1
|
Zhou X, Zhang P, Yang Y, Shi W, Liu L, Lai Z, Zhang X, Pan P, Li L, Du J, Qian H, Cui S. Highly Potent and Intestine Specific P-Glycoprotein Inhibitor to Enable Oral Delivery of Taxol. Angew Chem Int Ed Engl 2024; 63:e202412649. [PMID: 39137118 DOI: 10.1002/anie.202412649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Taxol is widely used in cancer chemotherapy; however, the oral absorption of Taxol remains a formidable challenge. Since the intestinal p-glycoprotein (P-gp) mediated drug efflux is one of the primary causes, the development of P-gp inhibitor is emerging as a promising strategy to realize Taxol's oral delivery. Because P-gp exists in many tissues, the non-selective P-gp inhibitors would lead to toxicity. Correspondingly, a potent and intestine specific P-gp inhibitor would be an ideal solution to boost the oral absorption of Taxol and avoid exogenous toxicity. Herein, we would like to report a highly potent and intestine specific P-gp inhibitor to enable oral delivery of Taxol in high efficiency. Through a multicomponent reaction and post-modification, various benzofuran-fused-piperidine derivatives were achieved and the biological evaluation identified 16 c with potent P-gp inhibitory activity. Notably, 16 c was intestine specific and showed almost none absorption (F=0.82 %), but possessing higher efficacy than Encequidar to improve the oral absorption of Taxol. In MDA-MB-231 xenograft model, the oral administration of Taxol and 16 c showed high therapeutic efficiency and low toxicity, thus providing a valuable chemotherapy strategy.
Collapse
MESH Headings
- Paclitaxel/administration & dosage
- Paclitaxel/chemistry
- Paclitaxel/pharmacology
- Paclitaxel/pharmacokinetics
- Humans
- Administration, Oral
- Animals
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Mice
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacokinetics
- Cell Line, Tumor
- Molecular Structure
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Xianjing Zhou
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ping Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Yuyan Yang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Lei Liu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhencheng Lai
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xing Zhang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Peichen Pan
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Lan Li
- Department of Gastroenterology, T, he First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Juan Du
- Department of Gastroenterology, T, he First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Sunliang Cui
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
2
|
Tong L, Zhou Z, Wang G, Wu C. A self-microemulsion enhances oral absorption of docetaxel by inhibiting P-glycoprotein and CYP metabolism. Drug Deliv Transl Res 2023; 13:983-993. [PMID: 36515864 DOI: 10.1007/s13346-022-01255-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2022] [Indexed: 12/15/2022]
Abstract
Oral absorption of docetaxel was limited by drug efflux pump p-glycoprotein (P-gp) and cytochrome P450 enzyme (CYP 450). Therefore, co-loading agent that inhibits P-gp and CYP450 in self-nanoemulsifying drug delivery systems (SMEs) is considered a promising strategy for oral delivery of docetaxel. In this study, curcumin was selected as an inhibitor of P-gp and CYP450, and it was co-encapsuled in SMEs to improve the oral bioavailability of docetaxel. SMEs quickly dispersed in water within 20 s, and the droplet size was 32.23 ± 2.21 nm. The release rate of curcumin from DC-SMEs was higher than that of docetaxel in vitro. Compared with free docetaxel, SMEs significantly increased the permeability of docetaxel by 4.6 times. And competitive experiments showed that the increased permeability was the result of inhibition of p-gp. The half-life and oral bioavailabilty of DC-SMEs increased about 1.7 times and 1.6 times than docetaxel SMEs, which indicated that its good pharmacokinetic behavior was related to the restriction of hepatic first-pass metabolism. In conclusion, DC-SME was an ideal platform to facilitate oral delivery of docetaxel through inhibited P-gp and CYP 450.
Collapse
Affiliation(s)
- Le Tong
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Wuhe Road, Nanning, 530200, China
| | - ZeYang Zhou
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Wuhe Road, Nanning, 530200, China
| | - Gang Wang
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Wuhe Road, Nanning, 530200, China.
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
3
|
Zhang M, Guo C, Miao Y, He Z, Tian C, Sun J. Incorporating a Lipophilic Disulfide-Bridged Linoleic Prodrug into a Self-Microemulsifying Drug Delivery System to Facilitate Oral Absorption of Paclitaxel. Mol Pharm 2023; 20:461-472. [PMID: 36525349 DOI: 10.1021/acs.molpharmaceut.2c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The oral absorption of paclitaxel (PTX) is restricted by poor solubility in the gastrointestinal tract (GIT), low permeability, and high first-pass metabolism. Lipid carriers, such as a self-microemulsifying drug delivery system (SMEDDS), have been deemed as promising vehicles for promoting oral delivery of PTX. Herein, a lipophilic disulfide-bridged linoleic prodrug (PTX-S-S-LA) was synthesized and efficiently incorporated into SMEDDS to facilitate the oral absorption of PTX. This study mainly aims to evaluate the usefulness of the disulfide-bridged linoleic prodrug incorporated with SMEDDS and provides a new strategy for efficient oral delivery of PTX. The prodrug SMEDDS showed a markedly higher drug loading efficiency (3-fold) compared to that of parent PTX. PTX-S-S-LA SMEDDS significantly increased the drug partition (about 1.9-fold) in the intestinal micellar aqueous phase compared to PTX in the in vitro lipolysis study. Additionally, the gastrointestinal (GI) biodistribution study demonstrated that SMEDDS could enhance the GI biological adhesion and go through the lymphatic system to transport. Moreover, it was found that the reduction-sensitive prodrug (PTX-S-S-LA) has good stability in the GIT, leading to an improved antitumor efficiency without significant GI toxicity. Overall, the PTX-linoleic prodrug (PTX-S-S-LA) in combination with SMEDDS provides a promising way to enable effective oral delivery of PTX.
Collapse
Affiliation(s)
- Mingyang Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning110016, PR China
| | - Chunlin Guo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning110016, PR China
| | - Yifan Miao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning110016, PR China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning110016, PR China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning110016, PR China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning110016, PR China
| |
Collapse
|
4
|
Soulele K, Karampelas T, Tamvakopoulos C, Macheras P. Enhancement of Docetaxel Absorption Using Ritonavir in an Oral Milk-Based Formulation. Pharm Res 2021; 38:1419-1428. [PMID: 34382143 DOI: 10.1007/s11095-021-03085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The current study aimed to develop a novel milk-based formulation of docetaxel, a sparingly soluble antineoplastic agent, administered so far exclusively by the intravenous route and evaluate its oral bioavailability. METHODS Pre-formulation studies included the determination of docetaxel solubility in water-alcohol mixtures as well as short-term content uniformity experiments of the final formulation. The pharmacokinetic (PK) performance of the developed milk-based formulations was further evaluated in vivo in mice using ritonavir, a potent P-glycoprotein inhibitor, as an absorption enhancer of docetaxel and the marketed intravenous docetaxel formulation, Taxotere®, as a control. RESULTS In vivo PK results in mice showed that all the administered oral docetaxel formulations had limited absorption in the absence of ritonavir. On the contrary, ritonavir co-administration given as pre-treatment significantly enhanced oral bioavailability of both the marketed and milk-based docetaxel formulations; an even more marked increase in drug exposure was observed when ritonavir was incorporated within the docetaxel milk-based formulation. The fixed-dose combination also showed a more prolonged absorption of the drug compared to separate administrations. CONCLUSIONS The current study provides insights for the discovery of a novel milk-based formulation that could potentially serve as an alternative, non-toxic and patient-friendly carrier for an acceptable docetaxel oral chemotherapy.
Collapse
Affiliation(s)
- K Soulele
- Laboratory of Biopharmaceutics - Pharmacokinetics, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - T Karampelas
- Division of Pharmacology-Pharmacotechnology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - C Tamvakopoulos
- Division of Pharmacology-Pharmacotechnology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - P Macheras
- Laboratory of Biopharmaceutics - Pharmacokinetics, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece. .,PharmaInformatics Unit, ATHENA Research Center, Artemidos 6 & Epidavrou , 15125, Marousi, Athens, Greece.
| |
Collapse
|
5
|
Smolinski MP, Urgaonkar S, Pitzonka L, Cutler M, Lee G, Suh KH, Lau JYN. Discovery of Encequidar, First-in-Class Intestine Specific P-glycoprotein Inhibitor. J Med Chem 2021; 64:3677-3693. [PMID: 33729781 DOI: 10.1021/acs.jmedchem.0c01826] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Many chemotherapeutics, such as paclitaxel, are administered intravenously as they suffer from poor oral bioavailability, partly because of efflux mechanism of P-glycoprotein in the intestinal epithelium. To date, no drug has been approved by the U.S. Food and Drug Administration (FDA) that selectively blocks this efflux pump. We sought to identify a compound that selectively inhibits P-glycoprotein in the gastrointestinal mucosa with poor oral bioavailability, thus eliminating the issues such as bone marrow toxicity associated with systemic inhibition of P-glycoprotein. Here, we describe the discovery of highly potent, selective, and poorly orally bioavailable P-glycoprotein inhibitor 14 (encequidar). Clinically, encequidar was found to be well tolerated and minimally absorbed; and importantly, it enabled the oral delivery of paclitaxel.
Collapse
Affiliation(s)
- Michael P Smolinski
- Athenex Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| | - Sameer Urgaonkar
- Athenex Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| | - Laura Pitzonka
- Athenex Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| | - Murray Cutler
- Athenex Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| | - GwanSun Lee
- Hanmi Pharmaceutical Co. Ltd., 14, Wiryeseong-daero, Songpa-gu, Seoul, 05545, Korea
| | - Kwee Hyun Suh
- Hanmi Pharmaceutical Co. Ltd., 14, Wiryeseong-daero, Songpa-gu, Seoul, 05545, Korea
| | - Johnson Y N Lau
- Athenex Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| |
Collapse
|
6
|
A. Razak SA, Mohd Gazzali A, Fisol FA, M. Abdulbaqi I, Parumasivam T, Mohtar N, A. Wahab H. Advances in Nanocarriers for Effective Delivery of Docetaxel in the Treatment of Lung Cancer: An Overview. Cancers (Basel) 2021; 13:400. [PMID: 33499040 PMCID: PMC7865793 DOI: 10.3390/cancers13030400] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Docetaxel (DCX) is a highly effective chemotherapeutic drug used in the treatment of different types of cancer, including non-small cell lung cancer (NSCLC). The drug is known to have low oral bioavailability due to its low aqueous solubility, poor membrane permeability and susceptibility to hepatic first-pass metabolism. To mitigate these problems, DCX is administered via the intravenous route. Currently, DCX is commercially available as a single vial that contains polysorbate 80 and ethanol to solubilize the poorly soluble drug. However, this formulation causes short- and long-term side effects, including hypersensitivity, febrile neutropenia, fatigue, fluid retention, and peripheral neuropathy. DCX is also a substrate to the drug efflux pump P-glycoprotein (P-gp) that would reduce its concentration within the vicinity of the cells and lead to the development of drug resistance. Hence, the incorporation of DCX into various nanocarrier systems has garnered a significant amount of attention in recent years to overcome these drawbacks. The surfaces of these drug-delivery systems indeed can be functionalized by modification with different ligands for smart targeting towards cancerous cells. This article provides an overview of the latest nanotechnological approaches and the delivery systems that were developed for passive and active delivery of DCX via different routes of administration for the treatment of lung cancer.
Collapse
Affiliation(s)
- S. Aishah A. Razak
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Faisalina Ahmad Fisol
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), National Institute of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation (MOSTI), Gelugor, Penang 11700, Malaysia
| | - Ibrahim M. Abdulbaqi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| |
Collapse
|
7
|
Docetaxel: An update on its molecular mechanisms, therapeutic trajectory and nanotechnology in the treatment of breast, lung and prostate cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
van Eerden RAG, Mathijssen RHJ, Koolen SLW. Recent Clinical Developments of Nanomediated Drug Delivery Systems of Taxanes for the Treatment of Cancer. Int J Nanomedicine 2020; 15:8151-8166. [PMID: 33132699 PMCID: PMC7592152 DOI: 10.2147/ijn.s272529] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
Conventional taxanes are used as cornerstone of the chemotherapeutical treatment for a variety of malignancies. Nevertheless, a large proportion of patients do not benefit from their treatment while they do suffer from severe adverse events related to the solvent or to the active compound. Cremophor EL and polysorbate 80 free formulations, conjugates, oral formulations and different types of drug delivery systems are some examples of the several attempts to improve the treatment with taxanes. In this review article, we discuss recent clinical developments of nanomediated drug delivery systems of taxanes for the treatment of cancer. Targeting mechanisms of drug delivery systems and characteristics of the most commonly used taxane-containing drug delivery systems in the clinical setting will be discussed in this review.
Collapse
Affiliation(s)
- Ruben A G van Eerden
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.,Department of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Hendrikx JJMA, Stuurman FE, Song J, de Weger VA, Lagas JS, Rosing H, Beijnen JH, Schinkel AH, Schellens JHM, Marchetti S. No relation between docetaxel administration route and high-grade diarrhea incidence. Pharmacol Res Perspect 2020; 8:e00633. [PMID: 32725720 PMCID: PMC7387127 DOI: 10.1002/prp2.633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 01/12/2023] Open
Abstract
Oral administration of docetaxel in combination with the CYP3A4 inhibitor ritonavir is used in clinical trials to improve oral bioavailability of docetaxel. Diarrhea was the most commonly observed and dose-limiting toxicity. This study combined preclinical and clinical data and investigated incidence, severity and cause of oral docetaxel-induced diarrhea. In this study, incidence and severity of diarrhea in patients were compared to exposure to orally administered docetaxel. Intestinal toxicity after oral or intraperitoneal administration of docetaxel was further explored in mice lacking Cyp3a and mice lacking both Cyp3a and P-glycoprotein. In patients, severity of diarrhea increased significantly with an increase in AUC and Cmax (P = .035 and P = .025, respectively), but not with an increase in the orally administered dose (P = .11). Furthermore, incidence of grade 3/4 diarrhea after oral docetaxel administration was similar as reported after intravenous docetaxel administration. Intestinal toxicity in mice was only observed at high systemic exposure to docetaxel and was similar after oral and intraperitoneal administration of docetaxel. In conclusion, our data show that the onset of severe diarrhea after oral administration of docetaxel in humans is similar after oral and intravenous administration of docetaxel and is caused by the concentration of docetaxel in the systemic blood circulation. Mouse experiments confirmed that intestinal toxicity is caused by a high systemic exposure and not by local intestinal exposure. Severe diarrhea in patients after oral docetaxel is reversible and is not related to the route of administration of docetaxel.
Collapse
Affiliation(s)
- Jeroen J. M. A. Hendrikx
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Nuclear MedicineThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Frederik E. Stuurman
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Clinical PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Ji‐Ying Song
- Department of Experimental Animal PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Vincent A. de Weger
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Clinical PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jurjen S. Lagas
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- DiakonessenhuisUtrechtThe Netherlands
| | - Hilde Rosing
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Modra Pharmaceuticals BVAmsterdamThe Netherlands
| | - Alfred H. Schinkel
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jan H. M. Schellens
- Department of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Modra Pharmaceuticals BVAmsterdamThe Netherlands
| | - Serena Marchetti
- Department of Clinical PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
10
|
Yu H, Janssen JM, de Weger VA, Nuijen B, Stuurman RE, Marchetti S, Schellens JHM, Beijnen JH, Dorlo TPC, Huitema ADR. Quantification of the pharmacokinetic-toxicodynamic relationship of oral docetaxel co-administered with ritonavir. Invest New Drugs 2020; 38:1526-1532. [PMID: 32306204 DOI: 10.1007/s10637-020-00935-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/07/2020] [Indexed: 11/25/2022]
Abstract
Introduction Oral formulations of docetaxel have successfully been developed as an alternative for intravenous administration. Co-administration with the enzyme inhibitor ritonavir boosts the docetaxel plasma exposure. In dose-escalation trials, the maximum tolerated doses for two different dosing regimens were established and dose-limiting toxicities (DLTs) were recorded. The aim of current analysis was to develop a pharmacokinetic (PK)-toxicodynamic (TOX) model to quantify the relationship between docetaxel plasma exposure and DLTs. Methods A total of 85 patients was included in the current analysis, 18 patients showed a DLT in the four-week observation period. A PK-TOX model was developed and simulations based on the PK-TOX model were performed. Results The final PK-TOX model was characterized by an effect compartment representing the toxic effect of docetaxel, which was linked to the probability of developing a DLT. Simulations of once-weekly, once-daily 60 mg and once-weekly, twice-daily 30 mg followed by 20 mg of oral docetaxel suggested that 14% and 34% of patients, respectively, would have a probability >25% to develop a DLT in a four-week period. Conclusions A PK-TOX model was successfully developed. This model can be used to evaluate the probability of developing a DLT following treatment with oral docetaxel and ritonavir in different dosing regimens.
Collapse
Affiliation(s)
- Huixin Yu
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Julie M Janssen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.
| | - Vincent A de Weger
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Rik E Stuurman
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
- Centre for Human Drug Research, Leiden, The Netherlands
| | - Serena Marchetti
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Thomas P C Dorlo
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Yu H, Janssen JM, Sawicki E, van Hasselt JGC, de Weger VA, Nuijen B, Schellens JHM, Beijnen JH, Huitema ADR. A Population Pharmacokinetic Model of Oral Docetaxel Coadministered With Ritonavir to Support Early Clinical Development. J Clin Pharmacol 2019; 60:340-350. [PMID: 31595980 DOI: 10.1002/jcph.1532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/20/2019] [Indexed: 11/08/2022]
Abstract
Oral administration of docetaxel is an attractive alternative for conventional intravenous (IV) administration. The low bioavailability of docetaxel, however, hinders the application of oral docetaxel in the clinic. The aim of the current study was to develop a population pharmacokinetic (PK) model for docetaxel and ritonavir based on the phase 1 studies and to support drug development of this combination treatment. PK data were collected from 191 patients who received IV docetaxel and different oral docetaxel formulations (drinking solution, ModraDoc001 capsule, and ModraDoc006 tablet) coadministered with ritonavir. A PK model was first developed for ritonavir. Subsequently, a semiphysiological PK model was developed for docetaxel, which incorporated the inhibition of docetaxel metabolism by ritonavir. The uninhibited intrinsic clearance of docetaxel was estimated based on data on IV docetaxel as 1980 L/h (relative standard error, 11%). Ritonavir coadministration extensively inhibited the hepatic metabolism of docetaxel to 9.3%, which resulted in up to 12-fold higher docetaxel plasma concentrations compared to oral docetaxel coadministered without ritonavir. In conclusion, a semiphysiological PK model for docetaxel and ritonavir was successfully developed. Coadministration of ritonavir resulted in increased plasma concentrations of docetaxel after administration of the oral formulations of ModraDoc. Furthermore, the oral ModraDoc formulations showed lower variability in plasma concentrations between and within patients compared to the drinking solution. Comparable exposure could be reached with the oral ModraDoc formulations compared to IV administration.
Collapse
Affiliation(s)
- Huixin Yu
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Julie M Janssen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Emilia Sawicki
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - J G Coen van Hasselt
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Vincent A de Weger
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Jan H M Schellens
- Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands.,Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Cui W, Zhang S, Zhao H, Luo C, Sun B, Li Z, Sun M, Ye Q, Sun J, He Z. Formulating a single thioether-bridged oleate prodrug into a self-nanoemulsifying drug delivery system to facilitate oral absorption of docetaxel. Biomater Sci 2019; 7:1117-1131. [PMID: 30638237 DOI: 10.1039/c8bm00947c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oral chemotherapy of docetaxel (DTX) is restricted by active P-glycoprotein (P-gp) efflux, hepatic first-pass metabolism and then poor oral absorption. Herein, a lipophilic thioether-bridged oleate prodrug (DTX-S-OA) and an ester-bond linked oleate prodrug of docetaxel (DTX-OA) were synthesized and efficiently incorporated into a self-nanoemulsifying drug delivery system (SNEDDS) using core-matching technology with a high drug-loading rate. DTX-S-OA SNEDDS produced a uniform droplet size of about 30 nm and a significantly high drug loading capability (60 mg mL-1), compared with DTX SNEDDS (20 mg mL-1). Additionally, DTX-S-OA SNEDDS exhibited a markedly slower drug release property and higher (>2-fold) drug solubilization in the aqueous phase after 60 min lipolysis compared with DTX SNEDDS. In situ single-pass intestinal perfusion and intestinal biodistribution studies demonstrated that the membrane permeability and intestinal bioadhesion of SNEDDS were significantly increased. Moreover, DTX-S-OA showed a comparable ability with verapamil in inhibiting P-gp efflux. Lymphatic transport studies confirmed that DTX-S-OA SNEDDS could significantly enhance intestinal lymphatic transport. Notably, the bioavailability of DTX-S-OA SNEDDS was 6.2-fold and 2.0-fold higher than that of the DTX solution and DTX SNEDDS, respectively. Furthermore, DTX-S-OA achieved a more rapid release of free DTX from the prodrug in systemic circulation than DTX-OA. Therefore, such a unique combination strategy of the single thioether-bridged DTX-oleate prodrug and SNEDDS is a promising platform to enable effective oral delivery of DTX.
Collapse
Affiliation(s)
- Weiping Cui
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Network Pharmacology-Based identification of pharmacological mechanism of SQFZ injection in combination with Docetaxel on lung cancer. Sci Rep 2019; 9:4533. [PMID: 30872765 PMCID: PMC6418214 DOI: 10.1038/s41598-019-40954-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 02/25/2019] [Indexed: 12/29/2022] Open
Abstract
Docetaxel is the widely-used first-line therapy to treat lung cancer around the world. However, tumor progression and severe side effect occurred in some patients with docetaxel treatment. Most of the side effects were caused by immunocompromise, which limits the long-term use of docetaxel. Shenqi Fuzheng (SQFZ) injection has been used as adjuvant therapy to treat lung cancer which may enhance immunity as well. Owing to the complexity of drug combination, the mechanism of SQFZ injection in combination with docetaxel on lung cancer remains unclear. Therefore, a network pharmacology-based strategy was proposed in this study to help solve this problem. Network pharmacology approach comprising multiple components, candidate targets of component and therapeutic targets, has been used in this study. Also, in vivo and in vitro experiment was applied to verify the predicted targets from network pharmacology We established mouse lung cancer model and inject with docetaxel and SQFZ injection. Tumour weight, spleen index, thymus index, immunohistochemical staining and ELISA were conducted to evaluate the effect and underlying mechanisms of docetaxel and SQFZ injection. Besides A549 cells were also administrated by docetaxel and SQFZ.The indexes BCL2, CASP3 and CASP9 were determined after administration. The results indicated that combination of SQFZ and docetaxel could reduce tumour weight, enhance the spleen index, thymus index. Meanwhile, it could improve the activity of caspase-3 and IL-2 in mice and caspase-3, caspase-9 in A549 cell and inhibit the activity of BCL-2 in A549 cell, which verified the potential protective targets predicted by network pharmacology. In conclusion, combination of SQFZ and docetaxel could increase the curative effect by inducing tumour to apoptosis and play a key role on immunoprotection to reduce side effects.
Collapse
|
14
|
Ren T, Gou J, Sun W, Tao X, Tan X, Wang P, Zhang Y, He H, Yin T, Tang X. Entrapping of Nanoparticles in Yeast Cell Wall Microparticles for Macrophage-Targeted Oral Delivery of Cabazitaxel. Mol Pharm 2018; 15:2870-2882. [PMID: 29863879 DOI: 10.1021/acs.molpharmaceut.8b00357] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, a nano-in-micro carrier was constructed by loading polymer-lipid hybrid nanoparticles (NPs) into porous and hollow yeast cell wall microparticles (YPs) for macrophage-targeted oral delivery of cabazitaxel (CTX). The YPs, primarily composed of natural β-1,3-d-glucan, can be recognized by the apical membrane receptor, dectin-1, which has a high expression on macrophages and intestinal M cells. By combining electrostatic force-driven self-deposition with solvent hydration/lyophilization methods, the positively charged NPs loaded with CTX or fluorescence probes were efficiently packaged into YPs, as verified by scanning electron microscope (SEM), atomic force mircoscope (AFM), and confocal laser scanning microscopy (CLSM) images. NP-loaded YPs (NYPs) showed a slower in vitro drug release and higher drug stability compared with NPs in a simulated gastrointestinal environment. Biodistribution experiments confirmed a widespread distribution and extended retention time of NYPs in the intestinal tract after oral administration. Importantly, a large amount of NYPs were primarily accumulated and transported in the intestinal Peyer's patches as visualized in distribution and absorption site studies, implying that NYPs were mainly absorbed through the lymphatic pathway. In vitro cell evaluation further demonstrated that NYPs were rapidly and efficiently taken up by macrophages via receptor dectin-1-mediated endocytosis using a mouse macrophage RAW 264.7 cell line. As expected, in the study of in vivo pharmacokinetics, the oral bioavailability of CTX was improved to 32.1% when loaded in NYPs, which is approximately 5.7 times higher than that of the CTX solution, indicating the NYPs are efficient for oral targeted delivery. Hence, this nano-in-micro carrier is believed to become a hopeful alternative strategy for increasing the oral absorption of small molecule drugs.
Collapse
Affiliation(s)
- Tianyang Ren
- Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , 110016 Liaoning , PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , 110016 Liaoning , PR China
| | - Wanxiao Sun
- Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , 110016 Liaoning , PR China
| | - Xiaoguang Tao
- Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , 110016 Liaoning , PR China
| | - Xinyi Tan
- Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , 110016 Liaoning , PR China
| | - Puxiu Wang
- Department of Pharmacy , The First Affiliated Hospital of China Medical University , Shenyang , 110016 Liaoning , PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , 110016 Liaoning , PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , 110016 Liaoning , PR China
| | - Tian Yin
- School of Functional Food and Wine , Shenyang Pharmaceutical University , Shenyang , 110016 Liaoning , PR China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , 110016 Liaoning , PR China
| |
Collapse
|
15
|
Ren T, Wang Q, Xu Y, Cong L, Gou J, Tao X, Zhang Y, He H, Yin T, Zhang H, Zhang Y, Tang X. Enhanced oral absorption and anticancer efficacy of cabazitaxel by overcoming intestinal mucus and epithelium barriers using surface polyethylene oxide (PEO) decorated positively charged polymer-lipid hybrid nanoparticles. J Control Release 2018; 269:423-438. [DOI: 10.1016/j.jconrel.2017.11.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/21/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022]
|
16
|
Shen Y, Hu M, Qiu L. Sequentially dual-targeting vector with nano-in-micro structure for improved docetaxel oral delivery in vivo. Nanomedicine (Lond) 2016; 11:3071-3086. [PMID: 27728994 DOI: 10.2217/nnm-2016-0259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM In this study, we constructed a novel vector (BioPf-M-loaded Alg-microparticles [Alg-BioPf-M]) with nano-in-micro structure to improve the oral absorption of docetaxel (DTX) by sequentially dual-targeting functions toward intestine and sodium-dependent multivitamin transporter based on entrapping biotin-modified micelles into alginate microparticles. METHODS A series of characteristics of this system was investigated, such as drug release, cellular uptake, transport pathway and the comprehensive in vivo studies including pharmacokinetic studies, anti-tumor activity and toxicity study. RESULTS The bioavailability of DTX-loaded Alg-BioPf-M was 27.4-fold higher than that of free DTX after oral administration and achieved superior tumor inhibition of 84.6% against sarcoma 180 tumors. CONCLUSION These results demonstrated that the Alg-BioPf-M was a promising vector for oral delivery of DTX.
Collapse
Affiliation(s)
- Yurun Shen
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis & Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengying Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liyan Qiu
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis & Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Durmus S, van Hoppe S, Schinkel AH. The impact of Organic Anion-Transporting Polypeptides (OATPs) on disposition and toxicity of antitumor drugs: Insights from knockout and humanized mice. Drug Resist Updat 2016; 27:72-88. [PMID: 27449599 DOI: 10.1016/j.drup.2016.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/07/2016] [Accepted: 06/17/2016] [Indexed: 12/12/2022]
Abstract
It is now widely accepted that organic anion-transporting polypeptides (OATPs), especially members of the OATP1A/1B family, can have a major impact on the disposition and elimination of a variety of endogenous molecules and drugs. Owing to their prominent expression in the sinusoidal plasma membrane of hepatocytes, OATP1B1 and OATP1B3 play key roles in the hepatic uptake and plasma clearance of a multitude of structurally diverse anti-cancer and other drugs. Here, we present a thorough assessment of the currently available OATP1A and OATP1B knockout and transgenic mouse models as key tools to study OATP functions in vivo. We discuss recent studies using these models demonstrating the importance of OATPs, primarily in the plasma and hepatic clearance of anticancer drugs such as taxanes, irinotecan/SN-38, methotrexate, doxorubicin, and platinum compounds. We further discuss recent work on OATP-mediated drug-drug interactions in these mouse models, as well as on the role of OATP1A/1B proteins in the phenomenon of hepatocyte hopping, an efficient and flexible way of liver detoxification for both endogenous and exogenous substrates. Interestingly, glucuronide conjugates of both the heme breakdown product bilirubin and the protein tyrosine kinase-targeted anticancer drug sorafenib are strongly affected by this process. The clinical relevance of variation in OATP1A/1B activity in patients has been previously revealed by the effects of polymorphic variants and drug-drug interactions on drug toxicity. The development of in vivo tools to study OATP1A/1B functions has greatly advanced our mechanistic understanding of their functional role in drug pharmacokinetics, and their implications for therapeutic efficacy and toxic side effects of anticancer and other drug treatments.
Collapse
Affiliation(s)
- Selvi Durmus
- Bilkent University, Department of Molecular Biology and Genetics, 06800 Bilkent, Ankara, Turkey
| | - Stéphanie van Hoppe
- The Netherlands Cancer Institute, Division of Molecular Oncology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Alfred H Schinkel
- The Netherlands Cancer Institute, Division of Molecular Oncology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Yu H, Hendrikx JJMA, Rottenberg S, Schellens JHM, Beijnen JH, Huitema ADR. Development of a Tumour Growth Inhibition Model to Elucidate the Effects of Ritonavir on Intratumoural Metabolism and Anti-tumour Effect of Docetaxel in a Mouse Model for Hereditary Breast Cancer. AAPS JOURNAL 2015; 18:362-71. [PMID: 26603889 DOI: 10.1208/s12248-015-9838-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/17/2015] [Indexed: 12/31/2022]
Abstract
In a mouse tumour model for hereditary breast cancer, we previously explored the anti-cancer effects of docetaxel, ritonavir and the combination of both and studied the effect of ritonavir on the intratumoural concentration of docetaxel. The objective of the current study was to apply pharmacokinetic (PK)-pharmacodynamic (PD) modelling on this previous study to further elucidate and quantify the effects of docetaxel when co-administered with ritonavir. PK models of docetaxel and ritonavir in plasma and in tumour were developed. The effect of ritonavir on docetaxel concentration in the systemic circulation of Cyp3a knock-out mice and in the implanted tumour (with inherent Cyp3a expression) was studied, respectively. Subsequently, we designed a tumour growth inhibition model that included the inhibitory effects of both docetaxel and ritonavir. Ritonavir decreased docetaxel systemic clearance with 8% (relative standard error 0.4%) in the co-treated group compared to that in the docetaxel only-treated group. The docetaxel concentration in tumour tissues was significantly increased by ritonavir with mean area under the concentration-time curve 2.5-fold higher when combined with ritonavir. Observed tumour volume profiles in mice could be properly described by the PK/PD model. In the co-treated group, the enhanced anti-tumour effect was mainly due to increased docetaxel tumour concentration; however, we demonstrated a small but significant anti-tumour effect of ritonavir addition (p value <0.001). In conclusion, we showed that the increased anti-tumour effect observed when docetaxel is combined with ritonavir is mainly caused by enhanced docetaxel tumour concentration and to a minor extent by a direct anti-tumour effect of ritonavir.
Collapse
Affiliation(s)
- Huixin Yu
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek/Slotervaart Hospital, Louwesweg 6, PO Box 90440, 1006 BK, Amsterdam, The Netherlands.
| | - Jeroen J M A Hendrikx
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek/Slotervaart Hospital, Louwesweg 6, PO Box 90440, 1006 BK, Amsterdam, The Netherlands.,Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jan H M Schellens
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek/Slotervaart Hospital, Louwesweg 6, PO Box 90440, 1006 BK, Amsterdam, The Netherlands.,Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek/Slotervaart Hospital, Louwesweg 6, PO Box 90440, 1006 BK, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Hendrikx JJMA, Lagas JS, Song JY, Rosing H, Schellens JHM, Beijnen JH, Rottenberg S, Schinkel AH. Ritonavir inhibits intratumoral docetaxel metabolism and enhances docetaxel antitumor activity in an immunocompetent mouse breast cancer model. Int J Cancer 2015; 138:758-69. [PMID: 26297509 DOI: 10.1002/ijc.29812] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022]
Abstract
Docetaxel (Taxotere(®)) is currently used intravenously as an anticancer agent and is primarily metabolized by Cytochrome P450 3A (CYP3A). The HIV protease inhibitor ritonavir, a strong CYP3A4 inhibitor, decreased first-pass metabolism of orally administered docetaxel. Anticancer effects of ritonavir itself have also been described. We here aimed to test whether ritonavir co-administration could decrease intratumoral metabolism of intravenously administered docetaxel and thus increase the antitumor activity of docetaxel in an orthotopic, immunocompetent mouse model for breast cancer. Spontaneously arising K14cre;Brca1(F/F) ;p53(F/F) mouse mammary tumors were orthotopically implanted in syngeneic mice lacking Cyp3a (Cyp3a(-/-)) to limit ritonavir effects on systemic docetaxel clearance. Over 3 weeks, docetaxel (20 mg/kg) was administered intravenously once weekly, with or without ritonavir (12.5 mg/kg) administered orally for 5 days per week. Untreated mice were used as control for tumor growth. Ritonavir treatment alone did not significantly affect the median time of survival (14 vs. 10 days). Median time of survival in docetaxel-treated mice was 54 days. Ritonavir co-treatment significantly increased this to 66 days, and substantially reduced relative average tumor size, without altering tumor histology. Concentrations of the major docetaxel metabolite M2 in tumor tissue were reduced by ritonavir co-administration, whereas tumor RNA expression of Cyp3a was unaltered. In this breast cancer model, we observed no direct antitumor effect of ritonavir alone, but we found enhanced efficacy of docetaxel treatment when combined with ritonavir. Our data, therefore, suggest that decreased docetaxel metabolism inside the tumor as a result of Cyp3a inhibition contributes to increased antitumor activity.
Collapse
Affiliation(s)
- Jeroen J M A Hendrikx
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jurjen S Lagas
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Department of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alfred H Schinkel
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Tang SC, Kort A, Cheung KL, Rosing H, Fukami T, Durmus S, Wagenaar E, Hendrikx JJMA, Nakajima M, van Vlijmen BJM, Beijnen JH, Schinkel AH. P-glycoprotein, CYP3A, and Plasma Carboxylesterase Determine Brain Disposition and Oral Availability of the Novel Taxane Cabazitaxel (Jevtana) in Mice. Mol Pharm 2015; 12:3714-23. [PMID: 26317243 DOI: 10.1021/acs.molpharmaceut.5b00470] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We aimed to clarify the roles of the multidrug-detoxifying proteins ABCB1, ABCG2, ABCC2, and CYP3A in oral availability and brain accumulation of cabazitaxel, a taxane developed for improved therapy of docetaxel-resistant prostate cancer. Cabazitaxel pharmacokinetics were studied in Abcb1a/1b, Abcg2, Abcc2, Cyp3a, and combination knockout mice. We found that human ABCB1, but not ABCG2, transported cabazitaxel in vitro. Upon oral cabazitaxel administration, total plasma levels were greatly increased due to binding to plasma carboxylesterase Ces1c, which is highly upregulated in several knockout strains. Ces1c inhibition and in vivo hepatic Ces1c knockdown reversed these effects. Correcting for Ces1c effects, Abcb1a/1b, Abcg2, and Abcc2 did not restrict cabazitaxel oral availability, whereas Abcb1a/1b, but not Abcg2, dramatically reduced cabazitaxel brain accumulation (>10-fold). Coadministration of the ABCB1 inhibitor elacridar completely reversed this brain accumulation effect. After correction for Ces1c effects, Cyp3a knockout mice demonstrated a strong (six-fold) increase in cabazitaxel oral availability, which was completely reversed by transgenic human CYP3A4 in intestine and liver. Cabazitaxel markedly inhibited mouse Ces1c, but human CES1 and CES2 only weakly. Ces1c upregulation can thus complicate preclinical cabazitaxel studies. In summary, ABCB1 limits cabazitaxel brain accumulation and therefore potentially therapeutic efficacy against (micro)metastases or primary tumors positioned wholly or partly behind a functional blood-brain barrier. This can be reversed with elacridar coadministration, and similar effects may apply to ABCB1-expressing tumors. CYP3A4 profoundly reduces the oral availability of cabazitaxel. This may potentially be greatly improved by coadministering ritonavir or other CYP3A inhibitors, suggesting the option of patient-friendly oral cabazitaxel therapy.
Collapse
Affiliation(s)
- Seng Chuan Tang
- Department of Molecular Oncology, The Netherlands Cancer Institute , 1066 CX Amsterdam, The Netherlands
| | - Anita Kort
- Department of Molecular Oncology, The Netherlands Cancer Institute , 1066 CX Amsterdam, The Netherlands.,Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek , 1066 CX Amsterdam, The Netherlands
| | - Ka Lei Cheung
- Department of Thrombosis and Hemostasis, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center , 2333 ZA Leiden, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek , 1066 CX Amsterdam, The Netherlands
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Selvi Durmus
- Department of Molecular Oncology, The Netherlands Cancer Institute , 1066 CX Amsterdam, The Netherlands
| | - Els Wagenaar
- Department of Molecular Oncology, The Netherlands Cancer Institute , 1066 CX Amsterdam, The Netherlands
| | - Jeroen J M A Hendrikx
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek , 1066 CX Amsterdam, The Netherlands
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Bart J M van Vlijmen
- Department of Thrombosis and Hemostasis, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center , 2333 ZA Leiden, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek , 1066 CX Amsterdam, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University , 3512 JE Utrecht, The Netherlands
| | - Alfred H Schinkel
- Department of Molecular Oncology, The Netherlands Cancer Institute , 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
21
|
Cytotoxic and antiangiogenic paclitaxel solubilized and permeation-enhanced by natural product nanoparticles. Anticancer Drugs 2015; 26:167-79. [PMID: 25243454 DOI: 10.1097/cad.0000000000000173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Paclitaxel (PTX) is one of the most potent intravenous chemotherapeutic agents to date, yet an oral formulation has been problematic because of its low solubility and permeability. Using the recently discovered solubilizing properties of rubusoside (RUB), we investigated the unique PTX-RUB formulation. PTX was solubilized by RUB in water to levels of 1.6-6.3 mg/ml at 10-40% weight/volume. These nanomicellar PTX-RUB complexes were dried to a powder, which was subsequently reconstituted in physiologic solutions. After 2.5 h, 85-99% of PTX-RUB remained soluble in gastric fluid, whereas 79-96% remained soluble in intestinal fluid. The solubilization of PTX was mechanized by the formation of water-soluble spherical nanomicelles between PTX and RUB, with an average diameter of 6.6 nm. Compared with Taxol, PTX-RUB nanoparticles were nearly four times more permeable in Caco-2 cell monocultures. In a side-by-side comparison with dimethyl sulfoxide-solubilized PTX, PTX-RUB maintained the same level of cytotoxicity against three human cancer cell lines with IC50 values ranging from 4 to 20 nmol/l. In addition, tubule formation and migration of human umbilical vein endothelial cells were inhibited at levels as low as 5 nmol/l. These chemical and biological properties demonstrated by the PTX-RUB nanoparticles may improve oral bioavailability and enable further pharmacokinetic, toxicologic, and efficacy investigations.
Collapse
|
22
|
Quantification of taxanes in biological matrices: a review of bioanalytical assays and recommendations for development of new assays. Bioanalysis 2014; 6:993-1010. [PMID: 24806907 DOI: 10.4155/bio.14.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the isolation of paclitaxel and its approval for the treatment of breast cancer, various taxanes and taxane formulations have been developed. To date, almost 100 bioanalytical assays have been published with the method development and optimization often extensively discussed by the authors. This Review presents an overview of assays published between January 1970 and September 2013 that described method development and validation of assays used to quantify taxanes in biological matrices such as plasma, urine, feces and tissue samples. For liquid chromatography assays, sample pretreatment, chromatographic separation and assay performance are compared. Since this Review discusses the limitations of previously developed liquid chromatography assays and gives recommendations for future assay development, it can be used as a reference for future development of liquid chromatography assays for the quantification of taxanes in various biological matrices to support preclinical and clinical studies.
Collapse
|
23
|
Abstract
Taxanes are novel microtubule-stabilizing agents and have shown efficacy in non-small cell lung cancer (NSCLC) since the 1990s. Paclitaxel and docetaxel have been used either as single agents or in combination with a platinum compound. The newer generation albumin-bound taxane, nab-paclitaxel, has also shown similar efficacy in advanced NSCLC, both as a single agent and in combination with a platinum compound. Nab-paclitaxel, being Cremophor EL free, appears to have a better toxicity profile than paclitaxel. Taxane/platinum combinations still remain the foundation of treatment for advanced or metastatic NSCLC. Docetaxel and paclitaxel as single agents have also shown efficacy in the second-line setting in advanced/metastatic NSCLC. Oral formulations of paclitaxel and docetaxel are of great interest, but have yet to receive regulatory approval in this disease. The phase I-II trials have shown that these formulations are feasible in the clinical setting.
Collapse
|
24
|
Abstract
Sensory neuropathy is the dose-limiting toxicity of paclitaxel and also impacts on the use of docetaxel and other taxanes. The cause of this adverse effect has to do with their mechanism of action against microtubules and its interaction with neuronal cytoskeletal components. The variability of this toxicity is defined by several factors including disease type, taxane class, schedule and dose of the specific drug, patient demographics, and use of taxanes in combination regimens (especially with the platinums that are also neurotoxic). Prevention of life-long neuropathy is only produced if the causative drug is halted--treatments to reverse toxicity have shown only minimal improvement. This review investigates trials defining the clinical factors that determine the therapeutic window of taxanes and the enhanced susceptibility to this toxicity. In addition, case vignettes illustrate the range of clinical manifestations of this toxicity during taxane administration.
Collapse
|
25
|
Hendrikx JJMA, Lagas JS, Wagenaar E, Rosing H, Schellens JHM, Beijnen JH, Schinkel AH. Oral co-administration of elacridar and ritonavir enhances plasma levels of oral paclitaxel and docetaxel without affecting relative brain accumulation. Br J Cancer 2014; 110:2669-76. [PMID: 24781280 PMCID: PMC4037831 DOI: 10.1038/bjc.2014.222] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/19/2014] [Accepted: 03/27/2014] [Indexed: 11/09/2022] Open
Abstract
Background: The intestinal uptake of the taxanes paclitaxel and docetaxel is seriously hampered by drug efflux through P-glycoprotein (P-gp) and drug metabolism via cytochrome P450 (CYP) 3A. The resulting low oral bioavailability can be boosted by co-administration of P-gp or CYP3A4 inhibitors. Methods: Paclitaxel or docetaxel (10 mg/kg) was administered to CYP3A4-humanised mice after administration of the P-gp inhibitor elacridar (25 mg kg−1) and the CYP3A inhibitor ritonavir (12.5 mg kg−1). Plasma and brain concentrations of the taxanes were measured. Results: Oral co-administration of the taxanes with elacridar increased plasma concentrations of paclitaxel (10.7-fold, P<0.001) and docetaxel (four-fold, P<0.001). Co-administration with ritonavir resulted in 2.5-fold (paclitaxel, P<0.001) and 7.3-fold (docetaxel, P<0.001) increases in plasma concentrations. Co-administration with both inhibitors simultaneously resulted in further increased plasma concentrations of paclitaxel (31.9-fold, P<0.001) and docetaxel (37.4-fold, P<0.001). Although boosting of orally applied taxanes with elacridar and ritonavir potentially increases brain accumulation of taxanes, we found that only brain concentrations, but not brain-to-plasma ratios, were increased after co-administration with both inhibitors. Conclusions: The oral availability of taxanes can be enhanced by co-administration with oral elacridar and ritonavir, without increasing the brain penetration of the taxanes.
Collapse
Affiliation(s)
- J J M A Hendrikx
- 1] Department of Pharmacy and Pharmacology, Slotervaart Hospital, PO 90440, 1006 BK Amsterdam, The Netherlands [2] Division of Molecular Oncology, The Netherlands Cancer Institute, PO 90203, 1006 BE Amsterdam, The Netherlands
| | - J S Lagas
- Department of Pharmacy and Pharmacology, Slotervaart Hospital, PO 90440, 1006 BK Amsterdam, The Netherlands
| | - E Wagenaar
- Division of Molecular Oncology, The Netherlands Cancer Institute, PO 90203, 1006 BE Amsterdam, The Netherlands
| | - H Rosing
- Department of Pharmacy and Pharmacology, Slotervaart Hospital, PO 90440, 1006 BK Amsterdam, The Netherlands
| | - J H M Schellens
- 1] Department of Clinical Pharmacology, The Netherlands Cancer Institute, PO 90203, 1006 BE Amsterdam, The Netherlands [2] Department of Pharmaceutical Sciences, Utrecht University, PO 80082, 3508 TB Utrecht, The Netherlands
| | - J H Beijnen
- 1] Department of Pharmacy and Pharmacology, Slotervaart Hospital, PO 90440, 1006 BK Amsterdam, The Netherlands [2] Department of Pharmaceutical Sciences, Utrecht University, PO 80082, 3508 TB Utrecht, The Netherlands
| | - A H Schinkel
- Division of Molecular Oncology, The Netherlands Cancer Institute, PO 90203, 1006 BE Amsterdam, The Netherlands
| |
Collapse
|
26
|
Orally active microtubule-targeting agent, MPT0B271, for the treatment of human non-small cell lung cancer, alone and in combination with erlotinib. Cell Death Dis 2014; 5:e1162. [PMID: 24722287 PMCID: PMC5424107 DOI: 10.1038/cddis.2014.128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/15/2014] [Accepted: 02/28/2014] [Indexed: 12/14/2022]
Abstract
Microtubule-binding agents, such as taxanes and vinca alkaloids, are used in the treatment of cancer. The limitations of these treatments, such as resistance to therapy and the need for intravenous administration, have encouraged the development of new agents. MPT0B271 (N-[1-(4-Methoxy-benzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-1-oxy-isonicotinamide), an orally active microtubule-targeting agent, is a completely synthetic compound that possesses potent anticancer effects in vitro and in vivo. Tubulin polymerization assay and immunofluorescence experiment showed that MPT0B271 caused depolymerization of tubulin at both molecular and cellular levels. MPT0B271 reduced cell growth and viability at nanomolar concentrations in numerous cancer cell lines, including a multidrug-resistant cancer cell line NCI/ADR-RES. Further studies indicated that MPT0B271 is not a substrate of P-glycoprotein (P-gp), as determined by flow cytometric analysis of rhodamine-123 (Rh-123) dye efflux and the calcein acetoxymethyl ester (calcein AM) assay. MPT0B271 also caused G2/M cell-cycle arrest, accompanied by the up-regulation of cyclin B1, p-Thr161 Cdc2/p34, serine/threonine kinases polo-like kinase 1, aurora kinase A and B and the downregulation of Cdc25C and p-Tyr15 Cdc2/p34 protein levels. The appearance of MPM2 and the nuclear translocation of cyclin B1 denoted M phase arrest in MPT0B271-treated cells. Moreover, MPT0B271 induced cell apoptosis in a concentration-dependent manner; it also reduced the expression of Bcl-2, Bcl-xL, and Mcl-1 and increased the cleavage of caspase-3 and -7 and poly (ADP-ribose) polymerase (PARP). Finally, this study demonstrated that MPT0B271 in combination with erlotinib significantly inhibits the growth of the human non-small cell lung cancer A549 cells as compared with erlotinib treatment alone, both in vitro and in vivo. These findings identify MPT0B271 as a promising new tubulin-binding compound for the treatment of various cancers.
Collapse
|
27
|
Qu C, Chen Z. Antitumor effect of water decoctions of taxus cuspidate on pancreatic cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:291675. [PMID: 24719642 PMCID: PMC3955603 DOI: 10.1155/2014/291675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/05/2014] [Indexed: 02/06/2023]
Abstract
The Taxus cuspidate has been used as a traditional Chinese medicinal herb and considered to affect various physiological functions in the body for thousands of years. As we know that taxol isolated from the Taxus cuspidate has been approved for the treatment of ovarian cancer, it has also shown its antitumor abilities against other kinds of cancers. But the antitumor activity of other components which are free of paclitaxel and hydrophilic paclitaxel derivatives from Taxus cuspidate has not been fully understood. In this study, we investigated the effect of the water decoctions from the leaves of Taxus cuspidate on pancreatic cancer cell proliferation and the potential mechanism(s); though its antitumor activity and mechanism in vitro remain to be elucidated, the water soluble constituents from Taxus cuspidate could be used in clinical for cancer patients.
Collapse
Affiliation(s)
- Chao Qu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
28
|
Emerging integrated nanohybrid drug delivery systems to facilitate the intravenous-to-oral switch in cancer chemotherapy. J Control Release 2014; 176:94-103. [DOI: 10.1016/j.jconrel.2013.12.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/24/2013] [Accepted: 12/24/2013] [Indexed: 12/31/2022]
|
29
|
Hendrikx JJMA, Rosing H, Schinkel AH, Schellens JHM, Beijnen JH. Combined quantification of paclitaxel, docetaxel and ritonavir in human feces and urine using LC-MS/MS. Biomed Chromatogr 2013; 28:302-10. [PMID: 23996474 DOI: 10.1002/bmc.3021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 11/10/2022]
Abstract
A combined assay for the determination of paclitaxel, docetaxel and ritonavir in human feces and urine is described. The drugs were extracted from 200 μL urine or 50 mg feces followed by high-performance liquid chromatography analysis coupled with positive ionization electrospray tandem mass spectrometry. The validation program included calibration model, accuracy and precision, carry-over, dilution test, specificity and selectivity, matrix effect, recovery and stability. Acceptance criteria were according to US Food and Drug Administration guidelines on bioanalytical method validation. The validated range was 0.5-500 ng/mL for paclitaxel and docetaxel, 2-2000 ng/mL for ritonavir in urine, 2-2000 ng/mg for paclitaxel and docetaxel, and 8-8000 ng/mg for ritonavir in feces. Inter-assay accuracy and precision were tested for all analytes at four concentration levels and were within 8.5% and <10.2%, respectively, in both matrices. Recovery at three concentration levels was between 77 and 94% in feces samples and between 69 and 85% in urine samples. Method development, including feces homogenization and spiking blank urine samples, are discussed. We demonstrated that each of the applied drugs could be quantified successfully in urine and feces using the described assay. The method was successfully applied for quantification of the analytes in feces and urine samples of patients.
Collapse
Affiliation(s)
- Jeroen J M A Hendrikx
- Department of Pharmacy and Pharmacology, Slotervaart Hospital/The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Kudlowitz D, Muggia F. Defining risks of taxane neuropathy: insights from randomized clinical trials. Clin Cancer Res 2013; 19:4570-7. [PMID: 23817688 DOI: 10.1158/1078-0432.ccr-13-0572] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sensory neuropathy is a common but difficult to quantify complication encountered during treatment of various cancers with taxane-containing regimens. Docetaxel, paclitaxel, and its nanoparticle albumin-bound formulation have been extensively studied in randomized clinical trials comparing various dose and schedules for the treatment of breast, lung, and ovarian cancers. This review highlights differences in extent of severe neuropathies encountered in such randomized trials and seeks to draw conclusions in terms of known pharmacologic factors that may lead to neuropathy. This basic knowledge provides an essential background for exploring pharmacogenomic differences among patients in relation to their susceptibility of developing severe manifestations. In addition, the differences highlighted may lead to greater insight into drug and basic host factors (such as age, sex, and ethnicity) contributing to axonal injury from taxanes.
Collapse
Affiliation(s)
- David Kudlowitz
- New York University School of Medicine and Cancer Institute, New York, New York 10016, USA
| | | |
Collapse
|
31
|
Koolen SLW, van Waterschoot RAB, van Tellingen O, Schinkel AH, Beijnen JH, Schellens JHM, Huitema ADR. From Mouse to Man: Predictions of Human Pharmacokinetics of Orally Administered Docetaxel From Preclinical Studies. J Clin Pharmacol 2013; 52:370-80. [DOI: 10.1177/0091270010397051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Hendrikx JJ, Lagas JS, Rosing H, Schellens JH, Beijnen JH, Schinkel AH. P-glycoprotein and cytochrome P450 3A act together in restricting the oral bioavailability of paclitaxel. Int J Cancer 2012; 132:2439-47. [DOI: 10.1002/ijc.27912] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/10/2012] [Indexed: 12/22/2022]
|
33
|
Orally bioavailable tubulin antagonists for paclitaxel-refractory cancer. Pharm Res 2012; 29:3053-63. [PMID: 22760659 DOI: 10.1007/s11095-012-0814-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/20/2012] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the efficacy and oral activity of two promising indoles, (2-(1H-indol-3-yl)-1H-imidazol-4-yl)(3,4,5-trimethoxyphenyl)methanone [compound II] and (2-(1H-indol-5-ylamino)-thiazol-4-yl)(3,4,5-trimethoxyphenyl)methanone [compound IAT], in paclitaxel- and docetaxel-resistant tumor models in vitro and in vivo. METHODS The in vitro drug-like properties, including potency, solubility, metabolic stability, and drug-drug interactions were examined for our two active compounds. An in vivo pharmacokinetic study and antitumor efficacy study were also completed to compare their efficacy with docetaxel. RESULTS Both compounds bound to the colchicine-binding site on tubulin, and inhibited tubulin polymerization, resulting in highly potent cytotoxic activity in vitro. While the potency of paclitaxel and docetaxel was compromised in a multidrug-resistant cell line that overexpresses P-glycoprotein, the potency of compounds II and IAT was maintained. Both compounds had favorable drug-like properties, and acceptable oral bioavailability (21-50 %) in mice, rats, and dogs. Tumor growth inhibition of greater than 100 % was achieved when immunodeficient mice with rapidly growing paclitaxel-resistant prostate cancer cells were treated orally at doses of 3-30 mg/kg of II or IAT. CONCLUSIONS These studies highlight the potent and broad anticancer activity of two orally bioavailable compounds, offering significant pharmacologic advantage over existing drugs of this class for multidrug resistant or taxane-refractory cancers.
Collapse
|
34
|
Jiang S, Zhang Y, Zu Y, Wang Z, Fu Y. Antitumor Activities of Extracts and Compounds from Water Decoctions of Taxus cuspidata. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 38:1107-14. [DOI: 10.1142/s0192415x10008500] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Water decoctions from the leaves of Taxus cuspidata are used in traditional Chinese medicine to treat cancer, suggesting that water soluble constituents from these leaves may possess anticancer properties. Interestingly, hydrophilic paclitaxel derivatives, as opposed to paclitaxel itself, can be detected by high pressure liquid chromatography in water decoctions from these leaves. The remainder extracts, which are free of paclitaxel and hydrophilic paclitaxel derivatives, from the T. cuspidata leaves were investigated for antitumor activity in vivo and in vitro for the first time in this study. EE80B, 7-xylosyl-10-deacetylpaclitaxel and 7-xylosyl-10-deacetylpaclitaxel C displayed the most antitumor activity in vivo. However, in vitro studies with tumor cell lines showed that EE80B had a significantly smaller antitumor effect than paclitaxel. We hypothesize that water decoctions from T. cuspidata leaves exhibit antitumor effects in vivo, which may be aided by the activation of specific host mechanisms (e.g. stimulation of antitumor immunity) which are not present in vitro.
Collapse
Affiliation(s)
- Shougang Jiang
- Key Laboratory of Foresty Plant Ecology, Ministry of Education, Northeast Forestry University Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University Harbin 150040, China
| | - Yu Zhang
- Key Laboratory of Foresty Plant Ecology, Ministry of Education, Northeast Forestry University Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University Harbin 150040, China
| | - Yuangang Zu
- Key Laboratory of Foresty Plant Ecology, Ministry of Education, Northeast Forestry University Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University Harbin 150040, China
| | - Zhuo Wang
- Key Laboratory of Foresty Plant Ecology, Ministry of Education, Northeast Forestry University Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University Harbin 150040, China
| | - Yujie Fu
- Key Laboratory of Foresty Plant Ecology, Ministry of Education, Northeast Forestry University Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University Harbin 150040, China
| |
Collapse
|
35
|
Valenzuela B, Rebollo J, Pérez T, Brugarolas A, Pérez-Ruixo JJ. Effect of grapefruit juice on the pharmacokinetics of docetaxel in cancer patients: a case report. Br J Clin Pharmacol 2012; 72:978-81. [PMID: 21692829 DOI: 10.1111/j.1365-2125.2011.04052.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Shapira A, Davidson I, Avni N, Assaraf YG, Livney YD. β-Casein nanoparticle-based oral drug delivery system for potential treatment of gastric carcinoma: stability, target-activated release and cytotoxicity. Eur J Pharm Biopharm 2011; 80:298-305. [PMID: 22085654 DOI: 10.1016/j.ejpb.2011.10.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 11/24/2022]
Abstract
We studied a potential drug delivery system comprising the hydrophobic anticancer drug paclitaxel entrapped within β-casein (β-CN) nanoparticles and its cytotoxicity to human gastric carcinoma cells. Paclitaxel was entrapped by stirring its dimethyl sulfoxide (DMSO) solution into PBS containing β-CN. Cryo-TEM analysis revealed drug nanocrystals, the growth of which was blocked by β-CN. Entrapment efficiency was nearly 100%, and the nanovehicles formed were colloidally stable. Following encapsulation and simulated digestion with pepsin (2 hours at pH=2, 37 °C), paclitaxel retained its cytotoxic activity to human N-87 gastric cancer cells; the IC(50) value (32.5 ± 6.2 nM) was similar to that of non-encapsulated paclitaxel (25.4 ± 2.6 nM). Without prior simulated gastric digestion, β-CN-paclitaxel nanoparticles were non-cytotoxic, suggesting the lack of untoward toxicity to bucal and esophageal epithelia. We conclude that β-CN shows promise to be useful for target-activated oral delivery of hydrophobic chemotherapeutics in the treatment of gastric carcinoma, one of the leading causes of cancer mortality worldwide.
Collapse
Affiliation(s)
- Alina Shapira
- Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
37
|
Hendrikx JJ, Hillebrand MJ, Thijssen B, Rosing H, Schinkel AH, Schellens JH, Beijnen JH. A sensitive combined assay for the quantification of paclitaxel, docetaxel and ritonavir in human plasma using liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2984-90. [DOI: 10.1016/j.jchromb.2011.08.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
38
|
Nassar T, Attili-Qadri S, Harush-Frenkel O, Farber S, Lecht S, Lazarovici P, Benita S. High plasma levels and effective lymphatic uptake of docetaxel in an orally available nanotransporter formulation. Cancer Res 2011; 71:3018-28. [PMID: 21363913 DOI: 10.1158/0008-5472.can-10-3118] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Docetaxel, an efficient chemotherapeutic drug, exhibits low and variable oral bioavailability due to the active efflux by P-glycoprotein (P-gp) and more so to CYP3A4 gut metabolism. Using a spray-drying technique, docetaxel was incorporated in PLGA [poly(lactic-co-glycolic acid)] nanocapsules (NC) which were embedded in entero-coated microparticles. An oral administration of the NC formulation elicited a higher absolute bioavailability than both a docetaxel solution (276%) and a free docetaxel NC formulation (400%) injected intravenously, a 5-mg/kg dose. The batches (B) I and II NC formulations elicited C(max) values that were 1,735% and 2,254%, respectively; higher than the C(max) value of the oral docetaxel solution combined with blank microparticles, a 10-mg/kg dose. No significant difference in AUC (area under curve) was observed between the batches. These unexpected results can be explained only if the pharmacokinetics of docetaxel had been modified. It was shown that NCs released from the microparticles penetrated the enterocytes, bypassing P-gp; apparently circumventing gut metabolism and accumulating within the lymphatic system from where both intact or biodegraded NCs and free docetaxel were progressively released into the circulation as plausibly supported by the fluorescent imaging results. Furthermore, the circulating docetaxel in plasma was unencapsulated and circulated either in free form or bound to albumin. Both free docetaxel NCs and microparticles exhibited in vitro efficacy on WRC 256 cells suggesting that the activity of docetaxel was not altered. This delivery concept has potential for clinical translation, perhaps allowing docetaxel chemotherapy to be switched from intravenous to oral delivery.
Collapse
Affiliation(s)
- Taher Nassar
- Faculty of Medicine, The Institute for Drug Research, The School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|