1
|
Guengerich FP. Roles of Individual Human Cytochrome P450 Enzymes in Drug Metabolism. Pharmacol Rev 2024; 76:1104-1132. [PMID: 39054072 DOI: 10.1124/pharmrev.124.001173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Our knowledge of the roles of individual cytochrome P450 (P450) enzymes in drug metabolism has developed considerably in the past 30 years, and this base has been of considerable use in avoiding serious issues with drug interactions and issues due to variations. Some newer approaches are being considered for "phenotyping" metabolism reactions with new drug candidates. Endogenous biomarkers are being used for noninvasive estimation of levels of individual P450 enzymes. There is also the matter of some remaining "orphan" P450s, which have yet to be assigned reactions. Practical problems that continue in drug development include predicting drug-drug interactions, predicting the effects of polymorphic and other P450 variations, and evaluating interspecies differences in drug metabolism, particularly in the context of "metabolism in safety testing" regulatory issues ["disproportionate (human) metabolites"]. SIGNIFICANCE STATEMENT: Cytochrome P450 enzymes are the major catalysts involved in drug metabolism. The characterization of their individual roles has major implications in drug development and clinical practice.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
2
|
Yu J, Tang F, Ma F, Wong S, Wang J, Ly J, Chen L, Mao J. Human Pharmacokinetic and CYP3A Drug-Drug Interaction Prediction of GDC-2394 Using Physiologically Based Pharmacokinetic Modeling and Biomarker Assessment. Drug Metab Dispos 2024; 52:765-774. [PMID: 38811156 DOI: 10.1124/dmd.123.001633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Physiologically based pharmacokinetic (PBPK) modeling was used to predict the human pharmacokinetics and drug-drug interaction (DDI) of GDC-2394. PBPK models were developed using in vitro and in vivo data to reflect the oral and intravenous PK profiles of mouse, rat, dog, and monkey. The learnings from preclinical PBPK models were applied to a human PBPK model for prospective human PK predictions. The prospective human PK predictions were within 3-fold of the clinical data from the first-in-human study, which was used to optimize and validate the PBPK model and subsequently used for DDI prediction. Based on the majority of PBPK modeling scenarios using the in vitro CYP3A induction data (mRNA and activity), GDC-2394 was predicted to have no-to-weak induction potential at 900 mg twice daily (BID). Calibration of the induction mRNA and activity data allowed for the convergence of DDI predictions to a narrower range. The plasma concentrations of the 4β-hydroxycholesterol (4β-HC) were measured in the multiple ascending dose study to assess the hepatic CYP3A induction risk. There was no change in plasma 4β-HC concentrations after 7 days of GDC-2394 at 900 mg BID. A dedicated DDI study found that GDC-2394 has no induction effect on midazolam in humans, which was reflected by the totality of predicted DDI scenarios. This work demonstrates the prospective utilization of PBPK for human PK and DDI prediction in early drug development of GDC-2394. PBPK modeling accompanied with CYP3A biomarkers can serve as a strategy to support clinical pharmacology development plans. SIGNIFICANCE STATEMENT: This work presents the application of physiologically based pharmacokinetic modeling for prospective human pharmacokinetic (PK) and drug-drug interaction (DDI) prediction in early drug development. The strategy taken in this report represents a framework to incorporate various approaches including calibration of in vitro induction data and consideration of CYP3A biomarkers to inform on the overall CYP3A-related DDI risk of GDC-2394.
Collapse
Affiliation(s)
- Jesse Yu
- Departments of Drug Metabolism and Pharmacokinetics (J.Y., S.W., J.W., J.L., L.C., J.M.) and Drug Metabolism and Pharmacokinetics (F.T., F.M.), Genentech, Inc., South San Francisco, California
| | - Fei Tang
- Departments of Drug Metabolism and Pharmacokinetics (J.Y., S.W., J.W., J.L., L.C., J.M.) and Drug Metabolism and Pharmacokinetics (F.T., F.M.), Genentech, Inc., South San Francisco, California
| | - Fang Ma
- Departments of Drug Metabolism and Pharmacokinetics (J.Y., S.W., J.W., J.L., L.C., J.M.) and Drug Metabolism and Pharmacokinetics (F.T., F.M.), Genentech, Inc., South San Francisco, California
| | - Susan Wong
- Departments of Drug Metabolism and Pharmacokinetics (J.Y., S.W., J.W., J.L., L.C., J.M.) and Drug Metabolism and Pharmacokinetics (F.T., F.M.), Genentech, Inc., South San Francisco, California
| | - Jing Wang
- Departments of Drug Metabolism and Pharmacokinetics (J.Y., S.W., J.W., J.L., L.C., J.M.) and Drug Metabolism and Pharmacokinetics (F.T., F.M.), Genentech, Inc., South San Francisco, California
| | - Justin Ly
- Departments of Drug Metabolism and Pharmacokinetics (J.Y., S.W., J.W., J.L., L.C., J.M.) and Drug Metabolism and Pharmacokinetics (F.T., F.M.), Genentech, Inc., South San Francisco, California
| | - Liuxi Chen
- Departments of Drug Metabolism and Pharmacokinetics (J.Y., S.W., J.W., J.L., L.C., J.M.) and Drug Metabolism and Pharmacokinetics (F.T., F.M.), Genentech, Inc., South San Francisco, California
| | - Jialin Mao
- Departments of Drug Metabolism and Pharmacokinetics (J.Y., S.W., J.W., J.L., L.C., J.M.) and Drug Metabolism and Pharmacokinetics (F.T., F.M.), Genentech, Inc., South San Francisco, California
| |
Collapse
|
3
|
Jackson KD, Achour B, Lee J, Geffert RM, Beers JL, Latham BD. Novel Approaches to Characterize Individual Drug Metabolism and Advance Precision Medicine. Drug Metab Dispos 2023; 51:1238-1253. [PMID: 37419681 PMCID: PMC10506699 DOI: 10.1124/dmd.122.001066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023] Open
Abstract
Interindividual variability in drug metabolism can significantly affect drug concentrations in the body and subsequent drug response. Understanding an individual's drug metabolism capacity is important for predicting drug exposure and developing precision medicine strategies. The goal of precision medicine is to individualize drug treatment for patients to maximize efficacy and minimize drug toxicity. While advances in pharmacogenomics have improved our understanding of how genetic variations in drug-metabolizing enzymes (DMEs) affect drug response, nongenetic factors are also known to influence drug metabolism phenotypes. This minireview discusses approaches beyond pharmacogenetic testing to phenotype DMEs-particularly the cytochrome P450 enzymes-in clinical settings. Several phenotyping approaches have been proposed: traditional approaches include phenotyping with exogenous probe substrates and the use of endogenous biomarkers; newer approaches include evaluating circulating noncoding RNAs and liquid biopsy-derived markers relevant to DME expression and function. The goals of this minireview are to 1) provide a high-level overview of traditional and novel approaches to phenotype individual drug metabolism capacity, 2) describe how these approaches are being applied or can be applied to pharmacokinetic studies, and 3) discuss perspectives on future opportunities to advance precision medicine in diverse populations. SIGNIFICANCE STATEMENT: This minireview provides an overview of recent advances in approaches to characterize individual drug metabolism phenotypes in clinical settings. It highlights the integration of existing pharmacokinetic biomarkers with novel approaches; also discussed are current challenges and existing knowledge gaps. The article concludes with perspectives on the future deployment of a liquid biopsy-informed physiologically based pharmacokinetic strategy for patient characterization and precision dosing.
Collapse
Affiliation(s)
- Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
4
|
Basso J, Schwartsmann G, Ibaldi MR, Schaefer VD, Pavei CC, Hahn RZ, Antunes MV, Linden R. Evaluation of UGT1A1 and CYP3A Genotyping and Single-Point Irinotecan and Metabolite Concentrations as Predictors of the Occurrence of Adverse Events in Cancer Treatment. J Gastrointest Cancer 2023; 54:589-599. [PMID: 35710870 DOI: 10.1007/s12029-022-00840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE The variability on irinotecan (IRI) pharmacokinetics and toxicity has been attributed mostly to genetic variations in the UGT1A1 gene, responsible for conjugation of the active metabolite SN-38. Also, CYP3A mediates the formation of inactive oxidative metabolites of IRI. The association between the occurrence of severe adverse events, pharmacokinetics parameters, and UGT1A1 and CYP3A4 predicted phenotypes was evaluated, as the evaluation of [SN-38]/IRI dose ratio as predictor of severe adverse events. METHODS Forty-one patients undergoing IRI therapy were enrolled in the study. Blood samples were collected 15 min after the end of drug the infusion, for IRI, SN-38, SN-38G, bilirubin concentrations measurements, and UGT1A1 and CYP3A genotype estimation. Data on adverse event was reported. RESULTS Fifteen patients (36.5%) developed grade 3/4 adverse events. A total of 9.8% (n = 4) of the patients had UGT1A1 reduced activity phenotype, and 48.7% (n = 20) had UGT1A1 and 63.4% (n = 26) CYP3A intermediary phenotypes. Severe neutropenia and diarrhea were more prevalent in patients with reduced UGT1A1 in comparison with functional metabolism (50% and 75% versus 0% and 13%, respectively). SN-38 levels and its concentrations adjusted by IRI dose were significantly correlated to toxicity (rs = 0.31 (p = 0.05) and rs = 0.425 (p < 0.01)). The [SN-38]/IRI dose ratio had a ROC curve of 0.823 (95% CI 0.69-0.956) to detect any severe adverse event and 0.833 (95% CI 0.694-0.973) to detect severe diarrhea. The cut-off of 0.075 ng mL-1 mg-1 had 100% sensitivity and 65.7% specificity to predict severe diarrhea. CONCLUSION Our data confirmed the relevance of the pre-emptive genotypic information of UGT1A1. The [SN-38]/IRI ratio, measured 15 min after the end of the IRI infusion, was a strong predictor of severe toxicity and could be applied to minimize the burden of patients after IRI administration.
Collapse
Affiliation(s)
- Jeziel Basso
- Universidade Federal Do Rio Grande Do Sul, UFRGS, Postgraduate program, Porto Alegre, Brazil
| | - Gilberto Schwartsmann
- Universidade Federal Do Rio Grande Do Sul, UFRGS, Postgraduate program, Porto Alegre, Brazil
| | | | - Vitoria Daniela Schaefer
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil
- Graduate Program On Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Carla Casagrande Pavei
- Medical Residency in Oncology of Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roberta Zilles Hahn
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Marina Venzon Antunes
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil
- Graduate Program On Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Rafael Linden
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil.
- Graduate Program On Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo, RS, Brazil.
| |
Collapse
|
5
|
Smits A, Annaert P, Cavallaro G, De Cock PAJG, de Wildt SN, Kindblom JM, Lagler FB, Moreno C, Pokorna P, Schreuder MF, Standing JF, Turner MA, Vitiello B, Zhao W, Weingberg AM, Willmann R, van den Anker J, Allegaert K. Current knowledge, challenges and innovations in developmental pharmacology: A combined conect4children Expert Group and European Society for Developmental, Perinatal and Paediatric Pharmacology White Paper. Br J Clin Pharmacol 2022; 88:4965-4984. [PMID: 34180088 PMCID: PMC9787161 DOI: 10.1111/bcp.14958] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/22/2021] [Accepted: 05/30/2021] [Indexed: 12/30/2022] Open
Abstract
Developmental pharmacology describes the impact of maturation on drug disposition (pharmacokinetics, PK) and drug effects (pharmacodynamics, PD) throughout the paediatric age range. This paper, written by a multidisciplinary group of experts, summarizes current knowledge, and provides suggestions to pharmaceutical companies, regulatory agencies and academicians on how to incorporate the latest knowledge regarding developmental pharmacology and innovative techniques into neonatal and paediatric drug development. Biological aspects of drug absorption, distribution, metabolism and excretion throughout development are summarized. Although this area made enormous progress during the last two decades, remaining knowledge gaps were identified. Minimal risk and burden designs allow for optimally informative but minimally invasive PK sampling, while concomitant profiling of drug metabolites may provide additional insight in the unique PK behaviour in children. Furthermore, developmental PD needs to be considered during drug development, which is illustrated by disease- and/or target organ-specific examples. Identifying and testing PD targets and effects in special populations, and application of age- and/or population-specific assessment tools are discussed. Drug development plans also need to incorporate innovative techniques such as preclinical models to study therapeutic strategies, and shift from sequential enrolment of subgroups, to more rational designs. To stimulate appropriate research plans, illustrations of specific PK/PD-related as well as drug safety-related challenges during drug development are provided. The suggestions made in this joint paper of the Innovative Medicines Initiative conect4children Expert group on Developmental Pharmacology and the European Society for Developmental, Perinatal and Paediatric Pharmacology, should facilitate all those involved in drug development.
Collapse
Affiliation(s)
- Anne Smits
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Neonatal intensive Care unit, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Giacomo Cavallaro
- Neonatal intensive care unit, Fondazione IRCCS Ca' Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Pieter A J G De Cock
- Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium.,Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium.,Department of Pharmacy, Ghent University Hospital, Ghent, Belgium
| | - Saskia N de Wildt
- Intensive Care and Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pharmacology and Toxicology, Radboud Institute Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jenny M Kindblom
- Pediatric Clinical Research Center, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florian B Lagler
- Institute for Inherited Metabolic Diseases and Department of Pediatrics, Paracelsus Medical University, Clinical Research Center Salzburg, Salzburg, Austria
| | - Carmen Moreno
- Institute of Psychiatry and Mental Health, Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Paula Pokorna
- Intensive Care and Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Physiology and Pharmacology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Joseph F Standing
- UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Mark A Turner
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | - Benedetto Vitiello
- Division of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, China.,Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Clinical Research Centre, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | | | | | - John van den Anker
- Intensive Care and Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.,Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Department of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Eide Kvitne K, Hole K, Krogstad V, Wollmann BM, Wegler C, Johnson LK, Hertel JK, Artursson P, Karlsson C, Andersson S, Andersson TB, Sandbu R, Hjelmesæth J, Skovlund E, Christensen H, Jansson-Löfmark R, Åsberg A, Molden E, Robertsen I. Correlations between 4β-hydroxycholesterol and hepatic and intestinal CYP3A4: protein expression, microsomal ex vivo activity, and in vivo activity in patients with a wide body weight range. Eur J Clin Pharmacol 2022; 78:1289-1299. [PMID: 35648149 PMCID: PMC9283167 DOI: 10.1007/s00228-022-03336-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Variability in cytochrome P450 3A4 (CYP3A4) metabolism is mainly caused by non-genetic factors, hence providing a need for accurate phenotype biomarkers. Although 4β-hydroxycholesterol (4βOHC) is a promising endogenous CYP3A4 biomarker, additional investigations are required to evaluate its ability to predict CYP3A4 activity. This study investigated the correlations between 4βOHC concentrations and hepatic and intestinal CYP3A4 protein expression and ex vivo microsomal activity in paired liver and jejunum samples, as well as in vivo CYP3A4 phenotyping (midazolam) in patients with a wide body weight range. METHODS The patients (n = 96; 78 with obesity and 18 normal or overweight individuals) were included from the COCKTAIL-study (NCT02386917). Plasma samples for analysis of 4βOHC and midazolam concentrations, and liver (n = 56) and jejunal (n = 38) biopsies were obtained. The biopsies for determination of CYP3A4 protein concentration and microsomal activity were obtained during gastric bypass or cholecystectomy. In vivo CYP3A4 phenotyping was performed using semi-simultaneous oral (1.5 mg) and intravenous (1.0 mg) midazolam. RESULTS 4βOHC concentrations were positively correlated with hepatic microsomal CYP3A4 activity (ρ = 0.53, p < 0.001), and hepatic CYP3A4 concentrations (ρ = 0.30, p = 0.027), but not with intestinal CYP3A4 concentrations (ρ = 0.18, p = 0.28) or intestinal microsomal CYP3A4 activity (ρ = 0.15, p = 0.53). 4βOHC concentrations correlated weakly with midazolam absolute bioavailability (ρ = - 0.23, p = 0.027) and apparent oral clearance (ρ = 0.28, p = 0.008), but not with systemic clearance (ρ = - 0.03, p = 0.81). CONCLUSION These findings suggest that 4βOHC concentrations reflect hepatic, but not intestinal, CYP3A4 activity. Further studies should investigate the potential value of 4βOHC as an endogenous biomarker for individual dose requirements of intravenously administered CYP3A4 substrate drugs. TRIAL REGISTRATION Clinical. TRIALS gov identifier: NCT02386917.
Collapse
Affiliation(s)
- Kine Eide Kvitne
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.
| | - Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Veronica Krogstad
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | | | - Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Line K Johnson
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jens K Hertel
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Cecilia Karlsson
- Clinical Metabolism, Cardiovascular, Renal and Metabolism (CVRM), Late-Stage Development, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Tommy B Andersson
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Rune Sandbu
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway.,Deparment of Surgery, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jøran Hjelmesæth
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eva Skovlund
- Department of Public Health and Nursing, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.,Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.,Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| |
Collapse
|
7
|
Rodrigues AD, Wood LS, Vourvahis M, Rowland A. Leveraging Human Plasma-Derived Small Extracellular Vesicles as Liquid Biopsy to Study the Induction of Cytochrome P450 3A4 by Modafinil. Clin Pharmacol Ther 2022; 111:425-434. [PMID: 34623637 DOI: 10.1002/cpt.2440] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/03/2021] [Indexed: 01/01/2023]
Abstract
Preparations of plasma-derived small extracellular vesicles (sEVs) were deployed as liquid biopsy to study cytochrome P450 (CYP) 3A4 (CYP3A4) induction following modafinil 400 mg once daily × 14 days (young healthy volunteers, N = 10 subjects). Induction was confirmed using the 4β-hydroxycholesterol-to-cholesterol (4βHC/C) ratio, a plasma CYP3A4/5 biomarker, with a mean 2.1-fold increase (Day 15 vs. Day 1; 90% confidence interval (CI) = 1.8-2.3; P value = 0.0004). Proteomic analysis revealed the induction (mean Day 15 vs. Day 1 fold-increase (90% CI)) of both liver (1.3 (1.1-1.5), P value = 0.014) and nonliver (1.9 (1.6-2.2), P value = 0.04) sEV CYP3A4 protein expression. In CYP3A5 nonexpresser subjects, the baseline (pre-dose) 4βHC/C plasma ratio was more highly correlated with liver sEVs (r = 0.937, P value = 0.001) than nonliver sEVs (r = 0.619, P value = 0.101) CYP3A4 protein expression. When CYP3A5 expressers (CYP3A5*1/*3) were included, the correlation with liver sEVs (r = 0.761, P value = 0.011) and nonliver sEVs (r = 0.391, P value = 0.264) CYP3A4 protein was weaker. Although modafinil-induced changes in plasma 4βHC/C ratio did not correlate with sEVs CYP3A4 protein expression, the individual subject sEVs proteomic data were used successfully to predict victim drug (midazolam, triazolam, dextromethorphan, 17α-ethinylestradiol, and abemaciclib) area under the plasma concentration-time curve (AUC) ratios (AUCRs) following modafinil. Based on the AUCR values, modafinil was classified as a weak to moderate CYP3A4 inducer (vs. rifampicin). For the first time, it was possible to deploy plasma-derived sEVs to study CYP3A4 induction beyond rifampicin, a more potent CYP3A4 inducer.
Collapse
Affiliation(s)
- A David Rodrigues
- Absorption, Distribution, Metabolism, and Elimination Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc, Groton, Connecticut, USA
| | - Linda S Wood
- Pharmacogenomics, Precision Medicine, Worldwide Research & Development, Pfizer Inc, Groton, Connecticut, USA
| | - Manoli Vourvahis
- Clinical Pharmacology, Global Product Development, Pfizer Inc, New York, New York, USA
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Yoon S, Jeong S, Jung E, Kim KS, Jeon I, Lee Y, Cho JY, Oh WY, Chung JY. Effect of CYP3A4 metabolism on sex differences in the pharmacokinetics and pharmacodynamics of zolpidem. Sci Rep 2021; 11:19150. [PMID: 34580385 PMCID: PMC8476623 DOI: 10.1038/s41598-021-98689-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
To investigate pharmacokinetic and pharmacodynamic differences of zolpidem between males and females and their causes, including CYP3A4 activity. A single oral dose of zolpidem (10 mg) was administered to 15 male and 15 female healthy subjects. Blood samples were collected up to 12 h post-dose to determine plasma zolpidem concentrations. Pharmacokinetic parameters were obtained using non-compartmental analysis. Digit symbol substitution test, choice reaction time, and visual analog scale of sleepiness were used to evaluate pharmacodynamics. We measured CYP3A4 activity using 4β-hydroxycholesterol, an endogenous metabolite. Mean maximum plasma concentration and area under the plasma concentration–time curve were higher for females than for males (9.9% and 32.5%, respectively); other pharmacokinetic parameters showed no significant differences. Pharmacodynamic scores for females showed delayed recovery compared with that for males. CYP3A4 activity was higher in females than in males (p = 0.030). There was no serious adverse event, and adverse event incidence was not different between the sexes. Zolpidem exposure was about 30% higher in females than in males. Delayed pharmacodynamic score recovery in females could be related to higher zolpidem concentrations. Although apparent clearance was lower in females, systemic clearance might not be the cause of the different exposures to zolpidem.
Collapse
Affiliation(s)
- Seonghae Yoon
- Department of Clinical Pharmacology and Therapeutics, Clinical Trials Center, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam, 13620, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Seongmee Jeong
- Clinical Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Eben Jung
- Clinical Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Ki Soon Kim
- Clinical Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Inseung Jeon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Yujin Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo-Yong Oh
- Clinical Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Clinical Trials Center, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam, 13620, Republic of Korea. .,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Bergström H, Helde Frankling M, Klasson C, Lövgren Sandblom A, Diczfalusy U, Björkhem-Bergman L. CYP3A Activity in End-of-Life Cancer Patients Measured by 4β-Hydroxycholesterol/cholesterol Ratio, in Men and Women. Cancers (Basel) 2021; 13:cancers13184689. [PMID: 34572915 PMCID: PMC8465465 DOI: 10.3390/cancers13184689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The elimination of drugs by enzymes in the liver may be impaired in cancer patients that are close to death (end-of-life). This could cause unwanted side effects or lack of effect of drugs and compromise the quality of life in patients. Blood samples collected in 137 deceased end-of-life cancer patients were analyzed for the marker 4β-hydroxycholesterol/cholesterol (4β-OHC/C), representing the activity of the most important drug eliminating enzyme, CYP3A. In addition, samples from young (n = 280) and elderly (n = 30) controls were analyzed for 4β-OHC/C. The average 4β-OHC/C was higher in male and female end-of-life cancer patients than in young and elderly controls without cancer. This finding may suggest that the ability to eliminate drugs by CYP3A is maintained until end of life and that drugs metabolized by CYP3 may not need dose adjustment or discontinuation in cancer patients close to death. Abstract More than 50% of all drugs are metabolized by the cytochrome P450 3A enzyme (CYP3A). The aim of this study was to investigate if the CYP3A activity, measured by the endogenous marker 4β-hydroxycholesterol/cholesterol ratio (4β-OHC/C), is changed during the last weeks and days of life in men and women. To this end, serum samples from 137 deceased patients (median age 70 years) collected at a single time point 1–60 days before death, were analyzed and compared to 280 young (median 27 years), and 30 elderly (median age 70 years) non-cancer controls. There were no significant differences in the 4β-OHC/C ratio between men and women in end-of-life patients (p < 0.25). The median 4β-OHC/C was significantly higher in end-of-life male patients compared to both young (p < 0.0001) and elderly (p < 0.05) male controls. In a similar manner, 4β-OHC/C in end-of-life female patients was significantly higher compared to young and elderly female controls, p < 0.0001 and p < 0.001, respectively. There was no significant correlation between 4β-OHC/C and survival time. The results from this study suggest maintained CYP3A activity to the very last days of life and even a capacity of induction of the enzyme in end-of-life cancer patients.
Collapse
Affiliation(s)
- Helena Bergström
- Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Blickagången 16, Neo Floor 7, SE-141 83 Huddinge, Sweden; (M.H.F.); (C.K.); (L.B.-B.)
- Correspondence:
| | - Maria Helde Frankling
- Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Blickagången 16, Neo Floor 7, SE-141 83 Huddinge, Sweden; (M.H.F.); (C.K.); (L.B.-B.)
- Department of Cancer, Section of Head, Neck, Lung and Skin Tumors, Karolinska University Hospital, Eugeniavägen 11, SE-171 76 Stockholm, Sweden
| | - Caritha Klasson
- Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Blickagången 16, Neo Floor 7, SE-141 83 Huddinge, Sweden; (M.H.F.); (C.K.); (L.B.-B.)
- Department of Palliative Medicine, Stockholms Sjukhem, Mariebergsgatan 22, SE-112 19 Stockholm, Sweden
| | - Anita Lövgren Sandblom
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institute, SE-141 52 Stockholm, Sweden; (A.L.S.); (U.D.)
- Department of Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, SE-141 86 Huddinge, Sweden
| | - Ulf Diczfalusy
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institute, SE-141 52 Stockholm, Sweden; (A.L.S.); (U.D.)
- Department of Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, SE-141 86 Huddinge, Sweden
| | - Linda Björkhem-Bergman
- Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Blickagången 16, Neo Floor 7, SE-141 83 Huddinge, Sweden; (M.H.F.); (C.K.); (L.B.-B.)
- Department of Palliative Medicine, Stockholms Sjukhem, Mariebergsgatan 22, SE-112 19 Stockholm, Sweden
| |
Collapse
|
10
|
Sun W, Lirio RA, Schneider J, Aubrecht J, Kadali H, Baratta M, Gulati P, Suri A, Lin T, Vasudevan R, Rosario M. Assessment of Vedolizumab Disease-Drug-Drug Interaction Potential in Patients With Inflammatory Bowel Diseases. Clin Pharmacol Drug Dev 2021; 10:734-747. [PMID: 33331142 PMCID: PMC8359401 DOI: 10.1002/cpdd.891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023]
Abstract
Disease-drug-drug interactions (DDDIs) have been identified in some inflammatory diseases in which elevated proinflammatory cytokines can downregulate the expression of cytochrome P450 (CYP) enzymes, potentially increasing systemic exposure to drugs metabolized by CYPs. Following anti-inflammatory treatments, CYP expression may return to normal, resulting in reduced drug exposure and diminished clinical efficacy. Vedolizumab has a well-established positive benefit-risk profile in patients with ulcerative colitis (UC) or Crohn's disease (CD) and has no known systemic immunosuppressive activity. A stepwise assessment was conducted to evaluate the DDDI potential of vedolizumab to impact exposure to drugs metabolized by CYP3A through cytokine modulation. First, a review of published data revealed that patients with UC or CD have elevated cytokine concentrations relative to healthy subjects; however, these concentrations remained below those reported to impact CYP expression. Exposure to drugs metabolized via CYP3A also appeared comparable between patients and healthy subjects. Second, serum samples from patients with UC or CD who received vedolizumab for 52 weeks were analyzed and compared with healthy subjects. Cytokine concentrations and the 4β-hydroxycholesterol-to-cholesterol ratio, an endogenous CYP3A4 biomarker, were comparable between healthy subjects and patients both before and during vedolizumab treatment. Finally, a medical review of postmarketing DDDI cases related to vedolizumab from the past 6 years was conducted and did not show evidence of any true DDDIs. Our study demonstrated the lack of clinically meaningful effects of disease or vedolizumab treatment on the exposure to drugs metabolized via CYP3A through cytokine modulation in patients with UC or CD.
Collapse
Affiliation(s)
- Wan Sun
- TakedaCambridgeMassachusettsUSA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Magliocco G, Desmeules J, Bosilkovska M, Thomas A, Daali Y. The 1β-Hydroxy-Deoxycholic Acid to Deoxycholic Acid Urinary Metabolic Ratio: Toward a Phenotyping of CYP3A Using an Endogenous Marker? J Pers Med 2021; 11:jpm11020150. [PMID: 33672438 PMCID: PMC7923269 DOI: 10.3390/jpm11020150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/08/2023] Open
Abstract
In this study, we assessed the potential use of the 1β-hydroxy-deoxycholic acid (1β-OH-DCA) to deoxycholic acid (DCA) urinary metabolic ratio (UMR) as a CYP3A metric in ten male healthy volunteers. Midazolam (MDZ) 1 mg was administered orally at three sessions: alone (control session), after pre-treatment with fluvoxamine 50 mg (12 h and 2 h prior to MDZ administration), and voriconazole 400 mg (2 h before MDZ administration) (inhibition session), and after a 7-day pre-treatment with the inducer rifampicin 600 mg (induction session). The 1β-OH-DCA/DCA UMR was measured at each session, and correlations with MDZ metrics were established. At baseline, the 1β-OH-DCA/DCA UMR correlated significantly with oral MDZ clearance (r = 0.652, p = 0.041) and Cmax (r = -0.652, p = 0.041). In addition, the modulation of CYP3A was reflected in the 1β-OH-DCA/DCA UMR after the intake of rifampicin (induction ratio = 11.4, p < 0.01). During the inhibition session, a non-significant 22% decrease in 1β-OH-DCA/DCA was observed (p = 0.275). This result could be explained by the short duration of CYP3A inhibitors intake fixed in our clinical trial. Additional studies, particularly involving CYP3A inhibition for a longer period and larger sample sizes, are needed to confirm the 1β-OH-DCA/DCA metric as a suitable CYP3A biomarker.
Collapse
Affiliation(s)
- Gaëlle Magliocco
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (G.M.); (J.D.); (M.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (G.M.); (J.D.); (M.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Swiss Center for Applied Human Toxicology, 1205 Geneva, Switzerland;
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Marija Bosilkovska
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (G.M.); (J.D.); (M.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Aurélien Thomas
- Swiss Center for Applied Human Toxicology, 1205 Geneva, Switzerland;
- Forensic Toxicology and Chemistry Unit, CURML, 1000 Lausanne University Hospital, Geneva University Hospitals, Lausanne, 1205 Geneva, Switzerland
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, 1000 Lausanne, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (G.M.); (J.D.); (M.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Swiss Center for Applied Human Toxicology, 1205 Geneva, Switzerland;
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
12
|
Matthaei J, Bonat WH, Kerb R, Tzvetkov MV, Strube J, Brunke S, Sachse-Seeboth C, Sehrt D, Hofmann U, von Bornemann Hjelmborg J, Schwab M, Brockmöller J. Inherited and Acquired Determinants of Hepatic CYP3A Activity in Humans. Front Genet 2020; 11:944. [PMID: 32973880 PMCID: PMC7472781 DOI: 10.3389/fgene.2020.00944] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Human CYP3A enzymes (including CYP3A4 and CYP4A5) metabolize about 40% of all drugs and numerous other environmental and endogenous substances. CYP3A activity is highly variable within and between humans. As a consequence, therapy with standard doses often results in too low or too high blood and tissue concentrations resulting in therapeutic failure or dose-related adverse reactions. It is an unanswered question how much of the big interindividual variation in CYP3A activity is caused by genetic or by environmental factors. This question can be answered by the twin study approach. Using midazolam as CYP3A probe drug, we studied 43 monozygotic and 14 dizygotic twins and measured midazolam and its metabolite 1-OH-midazolam. In addition, endogenous biomarkers of CYP3A activity, 4ß-OH-cholesterol and 6ß-OH-cortisol, were analyzed. Additive genetic effects accounted for only 15% of the variation in midazolam AUC, whereas 48% was attributed to common environmental factors. In contrast, 73, 56, and 31% of 1-OH-midazolam, 4ß-OH-cholesterol and 6ß-OH-cortisol variation was due to genetic effects. There was a low phenotypic correlation between the four CYP3A biomarkers. Only between midazolam and its 1-OH-metabolite, and between midazolam and 6ß-OH-cortisol we found significant bivariate genetic correlations. Midazolam AUC differed depending on the CYP3A4∗22 variant (p = 0.001) whereas plasma 4ß-OH-cholesterol was significantly lower in homozygous carriers of CYP3A5∗3 (p = 0.02). Apparently, non-genomic factors played a dominant role in the inter-individual variation of the CYP3A probe drug midazolam. A small intra-individual pharmacokinetic variation after repeated administration of midazolam was rated earlier as indication of high heritability of CYP3A activity, but according to present data that could also largely be due to constant environmental factors and/or heritability of liver blood flow. The higher heritabilities of 4ß-OH-cholesterol and of 1-OH-midazolam may deserve further research on the underlying factors beyond CYP3A genes. Clinical Trial Registration: ClinicalTrials.gov: NCT01845194 and EUDRA-CT: 2008-006223-31.
Collapse
Affiliation(s)
- Johannes Matthaei
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Wagner Hugo Bonat
- Department of Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
| | - Reinhold Kerb
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Mladen Vassilev Tzvetkov
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Jakob Strube
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Stefanie Brunke
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Cordula Sachse-Seeboth
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Daniel Sehrt
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | | | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.,Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jürgen Brockmöller
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| |
Collapse
|
13
|
Lee Y, Chae W, Yoon S, Chung JY, Cho JY. Development and validation of a method for the simultaneous quantification of endogenous steroids metabolized by CYP3A. Transl Clin Pharmacol 2020; 28:73-82. [PMID: 32656158 PMCID: PMC7327190 DOI: 10.12793/tcp.2020.28.e10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Cytochrome P450 (CYP) 3A enzymes, the most important phase 1 drug-metabolizing enzymes, are responsible for 50% of the metabolism of clinically used drugs. CYP3A activity varies widely among individuals, which can affect the probability of adverse drug reactions and drug-drug interactions mediated by the induction or inhibition of the enzyme. Hence, it is important to be able to predict CYP3A activity in individuals to reduce the incidence of unexpected drug responses. To specifically and quickly measure CYP3A activity, we developed method based on gas chromatography interfaced with triple-quadrupole mass spectrometry for the quantification of cortisol, cortisone, 6β-hydroxycortisol, and 6β-hydroxycortisone simultaneously in urine and 4β-hydroxycholesterol in plasma. The results were calculated based on charcoal-stripped steroid-free urine and plasma control samples. The accuracy and precision were 93.18% to 110.0% and 1.96% to 5.34%, respectively. This method was then applied to measure endogenous steroids from urine and plasma samples of healthy Korean males and females. The calibration curves of all analytes showed good linearity with a correlation coefficient (r2) that ranged from 0.9953 to 0.9999. Therefore, this validated method can be used to measure endogenous biomarkers to predict CYP3A activity and might be applicable in the prediction of CYP3A-mediated drug interactions of new drug candidates.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
| | - Woori Chae
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
| | - Seonghae Yoon
- Clinical Trials Center, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.,Clinical Trials Center, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
14
|
Smits A, Annaert P, Van Cruchten S, Allegaert K. A Physiology-Based Pharmacokinetic Framework to Support Drug Development and Dose Precision During Therapeutic Hypothermia in Neonates. Front Pharmacol 2020; 11:587. [PMID: 32477113 PMCID: PMC7237643 DOI: 10.3389/fphar.2020.00587] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Therapeutic hypothermia (TH) is standard treatment for neonates (≥36 weeks) with perinatal asphyxia (PA) and hypoxic-ischemic encephalopathy. TH reduces mortality and neurodevelopmental disability due to reduced metabolic rate and decreased neuronal apoptosis. Since both hypothermia and PA influence physiology, they are expected to alter pharmacokinetics (PK). Tools for personalized dosing in this setting are lacking. A neonatal hypothermia physiology-based PK (PBPK) framework would enable precision dosing in the clinic. In this literature review, the stepwise approach, benefits and challenges to develop such a PBPK framework are covered. It hereby contributes to explore the impact of non-maturational PK covariates. First, the current evidence as well as knowledge gaps on the impact of PA and TH on drug absorption, distribution, metabolism and excretion in neonates is summarized. While reduced renal drug elimination is well-documented in neonates with PA undergoing hypothermia, knowledge of the impact on drug metabolism is limited. Second, a multidisciplinary approach to develop a neonatal hypothermia PBPK framework is presented. Insights on the effect of hypothermia on hepatic drug elimination can partly be generated from in vitro (human/animal) profiling of hepatic drug metabolizing enzymes and transporters. Also, endogenous biomarkers may be evaluated as surrogate for metabolic activity. To distinguish the impact of PA versus hypothermia on drug metabolism, in vivo neonatal animal data are needed. The conventional pig is a well-established model for PA and the neonatal Göttingen minipig should be further explored for PA under hypothermia conditions, as it is the most commonly used pig strain in nonclinical drug development. Finally, a strategy is proposed for establishing and fine-tuning compound-specific PBPK models for this application. Besides improvement of clinical exposure predictions of drugs used during hypothermia, the developed PBPK models can be applied in drug development. Add-on pharmacotherapies to further improve outcome in neonates undergoing hypothermia are under investigation, all in need for dosing guidance. Furthermore, the hypothermia PBPK framework can be used to develop temperature-driven PBPK models for other populations or indications. The applicability of the proposed workflow and the challenges in the development of the PBPK framework are illustrated for midazolam as model drug.
Collapse
Affiliation(s)
- Anne Smits
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Steven Van Cruchten
- Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Clinical Pharmacy, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
15
|
Gravel S, Chiasson JL, Gaudette F, Turgeon J, Michaud V. Use of 4β-Hydroxycholesterol Plasma Concentrations as an Endogenous Biomarker of CYP3A Activity: Clinical Validation in Individuals With Type 2 Diabetes. Clin Pharmacol Ther 2019; 106:831-840. [PMID: 31002385 DOI: 10.1002/cpt.1472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/29/2019] [Indexed: 12/19/2022]
Abstract
The relevance of endogenous 4β-hydroxycholesterol (4β-OHC) plasma concentrations or of the 4β-OHC/total cholesterol concentration ratio (4β-OHC ratio) as surrogate markers of cytochrome P450 3A (CYP3A) activity was evaluated in individuals with (n = 38) or without (n = 35) type 2 diabetes (T2D). Midazolam was used as a comparator to validate exploratory measures of phenotypic CYP3A activity. Metabolic ratios of orally administered midazolam in nondiabetic and diabetic populations correlated significantly with 4β-OHC (rs = 0.64 and 0.48; P ≤ 0.003) and 4β-OHC ratio (rs = 0.69 and 0.46; P ≤ 0.003), respectively. Activity of CYP3A was lower in the T2D population compared with nondiabetic subjects; this decrease was reflected in 4β-OHC concentrations (24.33 vs. 12.58 ng/mL; P < 0.0001) and 4β-OHC ratio (0.13 vs. 0.09 (× 104 ); P < 0.0002). These results suggest that 4β-OHC should be considered as a valid, convenient, and easy to use endogenous biomarker of CYP3A activity in patients.
Collapse
Affiliation(s)
- Sophie Gravel
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada.,CRCHUM-Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Jean-Louis Chiasson
- CRCHUM-Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,CHUM, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Faculty of Medicine, Université of Montréal, Montréal, Québec, Canada
| | - Fleur Gaudette
- CRCHUM-Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Jacques Turgeon
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada.,CRCHUM-Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Veronique Michaud
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada.,CRCHUM-Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
16
|
Phenotyping of Human CYP450 Enzymes by Endobiotics: Current Knowledge and Methodological Approaches. Clin Pharmacokinet 2019; 58:1373-1391. [DOI: 10.1007/s40262-019-00783-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Gjestad C, Hole K, Haslemo T, Diczfalusy U, Molden E. Effect of Grapefruit Juice Intake on Serum Level of the Endogenous CYP3A4 Metabolite 4β-Hydroxycholesterol-an Interaction Study in Healthy Volunteers. AAPS JOURNAL 2019; 21:58. [PMID: 31020430 DOI: 10.1208/s12248-019-0330-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022]
Abstract
4β-Hydroxycholesterol (4βOHC) is an endogenous CYP3A4 metabolite. However, it is unclear whether circulating levels of 4βOHC may reflect hepatic CYP3A4 activity or both hepatic and intestinal enzyme activity. The aim of this study was to investigate the effect of grapefruit juice, regarded to be a selective intestinal CYP3A4 inhibitor, on serum 4βOHC levels in healthy volunteers. The participants (n = 22) consumed grapefruit juice twice daily for 3 weeks followed by a 2-week washout period. Blood samples for measurements of 4βOHC and the non-CYP3A4-derived oxysterols 24-hydroxycholesterol (24OHC) and 27-hydroxycholesterol (27OHC), as well as lathosterol and total cholesterol, were drawn on days 0, 7, 21, and 35. Median individual changes (ratios) in cholesterol-corrected 4βOHC levels from baseline to weeks 1, 3, and 5 were 0.94 (P = 0.2), 0.98 (P = 0.3), and 0.97 (P = 0.9), respectively. In comparison, median changes (ratios) in cholesterol-corrected levels of 24OHC at the same points were 1.01 (P = 0.6), 0.98 (P = 0.3), and 0.99 (P = 0.5), and of 27OHC 1.01 (P = 0.8), 0.97 (P = 0.5), and 0.99 (P = 0.2). Surprisingly, serum concentration of cholesterol was significantly reduced by approximately 5% after 1 week (P = 0.03), while median cholesterol-corrected levels of lathosterol increased significantly and persistently by approximately 15% during the whole 5-week period (P < 0.04). In conclusion, the present findings suggest that intestinal CYP3A4 is not relevant for the overall formation of 4βOHC in healthy volunteers. The fact that grapefruit juice altered cholesterol homeostasis should be further investigated.
Collapse
Affiliation(s)
- Caroline Gjestad
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 85, Vinderen, N-0319, Oslo, Norway.
| | - Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 85, Vinderen, N-0319, Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 85, Vinderen, N-0319, Oslo, Norway
| | - Ulf Diczfalusy
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 85, Vinderen, N-0319, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Lee J, Yoon SH, Yi S, Kim AH, Kim B, Lee S, Yu KS, Jang IJ, Cho JY. Quantitative prediction of hepatic CYP3A activity using endogenous markers in healthy subjects after administration of CYP3A inhibitors or inducers. Drug Metab Pharmacokinet 2019; 34:247-252. [PMID: 31088714 DOI: 10.1016/j.dmpk.2019.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/21/2019] [Accepted: 04/05/2019] [Indexed: 01/20/2023]
Abstract
Accurate prediction of cytochrome P450 (CYP) 3A activity in the early stage of drug development and in clinical practice is important. This study aimed to evaluate the previously constructed CYP3A activity prediction model after administration of CYP3A inhibitors and inducers and to modify the model for better prediction of CYP3A activity. Healthy male subjects received the following study drugs during three study periods: midazolam alone (control phase); midazolam with 200 mg of itraconazole (CYP3A inhibition phase); and midazolam with 150 mg of rifampicin (CYP3A induction phase). We quantified the concentrations of several endogenous CYP3A markers in both urine and plasma using gas chromatography-mass spectrometry. The urinary markers, including 6β-hydroxy (OH)-cortisol/cortisol, 6β-OH-cortisone/cortisone, 16α-OH-dehydroepiandrosterone (DHEA)/DHEA, 16α-OH-androstenedione (A-dione)/A-dione and 7β-OH-DHEA/DHEA, were significantly correlated with midazolam clearance in both the CYP3A inhibition and induction phases. We constructed a statistical prediction model after integrating data from a previous study to predict midazolam clearance as follows: Ln(midazolam clearance) = 2.5545 + 0.3988 × ln(7β-OH-DHEA/DHEA) + 0.1984 × ln(16α-OH-DHEA/DHEA) + 0.5031 × ln(6β-OH-cortisol/cortisol) - 0.1261 [ln(7β-OH-DHEA/DHEA) × ln(6β-OH-cortisol/cortisol)] (r2 = 0.75). We suggest that quantitating endogenous markers in vivo coupled with the statistical prediction model may be useful for predicting CYP3A parameters.
Collapse
Affiliation(s)
- Jieon Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Seo Hyun Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Sojeong Yi
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Andrew HyoungJin Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Bora Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Penzak SR, Rojas-Fernandez C. 4β-Hydroxycholesterol as an Endogenous Biomarker for CYP3A Activity: Literature Review and Critical Evaluation. J Clin Pharmacol 2019; 59:611-624. [PMID: 30748026 DOI: 10.1002/jcph.1391] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
A number of cytochrome P450 (CYP)3A phenotyping probes have been used to characterize the drug interaction potential of new molecular entities; of these, midazolam has emerged as the gold standard. Recently, plasma 4β-hydroxycholesterol (4β-OHC), the metabolite of CYP3A-mediated cholesterol metabolism, has been championed as an endogenous biomarker for CYP3A, particularly during chronic conditions where CYP3A activity is altered by disease and in long-term treatment studies where midazolam administration is not optimal. Multiple studies in humans have shown that 4β-OHC can qualitatively differentiate among weak, moderate, and potent CYP3A induction when an inducer, typically rifampin, is administered for up to 2 weeks. Conversely, longer durations of CYP3A inhibitor administration (≥1 month) appear to be necessary to differentiate among weak, moderate, and potent CYP3A inhibitors. A number of studies have reported statistically significant linear relationships between 4β-OHC plasma concentrations (and 4β-OHC:cholesterol ratios) and midazolam clearance. However, sufficiently powered studies assessing the ability of 4β-OHC or 4β-OHC:cholesterol ratios to measure CYP3A activity (ie, predictive performance) have not been conducted to date. Additional limitations associated with 4β-OHC phenotyping include inability to detect acute changes in CYP3A activity, uncertainty with regard to its intestinal formation, ambiguity surrounding the role of CYP3A5 in its metabolism, and lack of clarity regarding the role of transporters in its disposition. As such, the data do not support the use of 4β-OHC or 4β-OHC:cholesterol ratios as an endogenous biomarker for CYP3A activity.
Collapse
Affiliation(s)
- Scott R Penzak
- Auburn University Harrison School of Pharmacy, Auburn, AL, USA
| | | |
Collapse
|
20
|
Hautajärvi H, Hukkanen J, Turpeinen M, Mattila S, Tolonen A. Quantitative analysis of 4β- and 4α‑hydroxycholesterol in human plasma and serum by UHPLC/ESI-HR-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1100-1101:179-186. [DOI: 10.1016/j.jchromb.2018.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/06/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023]
|
21
|
Hole K, Heiberg PL, Gjestad C, Mehus LL, Rø Ø, Molden E. Elevated 4β-hydroxycholesterol/cholesterol ratio in anorexia nervosa patients. Pharmacol Res Perspect 2018; 6:e00430. [PMID: 30214813 PMCID: PMC6134200 DOI: 10.1002/prp2.430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/21/2018] [Indexed: 12/23/2022] Open
Abstract
Recent studies have shown that the cytochrome P450 (CYP) 3A phenotype marker 4β-hydroxycholesterol/cholesterol (4βOHC/C) ratio is negatively correlated with body weight in healthy volunteers, and that obese patients have lower 4βOHC levels than healthy controls. However, 4βOHC/C ratio in underweight patients has yet to be reported. The aim of this study was to examine potential differences in CYP3A activity between underweight patients with anorexia nervosa and normal-weight volunteers by measuring plasma 4βOHC/C ratio. Furthermore, we wished to describe any association between body mass index (BMI) and 4βOHC/C ratio in underweight patients. A total of 20 underweight patients and 16 normal-weight volunteers were included in the study, all females. Underweight patients had a median 4βOHC/C ratio (molar ratio × 10-5) of 2.52 (range, 0.90-11.3) compared to 1.29 (0.56-2.09) in normal-weight subjects (Mann-Whitney P = 0.0005). 4βOHC/C ratio was negatively correlated with BMI in underweight patients (r = -0.56, P = 0.011), and in the whole study population (r = -0.67, P < 0.0001). This suggests that the negative correlation between 4βOHC/C and BMI, which has previously been reported between 4βOHC/C and body weight in healthy volunteers, extends to underweight patients. The findings indicate that CYP3A activity increases with decreasing BMI, resulting in higher CYP3A activity in underweight patients compared to normal-weight subjects. The potential clinical relevance of this needs to be studied further by comparing pharmacokinetics of drugs subjected to CYP3A-mediated metabolism in underweight vs. normal-weight individuals.
Collapse
Affiliation(s)
- Kristine Hole
- Center for PsychopharmacologyDiakonhjemmet HospitalOsloNorway
| | | | | | - Lise L. Mehus
- Department of Medicinal BiochemistryDiakonhjemmet HospitalOsloNorway
| | - Øyvind Rø
- Regional Department for Eating DisordersDivision of Mental Health and AddictionOslo University HospitalOsloNorway
- Division of Mental Health and AddictionInstitute of Clinical MedicineUniversity of OsloOsloNorway
| | - Espen Molden
- Center for PsychopharmacologyDiakonhjemmet HospitalOsloNorway
- Department of Pharmaceutical BiosciencesSchool of PharmacyUniversity of OsloOsloNorway
| |
Collapse
|
22
|
Gjestad C, Haslemo T, Andreassen OA, Molden E. Gjestad et al. reply to 'Was 4β-hydroxycholesterol ever going to be a useful marker of CYP3A4 activity?' by Neuhoff and Tucker. Br J Clin Pharmacol 2018; 84:1624-1625. [PMID: 29749106 DOI: 10.1111/bcp.13606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Caroline Gjestad
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Kuypers DRJ, Vanhove T. Kuypers and Vanhove reply to 'Was 4β-hydroxycholesterol ever going to be a useful marker of CYP3A4 activity?' by Neuhoff and Tucker. Br J Clin Pharmacol 2018; 84:1622-1623. [PMID: 29691891 DOI: 10.1111/bcp.13592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dirk R J Kuypers
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
24
|
Neuhoff S, Tucker GT. Was 4β-hydroxycholesterol ever going to be a useful marker of CYP3A4 activity? Br J Clin Pharmacol 2018; 84:1620-1621. [PMID: 29464732 DOI: 10.1111/bcp.13538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 12/11/2022] Open
|
25
|
2017 White Paper on recent issues in bioanalysis: aren't BMV guidance/guidelines ‘Scientific’? (Part 1 – LCMS: small molecules, peptides and small molecule biomarkers). Bioanalysis 2017; 9:1807-1825. [DOI: 10.4155/bio-2017-4975] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The 2017 11th Workshop on Recent Issues in Bioanalysis (11th WRIB) took place in Los Angeles/Universal City, California from 3 April 2017 to 7 April 2017 with participation of close to 750 professionals from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, weeklong event – A Full Immersion Week of Bioanalysis, Biomarkers and Immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small and large molecule analysis involving LCMS, hybrid LBA/LCMS and ligand-binding assay (LBA) approaches. This 2017 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2017 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1) covers the recommendations for Small Molecules, Peptides and Small Molecule Biomarkers using LCMS. Part 2 (Biotherapeutics, Biomarkers and Immunogenicity Assays using Hybrid LBA/LCMS and Regulatory Agencies’ Inputs) and Part 3 (LBA: Immunogenicity, Biomarkers and PK Assays) are published in volume 9 of Bioanalysis, issues 23 and 24 (2017), respectively.
Collapse
|
26
|
Hole K, Størset E, Olastuen A, Haslemo T, Kro GB, Midtvedt K, Åsberg A, Molden E. Recovery of CYP3A Phenotype after Kidney Transplantation. Drug Metab Dispos 2017; 45:1260-1265. [PMID: 28928137 DOI: 10.1124/dmd.117.078030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/15/2017] [Indexed: 11/22/2022] Open
Abstract
End-stage renal disease impairs drug metabolism via cytochrome P450 CYP3A; however, it is unclear whether CYP3A activity recovers after kidney transplantation. Therefore, the aim of this study was to evaluate the change in CYP3A activity measured as 4β-hydroxycholesterol (4βOHC) concentration after kidney transplantation. In total, data from 58 renal transplant recipients with 550 prospective 4βOHC measurements were included in the study. One sample per patient was collected before transplantation, and 2-12 samples per patient were collected 1-82 days after transplantation. The measured pretransplant 4βOHC concentrations ranged by >7-fold, with a median value of 22.8 ng/ml. Linear mixed-model analysis identified a 0.16-ng/ml increase in 4βOHC concentration per day after transplantation (P < 0.001), indicating a regain in CYP3A activity. Increasing estimated glomerular filtration rate after transplantation was associated with increasing 4βOHC concentration (P < 0.001), supporting that CYP3A activity increases with recovering uremia. In conclusion, this study indicates that CYP3A activity is regained subsequent to kidney transplantation.
Collapse
Affiliation(s)
- Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Elisabet Størset
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Ane Olastuen
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Grete Birkeland Kro
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Karsten Midtvedt
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Anders Åsberg
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| |
Collapse
|
27
|
Gjestad C, Haslemo T, Andreassen OA, Molden E. 4β-Hydroxycholesterol level significantly correlates with steady-state serum concentration of the CYP3A4 substrate quetiapine in psychiatric patients. Br J Clin Pharmacol 2017; 83:2398-2405. [PMID: 28585378 DOI: 10.1111/bcp.13341] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/07/2017] [Accepted: 05/27/2017] [Indexed: 01/03/2023] Open
Abstract
AIM 4β-Hydroxycholesterol (4βOHC) is sensitive towards induction or inhibition of CYP3A4, but its potential usefulness as a dosing biomarker remains to be demonstrated. The aim of this study was to investigate the correlation between 4βOHC levels and steady-state concentrations (Css) of quetiapine, a CYP3A4 substrate with high presystemic metabolism, in psychiatric patients. METHODS Serum samples from 151 patients treated with quetiapine as immediate release (IR; n = 98) or slow release (XR; n = 53) tablets were included for analysis of 4βOHC. In all patients, Css of quetiapine had been measured at trough level, i.e. 10-14 and 17-25 h post-dosing for IR and XR tablets, respectively. Correlations between 4βOHC levels and dose-adjusted Css (C/D ratios) of quetiapine were tested by univariate (Spearman's) and multivariate (multiple linear regression) analyses. Gender, age (≥60 vs. <60 years) and tablet formulation were included as potential covariates in the multivariate analysis. RESULTS Correlations between 4βOHC levels and quetiapine C/D ratios were highly significant both for IR- and XR-treated patients (P < 0.0001). Estimated Spearman r values were -0.47 (95% confidence interval -0.62, -0.30) and -0.56 (-0.72, -0.33), respectively. The relationship between 4βOHC level and quetiapine C/D ratio was also significant in the multiple linear regression analysis (P < 0.001), including gender (P = 0.023) and age (P = 0.003) as significant covariates. CONCLUSIONS The present study shows that 4βOHC level is significantly correlated with steady-state concentration of quetiapine. This supports the potential usefulness of 4βOHC as a phenotype biomarker for individualized dosing of quetiapine and other drugs where systemic exposure is mainly determined by CYP3A4 metabolism.
Collapse
Affiliation(s)
- Caroline Gjestad
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
28
|
Lee J, Kim AH, Yi S, Lee S, Yoon SH, Yu KS, Jang IJ, Cho JY. Distribution of Exogenous and Endogenous CYP3A Markers and Related Factors in Healthy Males and Females. AAPS JOURNAL 2017; 19:1196-1204. [PMID: 28523515 DOI: 10.1208/s12248-017-0090-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/17/2017] [Indexed: 01/07/2023]
Abstract
Cytochrome P450 (CYP) 3A is an important drug-metabolizing enzyme in humans. Assessing CYP3A activity is necessary for predicting therapeutic outcomes or the potential adverse events of various therapeutics. This study sought to evaluate the distribution of endogenous and exogenous markers reflecting hepatic CYP3A activity and related factors affecting its activity in healthy male and female. Each subject was given a single 1 mg dose of midazolam intravenously. Pharmacokinetics, pharmacometabolomics, and pharmacogenomics analyses were performed to evaluate CYP3A activity. Urinary and plasma steroids were quantified with gas chromatography coupled with triple-quadrupole mass spectrometry (GC-MS), and the concentrations of midazolam and its metabolites were quantified with liquid chromatography coupled with electrospray tandem mass spectrometry (LC-MS/MS). A total of 100 subjects completed this study. Midazolam clearance (MDZ CL) and the metabolic ratio (MDZ MR) were significantly correlated with 6β-OH-cortisol/cortisol and 6β-OH-cortisone/cortisone. MDZ CL, 6β-OH-cortisol/cortisol, and 6β-OH-cortisone/cortisone decreased with increasing age (Pearson r = -0.333, -0.329, and -0.528, respectively; P < 0.05). When the markers were compared according to sex, MDZ CL and 6β-OH-cortisol/cortisol showed significant difference between sexes. However, MDZ CL was higher in female group than male group and 6β-OH-cortisol/cortisol was higher in male group than female group. No significant differences in markers were found when comparing progesterone levels. Our results indicate that both exogenous and endogenous markers showed decreased CYP3A activity with increasing age, which suggested that age could be a factor that significantly influences CYP3A activity.
Collapse
Affiliation(s)
- Jieon Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Andrew HyoungJin Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - SoJeong Yi
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Seo Hyun Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
29
|
Abstract
BACKGROUND Disease-dependent changes in the activity of drug metabolizing enzymes and transporters, such as Cytochrome P450 (CYP) 3A4 and P-glycoprotein (P-gp), are thought to have a major influence on the disposition of shared substrates. However, little is known regarding the in vivo relevance of these 2 proteins during drug therapy for gastrointestinal diseases. Our aim was to elucidate the activity of CYP3A4 and P-gp in subjects with Crohn's disease (CD) and to evaluate their influence on budesonide pharmacokinetics. METHODS A detailed pharmacokinetic assessment was conducted in 8 individuals diagnosed with CD on stable doses of oral budesonide, a putative shared CYP3A4, and P-gp substrate, where hepatic and intestinal CYP3A4 activity were also assessed using intravenous and oral midazolam. In addition, oral fexofenadine was used as an in vivo probe for P-gp activity. RESULTS Budesonide area under the curve was highly variable between subjects but similar to previously reported values in healthy subjects. The hepatic and intestinal extraction ratios for midazolam were 0.11 ± 0.06 and 0.64 ± 0.25, respectively; however, CYP3A4 activity was nearly 5-fold lower in our CD cohort compared with published data among healthy subjects. Multivariate regression revealed that only 25% budesonide clearance could be explained based on midazolam or fexofenadine clearance. CONCLUSIONS Midazolam and fexofenadine disposition profile did not predict budesonide clearance. However, we observed a marked reduction in vivo CYP3A4 activity among individuals with CD. Therefore, changes in CYP3A4 activity in disease states such as CD may be a heretofore underappreciated determinant of variation in drug responsiveness in CD.
Collapse
|
30
|
Størset E, Hole K, Midtvedt K, Bergan S, Molden E, Åsberg A. The CYP3A biomarker 4β-hydroxycholesterol does not improve tacrolimus dose predictions early after kidney transplantation. Br J Clin Pharmacol 2017; 83:1457-1465. [PMID: 28146606 DOI: 10.1111/bcp.13248] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/16/2017] [Accepted: 01/29/2017] [Indexed: 12/22/2022] Open
Abstract
AIMS Tacrolimus is a cornerstone in modern immunosuppressive therapy after kidney transplantation. Tacrolimus dosing is challenged by considerable pharmacokinetic variability, both between patients and over time after transplantation, partly due to variability in cytochrome P450 3A (CYP3A) activity. The aim of this study was to assess the value of the endogenous CYP3A marker 4β-hydroxycholesterol (4βOHC) for tacrolimus dose individualization early after kidney transplantation. METHODS Data were obtained from 79 adult kidney transplant recipients who contributed a total of 625 4βOHC measurements and 1999 tacrolimus whole blood concentrations during the first 2 months after transplantation. The relationships between 4βOHC levels and individual estimates of tacrolimus apparent plasma clearance (CL/Fplasma ) at different time points after transplantation were investigated using scatterplots and population pharmacokinetic modelling. RESULTS There was no significant correlation between pre-transplant 4βOHC levels and tacrolimus CL/Fplasma the first week (r = 0.19 [95% CI -0.03-0.40]) or between 4βOHC and tacrolimus CL/Fplasma 1 week (r = 0.20 [-0.11-0.47]), 4 weeks (r = 0.21 [-0.07-0.46]) or 2 months (r = 0.24 [-0.03-0.48]) after transplantation (P ≥ 0.06). In the population analysis, time-varying 4βOHC was not a statistically significant covariate on tacrolimus CL/Fplasma , neither in terms of absolute values (P = 0.11) nor in terms of changes from baseline (P = 0.17). 4βOHC values increased between 1 week and 2 months after transplantation (median change +57% [IQR +22-83%], P < 0.001), indicating increasing CYP3A activity. Contradictorily, tacrolimus CL/Fplasma decreased over the same period (median change -13% [IQR -3 to -26%], P < 0.001). CONCLUSIONS 4βOHC does not appear to have a clinical potential to improve individualization of tacrolimus doses early after kidney transplantation.
Collapse
Affiliation(s)
- Elisabet Størset
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Norway
| | - Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Karsten Midtvedt
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Stein Bergan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway.,Department of Pharmacology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| | - Anders Åsberg
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| |
Collapse
|
31
|
Hole K, Gjestad C, Heitmann KM, Haslemo T, Molden E, Bremer S. Impact of genetic and nongenetic factors on interindividual variability in 4β-hydroxycholesterol concentration. Eur J Clin Pharmacol 2016; 73:317-324. [PMID: 27975131 DOI: 10.1007/s00228-016-2178-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/07/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE Individual variability in the endogenous CYP3A metabolite 4β-hydroxycholesterol (4βOHC) is substantial, but to which extent this is determined by genetic and nongenetic factors remains unclear. The aim of the study was to evaluate the explanatory power of candidate genetic variants and key nongenetic factors on individual variability in 4βOHC levels in a large naturalistic patient population. METHODS We measured 4βOHC concentration in serum samples from 655 patients and used multiple linear regression analysis to estimate the quantitative effects of CYP3A4*22, CYP3A5*3, and POR*28 variant alleles, comedication with CYP3A inducers, inhibitors and substrates, sex, and age on individual 4βOHC levels. RESULTS 4βOHC concentration ranged >100-fold in the population, and the multiple linear regression model explained about one fourth of the variability (R 2 = 0.23). Only comedication with inducers or inhibitors, sex, and POR genotype were significantly associated with individual variability in 4βOHC level. The estimated quantitative effects on 4βOHC levels were greatest for inducer comedication (+>313%, P < 0.001), inhibitor comedication (-34%, P = 0.021), and female sex (+30%, P < 0.001), while only a modestly elevated 4βOHC level was observed in carriers vs. noncarriers of POR*28 (+11%, P = 0.023). CONCLUSIONS These findings suggest that the CYP3A4*22, CYP3A5*3, and POR*28 variant alleles are of limited importance for overall individual variability in 4βOHC levels compared to nongenetic factors.
Collapse
Affiliation(s)
- Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23, Vinderen, 0319, Oslo, Norway.
| | - C Gjestad
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23, Vinderen, 0319, Oslo, Norway
| | - K M Heitmann
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - T Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23, Vinderen, 0319, Oslo, Norway
| | - E Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23, Vinderen, 0319, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - S Bremer
- Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
32
|
Wollmann BM, Syversen SW, Lie E, Gjestad C, Mehus LL, Olsen IC, Molden E. 4β-Hydroxycholesterol Level in Patients With Rheumatoid Arthritis Before vs. After Initiation of bDMARDs and Correlation With Inflammatory State. Clin Transl Sci 2016; 10:42-49. [PMID: 27991741 PMCID: PMC5351010 DOI: 10.1111/cts.12431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/09/2016] [Indexed: 11/30/2022] Open
Abstract
Systemic inflammation has been linked to suppressed CYP3A(4) activity. We determined 4β‐hydroxycholesterol (4βOHC), an endogenous CYP3A4 metabolite, in patients with rheumatoid arthritis (RA) before and after treatment with biological disease‐modifying antirheumatic drugs (bDMARDs). The 4βOHC was compared in 41 patients before and 2–5 months after initiating TNFα inhibitors (n = 31), IL‐6 inhibitors (n = 5), or B‐cell inhibitors (n = 5). Correlations between 4βOHC and inflammatory markers (C‐reactive protein (CRP) and erythrocyte sedimentation rate (ESR)) were also tested before and after bDMARDs. 4βOHC did not differ following bDMARD treatment (P = 0.6), nor in patients who started with IL‐6 inhibitors (median 51.6 vs. 50.6 nmol/L). The 4βOHC and CRP/ESR did not correlate before treatment (P > 0.5), but correlated significantly after bDMARDs (CRP = Spearman r ‐0.40; P < 0.01; ESR = r ‐0.34; P = 0.028) suggesting that mainly non‐CYP3A4‐suppressive cytokines were reduced during treatment. Thus, this study does not support a generally regained CYP3A4 phenotype in patients with RA following initiation of bDMARDs.
Collapse
Affiliation(s)
- B M Wollmann
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - S W Syversen
- Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway
| | - E Lie
- Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway
| | - C Gjestad
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - L L Mehus
- Department of Medicinal Biochemistry, Diakonhjemmet Hospital, Oslo, Norway
| | - I C Olsen
- Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway
| | - E Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| |
Collapse
|
33
|
Mao J, Martin I, McLeod J, Nolan G, van Horn R, Vourvahis M, Lin YS. Perspective: 4β-hydroxycholesterol as an emerging endogenous biomarker of hepatic CYP3A. Drug Metab Rev 2016; 49:18-34. [PMID: 27718639 DOI: 10.1080/03602532.2016.1239630] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A key goal in the clinical development of a new molecular entity is to quickly identify whether it has the potential for drug-drug interactions. In particular, confirmation of in vitro data in the early stage of clinical development would facilitate the decision making and inform future clinical pharmacology study designs. Plasma 4β-hydroxycholesterol (4β-HC) is considered as an emerging endogenous biomarker for cytochrome P450 3A (CYP3A), one of the major drug metabolizing enzymes. Although there are increasing reports of the use of 4β-HC in academic- and industry-sponsored clinical studies, a thorough review, summary and consideration of the advantages and challenges of using 4β-HC to evaluate changes in CYP3A activity has not been attempted. Herein, we review the biology of 4β-HC, its response to treatment with CYP3A inducers, inhibitors and mixed inducer/inhibitors in healthy volunteers and patients, the association of 4β-HC with other probes of CYP3A activity (e.g. midazolam, urinary cortisol ratios), and present predictive pharmacokinetic models. We provide recommendations for studying hepatic CYP3A activity in clinical pharmacology studies utilizing 4β-HC at different stages of drug development.
Collapse
Affiliation(s)
- Jialin Mao
- a Drug Metabolism and Pharmacokinetics , Genentech , South San Francisco , CA , USA
| | - Iain Martin
- b Pharmacokinetics, Pharmacodynamics and Drug Metabolism , Merck , Boston , MA , USA
| | - James McLeod
- c Drug Development , Galleon Pharmaceuticals , Horsham , PA , USA
| | - Gail Nolan
- d Drug Metabolism and Pharmacokinetics , GlaxoSmithKline , Hertfordshire , UK
| | - Robert van Horn
- e Translational Medicine and Early Development , Sanofi , Bridgewater , NJ , USA
| | | | - Yvonne S Lin
- g Department of Pharmaceutics , University of Washington , Seattle , WA , USA
| |
Collapse
|
34
|
Vanhove T, de Jonge H, de Loor H, Annaert P, Diczfalusy U, Kuypers DRJ. Comparative performance of oral midazolam clearance and plasma 4β-hydroxycholesterol to explain interindividual variability in tacrolimus clearance. Br J Clin Pharmacol 2016; 82:1539-1549. [PMID: 27501475 DOI: 10.1111/bcp.13083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/20/2016] [Accepted: 08/05/2016] [Indexed: 12/24/2022] Open
Abstract
AIMS We compared the CYP3A4 metrics weight-corrected midazolam apparent oral clearance (MDZ Cl/F/W) and plasma 4β-hydroxycholesterol/cholesterol (4β-OHC/C) as they relate to tacrolimus (TAC) Cl/F/W in renal transplant recipients. METHODS For a cohort of 147 patients, 8 h area under the curve (AUC) values for TAC and oral MDZ were calculated besides measurement of 4β-OHC/C. A subgroup of 70 patients additionally underwent intravenous erythromycin breath test (EBT) and were administered the intravenous MDZ probe. All patients were genotyped for common polymorphisms in CYP3A4, CYP3A5 and P450 oxidoreductase, among others. RESULTS MDZ Cl/F/W, 4β-OHC/C/W, EBT and TAC Cl/F/W were all moderately correlated (r = 0.262-0.505). Neither MDZ Cl/F/W nor 4β-OHC/C/W explained variability in TAC Cl/F/W in CYP3A5 expressors (n = 29). For CYP3A5 non-expressors (n = 118), factors explaining variability in TAC Cl/F/W in a MDZ-based model were MDZ Cl/F/W (R2 = 0.201), haematocrit (R2 = 0.139), TAC formulation (R2 = 0.107) and age (R2 = 0.032; total R2 = 0.479). In the 4β-OHC/C/W-based model, predictors were 4β-OHC/C/W (R2 = 0.196), haematocrit (R2 = 0.059) and age (R2 = 0.057; total R2 = 0.312). When genotype information was ignored, predictors of TAC Cl/F/W in the whole cohort were 4β-OHC/C/W (R2 = 0.167), MDZ Cl/F/W (R2 = 0.045); Tac QD formulation (R2 = 0.036), and haematocrit (R2 = 0.032; total R2 = 0.315). 4β-OHC/C/W, but not MDZ Cl/F/W, was higher in CYP3A5 expressors because it was higher in CYP3A4*1b carriers, which were almost all CYP3A5 expressors. CONCLUSIONS A MDZ-based model explained more variability in TAC clearance in CYP3A5 non-expressors. However, 4β-OHC/C/W was superior in a model in which no genotype information was available, likely because 4β-OHC/C/W was influenced by the CYP3A4*1b polymorphism.
Collapse
Affiliation(s)
- Thomas Vanhove
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Hylke de Jonge
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Henriëtte de Loor
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Ulf Diczfalusy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Dirk R J Kuypers
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Jiang X, Dutreix C, Jarugula V, Rebello S, Won CS, Sun H. An Exposure-Response Modeling Approach to Examine the Relationship Between Potency of CYP3A Inducer and Plasma 4β-Hydroxycholesterol in Healthy Subjects. Clin Pharmacol Drug Dev 2016; 6:19-26. [PMID: 27138546 DOI: 10.1002/cpdd.267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/12/2016] [Accepted: 04/27/2016] [Indexed: 11/10/2022]
Abstract
The objectives of this analysis were to establish the exposure-response relationship between plasma rifampicin and 4β-hydroxycholesterol (4βHC) concentration and to estimate the effect of weak, moderate, and potent CYP3A induction. Plasma rifampicin and 4βHC concentration-time data from a drug-drug interaction study with rifampicin 600 mg were used for model development. An indirect response model with an effect compartment described the relationship between rifampicin and 4βHC concentrations. The model predicted that the equilibration t1/2 and 4βHC t1/2 were 72.8 and 142 hours, respectively. EM50 and Emax of rifampicin induction were 32.6 μg and 8.39-fold, respectively. The population PK-PD model was then used to simulate the effects of rifampicin 10, 20, and 100 mg on plasma 4βHC for up to 21 days, in which rifampicin 10, 20, and 100 mg were used to represent weak, moderate, and strong inducers, respectively. The model-predicted median (5th, 95th percentiles) 1.13 (1.04, 1.44)-, 1.28 (1.10, 1.71)-, and 2.10 (1.45, 3.49)-fold increases in plasma 4βHC after 14-day treatment with rifampicin 10, 20, and 100 mg, respectively. A new drug candidate can likely be classified as a weak, moderate, or strong inducer if baseline-normalized plasma 4βHC increases by <1.13-, 1.13- to 2.10-, or >2.10-fold, respectively, after 14 days of dosing.
Collapse
Affiliation(s)
- Xuemin Jiang
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| | - Catherine Dutreix
- Oncology Clinical Pharmacology, Novartis Pharma AG, Basel, Switzerland
| | - Venkateswar Jarugula
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| | - Sam Rebello
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| | - Christina S Won
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| | - Haiying Sun
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| |
Collapse
|
36
|
Hohmann N, Haefeli WE, Mikus G. CYP3A activity: towards dose adaptation to the individual. Expert Opin Drug Metab Toxicol 2016; 12:479-97. [PMID: 26950050 DOI: 10.1517/17425255.2016.1163337] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Co-medication, gene polymorphisms and co-morbidity are main causes for high variability in expression and function of the CYP3A isoenzymes. Pharmacokinetic variability is a major source of interindividual variability of drug effect and response of CYP3A substrates. While CYP3A genotyping is of limited use, direct testing of enzyme function ('phenotyping') may be more promising to achieve individualized dosing of CYP3A substrates. AREAS COVERED We will discuss available phenotyping strategies for CYP3A isoenzymes and causes of intra- and interindividual variability of CYP3A. The impact of phenotyping on the dose selection and pharmacokinetics of CYP3A substrates (docetaxel, irinotecan, tyrosine kinase inhibitors, ciclosporin, tacrolimus) are reviewed. Pubmed searches were conducted during March-November 2015 to retrieve articles related to CYP3A enzyme, phenotyping, drug interactions with CYP3A probe substrates, and phenotyping-guided dosing algorithms. EXPERT OPINION While ample data is available on the choice appropriate phenotyping drugs (midazolam, alfentanil, aplrazolam, buspirone, triazolam), less clinical trial data is available concerning strategies to usefully guide dosing in the clinical practice. Implementation into the clinical routine necessitates further research to identify (1) an easy-to-use and cheap test for CYP3A activity that (2) adequately predicts drug exposure to (3) allow a sound decision on dose adaptation and hence (4) improve clinical outcome and/or reduce the intensity or frequency of adverse drug effects.
Collapse
Affiliation(s)
- Nicolas Hohmann
- a Department of Clinical Pharmacology and Pharmacoepidemiology , University Hospital Heidelberg , Heidelberg , Germany
| | - Walter E Haefeli
- a Department of Clinical Pharmacology and Pharmacoepidemiology , University Hospital Heidelberg , Heidelberg , Germany
| | - Gerd Mikus
- a Department of Clinical Pharmacology and Pharmacoepidemiology , University Hospital Heidelberg , Heidelberg , Germany
| |
Collapse
|
37
|
Berlin S, Spieckermann L, Oswald S, Keiser M, Lumpe S, Ullrich A, Grube M, Hasan M, Venner M, Siegmund W. Pharmacokinetics and Pulmonary Distribution of Clarithromycin and Rifampicin after Concomitant and Consecutive Administration in Foals. Mol Pharm 2016; 13:1089-99. [DOI: 10.1021/acs.molpharmaceut.5b00907] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sarah Berlin
- Department
of Clinical Pharmacology, Center of Drug Absorption and Transport
(C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | | | - Stefan Oswald
- Department
of Clinical Pharmacology, Center of Drug Absorption and Transport
(C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - Markus Keiser
- Department
of Clinical Pharmacology, Center of Drug Absorption and Transport
(C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | | | - Anett Ullrich
- PRIMACYT Cell Culture Technology GmbH, Schwerin, Germany
| | - Markus Grube
- Department
of General Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - Mahmoud Hasan
- Department
of Clinical Pharmacology, Center of Drug Absorption and Transport
(C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | | | | |
Collapse
|
38
|
Gjestad C, Huynh DK, Haslemo T, Molden E. 4β-hydroxycholesterol correlates with dose but not steady-state concentration of carbamazepine: indication of intestinal CYP3A in biomarker formation? Br J Clin Pharmacol 2015; 81:269-76. [PMID: 26574235 DOI: 10.1111/bcp.12833] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 11/30/2022] Open
Abstract
AIM 4β-hydroxycholesterol (4βOHC) is an endogenous CYP3A(4) biomarker, which is elevated by use of the CYP3A4 inducer carbamazepine. Our aim was to compare to what extent serum concentration of 4βOHC correlates with dose (presystemic exposure) and steady-state concentration (systemic exposure) of carbamazepine. METHODS The study was based on a therapeutic drug monitoring material, including information about daily doses and steady-state concentrations (Css ) of carbamazepine. 4βOHC concentrations were determined in residual serum samples of 55 randomly selected carbamazepine-treated patients and 54 levetiracetam-treated patients (negative controls) by UPLC-APCI-MS/MS after liquid-liquid extraction. Correlation analyses between 4βOHC concentration and daily dose and Css of carbamazepine, respectively, were performed by Spearman's tests. In addition, 4βOHC concentrations in females vs. males were compared in induced and non-induced patients. RESULTS Median 4βOHC concentration was ~10-fold higher in carbamazepine- vs. levetiracetam-treated patients (650 vs. 54 nmol l(-1) , P < 0.0001). There was a significant, positive correlation between carbamazepine dose and 4βOHC concentration (Spearman r = 0.53, 95% confidence interval [CI] 0.27, 0.72, P < 0.001). No significant correlation between carbamazepine Css and 4βOHC concentration was found (Spearman r = 0.14; 95% CI -0.14, 0.40, P = 0.3). Enzyme-induced females had significantly higher 4βOHC concentrations than males (P < 0.001), while no significant gender difference was found in non-induced patients (P = 0.52). CONCLUSION Serum concentrations of 4βOHC correlate with presystemic, but not systemic exposure of the CYP3A4 inducer carbamazepine. This suggests a stronger inductive effect of carbamazepine on presystemic than systemic CYP3A4 phenotype and might indicate a role of the intestine in 4βOHC formation. Moreover, CYP3A4 inducibility seems to be higher in females than males.
Collapse
Affiliation(s)
| | - Duy Khanh Huynh
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| |
Collapse
|
39
|
Siegmund W, Modess C, Scheuch E, Methling K, Keiser M, Nassif A, Rosskopf D, Bednarski PJ, Borlak J, Terhaag B. Metabolic activation and analgesic effect of flupirtine in healthy subjects, influence of the polymorphic NAT2, UGT1A1 and GSTP1. Br J Clin Pharmacol 2015; 79:501-13. [PMID: 25264565 DOI: 10.1111/bcp.12522] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/20/2014] [Indexed: 12/19/2022] Open
Abstract
AIMS The rare association of flupirtine with liver injury is most likely caused by reactive quinone diimines and their oxidative formation may be influenced by the activities of N-acetyltransferases (NAT) that conjugate the less toxic metabolite D13223, and by glucuronosyltransferases (UGT) and glutathione S-transferases (GST) that generate stable terminal glucuronides and mercapturic acid derivatives, respectively. The influence of genetic polymorphisms of NAT2, UGT1A1 and GSTP1 on generation of the terminal mercapturic acid derivatives and analgesic effects was evaluated to identify potential genetic risk factors for hepatotoxicity of flupirtine. METHODS Metabolic disposition of flupirtine was measured after intravenous administration (100 mg), after swallowing an immediate-release (IR) tablet (100 mg) and after repeated administration of modified release (MR) tablets (400 mg once daily 8 days) in 36 selected healthy subjects. Analgesic effects were measured using pain models (delayed onset of muscle soreness, electric pain). RESULTS Flupirtine IR was rapidly but incompletely absorbed (∼ 72%). Repeated administration of flupirtine MR showed lower bioavailability (∼ 60%). Approximately 12% of bioavailable flupirtine IR and 8% of bioavailable flupiritine MR was eliminated as mercapturic acid derivatives into the urine independent of the UGT1A1, NAT2 and GSTP1 genotype. Carriers of variant GSTP1 alleles showed lower bioavailability but increased intestinal secretion of flupirtine and increased efficiency in experimental pain. Flupirtine was not a substrate for ABCB1 and ABCC2. CONCLUSIONS Formation of mercapturic acid derivatives is a major elimination route for flupirtine in man. However, the theoretically toxic pathway is not influenced by the frequent polymorphisms of UGT1A1, NAT2 and GSTP1.
Collapse
Affiliation(s)
- Werner Siegmund
- Department of Clinical Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
CYP3A activity based on plasma 4β-hydroxycholesterol during the early postpartum period has an effect on the plasma disposition of amlodipine. Drug Metab Pharmacokinet 2015; 30:419-24. [DOI: 10.1016/j.dmpk.2015.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/12/2015] [Accepted: 08/22/2015] [Indexed: 11/20/2022]
|
41
|
Woolsey SJ, Beaton MD, Choi YH, Dresser GK, Gryn SE, Kim RB, Tirona RG. Relationships between Endogenous Plasma Biomarkers of Constitutive Cytochrome P450 3A Activity and Single-Time-Point Oral Midazolam Microdose Phenotype in Healthy Subjects. Basic Clin Pharmacol Toxicol 2015; 118:284-91. [DOI: 10.1111/bcpt.12492] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/02/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Sarah J. Woolsey
- Department of Physiology & Pharmacology; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
- Division of Clinical Pharmacology; Department of Medicine; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
| | - Melanie D. Beaton
- Division of Gastroenterology; Department of Medicine; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
| | - Yun-Hee Choi
- Department of Epidemiology & Biostatistics; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
| | - George K. Dresser
- Division of Clinical Pharmacology; Department of Medicine; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
| | - Steven E. Gryn
- Division of Clinical Pharmacology; Department of Medicine; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
| | - Richard B. Kim
- Department of Physiology & Pharmacology; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
- Division of Clinical Pharmacology; Department of Medicine; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
| | - Rommel G. Tirona
- Department of Physiology & Pharmacology; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
- Division of Clinical Pharmacology; Department of Medicine; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
| |
Collapse
|
42
|
de Graan AJM, Sparreboom A, de Bruijn P, de Jonge E, van der Holt B, Wiemer EAC, Verweij J, Mathijssen RHJ, van Schaik RHN. 4β-hydroxycholesterol as an endogenous CYP3A marker in cancer patients treated with taxanes. Br J Clin Pharmacol 2015; 80:560-8. [PMID: 26119961 DOI: 10.1111/bcp.12707] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/20/2015] [Accepted: 06/24/2015] [Indexed: 12/22/2022] Open
Abstract
AIM Taxanes are anti-cancer agents used to treat several types of solid tumours. They are metabolized by cytochrome P450 (CYP) 3A, displaying a large pharmacokinetic (PK) variability. In this study, we evaluated the endogenous CYP3A4 marker 4β-hydroxycholesterol (4β-OHC) as a potential individual taxane PK predictor. METHODS Serum 4β-OHC and cholesterol concentrations were determined in 291 paclitaxel and 151 docetaxel-treated patients, and were subsequently correlated with taxane clearance. RESULTS In the patients treated with paclitaxel, no clinically relevant correlations between the 4β-OHC or 4β-OHC : cholesterol ratio and paclitaxel clearance were found. In the patients treated with docetaxel, 4β-OHC concentration was weakly correlated with docetaxel clearance in males (r = 0.35 P = 0.01, 95% CI 0.08, 0.58). Of the 10% patients with taxane outlier clearance values, 4β-OHC did correlate with docetaxel clearance in males (r = 0.76, P = 0.03, 95% CI 0.12, 0.95). CONCLUSION There was no clinical correlation between paclitaxel clearance and the CYP3A4 activity markers 4β-OHC or the 4β-OHC : cholesterol ratio. A weak correlation was observed between 4β-OHC and docetaxel clearance, but only in males. This endogenous CYP3A4 marker has limited predictive value for taxane clearance in patients.
Collapse
Affiliation(s)
- Anne-Joy M de Graan
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015CE, Rotterdam
| | - Alex Sparreboom
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015CE, Rotterdam.,Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, 262 Danny Thomas Place, 38105-3678, Memphis, TN, USA
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015CE, Rotterdam
| | - Evert de Jonge
- Department of Clinical Chemistry, Erasmus University Medical Center, 's-Gravendijkwal 230, 3015CE, Rotterdam, the Netherlands
| | - Bronno van der Holt
- Department of Trials and Statistics, Erasmus University Medical Center, 's-Gravendijkwal 230, 3015CE, Rotterdam, the Netherlands
| | - Erik A C Wiemer
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015CE, Rotterdam
| | - Jaap Verweij
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015CE, Rotterdam
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015CE, Rotterdam
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, 's-Gravendijkwal 230, 3015CE, Rotterdam, the Netherlands
| |
Collapse
|
43
|
Kasichayanula S, Boulton DW, Luo WL, Rodrigues AD, Yang Z, Goodenough A, Lee M, Jemal M, LaCreta F. Validation of 4β-hydroxycholesterol and evaluation of other endogenous biomarkers for the assessment of CYP3A activity in healthy subjects. Br J Clin Pharmacol 2015; 78:1122-34. [PMID: 24837659 DOI: 10.1111/bcp.12425] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 05/12/2014] [Indexed: 11/29/2022] Open
Abstract
AIMS This study aimed to assess changes in the plasma concentrationss of 4β-hydroxycholesterol (4βHC) against intravenous (i.v.) and oral midazolam (MDZ) pharmacokinetics (PK) after administration of a potent CYP3A inhibitor [ketoconazole (KETO)] and inducer [rifampicin (RIF)]. METHODS Thirty-two healthy subjects (HS) were allocated into three groups of 12 each in KETO and RIF and 10 in a placebo group (PLB). All HS were randomized to receive oral and i.v. MDZ on day 1 or 2 and on day 15 or 16 after receiving RIF (600 mg once daily), KETO (400 mg once daily) or PLB for 2 weeks. Subjects were followed until day 30. The effect of treatments on 4βHC was assessed by analyzing % change from baseline using a linear spline mixed effects model. RESULTS Compared with PLB, KETO decreased 4βHC mean values up to 13% (P = 0.003) and RIF increased 4βHC mean values up to 220% (P < 0.001). Within 14 days of stopping KETO and RIF, 4βHC had either returned to baseline (KETO) or was still returning to baseline (RIF). Compared with baseline, mean oral MDZ AUC increased by 11-fold (90% CI ranging from 9-fold to 13-fold increase) and decreased by 92% (90% CI ranging from 90% to 95% decrease) after KETO and RIF, respectively. Similar trends were observed for 6β-hydroxycortisol : cortisol (6βHCL : CL) urinary ratios. CONCLUSIONS Changes in plasma 4βHC can be utilized as a surrogate for MDZ PK after multiple doses of potent CYP3A inducers. There is a more limited dynamic range for 4βHC for assessment of potential CYP3A inhibitors. 4βHC is a valuable tool for the assessment of potential CYP3A inducers in early drug development.
Collapse
|
44
|
Evaluation of 4β-Hydroxycholesterol as a Clinical Biomarker of CYP3A4 Drug Interactions Using a Bayesian Mechanism-Based Pharmacometric Model. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e120. [PMID: 24964282 PMCID: PMC4076805 DOI: 10.1038/psp.2014.18] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/09/2014] [Indexed: 11/08/2022]
Abstract
A Bayesian mechanism–based pharmacokinetic/pharmacodynamic model of cytochrome P450 3A4 (CYP3A4) activity was developed based on a clinical study of the effects of ketoconazole and rifampin on midazolam exposure and plasma 4β-hydroxycholesterol (4βHC) concentrations. Simulations from the model demonstrated that the dynamic range of 4βHC as a biomarker of CYP3A4 induction or inhibition was narrower than that of midazolam; an inhibitor that increases midazolam area under the curve by 20-fold may only result in a 20% decrease in 4βHC after 14 days of dosing. Likewise, an inducer that elevates CYP3A4 activity by 1.2-fold would reduce the area under the curve of midazolam by 50% but would only increase 4βHC levels by 20% after 14 days of dosing. Elevation in 4βHC could be reliably detected with a twofold induction in CYP3A4 activity with study sample sizes (N ~ 6–20) typically used in early clinical development. Only a strong CYP3A4 inhibitor (e.g., ketoconazole) could be detected with similar sample sizes.
Collapse
|
45
|
Dutreix C, Lorenzo S, Wang Y. Comparison of two endogenous biomarkers of CYP3A4 activity in a drug-drug interaction study between midostaurin and rifampicin. Eur J Clin Pharmacol 2014; 70:915-20. [PMID: 24839948 PMCID: PMC4088993 DOI: 10.1007/s00228-014-1675-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Midostaurin, a multitargeted tyrosine kinase inhibitor, is primarily metabolized by CYP3A4. This midostaurin drug-drug interaction study assessed the dynamic response and clinical usefulness of urinary 6β-hydroxycortisol to cortisol ratio (6βCR) and plasma 4β-hydroxycholesterol (4βHC) for monitoring CYP3A4 activity in the presence or absence of rifampicin, a strong CYP3A4 inducer. METHODS Forty healthy adults were randomized into groups for either placebo or treatment with rifampicin 600 mg QD for 14 days. All participants received midostaurin 50 mg on day 9. Midostaurin plasma pharmacokinetic parameters were assessed. Urinary 6βCR and plasma 4βHC levels were measured on days 1, 9, 11, and 15. RESULTS Both markers remained stable over time in the control group and increased significantly in the rifampicin group. In the rifampicin group, the median increases (vs day 1) on days 9, 11, and 15 were 4.1-, 5.2-, and 4.7-fold, respectively, for 6βCR and 3.4-, 4.1-, and 4.7-fold, respectively, for 4βHC. Inter- and intrasubject variabilities in the control group were 45.6 % and 30.5 %, respectively, for 6βCR, and 33.8 % and 7.5 %, respectively, for 4βHC. Baseline midostaurin area under the concentration-time curve (AUC) correlated with 4βHC levels (ρ = -0.72; P = .003), but not with 6βCR (ρ = 0.0925; P = .6981). CONCLUSIONS Both 6βCR and 4βHC levels showed a good dynamic response range upon strong CYP3A4 induction with rifampicin. Because of lower inter- and intrasubject variability, 4βHC appeared more reliable and better predictive of CYP3A4 activity compared with 6βCR. The data from our study further support the clinical utility of these biomarkers.
Collapse
|
46
|
LC–ESI-MS/MS quantification of 4β-hydroxycholesterol and cholesterol in plasma samples of limited volume. J Pharm Biomed Anal 2013; 85:145-54. [DOI: 10.1016/j.jpba.2013.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 11/22/2022]
|
47
|
Rokitta D, Pfeiffer K, Streich C, Gerwin H, Fuhr U. The effect of organic solvents on enzyme kinetic parameters of human CYP3A4 and CYP1A2in vitro. Toxicol Mech Methods 2013; 23:576-83. [DOI: 10.3109/15376516.2013.806622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Suzuki Y, Itoh H, Sato F, Kawasaki K, Sato Y, Fujioka T, Sato Y, Ohno K, Mimata H, Kishino S. Significant increase in plasma 4β-hydroxycholesterol concentration in patients after kidney transplantation. J Lipid Res 2013; 54:2568-72. [PMID: 23833241 DOI: 10.1194/jlr.p040022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several previous studies have shown that renal failure decreases not only renal elimination but also metabolic clearance of drugs, particularly those metabolized by CYP3A. However, whether recovery of renal function results in recovery of hepatic CYP3A activity remains unknown. In this study, we evaluated the effect of renal function on CYP3A activity after kidney transplantation in patients with end-stage renal disease (ESRD) by measuring the change in CYP3A activity using plasma concentration of 4β-hydroxycholesterol as a biomarker. The study enrolled 13 patients with ESRD who underwent the first kidney allograft transplantation. Morning blood samples were collected before and 3, 7, 10, 14, 21, 30, 60, 90, 120, 150 and 180 days after kidney transplantation. Plasma concentration of 4β-hydroxycholesterol was measured using GC-MS. Compared with before kidney transplantation, creatinine clearance increased significantly from day 3 after kidney transplantation and stabilized thereafter. Plasma concentration of 4β-hydroxycholesterol was elevated significantly on days 90 and 180 after kidney transplantation. In conclusion, this study suggests the recovery of CYP3A activity with improvement in renal function after kidney transplantation in patients with ESRD.
Collapse
Affiliation(s)
- Yosuke Suzuki
- Department of Clinical Pharmacy Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yang Z, Rodrigues AD. Does the Long Plasma Half-Life of 4β-Hydroxycholesterol Impact Its Utility as a Cytochrome P450 3A (CYP3A) Metric? J Clin Pharmacol 2013; 50:1330-8. [DOI: 10.1177/0091270009360041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Oxidation with selenium dioxide: the first report of solvent-selective steroidal aromatization, efficient access to 4β,7α-dihydroxy steroids, and syntheses of natural diaromatic ergosterols. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.05.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|