery, radiotherapy and chemotherapy. Recently, immunotherapies have resulted in promising prognoses with reduced side effects compared with traditional therapies. Immune checkpoint inhibitors (ICIs), which are a representative immunotherapy for OS, enhance the antitumor effects of immune cells. ICIs have shown satisfactory outcomes in other kinds of malignant tumors, especially hemopoietic tumors. However, there is still a high percentage of failures or severe side effects associated with the use of ICIs to treat OS, leading to far worse outcomes. To reveal the underlying mechanisms of drug resistance and side effects, recent studies elucidated several possible reasons, including the activation of other inhibitory immune cells, low immune cell infiltration in the tumor microenvironment, different immune properties of OS subtypes, and the involvement of osteogenesis and osteolysis. According to these mechanisms, researchers have developed new methods to overcome the shortcomings of ICIs. This review summarizes the recent breakthroughs in the use of ICIs to treat OS. Although numerous issues have not been solved yet, ICIs are still the most promising treatment options to cure OS in the long run.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xin Tan
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zengxin Jiang
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Hao Wang, ; Hengfeng Yuan,
| | - Hengfeng Yuan
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Hao Wang, ; Hengfeng Yuan,
| |
Collapse
|
18
|
CAR T targets and microenvironmental barriers of osteosarcoma. Cytotherapy 2022; 24:567-576. [DOI: 10.1016/j.jcyt.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/11/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
|
19
|
Lin Z, Wu Z, Luo W. Chimeric Antigen Receptor T-Cell Therapy: The Light of Day for Osteosarcoma. Cancers (Basel) 2021; 13:cancers13174469. [PMID: 34503279 PMCID: PMC8431424 DOI: 10.3390/cancers13174469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary As a novel immunotherapy, chimeric antigen receptor (CAR) T-cell therapy has achieved encouraging results in leukemia and lymphoma. Furthermore, CAR-T cells have been explored in the treatment of osteosarcoma (OS). However, there is no strong comprehensive evidence to support their efficacy. Therefore, we reviewed the current evidence on CAR-T cells for OS to demonstrate their feasibility and provide new options for the treatment of OS. Abstract Osteosarcoma (OS) is the most common malignant bone tumor, arising mainly in children and adolescents. With the introduction of multiagent chemotherapy, the treatments of OS have remarkably improved, but the prognosis for patients with metastases is still poor, with a five-year survival rate of 20%. In addition, adverse effects brought by traditional treatments, including radical surgery and systemic chemotherapy, may seriously affect the survival quality of patients. Therefore, new treatments for OS await exploitation. As a novel immunotherapy, chimeric antigen receptor (CAR) T-cell therapy has achieved encouraging results in treating cancer in recent years, especially in leukemia and lymphoma. Furthermore, researchers have recently focused on CAR-T therapy in solid tumors, including OS. In this review, we summarize the safety, specificity, and clinical transformation of the targets in treating OS and point out the direction for further research.
Collapse
|
20
|
Talbot LJ, Chabot A, Funk A, Nguyen P, Wagner J, Ross A, Tillman H, Davidoff A, Gottschalk S, DeRenzo C. A Novel Orthotopic Implantation Technique for Osteosarcoma Produces Spontaneous Metastases and Illustrates Dose-Dependent Efficacy of B7-H3-CAR T Cells. Front Immunol 2021; 12:691741. [PMID: 34211478 PMCID: PMC8239305 DOI: 10.3389/fimmu.2021.691741] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022] Open
Abstract
The outcome for metastatic pediatric osteosarcoma (OS) remains poor. Thus, there is an urgent need to develop novel therapies, and immunotherapy with CAR T cells has the potential to meet this challenge. However, there is a lack of preclinical models that mimic salient features of human disease including reliable development of metastatic disease post orthotopic OS cell injection. To overcome this roadblock, and also enable real-time imaging of metastatic disease, we took advantage of LM7 OS cells expressing firefly luciferase (LM7.ffLuc). LM7.ffLuc were implanted in a collagen mesh into the tibia of mice, and mice reliably developed orthotopic tumors and lung metastases as judged by bioluminescence imaging and histopathological analysis. Intratibial implantation also enabled surgical removal by lower leg amputation and monitoring for metastases development post-surgery. We then used this model to evaluate the antitumor activity of CAR T cells targeting B7-H3, an antigen that is expressed in a broad range of solid tumors including OS. B7-H3-CAR T cells had potent antitumor activity in a dose-dependent manner and inhibited the development of pulmonary metastases resulting in a significant survival advantage. In contrast T cells expressing an inactive B7-H3-CAR had no antitumor activity. Using unmodified LM7 cells also enabled us to demonstrate that B7-H3-CAR T cells traffic to orthotopic tumor sites. Hence, we have developed an orthotopic, spontaneously metastasizing OS model. This model may improve our ability not only to predict the safety and efficacy of current and next generation CAR T cell therapies but also other treatment modalities for metastatic OS.
Collapse
Affiliation(s)
- Lindsay Jones Talbot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ashley Chabot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Amy Funk
- Department of Veterinary Medicine, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Phuong Nguyen
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jessica Wagner
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Aaron Ross
- University of Tennessee Health Sciences School of Medicine, Memphis, TN, United States
| | - Heather Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Andrew Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stephen Gottschalk
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Christopher DeRenzo
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
21
|
The Value of Immune-Related Genes Signature in Osteosarcoma Based on Weighted Gene Co-expression Network Analysis. J Immunol Res 2021. [DOI: 10.1155/2021/9989321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background. Osteosarcoma (OS) is a serious malignant tumor that is more common in adolescents or children under 20 years of age. This study is aimed at obtaining immune-related genes (IRGs) associated with the progression and prognosis of OS. Method. Expression profiling data and clinical data for OS were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. ESTIMATE calculates immune scores and stromal scores of samples and performs the prognostic analysis. Weighted gene coexpression network analysis (WGCNA) was used to find modules correlated with immune and stromal scores. Cox regression analysis and least absolute shrinkage and selection operator (LASSO) analysis were used to explore IRGs associated with OS prognosis and construct and validate a hazard score model. Finally, we verified the expression and function of EVI2B in OS. Results. WGCNA selected twenty-eight IRGs, 10 of which were associated with OS prognosis, and LASSO further obtained three key prognostic genes. A prognostic model of EVI2B was constructed, and according to the risk score model, patients in the high-risk group had a worse prognosis than those in the low-risk group, and the prognosis was statistically significant in the high- and low-risk groups. Receiver operating characteristic (ROC) curves were used to assess the prognostic model’s accuracy and externally validate the independent GSE21257 cohort. The results of immunohistochemical staining and qPCR showed that EVI2B was a tumor suppressor gene. The differential genes in the high- and low-risk groups were analyzed by enrichment analysis of GO and KEGG, indicating that the EVI2B model is associated with immune response. Conclusion. In this study, IRG EVI2B is closely related to OS’s prognosis and can be used as a potential biomarker for prognosis and treatment of OS.
Collapse
|
22
|
Prognostic and Therapeutic Utility of Variably Expressed Cell Surface Receptors in Osteosarcoma. Sarcoma 2021; 2021:8324348. [PMID: 33603563 PMCID: PMC7872755 DOI: 10.1155/2021/8324348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/17/2020] [Accepted: 01/07/2021] [Indexed: 01/05/2023] Open
Abstract
Background Six cell surface receptors, human epidermal growth factor receptor-2 (Her-2), platelet-derived growth factor receptor-β (PDGFR-β), insulin-like growth factor-1 receptor (IGF-1R), insulin receptor (IR), c-Met, and vascular endothelial growth factor receptor-3 (VEGFR-3), previously demonstrated variable expression across varying patient-derived and standard osteosarcoma (OS) cell lines. The current study sought to validate previous expression patterns and evaluate whether these receptors offer prognostic and/or therapeutic value. Methods Patient-derived OS cell lines (n = 52) were labeled with antibodies to Her-2, PDGFR-β, IGF-1R, IR, c-Met, and VEGFR-3. Expression was characterized using flow cytometry. The difference in geometric mean fluorescent intensity (geoMFIdiff = geoMFIpositive - geoMFInegative) was calculated for each receptor across all cell lines. Receptor expression was categorized as low (Q1), intermediate (Q2, Q3), or high (Q4). The event-free survival (EFS) and overall survival for the six cell surface receptors were estimated by the Kaplan-Meier method. Differences in hazard for EFS event and overall survival event for patients in each of the three expression levels in each of the six cell surface receptors were assessed using the log-rank test. Results All 6 receptors were variably expressed in the majority of cell lines. IR and PDGFR-β expressions were found to be significant predictors for EFS amongst patients with nonmetastatic disease (p=0.02 and 0.01, respectively). The hazard ratio for EFS was significantly higher between high IR and intermediate IR expression (HR = 2.66, p=0.02), as well as between high PDGFR-β and intermediate PDGFR-β expression (HR = 5.68, p=0.002). Her-2, c-Met, IGF-1R, and VEGFR-3 were not found to be significant predictors for either EFS or overall survival. Conclusion The six cell surface receptors demonstrated variable expression across the majority of patient-derived OS cell lines tested. Limited prognostic value was offered by IR and PDGFR-β expression within nonmetastatic patients. The remaining receptors do not provide clear prognostic utility. Nevertheless, their consistent, albeit variable, surface expression across a large panel of patient-derived OS cell lines maintains their potential use as future therapeutic targets.
Collapse
|
23
|
Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett 2020; 500:1-10. [PMID: 33359211 DOI: 10.1016/j.canlet.2020.12.024] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignancy of the bone and has a high propensity for local invasion and metastasis. Although combining surgery with chemotherapy has immensely improved the outcomes of osteosarcoma patients, the prognosis of metastatic or recurrent osteosarcomas is still unsatisfactory. Immunotherapy has proven to be a promising therapeutic strategy against human malignancies and improved understanding of the immune response to OS, and biomarker development has increased the number of patients who benefit from immunotherapies in recent years. Here, we review recent advances in immunotherapy in osteosarcoma and discuss the mechanisms and status of immunotherapies in both preclinical and clinical trials as well as future therapies on the horizon. These advances may pave the way for novel treatments requisite for patients with osteosarcoma in need of new therapies.
Collapse
|
24
|
Mason NJ. Comparative Immunology and Immunotherapy of Canine Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:199-221. [PMID: 32767244 DOI: 10.1007/978-3-030-43085-6_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Approximately 800 people are diagnosed with osteosarcoma (OSA) per year in the USA. Although 70% of patients with localized OSA are cured with multiagent chemotherapy and surgical resection, the prognosis for patients with metastatic or relapsed disease is guarded. The small number of patients diagnosed annually contributes to an incomplete understanding of disease pathogenesis, and challenges in performing appropriately powered clinical trials and detecting correlative biomarkers of response. While mouse models of OSA are becoming increasingly sophisticated, they generally fail to accurately recapitulate tumor heterogeneity, tumor microenvironment (TME), systemic immune dysfunction, and the clinical features of tumor recurrence, metastases, and chemoresistance, which influence outcome. Pet dogs spontaneously develop OSA with an incidence that is 30-50 times higher than humans. Canine OSA parallels the human disease in its clinical presentation, biological behavior, genetic complexity, and therapeutic management. However, despite therapy, most dogs die from metastatic disease within 1 year of diagnosis. Since OSA occurs in immune-competent dogs, immune factors that sculpt tumor immunogenicity and influence responses to immune modulation are in effect. In both species, immune modulation has shown beneficial effects on patient outcome and work is now underway to identify the most effective immunotherapies, combination of immunotherapies, and correlative biomarkers that will further improve clinical response. In this chapter, the immune landscape of canine OSA and the immunotherapeutic strategies used to modulate antitumor immunity in dogs with the disease will be reviewed. From this immunological viewpoint, the value of employing dogs with spontaneous OSA to accelerate and inform the translation of immunotherapies into the human clinic will be underscored.
Collapse
Affiliation(s)
- Nicola J Mason
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Shi J, Li M, Yang R. Tumor-infiltrating lymphocytes as a feasible adjuvant immunotherapy for osteosarcoma with a poor response to neoadjuvant chemotherapy. Immunotherapy 2020; 12:641-652. [PMID: 32489121 DOI: 10.2217/imt-2020-0107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: To investigate the efficacy of adjuvant chemotherapy plus tumor-infiltrating lymphocytes (TILs) therapy in osteosarcoma patients with a poor response to neoadjuvant chemotherapy. Materials & methods: 40 patients received adjuvant chemotherapy (Group 1) and 40 patients received adjuvant chemotherapy plus TILs therapy (Group 2). Disease-free survival (DFS) and overall survival (OS) were analyzed by Kaplan–Meier analysis. Results: The median DFS (mDFS; 65.3 months) and median OS (mOS; 95.8 months) in Group 2 were significantly prolonged compared with those in Group 1 (55.5 months for mDFS and 80.4 months for mOS). Univariate and multivariate analyses indicated that a greater number of TILs transfused was an independent prognostic factor for both mDFS and mOS. Conclusion: Adjuvant chemotherapy plus TILs therapy may prolong survival of patients with a poor response to neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Jing Shi
- Department of Orthopedic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471009, China
| | - Ming Li
- Department of Orthopedic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471009, China
| | - Rongzhi Yang
- Department of Orthopedic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471009, China
| |
Collapse
|
26
|
Choi JY. Immunotherapy in Pediatric Solid Tumors. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2020. [DOI: 10.15264/cpho.2020.27.1.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jung Yoon Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul, Korea
| |
Collapse
|
27
|
Corre I, Verrecchia F, Crenn V, Redini F, Trichet V. The Osteosarcoma Microenvironment: A Complex But Targetable Ecosystem. Cells 2020; 9:cells9040976. [PMID: 32326444 PMCID: PMC7226971 DOI: 10.3390/cells9040976] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 01/08/2023] Open
Abstract
Osteosarcomas are the most frequent primary bone sarcomas, affecting mainly children, adolescents, and young adults, and with a second peak of incidence in elderly individuals. The current therapeutic management, a combined regimen of poly-chemotherapy and surgery, still remains largely insufficient, as patient survival has not improved in recent decades. Osteosarcomas are very heterogeneous tumors, both at the intra- and inter-tumor level, with no identified driver mutation. Consequently, efforts to improve treatments using targeted therapies have faced this lack of specific osteosarcoma targets. Nevertheless, these tumors are inextricably linked to their local microenvironment, composed of bone, stromal, vascular and immune cells and the osteosarcoma microenvironment is now considered to be essential and supportive for growth and dissemination. This review describes the different actors of the osteosarcoma microenvironment and gives an overview of the past, current, and future strategies of therapy targeting this complex ecosystem, with a focus on the role of extracellular vesicles and on the emergence of multi-kinase inhibitors.
Collapse
Affiliation(s)
- Isabelle Corre
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
- CNRS GDR3697 MicroNit, F-37044 Tours, France
- Correspondence: (I.C.); (V.T.)
| | - Franck Verrecchia
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
| | - Vincent Crenn
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
- Department of Orthopedic, Nantes Hospital, CHU Hotel-Dieu, F-44035 Nantes, France
| | - Francoise Redini
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
| | - Valérie Trichet
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
- CNRS GDR3697 MicroNit, F-37044 Tours, France
- Correspondence: (I.C.); (V.T.)
| |
Collapse
|
28
|
Shi C, Wu T, He Y, Zhang Y, Fu D. Recent advances in bone-targeted therapy. Pharmacol Ther 2020; 207:107473. [PMID: 31926198 DOI: 10.1016/j.pharmthera.2020.107473] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
The coordination between bone resorption and bone formation plays an essential role in keeping the mass and microstructure integrity of the bone in a steady state. However, this balance can be disturbed in many pathological conditions of the bone. Nowadays, the classical modalities for treating bone-related disorders are being challenged by severe obstacles owing to low tissue selectivity and considerable safety concerns. Moreover, as a highly mineralized tissue, the bone shows innate rigidity, low permeability, and reduced blood flow, features that further hinder the effective treatment of bone diseases. With the development of bone biology and precision medicine, one novel concept of bone-targeted therapy appears to be promising, with improved therapeutic efficacy and minimized systematic toxicity. Here we focus on the recent advances in bone-targeted treatment based on the unique biology of bone tissues. We summarize commonly used bone-targeting moieties, with an emphasis on bisphosphonates, tetracyclines, and biomimetic bone-targeting moieties. We also introduce potential bone-targeting strategies aimed at the bone matrix and major cell types in the bone. Based on these bone-targeting moieties and strategies, we discuss the potential applications of targeted therapy to treat bone diseases. We expect that this review will put together useful insights to help with the search for therapeutic efficacy in bone-related conditions.
Collapse
Affiliation(s)
- Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China
| | - Yu He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China
| | - Dehao Fu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China.
| |
Collapse
|
29
|
Abstract
In this chapter, we will review studies of HER2 in osteosarcoma and discuss the controversies that have existed in this field. Our present understanding of HER2 in the context of osteosarcoma is that it is expressed on a subset of patient samples, but that expression is not prognostic. We will review the two trials that have been conducted in osteosarcoma which have targeted HER2. Use of an antibody, trastuzumab, did not suggest activity, but a smaller study using HER2-targeted CAR T cells suggested activity may be present. A trial of an antibody-drug conjugate targeting HER2 for recurrent osteosarcoma is under consideration. Trials targeting other surface proteins for the treatment of osteosarcoma have occurred or are in development. Indeed, this leads us to discuss in a broader fashion therapeutic approaches to targeting surface proteins. It is hoped that some of these approaches will lead to new effective therapies for patients with osteosarcoma.
Collapse
|
30
|
Thanindratarn P, Dean DC, Nelson SD, Hornicek FJ, Duan Z. Chimeric antigen receptor T (CAR-T) cell immunotherapy for sarcomas: From mechanisms to potential clinical applications. Cancer Treat Rev 2020; 82:101934. [DOI: 10.1016/j.ctrv.2019.101934] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
|
31
|
Genetically Modified T-Cell Therapy for Osteosarcoma: Into the Roaring 2020s. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1257:109-131. [PMID: 32483735 DOI: 10.1007/978-3-030-43032-0_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-cell immunotherapy may offer an approach to improve outcomes for patients with osteosarcoma who fail current therapies. In addition, it has the potential to reduce treatment-related complications for all patients. Generating tumor-specific T cells with conventional antigen-presenting cells ex vivo is time-consuming and often results in T-cell products with a low frequency of tumor-specific T cells. Furthermore, the generated T cells remain sensitive to the immunosuppressive tumor microenvironment. Genetic modification of T cells is one strategy to overcome these limitations. For example, T cells can be genetically modified to render them antigen specific, resistant to inhibitory factors, or increase their ability to home to tumor sites. Most genetic modification strategies have only been evaluated in preclinical models; however, early clinical phase trials are in progress. In this chapter, we will review the current status of gene-modified T-cell therapy with special focus on osteosarcoma, highlighting potential antigenic targets, preclinical and clinical studies, and strategies to improve current T-cell therapy approaches.
Collapse
|
32
|
Marayati R, Quinn CH, Beierle EA. Immunotherapy in Pediatric Solid Tumors-A Systematic Review. Cancers (Basel) 2019; 11:E2022. [PMID: 31847387 PMCID: PMC6966467 DOI: 10.3390/cancers11122022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/07/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022] Open
Abstract
Despite advances in the treatment of many pediatric solid tumors, children with aggressive and high-risk disease continue to have a dismal prognosis. For those presenting with metastatic or recurrent disease, multiple rounds of intensified chemotherapy and radiation are the typical course of action, but more often than not, this fails to control the progression of the disease. Thus, new therapeutics are desperately needed to improve the outcomes for these children. Recent advances in our understanding of both the immune system's biology and its interaction with tumors have led to the development of novel immunotherapeutics as alternative treatment options for these aggressive malignancies. Immunotherapeutic approaches have shown promising results for pediatric solid tumors in early clinical trials, but challenges remain concerning safety and anti-tumor efficacy. In this review, we aim to discuss and summarize the main classes of immunotherapeutics used to treat pediatric solid tumors.
Collapse
Affiliation(s)
| | | | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.M.); (C.H.Q.)
| |
Collapse
|
33
|
Folkert IW, Devalaraja S, Linette GP, Weber K, Haldar M. Primary Bone Tumors: Challenges and Opportunities for CAR-T Therapies. J Bone Miner Res 2019; 34:1780-1788. [PMID: 31441962 DOI: 10.1002/jbmr.3852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/10/2019] [Accepted: 07/27/2019] [Indexed: 12/22/2022]
Abstract
Primary malignant bone tumors are rare, occur in all age groups, and include distinct entities such as osteosarcoma, Ewing sarcoma, and chondrosarcoma. Traditional treatment with some combination of chemotherapy, surgery, and radiation has reached the limit of efficacy, with substantial room for improvement in patient outcome. Furthermore, genomic characterization of these tumors reveals a paucity of actionable molecular targets. Against this backdrop, recent advances in cancer immunotherapy represent a silver lining in the treatment of primary bone cancer. Major strategies in cancer immunotherapy include stimulating naturally occurring anti-tumor T cells and adoptive transfer of tumor-specific cytotoxic T cells. Chimeric antigen receptor T cells (CAR-T cells) belong to the latter strategy and are an impressive application of both insights into T cell biology and advances in genetic engineering. In this review, we briefly describe the CAR-T approach and discuss its applications in primary bone tumors. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ian W Folkert
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samir Devalaraja
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerald P Linette
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristy Weber
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn Sarcoma Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malay Haldar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn Sarcoma Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cell Immunol 2019; 343:103711. [DOI: 10.1016/j.cellimm.2017.10.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
|
35
|
|
36
|
Lee KS, Choi JS, Cho YW. Reprogramming of cancer stem cells into non-tumorigenic cells using stem cell exosomes for cancer therapy. Biochem Biophys Res Commun 2019; 512:511-516. [PMID: 30905410 DOI: 10.1016/j.bbrc.2019.03.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/12/2019] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) are a small population of cells with stem cell-like properties found in tumors. CSCs are closely associated with tumor heterogeneity, which influences tumor progress, metastasis, and drug resistance. Here, we propose a concept to enhance efficacy of cancer therapy through CSC reprogramming into non-tumorigenic cells using stem cell-derived exosomes with osteoinductive potential. We hypothesized that exosomes derived from osteogenic differentiating human adipose-derived stem cells (OD-EXOs) contain specific cargos capable of inducing osteogenic differentiation of CSCs. Quantitative RT-PCR analysis revealed that OD-EXOs enhanced the expression of osteogenic-related genes, such as alkaline phosphatase (ALPL), osteocalcin (BGLAP), and runt-related transcription factor 2 (RUNX2). In addition, expression of drug-resistance genes such as ATP binding cassette (ABC) transporter, the breast cancer gene family (BCRA1 and BCRA2), and the ErbB gene family were significantly decreased in OD-EXO-treated CSCs. Our findings suggest that OD-EXOs function as a biochemical cue for CSC reprogramming and contribute to overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Kyoung Soo Lee
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 426-791, Republic of Korea
| | - Ji Suk Choi
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 426-791, Republic of Korea; Exostemtech Inc., Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Yong Woo Cho
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 426-791, Republic of Korea; Exostemtech Inc., Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
37
|
Advanced development of ErbB family-targeted therapies in osteosarcoma treatment. Invest New Drugs 2018; 37:175-183. [DOI: 10.1007/s10637-018-0684-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/16/2018] [Indexed: 01/06/2023]
|
38
|
Sommer BC, Dhawan D, Ratliff TL, Knapp DW. Naturally-Occurring Canine Invasive Urothelial Carcinoma: A Model for Emerging Therapies. Bladder Cancer 2018; 4:149-159. [PMID: 29732386 PMCID: PMC5929349 DOI: 10.3233/blc-170145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of targeted therapies and the resurgence of immunotherapy offer enormous potential to dramatically improve the outlook for patients with invasive urothelial carcinoma (InvUC). Optimization of these therapies, however, is crucial as only a minority of patients achieve dramatic remission, and toxicities are common. With the complexities of the therapies, and the growing list of possible drug combinations to test, highly relevant animal models are needed to assess and select the most promising approaches to carry forward into human trials. The animal model(s) should possess key features that dictate success or failure of cancer drugs in humans including tumor heterogeneity, genetic-epigenetic crosstalk, immune cell responsiveness, invasive and metastatic behavior, and molecular subtypes (e.g., luminal, basal). While it may not be possible to create these collective features in experimental models, these features are present in naturally-occurring InvUC in pet dogs. Naturally occurring canine InvUC closely mimics muscle-invasive bladder cancer in humans in regards to cellular and molecular features, molecular subtypes, biological behavior (sites and frequency of metastasis), and response to therapy. Clinical treatment trials in pet dogs with InvUC are considered a win-win scenario; the individual dog benefits from effective treatment, the results are expected to help other dogs, and the findings are expected to translate to better treatment outcomes in humans. This review will provide an overview of canine InvUC, the similarities to the human condition, and the potential for dogs with InvUC to serve as a model to predict the outcomes of targeted therapy and immunotherapy in humans.
Collapse
Affiliation(s)
- Breann C Sommer
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Timothy L Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Deborah W Knapp
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
39
|
Le TP, Thai TH. The State of Cellular Adoptive Immunotherapy for Neuroblastoma and Other Pediatric Solid Tumors. Front Immunol 2017; 8:1640. [PMID: 29225605 PMCID: PMC5705544 DOI: 10.3389/fimmu.2017.01640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/09/2017] [Indexed: 01/21/2023] Open
Abstract
Research on adult cancer immunotherapy is proceeding at a rapid pace resulting in an impressive success rate exemplified by a few high profile cases. However, this momentum is not readily extended to pediatric immunotherapy, and it is not for lack of trying. Though reasons for the slower advance are not apparent, some issues can be raised. Pediatric cancer patients represent a distinct demographic group whose immune system is inherently different from that of mature adults. Treating pediatric patients with immunotherapy designed for adults may not yield objective clinical responses. Here, we will present an update on adoptive T-cell and natural killer-cell therapies for neuroblastoma and other childhood solid tumors. Additionally, we will delineate key differences between human fetal/neonatal and adult immune systems. We hope this will generate interests leading to the discussion of potential future directions for improving adoptive cancer immunotherapy for children.
Collapse
Affiliation(s)
- Thanh-Phuong Le
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - To-Ha Thai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
40
|
Generation and characterization of ErbB2-CAR-engineered cytokine-induced killer cells for the treatment of high-risk soft tissue sarcoma in children. Oncotarget 2017; 8:66137-66153. [PMID: 29029499 PMCID: PMC5630399 DOI: 10.18632/oncotarget.19821] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/29/2017] [Indexed: 01/03/2023] Open
Abstract
Pediatric patients with recurrent, refractory or advanced soft tissue sarcoma (STS) who are simultaneously showing signs of cumulative treatment toxicity are in need of novel therapies. In this preclinical analysis, we identified ErbB2 as a targetable antigen on STS cells and used cytokine-induced killer (CIK) cells transduced with the lentiviral 2nd-generation chimeric antigen receptor (CAR) vector pS-5.28.z-IEW to target ErbB2-positive tumors. Solely CIK cell subsets with the CD3+ T cell phenotype showed up to 85% cell surface expression of the respective CAR. A comparison of wildtype (WT), mock-vector and ErbB2-CAR-CIK cells showed, that engineered cells exhibited diminished in vitro expansion, retained WT CIK cell phenotype with higher percentages of differentiated effector memory/effector cells. Activating natural killer (NK) cell receptor NKG2D-restricted target cell recognition and killing of WT and ErbB2-CAR-CIK cells was maintained against ErbB2-negative tumors, while ErbB2-CAR-CIK cells demonstrated significantly increased cytotoxicity against ErbB2-positive targets, including primary tumors. ErbB2-CAR- but not WT CIK cells proliferated, infiltrated and efficiently lysed tumor cell monolayers as well as 3D tumor spheroids. Here, we demonstrate a potential cell therapeutic approach using ErbB2-CAR-CIK cells for the recognition and elimination of tumor cells expressing ErbB2, which we identified as a targetable antigen on high-risk STS cells.
Collapse
|
41
|
Fernández L, Metais JY, Escudero A, Vela M, Valentín J, Vallcorba I, Leivas A, Torres J, Valeri A, Patiño-García A, Martínez J, Leung W, Pérez-Martínez A. Memory T Cells Expressing an NKG2D-CAR Efficiently Target Osteosarcoma Cells. Clin Cancer Res 2017; 23:5824-5835. [DOI: 10.1158/1078-0432.ccr-17-0075] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/27/2017] [Accepted: 06/21/2017] [Indexed: 11/16/2022]
|
42
|
Liu X, Zhang N, Shi H. Driving better and safer HER2-specific CARs for cancer therapy. Oncotarget 2017; 8:62730-62741. [PMID: 28977984 PMCID: PMC5617544 DOI: 10.18632/oncotarget.17528] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/14/2017] [Indexed: 12/26/2022] Open
Abstract
Given the clinical efficacy of chimeric antigen receptor (CAR)-based therapy in hematological malignancies, CAR T-cell therapy for a number of solid tumors has been actively investigated. Human epidermal growth factor receptor 2 (HER2) is a well-established therapeutic target in breast, as well as other types of cancer. However, HER2 CAR T cells pose a risk of lethal toxicity including cytokine release syndrome from “on-target, off-tumor” recognition of HER2. In this review, we summarize the development of conventional HER2 CAR technology, the alternative selection of CAR hosts, the novel HER2 CAR designs, clinical studies and toxicity. Furthermore, we also discuss the main strategies for improving the safety of HER2 CAR-based cancer therapies.
Collapse
Affiliation(s)
- Xianqiang Liu
- Department of Breast and Thyroid Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Nan Zhang
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Huan Shi
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| |
Collapse
|
43
|
Steppan DA, Pratilas CA, Loeb DM. Targeted therapy for soft tissue sarcomas in adolescents and young adults. Adolesc Health Med Ther 2017; 8:41-55. [PMID: 28408855 PMCID: PMC5384699 DOI: 10.2147/ahmt.s70377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Soft tissue sarcomas (STSs) are a heterogeneous group of tumors originating from the mesenchyme. Even though they affect individuals in all age groups, the prevalence of subtypes of STSs changes significantly from childhood through adolescence into adulthood. The mainstay of therapy is surgery, with or without the addition of chemotherapy and/or radiation therapy. These treatment modalities are associated, in many cases, with significant morbidity and, given the heterogeneity of tumor histologies encompassed by the term "STS", have not uniformly improved outcomes. Moreover, some subgroups of STSs appear to be more, and others less, responsive to conventional chemotherapy agents. Over the last two decades, our understanding of the biology of STSs is slowly increasing, allowing for the development of more targeted therapies. We review the new treatment modalities that have been tested on patients with STSs, with a special focus on adolescents and young adults, a group of patients that is often underrepresented in clinical trials and has not received the dedicated attention it deserves, given the significant differences in biology and treatment response in comparison to children and adults.
Collapse
Affiliation(s)
- Diana A Steppan
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christine A Pratilas
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David M Loeb
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
44
|
Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo. Protein Cell 2017; 9:867-878. [PMID: 28284008 PMCID: PMC6160382 DOI: 10.1007/s13238-017-0384-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) proteins are overexpressed in a high proportion of gastric cancer (GC) cases and affect the maintenance of cancer stem cell (CSC) subpopulations, which are used as targets for the clinical treatment of patients with HER2-positive GC. Despite improvements in survival, numerous HER2-positive patients fail treatment with trastuzumab, highlighting the need for more effective therapies. In this study, we generated a novel type of genetically modified human T cells, expressing a chimeric antigen receptor (CAR), and targeting the GC cell antigen HER2, which harbors the CD137 and CD3ζ moieties. Our findings show that the expanded CAR-T cells, expressing an increased central memory phenotype, were activated by the specific recognition of HER2 antigens in an MHC-independent manner, and effectively killed patient-derived HER2-positive GC cells. In HER2-positive xenograft tumors, CAR-T cells exhibited considerably enhanced tumor inhibition ability, long-term survival, and homing to targets, compared with those of non-transduced T cells. The sphere-forming ability and in vivo tumorigenicity of patient-derived gastric cancer stem-like cells, expressing HER2 and the CD44 protein, were also inhibited. Our results support the future development and clinical application of this adoptive immunotherapy in patients with HER2-positive advanced GC.
Collapse
|
45
|
Lopez-Albaitero A, Xu H, Guo H, Wang L, Wu Z, Tran H, Chandarlapaty S, Scaltriti M, Janjigian Y, de Stanchina E, Cheung NKV. Overcoming resistance to HER2-targeted therapy with a novel HER2/CD3 bispecific antibody. Oncoimmunology 2017; 6:e1267891. [PMID: 28405494 PMCID: PMC5384386 DOI: 10.1080/2162402x.2016.1267891] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 01/21/2023] Open
Abstract
T-cell-based therapies have emerged as one of the most clinically effective ways to target solid and non-solid tumors. HER2 is responsible for the oncogenesis and treatment resistance of several human solid tumors. As a member of the HER family of tyrosine kinase receptors, its over-activity confers unfavorable clinical outcome. Targeted therapies directed at this receptor have achieved responses, although development of resistance is common. We explored a novel HER2/CD3 bispecific antibody (HER2-BsAb) platform that while preserving the anti-proliferative effects of trastuzumab, it recruits and activates non-specific circulating T-cells, promoting T cell tumor infiltration and ablating HER2(+) tumors, even when these are resistant to standard HER2-targeted therapies. Its in vitro tumor cytotoxicity, when expressed as EC50, correlated with the surface HER2 expression in a large panel of human tumor cell lines, irrespective of lineage or tumor type. HER2-BsAb-mediated cytotoxicity was relatively insensitive to PD-1/PD-L1 immune checkpoint inhibition. In four separate humanized mouse models of human breast cancer and ovarian cancer cell line xenografts, as well as human breast cancer and gastric cancer patient-derived xenografts (PDXs), HER2-BsAb was highly effective in promoting T cell infiltration and suppressing tumor growth when used in the presence of human peripheral blood mononuclear cells (PBMC) or activated T cells (ATC). The in vivo and in vitro antitumor properties of this BsAb support its further clinical development as a cancer immunotherapeutic.
Collapse
Affiliation(s)
| | - Hong Xu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hongfen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linlin Wang
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhihao Wu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hoa Tran
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maurizio Scaltriti
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yelena Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nai-Kong V. Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
46
|
Abstract
Absolute lymphocyte count (ALC) recovery rapidly occurring at 14 days after start of chemotherapy for osteosarcoma and Ewing sarcoma is a good prognostic factor. Conversely, lymphopenia is associated with significantly decreased sarcoma survival. Clearly, the immune system can contribute towards better survival from sarcoma. This chapter will describe treatment and host factors that influence immune function and how effective local control and systemic interventions of sarcoma therapy can cause inflammation and/or immune suppression but are currently the standard of care. Preclinical and clinical efforts to enhance immune function against sarcoma will be reviewed. Interventions to enhance immune function against sarcoma have included regional therapy (surgery, cryoablation, radiofrequency ablation, electroporation, and radiotherapy), cytokines, macrophage activators (mifamurtide), vaccines, natural killer (NK) cells, T cell receptor (TCR) and chimeric antigen receptor (CAR) T cells, and efforts to decrease inflammation. The latter is particularly important because of new knowledge about factors influencing expression of checkpoint inhibitory molecules, PD1 and CTLA-4, in the tumor microenvironment. Since these molecules can now be blocked using anti-PD1 and anti-CTLA-4 antibodies, how to translate this knowledge into more effective immune therapies in the future as well as how to augment effectiveness of current interventions (e.g., radiotherapy) is a challenge. Barriers to implementing this knowledge include cost of agents that release immune checkpoint blockade and coordination of cost-effective outpatient sarcoma treatment. Information on how to research clinical trial eligibility criteria and how to access current immune therapy trials against sarcoma are shared, too.
Collapse
Affiliation(s)
- Peter M Anderson
- Department of Pediatric Hematology/Oncology/BMT, Cleveland Clinic S20, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
| |
Collapse
|
47
|
Hegde M, Mukherjee M, Grada Z, Pignata A, Landi D, Navai SA, Wakefield A, Fousek K, Bielamowicz K, Chow KK, Brawley VS, Byrd TT, Krebs S, Gottschalk S, Wels WS, Baker ML, Dotti G, Mamonkin M, Brenner MK, Orange JS, Ahmed N. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J Clin Invest 2016; 126:3036-52. [PMID: 27427982 PMCID: PMC4966331 DOI: 10.1172/jci83416] [Citation(s) in RCA: 498] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 05/13/2016] [Indexed: 12/24/2022] Open
Abstract
In preclinical models of glioblastoma, antigen escape variants can lead to tumor recurrence after treatment with CAR T cells that are redirected to single tumor antigens. Given the heterogeneous expression of antigens on glioblastomas, we hypothesized that a bispecific CAR molecule would mitigate antigen escape and improve the antitumor activity of T cells. Here, we created a CAR that joins a HER2-binding scFv and an IL13Rα2-binding IL-13 mutein to make a tandem CAR exodomain (TanCAR) and a CD28.ζ endodomain. We determined that patient TanCAR T cells showed distinct binding to HER2 or IL13Rα2 and had the capability to lyse autologous glioblastoma. TanCAR T cells exhibited activation dynamics that were comparable to those of single CAR T cells upon encounter of HER2 or IL13Rα2. We observed that TanCARs engaged HER2 and IL13Rα2 simultaneously by inducing HER2-IL13Rα2 heterodimers, which promoted superadditive T cell activation when both antigens were encountered concurrently. TanCAR T cell activity was more sustained but not more exhaustible than that of T cells that coexpressed a HER2 CAR and an IL13Rα2 CAR, T cells with a unispecific CAR, or a pooled product. In a murine glioblastoma model, TanCAR T cells mitigated antigen escape, displayed enhanced antitumor efficacy, and improved animal survival. Thus, TanCAR T cells show therapeutic potential to improve glioblastoma control by coengaging HER2 and IL13Rα2 in an augmented, bivalent immune synapse that enhances T cell functionality and reduces antigen escape.
Collapse
Affiliation(s)
- Meenakshi Hegde
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers and
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Malini Mukherjee
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
- Texas Children’s Hospital Center for Human Immunobiology, Houston, Texas, USA
| | - Zakaria Grada
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers and
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
| | - Antonella Pignata
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers and
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
| | - Daniel Landi
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers and
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
| | - Shoba A. Navai
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers and
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
| | - Amanda Wakefield
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers and
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
| | - Kristen Fousek
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers and
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Kevin Bielamowicz
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers and
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
| | - Kevin K.H. Chow
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers and
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
| | - Vita S. Brawley
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers and
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
| | - Tiara T. Byrd
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers and
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Simone Krebs
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers and
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers and
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Winfried S. Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Matthew L. Baker
- National Center for Macromolecular Imaging, Department of Biochemistry, Baylor College of Medicine, Houston, Texas, USA
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers and
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers and
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
| | - Malcolm K. Brenner
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers and
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
| | - Jordan S. Orange
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
- Texas Children’s Hospital Center for Human Immunobiology, Houston, Texas, USA
| | - Nabil Ahmed
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers and
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics and
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
48
|
DeRenzo C, Gottschalk S. Genetically Modified T-cell Therapy for the Treatment of Osteosarcoma: An Update. ACTA ACUST UNITED AC 2016; 7. [PMID: 27313973 PMCID: PMC4904842 DOI: 10.4172/2155-9899.1000417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Christopher DeRenzo
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Pediatrics Baylor College of Medicine, Houston, Texas 77030, USA
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Pediatrics Baylor College of Medicine, Houston, Texas 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
49
|
Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies. Stem Cells Int 2016; 2016:3631764. [PMID: 27366153 PMCID: PMC4913005 DOI: 10.1155/2016/3631764] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/10/2016] [Indexed: 12/25/2022] Open
Abstract
Osteosarcoma (OS) is the most common type of primary solid tumor that develops in bone. Although standard chemotherapy has significantly improved long-term survival over the past few decades, the outcome for those patients with metastatic or recurrent OS remains dismally poor and, therefore, novel agents and treatment regimens are urgently required. A hypothesis to explain the resistance of OS to chemotherapy is the existence of drug resistant CSCs with progenitor properties that are responsible of tumor relapses and metastasis. These subpopulations of CSCs commonly emerge during tumor evolution from the cell-of-origin, which are the normal cells that acquire the first cancer-promoting mutations to initiate tumor formation. In OS, several cell types along the osteogenic lineage have been proposed as cell-of-origin. Both the cell-of-origin and their derived CSC subpopulations are highly influenced by environmental and epigenetic factors and, therefore, targeting the OS-CSC environment and niche is the rationale for many recently postulated therapies. Likewise, some strategies for targeting CSC-associated signaling pathways have already been tested in both preclinical and clinical settings. This review recapitulates current OS cell-of-origin models, the properties of the OS-CSC and its niche, and potential new therapies able to target OS-CSCs.
Collapse
|
50
|
Mason NJ, Gnanandarajah JS, Engiles JB, Gray F, Laughlin D, Gaurnier-Hausser A, Wallecha A, Huebner M, Paterson Y. Immunotherapy with a HER2-Targeting Listeria Induces HER2-Specific Immunity and Demonstrates Potential Therapeutic Effects in a Phase I Trial in Canine Osteosarcoma. Clin Cancer Res 2016; 22:4380-90. [PMID: 26994144 DOI: 10.1158/1078-0432.ccr-16-0088] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/07/2016] [Indexed: 01/13/2023]
Abstract
PURPOSE Recombinant Listeria vaccines induce tumor-specific T-cell responses that eliminate established tumors and prevent metastatic disease in murine cancer models. We used dogs with HER2/neu(+) appendicular osteosarcoma, a well-recognized spontaneous model for pediatric osteosarcoma, to determine whether a highly attenuated, recombinant Listeria monocytogenes expressing a chimeric human HER2/neu fusion protein (ADXS31-164) could safely induce HER2/neu-specific immunity and prevent metastatic disease. EXPERIMENTAL DESIGN Eighteen dogs that underwent limb amputation or salvage surgery and adjuvant chemotherapy were enrolled in a phase I dose escalation clinical trial and received either 2 × 10(8), 5 × 10(8), 1 × 10(9), or 3.3 × 10(9) CFU of ADXS31-164 intravenously every 3 weeks for 3 administrations. RESULTS Only low-grade, transient toxicities were observed. ADXS31-164 broke peripheral tolerance and induced antigen-specific IFNγ responses against the intracellular domain of HER2/neu in 15 of 18 dogs within 6 months of treatment. Furthermore, ADXS31-164 reduced the incidence of metastatic disease and significantly increased duration of survival time and 1-, 2-, and 3-year survival rates when compared with a historical control group with HER2/neu(+) appendicular osteosarcoma treated with amputation and chemotherapy alone. CONCLUSIONS These findings demonstrate that ADXS31-164 administered in the setting of minimal residual disease can induce HER2/neu-specific immunity and may reduce the incidence of metastatic disease and prolong overall survival in a clinically relevant, spontaneous, large animal model of cancer. These findings, therefore, have important translational relevance for children with osteosarcoma and adults with other HER2/neu(+) cancers. Clin Cancer Res; 22(17); 4380-90. ©2016 AACR.
Collapse
Affiliation(s)
- Nicola J Mason
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania. Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania.
| | - Josephine S Gnanandarajah
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Julie B Engiles
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Falon Gray
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Danielle Laughlin
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Anita Gaurnier-Hausser
- Office of Professional Studies in the Health Sciences, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | | | - Yvonne Paterson
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|