1
|
Najafi S, Majidpoor J, Mortezaee K. The impact of oncolytic adenoviral therapy on the therapeutic efficacy of PD-1/PD-L1 blockade. Biomed Pharmacother 2023; 161:114436. [PMID: 36841031 DOI: 10.1016/j.biopha.2023.114436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
Immunotherapy has revolutionized treatment of cancer during the last decades. Oncolytic virotherapy has also emerged as a strategy to fight against cancer cells both via lysis of malignant cells and activating immune responses. Accepted as a logical strategy, combination of monoclonal antibodies particularly against the programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) is introduced to improve clinical responses to immune checkpoint inhibitors (ICIs). Accordingly, Talimogene laherparepvec (T-VEC) has received approval for clinical use, while a number of oncolytic Adenoviruses (Ads) are being investigated in clinical trials of malignancies. Combination of oncolytic Ads with PD-1/PD-L1 inhibitors have shown potentials in promoting responses to ICIs, changing the tumor microenvironment, inducing long-term protection against tumor, and promoting survival among mice models of malignancies. Regarding the increasing importance of oncolytic Ads in combination therapy of cancers, in this review we decide to outline recent studies in this field.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran; Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
2
|
Watanabe M, Nishikawaji Y, Kawakami H, Kosai KI. Adenovirus Biology, Recombinant Adenovirus, and Adenovirus Usage in Gene Therapy. Viruses 2021; 13:v13122502. [PMID: 34960772 PMCID: PMC8706629 DOI: 10.3390/v13122502] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is currently in the public spotlight. Several gene therapy products, including oncolytic virus (OV), which predominantly replicates in and kills cancer cells, and COVID-19 vaccines have recently been commercialized. Recombinant adenoviruses, including replication-defective adenoviral vector and conditionally replicating adenovirus (CRA; oncolytic adenovirus), have been extensively studied and used in clinical trials for cancer and vaccines. Here, we review the biology of wild-type adenoviruses, the methodological principle for constructing recombinant adenoviruses, therapeutic applications of recombinant adenoviruses, and new technologies in pluripotent stem cell (PSC)-based regenerative medicine. Moreover, this article describes the technology platform for efficient construction of diverse "CRAs that can specifically target tumors with multiple factors" (m-CRAs). This technology allows for modification of four parts in the adenoviral E1 region and the subsequent insertion of a therapeutic gene and promoter to enhance cancer-specific viral replication (i.e., safety) as well as therapeutic effects. The screening study using the m-CRA technology successfully identified survivin-responsive m-CRA (Surv.m-CRA) as among the best m-CRAs, and clinical trials of Surv.m-CRA are underway for patients with cancer. This article also describes new recombinant adenovirus-based technologies for solving issues in PSC-based regenerative medicine.
Collapse
Affiliation(s)
- Maki Watanabe
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Yuya Nishikawaji
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Hirotaka Kawakami
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Ken-Ichiro Kosai
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- South Kyushu Center for Innovative Medical Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- Center for Innovative Therapy Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- Center for Clinical and Translational Research, Kagoshima University Hospital, Kagoshima 890-8544, Japan
| |
Collapse
|
3
|
Goradel NH, Alizadeh A, Hosseinzadeh S, Taghipour M, Ghesmati Z, Arashkia A, Negahdari B. Oncolytic virotherapy as promising immunotherapy against cancer: mechanisms of resistance to oncolytic viruses. Future Oncol 2021; 18:245-259. [PMID: 34821517 DOI: 10.2217/fon-2021-0802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Oncolytic virotherapy has currently emerged as a powerful therapeutic approach in cancer treatment. Although the history of using viruses goes back to the early 20th century, the approval of talimogene laherparepvec (T-VEC) in 2015 increased interest in oncolytic viruses (OVs). OVs are multifaceted biotherapeutic agents because they replicate in and kill tumor cells and augment immune responses by releasing immunostimulatory molecules from lysed cells. Despite promising results, some limitations hinder the efficacy of oncolytic virotherapy. The delivery challenges and the upregulation of checkpoints following oncolytic virotherapy also mediate resistance to OVs by diminishing immune responses. Furthermore, the localization of receptors of viruses in the tight junctions, interferon responses, and the aberrant expression of genes involved in the cell cycle of the virus, including their infection and replication, reduce the efficacy of OVs. In this review, we present different mechanisms of resistance to OVs and strategies to overcome them.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Alizadeh
- Department of Biochemistry & Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shahnaz Hosseinzadeh
- Department of Microbiology & Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Iran
| | - Mitra Taghipour
- Department of Biotechnology, Faculty of Agriculture & Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Senekal NS, Mahasa KJ, Eladdadi A, de Pillis L, Ouifki R. Natural Killer Cells Recruitment in Oncolytic Virotherapy: A Mathematical Model. Bull Math Biol 2021; 83:75. [PMID: 34008149 DOI: 10.1007/s11538-021-00903-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/20/2021] [Indexed: 01/17/2023]
Abstract
In this paper, we investigate how natural killer (NK) cell recruitment to the tumor microenvironment (TME) affects oncolytic virotherapy. NK cells play a major role against viral infections. They are, however, known to induce early viral clearance of oncolytic viruses, which hinders the overall efficacy of oncolytic virotherapy. Here, we formulate and analyze a simple mathematical model of the dynamics of the tumor, OV and NK cells using currently available preclinical information. The aim of this study is to characterize conditions under which the synergistic balance between OV-induced NK responses and required viral cytopathicity may or may not result in a successful treatment. In this study, we found that NK cell recruitment to the TME must take place neither too early nor too late in the course of OV infection so that treatment will be successful. NK cell responses are most influential at either early (partly because of rapid response of NK cells to viral infections or antigens) or later (partly because of antitumoral ability of NK cells) stages of oncolytic virotherapy. The model also predicts that: (a) an NK cell response augments oncolytic virotherapy only if viral cytopathicity is weak; (b) the recruitment of NK cells modulates tumor growth; and (c) the depletion of activated NK cells within the TME enhances the probability of tumor escape in oncolytic virotherapy. Taken together, our model results demonstrate that OV infection is crucial, not just to cytoreduce tumor burden, but also to induce the stronger NK cell response necessary to achieve complete or at least partial tumor remission. Furthermore, our modeling framework supports combination therapies involving NK cells and OV which are currently used in oncolytic immunovirotherapy to treat several cancer types.
Collapse
Affiliation(s)
- Noma Susan Senekal
- Department of Mathematics and Computer Science, National University of Lesotho, Roma, Maseru, Lesotho.
| | - Khaphetsi Joseph Mahasa
- Department of Mathematics and Computer Science, National University of Lesotho, Roma, Maseru, Lesotho
| | | | | | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Oncolytic virotherapy: Challenges and solutions. Curr Probl Cancer 2021; 45:100639. [DOI: 10.1016/j.currproblcancer.2020.100639] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
|
6
|
Zhou YC, Zhang YN, Yang X, Wang SB, Hu PY. Delivery systems for enhancing oncolytic adenoviruses efficacy. Int J Pharm 2020; 591:119971. [PMID: 33059014 DOI: 10.1016/j.ijpharm.2020.119971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
Oncolytic adenovirus (OAds) has long been considered a promising biotherapeutic agent against various types of cancer owing to selectively replicate in and lyse cancer cells, while remaining dormant in healthy cells. In the last years, multiple (pre)clinical studies using genetic engineering technologies enhanced OAds anti-tumor effects in a broad range of cancers. However, poor targeting delivery, tropism toward healthy tissues, low-level expression of Ad receptors on tumor cells, and pre-existing neutralizing antibodies are major hurdles for systemic administration of OAds. Different vehicles have been developed for addressing these obstacles, such as stem cells, nanoparticles (NPs) and shielding polymers, extracellular vesicles (EVs), hydrogels, and microparticles (MPs). These carriers can enhance the therapeutic efficacy of OVs through enhancing transfection, circulatory longevity, cellular interactions, specific targeting, and immune responses against cancer. In this paper, we reviewed adenovirus structure and biology, different types of OAds, and the efficacy of different carriers in systemic administration of OAds.
Collapse
Affiliation(s)
- Yu-Cheng Zhou
- Gastroenterological & Pancreatic Surgery Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - You-Ni Zhang
- Clinical Laboratory, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Taizhou 317200, Zhejiang Province, China
| | - Xue Yang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Shi-Bing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China.
| | - Pei-Yang Hu
- Department of Traumatology, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Taizhou 317200, Zhejiang Province, China.
| |
Collapse
|
7
|
Wang JW, Chen Y, Liu QC, Liu GZ, Zhang SY, Guo YJ, Li DH, Chen XT, Lin C, Gao F. HNF-1 binding point mutation of the AFP gene promotes cirrhosis in post-menopausal women. Int J Biol Markers 2020; 35:41-46. [PMID: 31992114 DOI: 10.1177/1724600819900510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE α-fetoprotein (AFP) expression is activated during the embryonic stage or hepatocellular carcinogenesis, so it is presumed that AFP is a key endogenous molecule to promote cell proliferation or differentiation. We carried out gene screening in an unknown family with hyper-alpha-fetoproteinemia and some sporadic menopausal women, and discussed the relationship between AFP expression and liver cirrhosis. METHODS Peripheral blood samples from family members, patients with malignant liver tumors, and normal controls were collected. Full-length sequence of AFP was amplified and directly sequenced, and compared with normal controls. HNF-1α and HNF-1β in plasma levels of family members, patients with liver cancer, newborns, pregnant women, and normal subjects were detected by ELISA, and the relationship between HNF-1 and AFP mutation or high expression was evaluated. RESULTS There was a mutation in AFP promoter region at c.-200 C>T, which was located at the binding site of AFP hepatocyte nuclear factor 1 (HNF-1). AFP was higher than 4000 ng/L in all members carrying the mutation, but liver cancer was excluded in the family with hyper-alpha-fetoprotein. However, cirrhosis occurred in post-menopausal women. The cases reviewed showed that unknown hyper-alpha-fetoprotein was closely related to HNF-1 binding point of AFP in post-menopausal women with cirrhosis (7/11), while the plasma levels of HNF-1α and HNF-1β were not significantly different. CONCLUSION The mutation of the HNF-1 binding point of AFP may lead to an abnormal high expression of AFP by altering the binding of HNF transcription factors, which is closely related to cirrhosis in menopausal women.
Collapse
Affiliation(s)
- Jing-Wen Wang
- Department of Pathology, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yong Chen
- Department of Laboratory Medicine, Mindong Hospital, Fujian Medical University, Fuan, China
| | - Qi-Cai Liu
- Department of Reproductive Medicine Centre, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guo-Zhong Liu
- Department of Hepatopancreatobiliary Surgery, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shu-Yu Zhang
- Department of Laboratory Medicine, Medical Technology and Engineering College, Fujian Medical University, Fuzhou, China
| | - Yu-Jia Guo
- Department of Reproductive Medicine Centre, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dong-Hong Li
- Department of Reproductive Medicine Centre, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xing-Ting Chen
- Department of Reproductive Medicine Centre, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chen Lin
- Department of Reproductive Medicine Centre, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Feng Gao
- Department of Pathology, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Li Y, He J, Qiu C, Shang Q, Qian G, Fan X, Ge S, Jia R. The oncolytic virus H101 combined with GNAQ siRNA-mediated knockdown reduces uveal melanoma cell viability. J Cell Biochem 2019; 120:5766-5776. [PMID: 30320917 DOI: 10.1002/jcb.27863] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/19/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Uveal melanoma (UM) is a severe human malignancy with a high mortality rate, as well as high metastasis and recurrence potential. The active mutation of G protein subunit alpha q (GNAQ) or G protein subunit alpha 11 (GNA11) is a major trigger for UM. Oncolytic adenovirus H101 (H101) is the first oncolytic virus approved for clinical applications in cancer therapy by the China Food and Drug Administration. We investigated whether combining H101 with the downregulation of GNAQ expression would act synergistically in UM therapy. METHODS Three UM cell lines OMM2.3 and 92.1, harboring GNAQ mutation, and OCM1, harboring B-Raf proto-oncogene mutation, were chosen for our research. The cellular toxicity of adenoviral infection and the cell growth rate were measured with a Cell Counting Kit-8. Western blot analysis was used to detect GNAQ, p-MEK1/2, YAP, and p-YAP expression. The apoptosis and cell-cycle distribution of cells were evaluated with annexin-V and propidium iodide staining. RESULTS Our results revealed that OMM2.3 and 92.1 cells were more sensitive to H101 infection than OCM1 cells. GNAQ expression was markedly reduced by small interfering RNA, siGNAQ. Combined treatment of siGNAQ and H101 inhibited the proliferation and activated the apoptosis of OMM2.3 and 92.1 cells by blocking the phosphorylation of MEK1/2 and increasing the phosphorylation of YAP. CONCLUSIONS In summary, a therapy combining H101 and siGNAQ is feasible, with potential utility as a novel targeted molecular therapy for UM, especially those carrying a GNAQ mutation.
Collapse
Affiliation(s)
- Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Chun Qiu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Qingfeng Shang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Guanxiang Qian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
9
|
Lin CZ, Xiang GL, Zhu XH, Xiu LL, Sun JX, Zhang XY. Advances in the mechanisms of action of cancer-targeting oncolytic viruses. Oncol Lett 2018. [PMID: 29541169 DOI: 10.3892/ol.2018.7829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer virotherapy mediated by oncolytic viruses (OV), has emerged as a novel and effective strategy in cancer therapeutics. Preclinical models have demonstrated anticancer activity against numerous types of cancer. Currently, a number of recombinant viruses are in late phase clinical trials, many of which have demonstrated promising results regarding the safety and reliability of the treatments, particularly when combined with standard antineoplastic therapies. In addition to molecular-targeted therapeutics, genetic engineering of the viruses allows functional complementation to chemotherapy or radiotherapy agents. Co-administration of chemotherapy or radiotherapy is imperative for an effective treatment regime. Additionally, these approaches may be used in combination with current treatments to assist in cancer management. The near future may reveal whether this renewed interest in oncological virotherapy will result in meaningful therapeutic effects in patients. The aim of the present review was to highlight how the knowledge of oncolytic viral specificity and cytotoxicity has advanced in recent years, with a view to discuss OV in clinical application and the future directions of this field.
Collapse
Affiliation(s)
- Cun-Zhi Lin
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Gui-Ling Xiang
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xin-Hong Zhu
- Department of General Medicine, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Lu-Lu Xiu
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jia-Xing Sun
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiao-Yuan Zhang
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
10
|
Zhang X, Guo W, Wang X, Liu X, Huang M, Gan L, Cheng Y, Li J. Antitumor activity and inhibitory effects on cancer stem cell-like properties of Adeno-associated virus (AAV) -mediated Bmi-1 interference driven by Bmi-1 promoter for gastric cancer. Oncotarget 2017; 7:22733-45. [PMID: 27009837 PMCID: PMC5008396 DOI: 10.18632/oncotarget.8174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Abstract
Bmi-1 is aberrantly activated in various cancers and plays a vital role in maintaining the self-renewal of stem cells. Our previous research revealed that Bmi-1 was overexpressed in gastric cancer (GC) and it's overexpression was an independent negative prognostic factor, suggesting it can be a therapeutic target. The main purpose of this investigation was to explore the antitumor activity of Bmi-1 interference driven by its own promoter (Ad-Bmi-1i) for GC. In this study, we used adenoviral vector to deliver Bmi-1 shRNA driven by its own promoter to treat GC. Our results revealed that Ad-Bmi-1i could selectively silence Bmi-1 in GC cells which overexpress Bmi-1 and suppress the malignant phenotypes and stem-like properties of GC cells in vitro and in vivo. Moreover, direct injection of Ad-Bmi-1i into xenografts suppressed tumor growth and destroyed cancer cells in vivo. Ad-Bmi-1i inhibited the proliferation of GC cells mainly via inducing senescence in vitro, but it suppressed tumor through inducing senescence and apoptosis, and inhibiting angiogenesis in vivo. Bmi-1 knockdown by Ad-Bmi-1i downregulated VEGF via inhibiting AKT activity. These results suggest that Ad-Bmi-1i not only inhibits tumor growth and stem cell-like phenotype by inducing cellular senescence directly, but also has an indirect anti-tumor activity by anti-angiogenesis effects via regulating PTEN/AKT/VEGF pathway. Transfer of gene interference guided by its own promoter by an adeno-associated virus (AAV) vector might be a potent antitumor approach for cancer therapy.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weijian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaofeng Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyang Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingzhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Gan
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yufan Cheng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Tianyou Hospital of Tongji University, Shanghai, China
| |
Collapse
|
11
|
Howells A, Marelli G, Lemoine NR, Wang Y. Oncolytic Viruses-Interaction of Virus and Tumor Cells in the Battle to Eliminate Cancer. Front Oncol 2017; 7:195. [PMID: 28944214 PMCID: PMC5596080 DOI: 10.3389/fonc.2017.00195] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022] Open
Abstract
Oncolytic viruses (OVs) are an emerging treatment option for many cancer types and have recently been the focus of extensive research aiming to develop their therapeutic potential. The ultimate aim is to design a virus which can effectively replicate within the host, specifically target and lyse tumor cells and induce robust, long lasting tumor-specific immunity. There are a number of viruses which are either naturally tumor-selective or can be modified to specifically target and eliminate tumor cells. This means they are able to infect only tumor cells and healthy tissue remains unharmed. This specificity is imperative in order to reduce the side effects of oncolytic virotherapy. These viruses can also be modified by various methods including insertion and deletion of specific genes with the aim of improving their efficacy and safety profiles. In this review, we have provided an overview of the various virus species currently being investigated for their oncolytic potential and the positive and negative effects of a multitude of modifications used to increase their infectivity, anti-tumor immunity, and treatment safety, in particular focusing on the interaction of tumor cells and OVs.
Collapse
Affiliation(s)
- Anwen Howells
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Giulia Marelli
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nicholas R Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Xu Y, Chu L, Yuan S, Yang Y, Yang Y, Xu B, Zhang K, Liu XY, Wang R, Fang L, Chen Z, Liang Z. RGD-modified oncolytic adenovirus-harboring shPKM2 exhibits a potent cytotoxic effect in pancreatic cancer via autophagy inhibition and apoptosis promotion. Cell Death Dis 2017; 8:e2835. [PMID: 28569774 PMCID: PMC5520890 DOI: 10.1038/cddis.2017.230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023]
Abstract
The M2 isoform of pyruvate kinase (PKM2) is a key driver of glycolysis in cancer cells and has critical 'non-metabolic' functions in some cancers; however, the role of PKM2 in pancreatic cancer remains unclear. The aim of the current study was to elucidate the role of PKM2 in pancreatic cancer progression and the potential of PKM2 as a therapeutic target. In this study, we observed that PKM2 is highly expressed in patients with pancreatic cancer and is correlated to survival. Elevated PKM2 expression promoted cell proliferation, migration and tumor formation. The inhibition of cell growth by silencing PKM2 is caused by impairment of the autophagy process. To test the potential effects of downregulating PKM2 as a clinical therapy, we constructed an RGD-modified oncolytic adenovirus containing shPKM2 (OAd.R.shPKM2) to knock down PKM2 in pancreatic cancer cells. Cells transduced with OAd.R.shPKM2 exhibited decreased cell viability, and, in a PANC-1 xenograft model, intratumoral injection of OAd.R.shPKM2 resulted in reduced tumor growth. Furthermore, OAd.R.shPKM2 induced apoptosis and impaired autophagy in PANC-1 cells. Our results suggested that targeting PKM2 with an oncolytic adenovirus produced a strong antitumor effect, and that this strategy could broaden the therapeutic options for treating pancreatic cancer.
Collapse
Affiliation(s)
- Yanni Xu
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, PR China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Sujing Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, PR China
| | - Yuanqin Yang
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yu Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, PR China
| | - Bin Xu
- Department of General Surgery, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Kangjian Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, PR China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, PR China
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ruwei Wang
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang Conba Pharmaceutical Co., Ltd, Hangzhou 310018, PR China
| | - Ling Fang
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang Conba Pharmaceutical Co., Ltd, Hangzhou 310018, PR China
| | - Zhinan Chen
- Department of Cell Biology, State Key Laboratory of Cancer Biology, Cell Engineering Research Center, Fourth Military Medical University, Xi’an 710032, PR China
| | - Zongsuo Liang
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, PR China
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| |
Collapse
|
13
|
Oncolytic adenoviruses as a therapeutic approach for osteosarcoma: A new hope. J Bone Oncol 2016; 9:41-47. [PMID: 29226089 PMCID: PMC5715440 DOI: 10.1016/j.jbo.2016.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/16/2016] [Accepted: 12/02/2016] [Indexed: 01/07/2023] Open
Abstract
Osteosarcoma is the most common bone cancer among those with non-hematological origin and affects mainly pediatric patients. In the last 50 years, refinements in surgical procedures, as well as the introduction of aggressive neoadjuvant and adjuvant chemotherapeutic cocktails, have increased to nearly 70% the survival rate of these patients. Despite the initial therapeutic progress the fight against osteosarcoma has not substantially improved during the last three decades, and almost 30% of the patients do not respond or recur after the standard treatment. For this group there is an urgent need to implement new therapeutic approaches. Oncolytic adenoviruses are conditionally replicative viruses engineered to selectively replicate in and kill tumor cells, while remaining quiescent in healthy cells. In the last years there have been multiple preclinical and clinical studies using these viruses as therapeutic agents in the treatment of a broad range of cancers, including osteosarcoma. In this review, we summarize some of the most relevant published literature about the use of oncolytic adenoviruses to treat human osteosarcoma tumors in subcutaneous, orthotopic and metastatic mouse models. In conclusion, up to date the preclinical studies with oncolytic adenoviruses have demonstrated that are safe and efficacious against local and metastatic osteosarcoma. Knowledge arising from phase I/II clinical trials with oncolytic adenoviruses in other tumors have shown the potential of viruses to awake the patient´s own immune system generating a response against the tumor. Generating osteosarcoma immune-competent adenoviruses friendly models will allow to better understand this potential. Future clinical trials with oncolytic adenoviruses for osteosarcoma tumors are warranted.
Collapse
|
14
|
Yuan X, Zhang Q, Li Z, Zhang X, Bao S, Fan D, Ru Y, Dong S, Zhang Y, Zhang Y, Ye Z, Xiong D. Mesenchymal stem cells deliver and release conditionally replicative adenovirus depending on hepatic differentiation to eliminate hepatocellular carcinoma cells specifically. Cancer Lett 2016; 381:85-95. [PMID: 27450327 DOI: 10.1016/j.canlet.2016.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 12/26/2022]
Abstract
Currently, it is a key challenge to remove the postsurgical residuals and metastasis of hepatocellular carcinoma (HCC). Oncolytic adenoviral virotherapy is an attractive treatment modality for cancer; however, the difficulty remains regarding its intravenous administration. The aim of this study was to develop a targeted therapeutic system which has great potential to overcome the postsurgical residuals and metastasis of HCC. In this system, we developed a conditionally replicative adenovirus (CRAd) loaded on human umbilical cord-derived mesenchymal stem cells (HUMSCs), in which the CRAd contained an adenovirus E1A gene dual regulated by α-fetoprotein promoter and microRNA-122 target sequence. When HUMSCs homed to the tumor sites and differentiated into hepatocyte-like cells within tumor microenvironment, the CRAds were packaged and released strictly to the local tumor. Subsequently, the CRAd lysed tumor cells selectively with the post-infection regulation. The study showed the specific oncolytic effect of the CRAd to HCC cells and the production of the CRAd by differentiated HUMSCs in vitro. Furthermore, we proved the hepatocyte-like transformation of HUMSC in the microenvironment of orthotopic or heterotopic hepatoma. Finally, this therapeutic system exhibited dramatic tumor inhibition on both orthotopic and subcutaneous hepatic xenograft tumor model mice with less toxicity on normal organs. The study results have demonstrated that this targeted therapeutic strategy is a promising method to resolve the problem of postsurgical residuals and metastasis of HCC.
Collapse
Affiliation(s)
- Xiangfei Yuan
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Nankai Hospital, Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China
| | - Qing Zhang
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Zhenzhen Li
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaolong Zhang
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Shiqi Bao
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Dongmei Fan
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yongxin Ru
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Shuxu Dong
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yizhi Zhang
- Central Hospital of Karamay, Karamay, Xinjiang 834000, China
| | - Yanjun Zhang
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Zhou Ye
- Central Hospital of Karamay, Karamay, Xinjiang 834000, China.
| | - Dongsheng Xiong
- State Key Laboratory of Experimental Hematology, Department of Pharmacy, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
15
|
Mechanism of Action and Applications of Interleukin 24 in Immunotherapy. Int J Mol Sci 2016; 17:ijms17060869. [PMID: 27271601 PMCID: PMC4926403 DOI: 10.3390/ijms17060869] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 12/15/2022] Open
Abstract
Interleukin 24 (IL-24) is an important pleiotropic immunoregulatory cytokine, whose gene is located in human chromosome 1q32-33. IL-24's signaling pathways have diverse biological functions related to cell differentiation, proliferation, development, apoptosis, and inflammation, placing it at the center of an active area of research. IL-24 is well known for its apoptotic effect in cancer cells while having no such effect on normal cells. IL-24 can also be secreted by both immune and non-immune cells. Downstream effects of IL-24, after binding to the IL-20 receptor, can occur dependently or independently of the JAK/STAT signal transduction pathway, which is classically involved in cytokine-mediated activities. After exogenous addition of IL-24, apoptosis is induced in tumor cells independently of the JAK/STAT pathway. We have shown that IL-24 binds to Sigma 1 Receptor and this event induces endoplasmic reticulum stress, calcium mobilization, reactive oxygen species generation, p38MAPK activity, and ceramide production. Here we review IL-24's role in autoimmunity, infectious disease response, wound repair, and vascular disease. Detailed understanding of the pleiotropic roles of IL-24 signaling can assist in the selection of more accurate therapeutic approaches, as well as targeting of appropriate cell types in treatment strategy development, and ultimately achieve desired therapeutic effects.
Collapse
|
16
|
Stobiecka M, Chalupa A. DNA Strand Replacement Mechanism in Molecular Beacons Encoded for the Detection of Cancer Biomarkers. J Phys Chem B 2016; 120:4782-90. [PMID: 27187043 DOI: 10.1021/acs.jpcb.6b03475] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling properties of a fluorescent hairpin oligonucleotide molecular beacon (MB) encoded to recognize protein survivin (Sur) mRNA have been investigated. The process of complementary target binding to SurMB with 20-mer loop sequence is spontaneous, as expected, and characterized by a high affinity constant (K = 2.51 × 10(16) M(-1)). However, the slow kinetics at room temperature makes it highly irreversible. To understand the intricacies of target binding to MB, a detailed kinetic study has been performed to determine the rate constants and activation energy Ea for the reaction at physiological temperature (37 °C). Special attention has been paid to assess the value of Ea in view of reports of negative activation enthalpy for some nucleic acid reactions that would make the target binding even slower at increasing temperatures in a non-Arrhenius process. The target-binding rate constant determined is k = 3.99 × 10(3) M(-1) s(-1) at 37 °C with Ea = 28.7 ± 2.3 kcal/mol (120.2 ± 9.6 kJ/mol) for the temperature range of 23 to 55 °C. The positive high value of Ea is consistent with a kinetically controlled classical Arrhenius process. We hypothesize that the likely contribution to the activation energy barrier comes from the SurMB stem melting (tm = 53.7 ± 0.2 °C), which is a necessary step in the completion of target strand hybridization with the SurMB loop. A low limit of detection (LOD = 2 nM) for target tDNA has been achieved. Small effects of conformational polymorphs of SurMB have been observed on melting curves. Although these polymorphs could potentially cause a negative Ea, their effect on kinetic transients for target binding is negligible. No toehold preceding steps in the mechanism of target binding were identified.
Collapse
Affiliation(s)
- Magdalena Stobiecka
- Department of Biophysics, Warsaw University of Life Sciences (SGGW) , 02776 Warsaw, Poland
| | - Agata Chalupa
- Institute of Nanoparticle Nanocarriers , 11010 Barczewo, Poland
| |
Collapse
|
17
|
Ma G, Zhong B, Okamoto S, Jiang Y, Kawamura K, Liu H, Li Q, Shingyoji M, Sekine I, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. A combinatory use of adenoviruses expressing melanoma differentiation-associated gene-7 and replication-competent adenoviruses produces synergistic effects on pancreatic carcinoma cells. Tumour Biol 2015; 36:8137-45. [PMID: 25990458 DOI: 10.1007/s13277-015-3555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/11/2015] [Indexed: 11/30/2022] Open
Abstract
Type 5 adenoviruses expressing mda-7 gene (Ad-mda-7) induced cell death in various kinds of human tumors, but pancreatic carcinoma cells were relatively resistant to Ad-mda-7-mediated cytotoxicity. We then examined whether infection of Ad-mda-7 together with replication-competent Ad produced combinatory cytotoxic effects. We prepared replication-competent Ad, defective of the E1B55kDa gene or activated by a transcriptional regulatory region of the midkine or the survivin gene of which the expression was up-regulated in human tumors. Type 5 Ad bearing the exogenous regulatory region were further modified by replacing the fiber-knob region with that of type 35 Ad. Pancreatic carcinoma cells were infected with replication-incompetent Ad-mda-7 and the replication-competent Ad. Combinatory effects were examined with the CalcuSyn software and cell cycle analyses. Ad-mda-7 and the replication-competent Ad achieved cytotoxicity to pancreatic carcinoma. A combinatory use of Ad-mda-7 and either Ad defective of the E1B55kDa gene or Ad activated by the regulatory region produced synergistic cytotoxic effects. Cell cycle analyses demonstrated that the combination increased sub-G1 populations. These data collectively suggest that expression of MDA-7 augments cytotoxicity of replication-competent Ad and achieves adjuvant effects on Ad-mediated cell death.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Boya Zhong
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinya Okamoto
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuanyuan Jiang
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoko Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Hongdan Liu
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Quanhai Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Cell Therapy Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Masato Shingyoji
- Department of Thoracic Diseases, Chiba Cancer Center, Chiba, Japan
| | - Ikuo Sekine
- Department of Thoracic Diseases, Chiba Cancer Center, Chiba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
18
|
Combination of hepatocyte specific delivery and transformation dependent expression of shRNA inducing transcriptional gene silencing of c-Myc promoter in hepatocellular carcinoma cells. BMC Cancer 2014; 14:582. [PMID: 25108398 PMCID: PMC4153911 DOI: 10.1186/1471-2407-14-582] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022] Open
Abstract
Background A specific targeting modality for hepatocellular carcinoma (HCC) could ideally encompass a liver cell specific delivery system of a transcriptional unit that is active only in neoplastic cells. Sendai virosomes, derived from Sendai viral envelopes, home to hepatocytes based on the liver specific expression of asialoglycoprotein receptors (ASGPRs) which are recognized by the Sendai virosomal fusion (F) proteins. As reported earlier by us and other groups, transcriptional gene silencing (TGS) does not require continuous presence of the effector siRNA/shRNA molecule and is heritable, involving epigenetic modifications, leading to long term transcriptional repression. This could be advantageous over conventional gene therapy approaches, since continuous c-Myc inactivation is required to suppress hepatocarcinoma cells. Methods Exploiting such virosomal delivery, the alpha-fetoprotein (AFP) promoter, in combination with various tumour specific enhancers, was used to drive the expression of shRNA directed against ME1a1 binding site of the proto-oncogene c-Myc P2 promoter, in order to induce TGS in neoplastic liver cells. Results The dual specificity achieved by the Sendai virosomal delivery system and the promoter/enhancer guided expression ensured that the shRNA inducing TGS was active only in liver cells that had undergone malignant transformation. Our results indicate that such a bimodal therapeutic system induced specific activation of apoptosis in hepatocarcinoma cells due to heterochromatization and increased DNA methylation of the CpG islands around the target loci. Conclusions The Sendai virosomal delivery system, combined with AFP promoter/enhancer expression machinery, could serve as a generalized mechanism for the expression of genes deleterious to transformed hepatocarcinoma cells. In this system, the epigenetic suppression of c-Myc could have an added advantage for inducing cell death in the targeted cells. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-582) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Lu Q, Ye X, Liu F, Zhao Y, Qin J, Liang M, Fang C, Chen HZ. Homologous recombination-based adenovirus vector system for tumor cell-specific gene delivery. Cancer Biol Ther 2013; 14:728-35. [PMID: 23792576 DOI: 10.4161/cbt.25090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cancer gene therapy requires tumor-specific delivery and expression of a transgene to maximize antitumor efficacy and minimize side effects. In this study, we developed a new tumor-targeting, homologous recombination-based adenovirus vector system, HRAVS. HRAVS is composed of two adenovirus vectors, Ad.CMV.IR containing reverse sequence (IR) and a CMV promoter and Ad.IR.EGFP comprising the report gene EGFP and IR. For improved viral DNA replication and transgene expression, the E1a gene was added to HRAVS to generate the enhanced HRAVS, EHRAVS, which consists of Ad.CMV.IR and Ad.IR.EGFP/E1a. The optimal vector composition ratio of Ad.CMV.IR to Ad.IR.EGFP or Ad.IR.EGFP/E1a was identified as 30:70 based on EGFP expression efficiency in tumor cells. The transgene expression of HRAVS and EHRAVS was efficiently and specifically activated in tumor cells only and not in normal cells. Moreover, compared with HRAVS, EHRAVS infection led to higher virus yields and transgene expression and higher toxicity to tumor cells, and these results could be related to the involvement of E1a genes. The results in present study suggest the need for in vivo antitumor study using these new dual-Ad vector systems based on the homologous recombination.
Collapse
Affiliation(s)
- Qin Lu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Huang X, Jia Z. Construction of HCC-targeting artificial miRNAs using natural miRNA precursors. Exp Ther Med 2013; 6:209-215. [PMID: 23935748 PMCID: PMC3735510 DOI: 10.3892/etm.2013.1111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/16/2013] [Indexed: 12/31/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, particularly in developing countries. Despite the achievements in clinical therapeutics, the HCC mortality rate remains high. A number of artificial microRNA (amiRNA)-based HCC gene therapy studies have demonstrated significant inhibition of invasion and induction of apoptosis of HCC cancer cells, indicating that this type of therapy may be a promising alternative to current therapeutics. Since the structure of the amiRNA precursor in the specific intracellular environment is critical for the processing to mature amiRNA, a precursor structure that may be efficiently processed is desired. In this study, we constructed amiRNAs targeting firefly luciferase with the precursor structures of six HCC-abundant microRNAs: miR-18a, miR-21, miR-192, miR-221, miR-222 and miR-224, and evaluated the processing efficiency of these amiRNAs in the HCC cell lines Hep3B and HepG2 using a luciferase reporter system. The results demonstrated that these amiRNA precursors are capable of being expressed in HCC cells, with the miR-221 precursor-based amiRNA exhibiting the most efficient inhibition on firefly luciferase at the levels of mRNA and protein activity. This finding provides a basis for constructing HCC-targeting amiRNAs with potent processing efficiency using the precursor structure of miR-221.
Collapse
Affiliation(s)
- Xiaoming Huang
- Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | | |
Collapse
|
21
|
Krelle AC, Okoli AS, Mendz GL. Huh-7 Human Liver Cancer Cells: A Model System to Understand Hepatocellular Carcinoma and Therapy. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.42078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|