1
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
2
|
Rui R, Zhou L, He S. Cancer immunotherapies: advances and bottlenecks. Front Immunol 2023; 14:1212476. [PMID: 37691932 PMCID: PMC10484345 DOI: 10.3389/fimmu.2023.1212476] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
Immunotherapy has ushered in a new era in cancer treatment, and cancer immunotherapy continues to be rejuvenated. The clinical goal of cancer immunotherapy is to prime host immune system to provide passive or active immunity against malignant tumors. Tumor infiltrating leukocytes (TILs) play an immunomodulatory role in tumor microenvironment (TME) which is closely related to immune escape of tumor cells, thus influence tumor progress. Several cancer immunotherapies, include immune checkpoint inhibitors (ICIs), cancer vaccine, adoptive cell transfer (ACT), have shown great efficacy and promise. In this review, we will summarize the recent research advances in tumor immunotherapy, including the molecular mechanisms and clinical effects as well as limitations of immunotherapy.
Collapse
Affiliation(s)
- Rui Rui
- Department of Urology, Peking University First Hospital, Beijing, China
- The Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, China
- The Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing, China
- The Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| |
Collapse
|
3
|
Mechanisms of Foreign Body Giant Cell Formation in Response to Implantable Biomaterials. Polymers (Basel) 2023; 15:polym15051313. [PMID: 36904554 PMCID: PMC10007405 DOI: 10.3390/polym15051313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Long term function of implantable biomaterials are determined by their integration with the host's body. Immune reactions against these implants could impair the function and integration of the implants. Some biomaterial-based implants lead to macrophage fusion and the formation of multinucleated giant cells, also known as foreign body giant cells (FBGCs). FBGCs may compromise the biomaterial performance and may lead to implant rejection and adverse events in some cases. Despite their critical role in response to implants, there is a limited understanding of cellular and molecular mechanisms involved in forming FBGCs. Here, we focused on better understanding the steps and mechanisms triggering macrophage fusion and FBGCs formation, specifically in response to biomaterials. These steps included macrophage adhesion to the biomaterial surface, fusion competency, mechanosensing and mechanotransduction-mediated migration, and the final fusion. We also described some of the key biomarkers and biomolecules involved in these steps. Understanding these steps on a molecular level would lead to enhance biomaterials design and improve their function in the context of cell transplantation, tissue engineering, and drug delivery.
Collapse
|
4
|
TIGIT-Fc Prolongs Corneal Allograft Survival in Mice by Upregulating TIGIT/CD226 Expression and the Proportion of Helios + Foxp3 + Treg Cells. Transplantation 2023; 107:372-381. [PMID: 35876368 DOI: 10.1097/tp.0000000000004257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Reduction of graft rejection remains key issue for supporting long-term graft retention after corneal transplantation. The relevance of Treg in reduction of corneal allografts rejection has been demonstrated. It has been recently reported that in addition to Foxp3, Helios is also considered to be a marker of activated Treg. Helios + Foxp3 + Treg are considered to be the true immunosuppressive Treg. TIGIT is an immunosuppressive costimulatory molecule that was found to be highly expressed on the surface of Helios + Foxp3 + Treg. METHODS In this study, we aimed to explore whether supplementing TIGIT would result in an expansion and activation of Helios + Foxp3 + Treg thus to mediate an immune tolerance following corneal transplantation by administering topically and systemically TIGIT-Fc treatment in murine models. RESULTS TIGIT-Fc treatment significantly improved the survival of corneal allograft compared with the control group. TIGIT-Fc treatment increased TIGIT/CD226 expression, the proportion of Helios + Foxp3 + Treg cells and an enhanced ex vivo suppressive effect from peripheral lymph nodes isolated Treg cells. Furthermore, the expression of Helios in corneal grafts was upregulated, whereas expression of CD226 and production of aqueous interferon-γ and VEGF were reduced by TIGIT-Fc treatment. CONCLUSIONS TIGIT-Fc treatment could specifically upregulate Helios + Foxp3 + Treg-mediated immune response after allogeneic corneal transplantation via TIGIT/CD226-CD155 pathway which improves the survival of allografts.
Collapse
|
5
|
Murata K, Murao A, Aziz M, Wang P. Extracellular CIRP Induces Novel Nectin-2+ (CD112+) Neutrophils to Promote Th1 Differentiation in Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:310-321. [PMID: 36480269 PMCID: PMC9852067 DOI: 10.4049/jimmunol.2200308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/17/2022] [Indexed: 12/26/2022]
Abstract
Neutrophil heterogeneity represents different subtypes, states, phenotypes, and functionality of neutrophils implicated in sepsis pathobiology. Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern that promotes inflammation and alters neutrophil phenotype and function through TLR4. Nectin-2 or CD112 is an Ig-like superfamily member. CD112 serves as the ligand for DNAM-1 (CD226), which induces Th1 differentiation in naive CD4+ T cells. Th1 cells produce IFN-γ to fuel inflammation. CD112 is expressed mainly on APCs, but its expression in neutrophils is unknown. We hypothesize that eCIRP induces CD112 expression in neutrophils, promoting Th1 differentiation in sepsis. Incubation of neutrophils with recombinant murine (rm)CIRP significantly increased the gene and protein expression of CD112 in neutrophils. Anti-TLR4 Ab-treated neutrophils significantly decreased CD112+ neutrophils compared with controls upon rmCIRP stimulation. After 4 h of rmCIRP injection in mice, CD112+ neutrophils were significantly increased in the blood and spleen. At 20 h after cecal ligation and puncture-induced sepsis, CD112+ neutrophils were also significantly increased. Blood and splenic CD112+ neutrophils in septic CIRP-/- mice were much lower than in septic wild-type mice. Coculture of naive CD4 T cells with rmCIRP-treated (CD112+) neutrophils significantly increased IFN-γ-producing Th1 cells compared with coculture with PBS-treated neutrophils. CD112 Ab significantly attenuated Th1 differentiation induced by rmCIRP-treated neutrophils. Thus, eCIRP increases CD112 expression in neutrophils via TLR4 to promote Th1 differentiation in sepsis. Targeting eCIRP may attenuate sepsis by reducing Th1-promoting CD112+ neutrophils.
Collapse
Affiliation(s)
- Kensuke Murata
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| |
Collapse
|
6
|
CD96 as a Potential Immune Regulator in Cancers. Int J Mol Sci 2023; 24:ijms24021303. [PMID: 36674817 PMCID: PMC9866520 DOI: 10.3390/ijms24021303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
The discovery of CTLA-4 and PD-1 checkpoints has prompted scientific researchers and the pharmaceutical industry to develop and conduct extensive research on tumor-specific inhibitors. As a result, the list of potential immune checkpoint molecules is growing over time. Receptors for nectin and nectin-like proteins have recently emerged as promising targets for cancer immunotherapy. Potential immune checkpoints, including CD226, TIGIT, and CD96, belong to this receptor class. Among them, CD96 has received little attention. In this mini-review, we aim to discuss the basic biology of CD96 as well as the most recent relevant research on this as a promising candidate for cancer immunotherapy.
Collapse
|
7
|
Rich RR, Cron RQ. The Human Immune Response. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
8
|
CD226 Deficiency Alleviates Murine Allergic Rhinitis by Suppressing Group 2 Innate Lymphoid Cell Responses. Mediators Inflamm 2022; 2022:1756395. [PMID: 35846105 PMCID: PMC9283078 DOI: 10.1155/2022/1756395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Allergic rhinitis (AR) is an immunoglobulin E-mediated type 2 inflammation of the nasal mucosa that is mainly driven by type 2 helper T cells (Th2) and type 2 innate lymphoid cells (ILC2s). CD226 is a costimulatory molecule associated with inflammatory response and is mainly expressed on T cells, natural killer cells, and monocytes. This study is aimed at elucidating the role of CD226 in allergic inflammatory responses in murine AR using global and CD4+ T cell-specific Cd226 knockout (KO) mice. AR nasal symptoms were assessed based on the frequency of nose rubbing and sneezing. Hematoxylin and eosin and periodic acid–Schiff staining and quantitative real-time PCR methods were used to determine eosinophils, goblet cells, and ILC2-associated mRNA levels in the nasal tissues of mice. CD226 levels on ILC2s were detected using flow cytometry, and an immunofluorescence double staining assay was employed to determine the number of ILC2s in the nasal mucosa. The results showed that global Cd226 KO mice, but not CD4+ T cell-specific Cd226 KO mice, exhibited attenuated AR nasal symptoms. Eosinophil recruitment, goblet cell proliferation, and Th2-inflammatory cytokines were significantly reduced, which resulted in the alleviation of allergic and inflammatory responses. ILC2s in the murine nasal mucosa expressed higher levels of CD226 after ovalbumin stimulation, and CD226 deficiency led to a reduction in the proportion of nasal ILC2s and ILC2-related inflammatory gene expression. Hence, the effect of CD226 on the AR mouse model may involve the regulation of ILC2 function rather than CD4+ T cells.
Collapse
|
9
|
Yue C, Gao S, Li S, Xing Z, Qian H, Hu Y, Wang W, Hua C. TIGIT as a Promising Therapeutic Target in Autoimmune Diseases. Front Immunol 2022; 13:911919. [PMID: 35720417 PMCID: PMC9203892 DOI: 10.3389/fimmu.2022.911919] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/13/2022] [Indexed: 12/19/2022] Open
Abstract
Co-inhibitory receptors (IRs) are molecules that protect host against autoimmune reactions and maintain peripheral self-tolerance, playing an essential role in maintaining immune homeostasis. In view of the substantial clinical progresses of negative immune checkpoint blockade in cancer treatment, the role of IRs in autoimmune diseases is also obvious. Several advances highlighted the substantial impacts of T cell immunoglobulin and ITIM domain (TIGIT), a novel IR, in autoimmunity. Blockade of TIGIT pathway exacerbates multiple autoimmune diseases, whereas enhancement of TIGIT function has been shown to alleviate autoimmune settings in mice. These data suggested that TIGIT pathway can be manipulated to achieve durable tolerance to treat autoimmune disorders. In this review, we provide an overview of characteristics of TIGIT and its role in autoimmunity. We then discuss recent approaches and future directions to leverage our knowledge of TIGIT as therapeutic target in autoimmune diseases.
Collapse
Affiliation(s)
- Chenran Yue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - Shuting Li
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhouhang Xing
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hengrong Qian
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying Hu
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Loss of CD226 protects apolipoprotein E-deficient mice from diet-induced atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166452. [PMID: 35618182 DOI: 10.1016/j.bbadis.2022.166452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/18/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022]
Abstract
CD226 is a costimulatory molecule that regulates immune cell functions in T cells, natural killer cells, and macrophages. Because macrophage-derived foam cell formation is a crucial factor contributing to the development of atherosclerosis, we aimed to evaluate the potential roles of CD226 in the pathogenesis of atherosclerosis. The effects of CD226 on atherosclerosis were investigated in CD226 and apolipoprotein E double-knockout (CD226-/- ApoE-/-) mice fed with a high-cholesterol atherogenic diet. CD226 expression in macrophages was evaluated using flow cytometry. Histopathological analysis was performed to evaluate the atherosclerotic lesions. Inflammatory cell infiltration was detected using immunofluorescence staining. Bone marrow-derived macrophages (BMDMs) and peritoneal macrophages (PEMs) were isolated from the mice and used to explore the mechanism in vitro. The in vivo results indicated that CD226 knockdown protected against atherosclerosis in ApoE-/- mice, evidenced by reduced plaque accumulation in the brachiocephalic artery, aortic roots, and main aortic tree. CD226 gene-deficient macrophages showed reduced foam cell formation under ox-low density lipoprotein stimulation compared with wild-type (WT) cells. CD226 deficiency also decreased the expression of CD36 and scavenger receptor (SR)-A (responsible for lipoprotein uptake) but increased the expression of ATP-binding cassette transporter A1 and G1 (two transporters for cholesterol efflux). Therefore, loss of CD226 hinders foam cell formation and atherosclerosis progression, suggesting that CD226 is a promising new therapeutic target for atherosclerosis.
Collapse
|
11
|
Wang D, Gu Y, Yan X, Huo C, Wang G, Zhao Y, Teng M, Li Y. Role of CD155/TIGIT in Digestive Cancers: Promising Cancer Target for Immunotherapy. Front Oncol 2022; 12:844260. [PMID: 35433470 PMCID: PMC9005749 DOI: 10.3389/fonc.2022.844260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment restricts the function and survival of various immune cells by up-regulating inhibitory immune checkpoints, and participates in the immune escape of tumors. The development of immunotherapies targeting immune checkpoints, such as programmed cell death receptor 1 antibody and anti-cytotoxic T lymphocyte-associated antigen 4 antibody, has provided many options for cancer treatment. The efficacy of other immune checkpoint inhibitors is also under development and research. Among them, T cell immunoreceptor with Ig and ITIM domains (TIGIT) has shown excellent clinical application prospects. Correspondingly, poliovirus receptor (PVR, CD155), one of the main ligands of TIGIT, is mainly expressed in various human malignant tumors and myeloid cells. CD155 interacts with TIGIT on natural killer cells and T cells, mediating inhibitory immunomodulatory regulation. This study summarized the mechanism of CD155/TIGIT in regulating immune cells and its role in the occurrence and development of digestive system tumors, aiming to provide a new perspective for immunotherapy of digestive cancers.
Collapse
Affiliation(s)
- Daijun Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yanmei Gu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Xin Yan
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Chengdong Huo
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Guan Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yang Zhao
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Muzhou Teng
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Ma J, Hu W, Zhang D, Xie J, Duan C, Liu Y, Wang Y, Xu X, Cheng K, Jin B, Zhang Y, Zhuang R. CD226 knockout alleviates high-fat diet induced obesity by suppressing proinflammatory macrophage phenotype. J Transl Med 2021; 19:477. [PMID: 34823548 PMCID: PMC8620575 DOI: 10.1186/s12967-021-03150-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 12/30/2022] Open
Abstract
Obesity is associated with chronic low-grade inflammation, contributing to an increasing prevalence of chronic metabolic diseases, such as insulin resistance, non-alcoholic fatty liver disease (NALFD), and steatohepatitis. Macrophages are the predominant immune cells in adipose tissues. Adipose tissue macrophages (ATMs) would switch to pro-inflammatory M1 state during obesity, causing local and systemic inflammation. However, the regulatory mechanism of ATMs has not yet been well described within this process. Using a high-fat diet (HFD)–induced mouse obesity model, we found that the costimulatory molecule CD226 was highly expressed on ATMs and knockout (KO) of CD226 alleviated obesity caused by HFD. Loss of CD226 reduced the accumulation of ATMs and hindered macrophage M1 polarization, with lower serum proinflammatory cytokine levels. Furthermore, deficiency of CD226 on ATMs decreased the phosphorylation levels of VAV1, AKT, and FOXO1 and thereby upregulated PPAR-γ. Further administration of PPAR-γ inhibitor restored M1 phenotype in CD226KO ATMs. In summary, loss of CD226 alleviates the HFD-induced obesity and systemic inflammation through inhibition of the accumulation and M1 polarization of ATMs in which PPAR-γ-dependent signaling pathway is involved, suggesting that CD226 may be identified as a potential molecular target for the clinical treatment of obesity.
Collapse
Affiliation(s)
- Jingchang Ma
- Department of Immunology, Fourth Military Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Wei Hu
- Department of Immunology, Fourth Military Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Dongliang Zhang
- Department of Immunology, Fourth Military Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jiangang Xie
- Department of Immunology, Fourth Military Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yitian Liu
- Department of Immunology, Fourth Military Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xuexue Xu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China
| | - Kun Cheng
- Department of Immunology, Fourth Military Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yuan Zhang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China.
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China. .,Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China.
| |
Collapse
|
13
|
Nakano M, Ayano M, Kushimoto K, Kawano S, Higashioka K, Inokuchi S, Mitoma H, Kimoto Y, Akahoshi M, Ono N, Arinobu Y, Akashi K, Horiuchi T, Niiro H. Association of elevated serum soluble CD226 levels with the disease activity and flares of systemic lupus erythematosus. Sci Rep 2021; 11:16162. [PMID: 34373559 PMCID: PMC8352936 DOI: 10.1038/s41598-021-95711-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/23/2021] [Indexed: 11/09/2022] Open
Abstract
CD226 is an activating receptor expressed on the cell surface of natural killer cells and T cells. Although CD226 polymorphism is known to be involved in systemic lupus erythematosus (SLE), the involvement of soluble CD226 (sCD226) in SLE is still unknown. In the present study, we measured serum sCD226 levels using an enzyme-linked immunosorbent assay in 58 SLE patients and 33 healthy controls (HCs) and evaluated their associations with SLE Disease Activity Index 2000 (SLEDAI-2K), clinical manifestations, laboratory data, and the cumulative probability of flare. Serum sCD226 levels showed no significant differences between SLE patients and HCs. However, sCD226 levels were significantly elevated in active SLE patients with a SLEDAI-2K score of ≥ 20 compared with HCs. In SLE patients, sCD226 levels were significantly correlated with SLEDAI-2K scores and anti-dsDNA antibody titers. Moreover, the cumulative probability of flare was markedly higher in patients with high sCD226 than in those with low sCD226. In patients with neuropsychiatric involvement, sCD226 levels were elevated and reflected neuropsychiatric disease activity. These findings indicate that serum sCD226 levels are associated with disease activity and flares of SLE. Thus, it may be a useful biomarker for SLE, and its monitoring allows for more precise SLE management.
Collapse
Affiliation(s)
- Miki Nakano
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masahiro Ayano
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Cancer Stem Cell Research, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kazuo Kushimoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shotaro Kawano
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuhiko Higashioka
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shoichiro Inokuchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroki Mitoma
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yasutaka Kimoto
- Department of Internal Medicine, Kyushu University Beppu Hospital, 4546 Tsurumibaru, Tsurumi, Beppu, 874-0838, Japan
| | - Mitsuteru Akahoshi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nobuyuki Ono
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yojiro Arinobu
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine, Kyushu University Beppu Hospital, 4546 Tsurumibaru, Tsurumi, Beppu, 874-0838, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
14
|
Heidarzadeh M, Gürsoy-Özdemir Y, Kaya M, Eslami Abriz A, Zarebkohan A, Rahbarghazi R, Sokullu E. Exosomal delivery of therapeutic modulators through the blood-brain barrier; promise and pitfalls. Cell Biosci 2021; 11:142. [PMID: 34294165 PMCID: PMC8296716 DOI: 10.1186/s13578-021-00650-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Nowadays, a large population around the world, especially the elderly, suffers from neurological inflammatory and degenerative disorders/diseases. Current drug delivery strategies are facing different challenges because of the presence of the BBB, which limits the transport of various substances and cells to brain parenchyma. Additionally, the low rate of successful cell transplantation to the brain injury sites leads to efforts to find alternative therapies. Stem cell byproducts such as exosomes are touted as natural nano-drug carriers with 50-100 nm in diameter. These nano-sized particles could harbor and transfer a plethora of therapeutic agents and biological cargos to the brain. These nanoparticles would offer a solution to maintain paracrine cell-to-cell communications under healthy and inflammatory conditions. The main question is that the existence of the intact BBB could limit exosomal trafficking. Does BBB possess some molecular mechanisms that facilitate the exosomal delivery compared to the circulating cell? Although preliminary studies have shown that exosomes could cross the BBB, the exact molecular mechanism(s) beyond this phenomenon remains unclear. In this review, we tried to compile some facts about exosome delivery through the BBB and propose some mechanisms that regulate exosomal cross in pathological and physiological conditions.
Collapse
Affiliation(s)
- Morteza Heidarzadeh
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey.,Neurology Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Mehmet Kaya
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey.,Physiology Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Aysan Eslami Abriz
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Emel Sokullu
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey. .,Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey.
| |
Collapse
|
15
|
Nakano M, Ayano M, Kushimoto K, Kawano S, Higashioka K, Inokuchi S, Mitoma H, Kimoto Y, Akahoshi M, Ono N, Arinobu Y, Akashi K, Horiuchi T, Niiro H. Increased Proportion of CD226 + B Cells Is Associated With the Disease Activity and Prognosis of Systemic Lupus Erythematosus. Front Immunol 2021; 12:713225. [PMID: 34367178 PMCID: PMC8334729 DOI: 10.3389/fimmu.2021.713225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Background CD226, an activating receptor expressed on the surface of natural killer (NK) cells and T cells, is also seen on B cells and CD226 polymorphism is associated with systemic lupus erythematosus (SLE). Because the specific roles of CD226+ B cells in SLE are still unknown, we investigated the association of CD226+ B cells with SLE. Methods We measured CD226 expression on B cells and its subsets using flow cytometry in 48 SLE patients and 24 healthy controls (HCs). We assessed the relationships between CD226+ B cells and SLE Disease Activity Index 2000 (SLEDAI-2K), clinical manifestations, laboratory data, and prognosis after 12 months. Results The proportions of CD226+ cells in whole B cells and all its subsets were significantly higher in SLE patients than HCs. In SLE patients, the proportions of CD226+ B cells and CD226+ switched-memory (SM) B cells were significantly correlated with SLEDAI-2K scores and anti-dsDNA antibody titers, and negatively correlated with serum complement levels. Moreover, basal percentages of CD226+ B cells and CD226+ SM B cells were low in patients who were in Lupus Low Disease Activity State after 12 months. In patients with renal involvement, the proportion of CD226+ B cells increased. Additionally, the proportion of CD226+ B cells was higher in patients who were not in complete renal remission after 12 months. Conclusions Increased proportion of CD226+ B cells was associated with disease activity and prognosis of SLE. CD226+ B cells may be a useful biomarker for the management of SLE.
Collapse
Affiliation(s)
- Miki Nakano
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masahiro Ayano
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Department of Cancer Stem Cell Research, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kazuo Kushimoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shotaro Kawano
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kazuhiko Higashioka
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shoichiro Inokuchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroki Mitoma
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasutaka Kimoto
- Department of Internal Medicine, Kyushu University Beppu Hospital, Beppu, Japan
| | - Mitsuteru Akahoshi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Nobuyuki Ono
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yojiro Arinobu
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
16
|
Opstelten R, Suwandi JS, Slot MC, Morgana F, Scott AM, Laban S, Nikolic T, Turksma AW, Kroeze A, Voermans C, Zwaginga JJ, Roep BO, Amsen D. GPA33 is expressed on multiple human blood cell types and distinguishes CD4 + central memory T cells with and without effector function. Eur J Immunol 2021; 51:1377-1389. [PMID: 33728639 PMCID: PMC8251590 DOI: 10.1002/eji.202048744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022]
Abstract
The Ig superfamily protein glycoprotein A33 (GPA33) has been implicated in immune dysregulation, but little is known about its expression in the immune compartment. Here, we comprehensively determined GPA33 expression patterns on human blood leukocyte subsets, using mass and flow cytometry. We found that GPA33 was expressed on fractions of B, dendritic, natural killer and innate lymphoid cells. Most prominent expression was found in the CD4+ T cell compartment. Naïve and CXCR5+ regulatory T cells were GPA33high, and naïve conventional CD4+ T cells expressed intermediate GPA33 levels. The expression pattern of GPA33 identified functional heterogeneity within the CD4+ central memory T cell (Tcm) population. GPA33+ CD4+ Tcm cells were fully undifferentiated, bona fide Tcm cells that lack immediate effector function, whereas GPA33– Tcm cells exhibited rapid effector functions and may represent an early stage of differentiation into effector/effector memory T cells before loss of CD62L. Expression of GPA33 in conventional CD4+ T cells suggests a role in localization and/or preservation of an undifferentiated state. These results form a basis to study the function of GPA33 and show it to be a useful marker to discriminate between different cellular subsets, especially in the CD4+ T cell lineage.
Collapse
Affiliation(s)
- Rianne Opstelten
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jessica S Suwandi
- Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Manon C Slot
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Florencia Morgana
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Sandra Laban
- Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Tatjana Nikolic
- Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Annelies W Turksma
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anna Kroeze
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Carlijn Voermans
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jaap-Jan Zwaginga
- Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands.,Sanquin Research, Center for Clinical Transfusion Research and Jon J van Rood Center for Clinical Transfusion Science, Leiden University Medical Center, Leiden, Netherlands
| | - Bart O Roep
- Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands.,Department of Diabetes Immunology, Diabetes & Metabolism Research Institute at the Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Derk Amsen
- Department of Hematopoiesis and Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Zhai Y, Moosavi R, Chen M. Immune Checkpoints, a Novel Class of Therapeutic Targets for Autoimmune Diseases. Front Immunol 2021; 12:645699. [PMID: 33968036 PMCID: PMC8097144 DOI: 10.3389/fimmu.2021.645699] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases, such as multiple sclerosis and type-1 diabetes, are the outcomes of a failure of immune tolerance. Immune tolerance is sustained through interplays between two inter-dependent clusters of immune activities: immune stimulation and immune regulation. The mechanisms of immune regulation are exploited as therapeutic targets for the treatment of autoimmune diseases. One of these mechanisms is immune checkpoints (ICPs). The roles of ICPs in maintaining immune tolerance and hence suppressing autoimmunity were revealed in animal models and validated by the clinical successes of ICP-targeted therapeutics for autoimmune diseases. Recently, these roles were highlighted by the clinical discovery that the blockade of ICPs causes autoimmune disorders. Given the crucial roles of ICPs in immune tolerance, it is plausible to leverage ICPs as a group of therapeutic targets to restore immune tolerance and treat autoimmune diseases. In this review, we first summarize working mechanisms of ICPs, particularly those that have been utilized for therapeutic development. Then, we recount the agents and approaches that were developed to target ICPs and treat autoimmune disorders. These agents take forms of fusion proteins, antibodies, nucleic acids, and cells. We also review and discuss safety information for these therapeutics. We wrap up this review by providing prospects for the development of ICP-targeting therapeutics. In summary, the ever-increasing studies and results of ICP-targeting of therapeutics underscore their tremendous potential to become a powerful class of medicine for autoimmune diseases.
Collapse
Affiliation(s)
- Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Reza Moosavi
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Mingnan Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
18
|
Wang N, Chen P, Song Y, Shen Y, Li J, Li X, Fang L, Chen L. CD226 deficiency attenuates the homeostasis and suppressive capacity of Tr1 cells. Mol Immunol 2021; 132:192-198. [PMID: 33451863 DOI: 10.1016/j.molimm.2021.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/09/2020] [Accepted: 01/03/2021] [Indexed: 11/16/2022]
Abstract
T regulatory type 1 (Tr1) cells act as a key regulator in maintaining peripheral immune tolerance. Several costimulatory molecules for T cells have been identified in Tr1 cells, but their intrinsic functions are still unclear. Here we showed CD226 was highly expressed in Tr1 cells. CD226-deficient Tr1 cells were defective in proliferation and sensitive to apoptosis. In addition, CD226-deficient Tr1 cells showed lower inhibitory capacity of T cell proliferation and reduced IL-10 production. CD226 deficiency also inhibited Tr1 cell differentiation in vitro. When stimulated with IL-2, CD226-deficient Tr1 cells showed impaired STAT5 signaling. Therefore, our data suggest CD226 might play an important role in Tr1 cell homeostasis, function and differentiation. This study facilitates further biological characterization of this regulatory T cell subset.
Collapse
Affiliation(s)
- Ning Wang
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China; Department of Immunology, Xi'an Medical University, No.1, Xinwang Road, Xi'an 710021, China
| | - Ping Chen
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China; Medical College of Yan'an University, No.580, Shengdi Road, Yan'an 716000, China; Department of Neurology, Xianyang Hospital of Yan'an University, No.38, Wenlin Road, Xianyang 712000, China
| | - Yun Song
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China
| | - Yuting Shen
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China
| | - Juan Li
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China; Faculty of Medicine, Northwest University, Xi'an 710069, China
| | - Xinyu Li
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China; Medical College of Yan'an University, No.580, Shengdi Road, Yan'an 716000, China
| | - Liang Fang
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China.
| | - Lihua Chen
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China; Faculty of Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|
19
|
Low junctional adhesion molecule-A expression is associated with an epithelial to mesenchymal transition and poorer outcomes in high-grade serous carcinoma of uterine adnexa. Mod Pathol 2020; 33:2361-2377. [PMID: 32514162 DOI: 10.1038/s41379-020-0586-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022]
Abstract
High-grade serous carcinoma of uterine adnexa (HGSC) is the most frequent histotype of epithelial ovarian cancer and has a poor 5-year survival rate due to late-stage diagnosis and the poor efficacy of standard treatments. Novel biomarkers of cancer outcome are needed to identify new targetable pathways and improve personalized treatments. Cell-surface screening of 26 HGSC cell lines by high-throughput flow cytometry identified junctional adhesion molecule 1 (JAM-A, also known as F11R) as a potential biomarker. Using a multi-labeled immunofluorescent staining coupled with digital image analysis, protein levels of JAM-A were quantified in tissue microarrays from three HGSC patient cohorts: a discovery cohort (n = 101), the Canadian Ovarian Experimental Unified Resource cohort (COEUR, n = 1158), and the Canadian Cancer Trials Group OV16 cohort (n = 267). Low JAM-A level was associated with poorer outcome in the three cohorts by Kaplan-Meier (p = 0.023, p < 0.001, and p = 0.036, respectively) and was an independent marker of shorter survival in the COEUR cohort (HR = 0.517 (0.381-703), p < 0.001). When analyses were restricted to patients treated by taxane-platinum-based chemotherapy, low JAM-A protein expression was associated with poorer responses in the COEUR (p < 0.001) and OV16 cohorts (p = 0.006) by Kaplan-Meier. Decreased JAM-A gene expression was an indicator of poor outcome in gene expression datasets including The Cancer Genome Atlas (n = 606, p = 0.002) and Kaplan-Meier plotter (n = 1816, p = 0.024). Finally, we observed that tumors with decreased JAM-A expression exhibited an enhanced epithelial to mesenchymal transition (EMT) signature. Our results demonstrate that JAM-A expression is a robust prognostic biomarker of HGSC and may be used to discriminate tumors responsive to therapies targeting EMT.
Collapse
|
20
|
Wang N, Yi H, Fang L, Jin J, Ma Q, Shen Y, Li J, Liang S, Xiong J, Li Z, Zeng H, Jiang F, Jin B, Chen L. CD226 Attenuates Treg Proliferation via Akt and Erk Signaling in an EAE Model. Front Immunol 2020; 11:1883. [PMID: 32983109 PMCID: PMC7478170 DOI: 10.3389/fimmu.2020.01883] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 07/13/2020] [Indexed: 01/15/2023] Open
Abstract
Cluster of differentiation 226 (CD226) molecules play a crucial role in the activation of effector CD4+ T cells during the immune response process, but a cell-intrinsic function of CD226 in CD4+ T subsets is not clear. In this study, we showed that Cd226−/− mice were resistant to myelin oligodendrocyte glycoprotein peptide 35-55 (MOG35−55)-induced experimental autoimmune encephalomyelitis (EAE) with highly expressed IL-10+CD4+ T cells and downregulated IL-17A+CD4+ T cells when compared with wild-type (WT) mice. Th17 cell infiltration into the central nervous system (CNS) was largely decreased in the absence of CD226 during EAE. CD226 deficiency facilitated the proliferation of regulatory T cells (Tregs), with increased numbers of Tregs observed in EAE mice, and supported the elevated induced regulatory T cell (iTregs) proliferation in vitro. The Akt and Erk signaling pathways were shown to be involved in Cd226−/− Treg proliferation and function in vivo and in vitro. These findings collectively indicate that CD226 is a key molecule regulating the Treg-mediated suppression of autoimmune responses by inhibiting Treg proliferation. Thus, the results of this study identify additional mechanisms by which CD226 regulates Treg functions in EAE and supports the potential therapeutic effects of anti-CD226 molecules on autoimmune diseases.
Collapse
Affiliation(s)
- Ning Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China.,Department of Immunology, Xi'an Medical University, Xi'an, China
| | - Hongyu Yi
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Liang Fang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Jingyi Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Qianli Ma
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yuting Shen
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Juan Li
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Shuang Liang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Jie Xiong
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Zhuo Li
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Hanyu Zeng
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Fengliang Jiang
- Department of Immunology, Xi'an Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Huang Z, Qi G, Miller JS, Zheng SG. CD226: An Emerging Role in Immunologic Diseases. Front Cell Dev Biol 2020; 8:564. [PMID: 32850777 PMCID: PMC7396508 DOI: 10.3389/fcell.2020.00564] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/15/2020] [Indexed: 01/03/2023] Open
Abstract
CD226, a member of the immunoglobulin superfamily, is a functional protein initially expressed on natural killer and T cells. In recent years, the function of CD226 has been increasingly realized and researched. Accumulating evidence shows that CD226 is closely related to the occurrence of autoimmune diseases, infectious diseases, and tumors. Because of the CD226’s increasing importance, the author herein discusses the structure, mechanism of action, and role of CD226 in various pathophysiological environments, allowing for further understanding of the function of CD226 and providing the basis for further research in related diseases.
Collapse
Affiliation(s)
- Zhiyi Huang
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Guangyin Qi
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Joseph S Miller
- Ohio University Heritage College of Osteopathic Medicine, Dublin, OH, United States
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
22
|
Ghavimi R, Alsahebfosoul F, Salehi R, Kazemi M, Etemadifar M, Zavaran Hosseini A. High-resolution melting curve analysis of polymorphisms within CD58, CD226, HLA-G genes and association with multiple sclerosis susceptibility in a subset of Iranian population: a case-control study. Acta Neurol Belg 2020; 120:645-652. [PMID: 30128676 DOI: 10.1007/s13760-018-0992-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with unknown etiology, which typically is manifested in early to middle adulthood. Recently, genome-wide association studies have identified susceptibility of immune-related genes to be involved in MS predisposition. The goal of the current study was to investigate the association of single nucleotide polymorphisms (SNP) with the immunologically related genes responsible for the disease, composed of CD58 (rs2300747 A>G), CD226 (rs763361 C>T), and HLA-G (rs1611715 A>C), with MS susceptibility. In this case-control study, a total of 200 patients suffering from relapsing-remitting multiple sclerosis and 200 healthy individuals were recruited. DNA was extracted from blood and then all subjects were genotyped for the polymorphism within mentioned genes by high-resolution melting (HRM) real-time PCR method. Statistical analyses were performed using SPSS software (version 20; SPSS, Chicago, IL, USA). Our finding showed that there are significant differences in genotype and allele frequencies between two groups regarding rs763361 (P = 0.035, OR 0.64, CI 95% for C allele) and rs1611715 (P = 0.038, OR 1.57, CI 95% for AA genotype) polymorphisms within CD226 and HLA-G genes, respectively. Concerning rs2300747 polymorphism on CD58 gene, no significant differences were found between cases and controls. In general, results from the current study indicate that CD226 and HLA-G, but not CD58 genetic polymorphisms are associated with increased risk of MS in Isfahan population similar to European populations. However, to elucidate how these SNPs contribute to MS pathogenesis, functional studies are needed.
Collapse
|
23
|
Abstract
Checkpoint inhibitors have become an efficient way to treat cancers. Indeed, anti-CTLA-4, anti-PD1, and anti-PDL-1 antibodies are now used as therapies for cancers. However, while these therapies are very efficient in certain tumors, they remain poorly efficient in others. This might be explained by the immune infiltrate, the expression of target molecules, and the influence of the tumor microenvironment. It is therefore critical to identify checkpoint antigens that represent alternative targets for immunotherapies. PVR-like molecules play regulatory roles in immune cell functions. These proteins are expressed by different cell types and have been shown to be upregulated in various malignancies. PVR and Nectin-2 are expressed by tumor cells as well as myeloid cells, while TIGIT, CD96, and DNAM-1 are expressed on effector lymphoid cells. PVR is able to bind DNAM-1, CD96, and TIGIT, which results in two distinct profiles of effector cell activation. Indeed, while binding to DNAM-1 induces the release of cytokines and cytotoxicity of cytotoxic effector cells, binding TIGIT induces an immunosuppressive and non-cytotoxic profile. PVR is also able to bind CD96, which induces an immunosuppressive response in murine models. Unfortunately, in humans, results remain contradictory, and this interaction might induce the activation or the suppression of the immune response. Similarly, Nectin-2 was shown to bind TIGIT and to induce regulatory profiles in effectors cells such as NK and T cells. Therefore, these data highlight the potential of each of the molecules of the “PVR–TIGIT axis” as a potential target for immune checkpoint therapy. However, many questions remain to be answered to fully understand the mechanisms of this synapse, in particular for human CD96 and Nectin-2, which are still understudied. Here, we review the recent advances in “PVR–TIGIT axis” research and discuss the potential of targeting this axis by checkpoint immunotherapies.
Collapse
Affiliation(s)
- Laurent Gorvel
- Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| | - Daniel Olive
- Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| |
Collapse
|
24
|
|
25
|
Regulation of Cancer Immune Checkpoint: Mono- and Poly-Ubiquitination: Tags for Fate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:295-324. [PMID: 32185716 DOI: 10.1007/978-981-15-3266-5_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The antagonism, stalemate and compromise between the immune system and tumor cells is closely associated with tumor development and progression. In recent years, tumor immunotherapy has made continuous breakthroughs. It has become an important approach for cancer treatment, improving the survival and prognosis of more and more tumor patients. Further investigating the mechanism of tumor immune regulation, and exploring tumor immunotherapy targets with high specificity and wide applicability will provide researchers and clinicians with favorable weapons towards cancer. Ubiquitination affects protein fate through influencing the activity, stability and location of target protein. The regulation of substrate protein fate by ubiquitination is involved in cell cycle, apoptosis, transcriptional regulation, DNA repair, immune response, protein degradation and quality control. E3 ubiquitin ligase selectively recruits specific protein substrates through specific protein-protein interactions to determine the specificity of the overall ubiquitin modification reaction. Immune-checkpoint inhibitory pathway is an important mechanism for tumor cells to evade immune killing, which can inhibit T cell activity. Blocking the immune checkpoints and activating T cells through targeting the negative regulatory factors of T cell activation and removing the "brake" of T lymphocytes can enhance T cells immune response against tumors. Therefore, blocking the immune checkpoint is one of the methods to enhance the activity of T cells, and it is also a hot target for the development of anti-tumor drugs in recent years, whose inhibitors have shown good effect in specific tumor treatment. Ubiquitination, as one of the most important posttranslational modification of proteins, also modulates the expression, intracellular trafficking, subcellular and membranous location of immune checkpoints, regulating the immune surveillance of T cells to tumors.
Collapse
|
26
|
Wang C, Li Q, Lv J, Sun X, Cao Y, Yu K, Miao C, Zhang ZS, Yao Z, Wang Q. Alpha-hemolysin of uropathogenic Escherichia coli induces GM-CSF-mediated acute kidney injury. Mucosal Immunol 2020; 13:22-33. [PMID: 31719643 PMCID: PMC6914670 DOI: 10.1038/s41385-019-0225-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 02/04/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs), inducing acute pyelonephritis and may result in permanent renal scarring and failure. Alpha-hemolysin (HlyA), a key UPEC toxin, causes serious tissue damage; however, the mechanism through which HlyA induces kidney injury remains unclear. In the present study, granulocyte-macrophage colony-stimulating factor (GM-CSF) secreted by renal epithelial cells was upregulated by HlyA in vitro and in vivo, which induced M1 macrophage accumulation in kidney, and ADAM10 was found involved in HlyA-induced GM-CSF. Macrophage elimination or GM-CSF neutralization protected against acute kidney injury in mice, and increased GM-CSF was detected in urine of patients infected by hlyA-positive UPEC. In addition, HlyA was found to promote UPEC invasion into renal epithelial cells by interacting with Nectin-2 in vitro. However, HlyA did not affect bacterial titers during acute kidney infections, and HlyA-induced invasion did not contribute to GM-CSF upregulation in vitro, which indicate that HlyA-induced GM-CSF is independent of bacteria invasion. The role of GM-CSF in HlyA-mediated kidney injury may lead to novel strategies to treat acute pyelonephritis.
Collapse
Affiliation(s)
- Changying Wang
- 0000 0000 9792 1228grid.265021.2Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China
| | - Qianqian Li
- 0000 0000 9792 1228grid.265021.2Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China
| | - Junqiang Lv
- 0000 0000 9792 1228grid.265021.2Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China
| | - Xuan Sun
- 0000 0000 9792 1228grid.265021.2Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China
| | - Yang Cao
- 0000 0004 1798 6160grid.412648.dDepartment of Clinical Laboratory, The Second Hospital of Tianjin Medical University, 300211 Tianjin, China
| | - Kaiyuan Yu
- 0000 0000 9792 1228grid.265021.2Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China
| | - Chunhui Miao
- 0000 0000 9792 1228grid.265021.2Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China
| | - Zhi-Song Zhang
- 0000 0000 9878 7032grid.216938.7State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Collaborative Innovation Center for Biotherapy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 300350 Tianjin, China
| | - Zhi Yao
- 0000 0000 9792 1228grid.265021.2Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China ,0000 0000 9792 1228grid.265021.22011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, 300070 Tianjin, China
| | - Quan Wang
- 0000 0000 9792 1228grid.265021.2Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China
| |
Collapse
|
27
|
Mardomi A, Mohammadi N, Khosroshahi HT, Abediankenari S. An update on potentials and promises of T cell co-signaling molecules in transplantation. J Cell Physiol 2019; 235:4183-4197. [PMID: 31696513 DOI: 10.1002/jcp.29369] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
The promising outcomes of immune-checkpoint based immunotherapies in cancer have provided a proportional perspective ahead of exploiting similar approaches in allotransplantation. Belatacept (CTLA-4-Ig) is an example of costimulation blockers successfully exploited in renal transplantation. Due to the wide range of regulatory molecules characterized in the past decades, some of these molecules might be candidates as immunomodulators in the case of tolerance induction in transplantation. Although there are numerous attempts on the apprehension of the effects of co-signaling molecules on immune response, the necessity for a better understanding is evident. By increasing the knowledge on the biology of co-signaling pathways, some pitfalls are recognized and improved approaches are proposed. The blockage of CD80/CD28 axis is an instance of evolution toward more efficacy. It is now evident that anti-CD28 antibodies are more effective than CD80 blockers in animal models of transplantation. Other co-signaling axes such as PD-1/PD-L1, CD40/CD154, 2B4/CD48, and others discussed in the present review are examples of critical immunomodulatory molecules in allogeneic transplantation. We review here the outcomes of recent experiences with co-signaling molecules in preclinical studies of solid organ transplantation.
Collapse
Affiliation(s)
- Alireza Mardomi
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nabiallah Mohammadi
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Saeid Abediankenari
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
28
|
RNA-Seq analysis of ileocecal valve and peripheral blood from Holstein cattle infected with Mycobacterium avium subsp. paratuberculosis revealed dysregulation of the CXCL8/IL8 signaling pathway. Sci Rep 2019; 9:14845. [PMID: 31619718 PMCID: PMC6795908 DOI: 10.1038/s41598-019-51328-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022] Open
Abstract
Paratuberculosis is chronic granulomatous enteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Whole RNA-sequencing (RNA-Seq) is a promising source of novel biomarkers for early MAP infection and disease progression in cattle. Since the blood transcriptome is widely used as a source of biomarkers, we analyzed whether it recapitulates, at least in part, the transcriptome of the ileocecal valve (ICV), the primary site of MAP colonization. Total RNA was prepared from peripheral blood (PB) and ICV samples, and RNA-Seq was used to compare gene expression between animals with focal or diffuse histopathological lesions in gut tissues versus control animals with no detectable signs of infection. Our results demonstrated both shared, and PB and ICV-specific gene expression in response to a natural MAP infection. As expected, the number of differentially expressed (DE) genes was larger in the ICV than in the PB samples. Among the DE genes in the PB and ICV samples, there were some common genes irrespective of the type of lesion including the C-X-C motif chemokine ligand 8 (CXCL8/IL8), apolipoprotein L (APOLD1), and the interferon inducible protein 27 (IFI27). The biological processes (BP) enriched in the PB gene expression profiles from the cows with diffuse lesions included the killing of cells of other organism, defense response, immune response and the regulation of neutrophil chemotaxis. Two of these BP, the defense and immune response, were also enriched in the ICV from the cows with diffuse lesions. Metabolic analysis of the DE genes revealed that the N-glycan biosynthesis, bile secretion, one-carbon pool by folate and purine metabolism were significantly enriched in the ICV from the cows with focal lesions. In the ICV from cows with diffuse lesions; the valine, leucine and isoleucine degradation route, purine metabolism, vitamin digestion and absorption and the cholesterol routes were enriched. Some of the identified DE genes, BP and metabolic pathways will be studied further to develop novel diagnostic tools, vaccines and immunotherapeutics.
Collapse
|
29
|
Brooks PJ, Glogauer M, McCulloch CA. An Overview of the Derivation and Function of Multinucleated Giant Cells and Their Role in Pathologic Processes. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1145-1158. [PMID: 30926333 DOI: 10.1016/j.ajpath.2019.02.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Monocyte lineage cells play important roles in health and disease. Their differentiation into macrophages is crucial for a broad array of immunologic processes that regulate inflammation, neoplasia, and infection. In certain pathologic conditions, such as foreign body reactions and peripheral inflammatory lesions, monocytes fuse to form large, multinucleated giant cells (MGCs). Currently, our knowledge of the fusion mechanisms of monocytes and the regulation of MGC formation and function in discrete pathologies is limited. Herein, we consider the types and function of MGCs in disease and assess the mechanisms by which monocyte fusion contributes to the formation of MGCs. An improved understanding of the cellular origins and metabolic functions of MGCs will facilitate their identification and ultimately the treatment of diseases and disorders that involve MGCs.
Collapse
Affiliation(s)
- Patricia J Brooks
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario, Canada; Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| | - Michael Glogauer
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario, Canada; Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | |
Collapse
|
30
|
Zhang J, Zhuang R, Zhang X, Hu W, Cheng K, Jiang D, Shen S, Zhang Y, Ding Y, Zhang Y. CD226 is involved in megakaryocyte activation and early-stage differentiation. Mol Immunol 2019; 107:123-131. [DOI: 10.1016/j.molimm.2019.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
|
31
|
Zhong Y, Wu X, Li J, Lan Q, Jing Q, Min L, Ren C, Hu X, Lambert A, Cheng Q, Yang Z. Multiplex immunoassay of chicken cytokines via highly-sensitive chemiluminescent imaging array. Anal Chim Acta 2019; 1049:213-218. [DOI: 10.1016/j.aca.2018.10.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
|
32
|
Zhong Y, Tang X, Li J, Lan Q, Min L, Ren C, Hu X, Torrente-Rodríguez RM, Gao W, Yang Z. A nanozyme tag enabled chemiluminescence imaging immunoassay for multiplexed cytokine monitoring. Chem Commun (Camb) 2019; 54:13813-13816. [PMID: 30460939 DOI: 10.1039/c8cc07779g] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a new concept of a chemiluminescence imaging nanozyme immunoassay (CINIA), in which nanozymes are exploited as catalytic tags for simultaneous multiplex detection of cytokines. The CINIA provides a novel and universal nanozyme-labeled multiplex immunoassay strategy for high-throughput detection of relevant biomarkers and further disease diagnosis.
Collapse
Affiliation(s)
- Yihong Zhong
- Guangling College, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
CD226 gene polymorphism (rs763361 C>T) is associated with susceptibility to type 1 diabetes mellitus among Egyptian children. Arch Pediatr 2018; 25:378-382. [PMID: 30145014 DOI: 10.1016/j.arcped.2018.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Genetic factors contribute significantly to type 1 diabetes (T1D) etiology. A single nucleotide polymorphism in the CD226 gene (rs763361 C>T) has been associated with T1D susceptibility in European patients, but data from other populations is limited. Our aim was to study the contribution of this polymorphism to T1D susceptibility among Egyptian children. METHODS A case-control study including 74 children with T1D and 82 healthy children as a control group. Genotyping of CD226 gene polymorphism was performed for all participants by DNA extraction followed by polymerase chain reaction and restriction fragment length polymorphism. RESULTS The frequency of T allele was 78.4% in patients and 68.3% in controls (OR, 1.68; 95% CI, 1.01-2.8; P=0.046). TT, TC, and CC genotypes were found in 62.2%, 32.4%, and 5.4% of the patients, respectively, and in 41.5%, 53.7%, and 4.9% of controls, respectively. Under the recessive model, TT genotype was significantly associated with T1D risk (OR, 2.32; 95% CI, 1.21-4.41; P=0.010). The mean age at diabetes onset was significantly lower in patients carrying T allele compared with C allele (8.03±3.8 year vs. 10.5±2.54 year; P<0.001) and among those with TT genotype compared with the pooled TC+CC genotypes (7.5±2.6 year vs. 10.6±2.6 year; P<0.001). No significant difference was found between genotypes or alleles regarding the HbA1c level. CONCLUSION T allele and TT genotype of the CD226 rs763361 polymorphism is associated with susceptibility to T1D and with a lower age of disease onset among Egyptian children.
Collapse
|
35
|
TIGIT-Fc alleviates acute graft-versus-host disease by suppressing CTL activation via promoting the generation of immunoregulatory dendritic cells. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3085-3098. [PMID: 29960041 DOI: 10.1016/j.bbadis.2018.06.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
Abstract
Graft-versus-host disease (GVHD) is the most common complication and major limitation of allogeneic hematopoietic stem cell transplantation. The CD226/TIGIT-CD155 signal is critical for the cross-talk between T cells and dendritic cells (DCs). Studies have shown that blockade of the CD226-CD155 interaction, using an anti-CD226 antibody, can significantly ameliorate GVHD. It has also been reported that a TIGIT-Fc fusion protein exerts immunosuppressive effects by binding to CD155 on DCs. Here, we used a mouse allogeneic acute GVHD model to explore the therapeutic potential and mechanism of action of TIGIT-Fc. C57/BL6 and Balb/c mice were used as hematopoietic cell graft donors and recipients, respectively. In the TIGIT-Fc-treated mice, GVHD symptom occurrence and mortality were delayed compared to that in isotype control group mice. Histopathological analyses revealed that following TIGIT-Fc treatment, liver and small intestine tissue damage was reduced with minimal lymphocytic infiltration. The percentage of CD8+IFN-γ+ and CD8+ granzyme B+ cells significantly decreased in the TIGIT-Fc group. Moreover, treatment with TIGIT-Fc, even after the onset of GVHD, ameliorated symptoms and prolonged survival. TIGIT-Fc also inhibited CD8+ T cell activation in vitro; this was dependent on the presence of CD155 on bone marrow-derived dendritic cells (BMDCs) and on IL-10 production. In addition, TIGIT-CD155 ligation triggered both Erk phosphorylation and STAT3 nuclear translocation. These data indicate that TIGIT plays an important role in the development of GVHD and is an ideal molecular target to treat acute GVHD.
Collapse
|
36
|
Nakamura Y, Naito K, Yamashita-Kanemaru Y, Komori D, Hirochika R, Shibuya A, Shibuya K. TX99 Is a Neutralizing Monoclonal Antibody Against Mouse TIGIT. Monoclon Antib Immunodiagn Immunother 2018; 37:105-109. [PMID: 29648914 DOI: 10.1089/mab.2018.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
T cell immunoglobulin and ITIM domains (TIGIT) is an inhibitory immunoreceptor expressed on NK cells, effector and memory T cells, and regulatory T cells (Tregs). The ligands for TIGIT are CD155 (PVR) and CD112 (PVRL2, nectin-2), which are broadly expressed on hematopoietic cells and nonhematopoietic cells. TIGIT negatively regulates antitumor responses, but promotes autoimmune reaction. Although neutralizing anti-human TIGIT mAbs are under clinical trials for cancers, how the blockade of TIGIT interaction with the ligands shows tumor immunity still remains unclear. Although analyses of mouse tumor model using a neutralizing anti-mouse TIGIT (mTIGIT) mAbs should be useful to address this issue, there are limitations to this type of studies due to unavailability of neutralizing anti-mTIGIT mAbs. In this study, we generated five clones of anti-mTIGIT mAbs, designated TX99, TX100, TX103, TX104, and TX105. We show that TX99 and TX100 showed the strongest binding to TIGIT. We also show that TX99 interfered with the interaction between TIGIT and CD155 and increased NK cell-mediated cytotoxicity against CD155-expressing RMA-S cells. Thus, TX99 is a unique neutralizing mAb that can be used for studies of mTIGIT functions.
Collapse
Affiliation(s)
- Yuho Nakamura
- 1 Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Keisuke Naito
- 1 Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Daisuke Komori
- 1 Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Rei Hirochika
- 1 Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Shibuya
- 1 Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan .,2 Life Science Center of Tsukuba Advanced Research Alliance (TARA), University of Tsukuba , Tsukuba, Japan
| | - Kazuko Shibuya
- 1 Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
37
|
Mosaad YM, El-Toraby EE, Tawhid ZM, Abdelsalam AI, Enin AF, Hasson AM, Shafeek GM. Association between CD226 polymorphism and soluble levels in rheumatoid arthritis: Relationship with clinical activity. Immunol Invest 2018; 47:264-278. [PMID: 29319370 DOI: 10.1080/08820139.2018.1423570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To study the relation between CD226 rs763361 gene polymorphism and CD226 serum level and to evaluate their role in susceptibility and disease activity of RA in a cohort of Egyptian individuals. METHODS The serum level of CD226 was measured using a suitable ELISA kit and the CD226 rs763361 gene polymorphism was typed by PCR-RFLP for 112 RA patients and 100 healthy controls. RESULTS Significant association with RA was found with CD226 T allele (OR (95%CI) = 1.6 (1.04-2.4), P = 0.032), and higher CD226 serum level (P = 0.001). Higher CD226 levels were associated with higher ESR values (P = 0.035), positive CRP (0.048), increased number of tender joints (P = 0.045), and higher DAS score (P = 0.035). Serum CD226 is an independent risk factor for the prediction of RA (P = 0.001). No correlations were found between the serum level of CD226 and different CD226 genotypes and also between them and RA activity grades. CONCLUSION The CD226 T allele may be susceptibility risk factors for the development of RA and the higher serum level of CD226 may be involved in the pathogenesis of RA in Egyptian patients. The serum level of CD226 and not CD226 genotypes could be considered as an independent risk factor for the prediction of RA within healthy individuals and also for RA disease activity.
Collapse
Affiliation(s)
- Youssef M Mosaad
- a Clinical Pathology Department, Mansoura Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Ehab Es El-Toraby
- b Internal Medicine (Rheumatology & Immunology), Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Ziyad Me Tawhid
- a Clinical Pathology Department, Mansoura Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Adel I Abdelsalam
- b Internal Medicine (Rheumatology & Immunology), Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Asmaa F Enin
- b Internal Medicine (Rheumatology & Immunology), Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Amany Me Hasson
- b Internal Medicine (Rheumatology & Immunology), Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Ghada M Shafeek
- c Clinical Pathology Department , Mansoura General Hospital, Ministry of health , Egypt
| |
Collapse
|
38
|
Immuno-biological comparison of hepatic stellate cells in a reverted and activated state. Biomed Pharmacother 2017; 98:52-62. [PMID: 29245066 DOI: 10.1016/j.biopha.2017.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/29/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
Human hepatic stellate cells (HSCs) demonstrated great immunological plasticity with important consequences for liver cell therapy. Activated HSCs (aHSCs) are in vitro reverted (rHSCs) to a quiescent-like phenotype with potential benefit to reduce liver fibrosis. The goal of this study is to establish and compare the immunological profile of activated and in vitro reverted HSCs and to investigate the impact of inflammatory priming on the immunobiology of both HSCs populations. The distribution of inflammatory primed activated and reverted HSCs across the different phases of the cell cycle is assessed by flow cytometry. In addition, Flow analysis was done to assess the expression level of neuronal, endothelial and stromal markers, cell adhesion molecules, human leucocyte antigens, co-stimulatory molecules, immunoregulatory molecules and natural killer ligands. Our results showed that the cell cycle distribution of both HSCs populations is significantly modulated by inflammation. Accordingly, activated HSC that were in G1 phase switch to S- and G2 phases when exposed to inflammation, while reverted HSCs mostly redistribute into sub-G0 phase. In a HSC state dependent manner, inflammatory priming modulated the expression of the stromal marker CD90, biological receptors (CD95 and CD200R), cell adhesion molecules (CD29, CD54, CD58, CD106 and CD166), human leucocyte antigen HLA-G, co-stimulatory molecules (CD40 and CD252), as well as the immunoregulatory molecules (CD200 and CD274). In conclusion, the immunologic profile of HSCs is significantly modulated by their activation state and inflammation and is important for the development of novel HSC liver cell-based therapy.
Collapse
|
39
|
Zhang Y, Liu T, Chen Y, Dong Z, Zhang J, Sun Y, Jin B, Gao F, Guo S, Zhuang R. CD226 reduces endothelial cell glucose uptake under hyperglycemic conditions with inflammation in type 2 diabetes mellitus. Oncotarget 2017; 7:12010-23. [PMID: 26910838 PMCID: PMC4914265 DOI: 10.18632/oncotarget.7505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 01/26/2016] [Indexed: 01/01/2023] Open
Abstract
CD226 is a co-stimulatory adhesion molecule found on immune and endothelial cells. Here, we evaluated a possible role for CD226 in inhibiting glucose uptake in isolated human umbilical vein endothelial cells (HUVECs) and in wild-type (WT) and CD226 knockout (KO) mice with high-fat diet (HFD)-induced type 2 diabetes (T2DM). CD226 expression increased under hyperglycemic conditions in the presence of TNF-α. Furthermore, CD226 knockdown improved glucose uptake in endothelial cells, and CD226 KO mice exhibited increased glucose tolerance. Levels of soluble CD226 in plasma were higher in T2DM patients following an oral glucose tolerance test (OGTT) than under fasting conditions. Our results indicate that low-grade inflammation coupled with elevated blood glucose increases CD226 expression, resulting in decreased endothelial cell glucose uptake in T2DM.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Tian Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Chen
- Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zilong Dong
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinxue Zhang
- Department of Immunology, Fourth Military Medical University Xi'an, China
| | - Yizheng Sun
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University Xi'an, China
| | - Feng Gao
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Shuzhong Guo
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University Xi'an, China
| |
Collapse
|
40
|
Hempel RJ, Bannantine JP, Stabel JR. Transcriptional Profiling of Ileocecal Valve of Holstein Dairy Cows Infected with Mycobacterium avium subsp. Paratuberculosis. PLoS One 2016; 11:e0153932. [PMID: 27093613 PMCID: PMC4836751 DOI: 10.1371/journal.pone.0153932] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/06/2016] [Indexed: 12/22/2022] Open
Abstract
Johne’s disease is a chronic infection of the small intestine caused by Mycobacterium avium subspecies paratuberculosis (MAP), an intracellular bacterium. The events of pathogen survival within the host cell(s), chronic inflammation and the progression from asymptomatic subclinical stage to an advanced clinical stage of infection, are poorly understood. This study examines gene expression in the ileocecal valve (ICV) of Holstein dairy cows at different stages of MAP infection. The ICV is known to be a primary site of MAP colonization and provides an ideal location to identify genes that are relevant to the progression of this disease. RNA was prepared from ICV tissues and RNA-Seq was used to compare gene transcription between clinical, subclinical, and uninfected control animals. Interpretation of the gene expression data was performed using pathway analysis and gene ontology categories containing multiple differentially expressed genes. Results demonstrated that many of the pathways that had strong differential gene expression between uninfected control and clinical cows were related to the immune system, such as the T- and B-cell receptor signaling, apoptosis, NOD-like receptor signaling, and leukocyte transendothelial migration pathways. In contrast, the comparison of gene transcription between control and subclinical cows identified pathways that were primarily involved in metabolism. The results from the comparison between clinical and subclinical animals indicate recruitment of neutrophils, up regulation of lysosomal peptidases, increase in immune cell transendothelial migration, and modifications of the extracelluar matrix. This study provides important insight into how cattle respond to a natural MAP infection at the gene transcription level within a key target tissue for infection.
Collapse
Affiliation(s)
- Randy J. Hempel
- USDA-Agricultural Research Service (ARS), National Animal Disease Center, Ames, Iowa, United States of America
| | - John P. Bannantine
- USDA-Agricultural Research Service (ARS), National Animal Disease Center, Ames, Iowa, United States of America
| | - Judith R. Stabel
- USDA-Agricultural Research Service (ARS), National Animal Disease Center, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
41
|
Kourepini E, Paschalidis N, Simoes DCM, Aggelakopoulou M, Grogan JL, Panoutsakopoulou V. TIGIT Enhances Antigen-Specific Th2 Recall Responses and Allergic Disease. THE JOURNAL OF IMMUNOLOGY 2016; 196:3570-80. [PMID: 27016609 DOI: 10.4049/jimmunol.1501591] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/23/2016] [Indexed: 01/19/2023]
Abstract
T cell Ig and ITIM domain receptor (TIGIT), expressed on T, NK, and regulatory T cells, is known as an inhibitory molecule that limits autoimmunity, antiviral and antitumor immunity. In this report, we demonstrate that TIGIT enhances Th2 immunity. TIGIT expression was upregulated in activated Th2 cells from mice with experimental allergic disease and in Th2 polarization cultures. In addition, its high-affinity ligand CD155 was upregulated in mediastinal lymph node dendritic cells from allergic mice. In an in vitro setting, we observed that Tigit expression in Th2 cells and its interaction with CD155 expressed in dendritic cells were important during the development of Th2 responses. In addition, blockade of TIGIT inhibited Th2, but had no effect on either Th1 or Th17 polarization. In vivo blockade of TIGIT suppressed hallmarks of allergic airway disease, such as lung eosinophilia, goblet cell hyperplasia, Ag-specific Th2 responses, and IgE production, and reduced numbers of T follicular helper and effector Th2 cells. Thus, TIGIT is critical for Th2 immunity and can be used as a therapeutic target, especially in light of recent findings showing TIGIT locus hypomethylation in T cells from pediatric patients with allergic asthma.
Collapse
Affiliation(s)
- Evangelia Kourepini
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece; and
| | - Nikolaos Paschalidis
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece; and
| | - Davina C M Simoes
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece; and
| | - Maria Aggelakopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece; and
| | - Jane L Grogan
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080
| | - Vily Panoutsakopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece; and
| |
Collapse
|
42
|
TIGIT negatively regulates inflammation by altering macrophage phenotype. Immunobiology 2016; 221:48-55. [DOI: 10.1016/j.imbio.2015.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/22/2015] [Accepted: 08/11/2015] [Indexed: 11/17/2022]
|
43
|
Tao L, Song C, Huo C, Sun Y, Zhang C, Li X, Yu S, Sun M, Jin B, Zhang Z, Yang K. Anti-CD155 and anti-CD112 monoclonal antibodies conjugated to a fluorescent mesoporous silica nanosensor encapsulating rhodamine 6G and fluorescein for sensitive detection of liver cancer cells. Analyst 2016; 141:4933-40. [DOI: 10.1039/c5an01908g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sensitive detection of liver cancer cells using anti-CD155 and anti-CD112 monoclonal antibodies conjugated to ultrabright fluorescent mesoporous silica nanoparticles (FMSNs) encapsulating Rhodamine 6G and fluorescein was developed.
Collapse
Affiliation(s)
- Liang Tao
- Department of Immunology
- The Fourth Military Medical University
- China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
| | - Chaojun Song
- Department of Immunology
- The Fourth Military Medical University
- China
| | - Chenyang Huo
- Brigade of Cadet
- The Fourth Military Medical University
- China
| | - Yuanjie Sun
- Department of Immunology
- The Fourth Military Medical University
- China
| | - Chunmei Zhang
- Department of Immunology
- The Fourth Military Medical University
- China
| | - Xiaohua Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- China
| | - Shaojuan Yu
- Department of Cardiology
- First Hospital of Xi'an
- China
| | - Mingyu Sun
- Brigade of Cadet
- The Fourth Military Medical University
- China
| | - Boquan Jin
- Department of Immunology
- The Fourth Military Medical University
- China
| | - Zhujun Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- China
| | - Kun Yang
- Department of Immunology
- The Fourth Military Medical University
- China
| |
Collapse
|
44
|
Qiu ZX, Peng Y, Li WM. CD226 gene polymorphisms are associated with non-small-cell lung cancer in the Chinese Han population. Ther Clin Risk Manag 2015; 11:1259-64. [PMID: 26346602 PMCID: PMC4554428 DOI: 10.2147/tcrm.s90365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background The immunoglobulin-like glycoprotein CD226 (DNAX accessory molecule-1) represents receptor-activating cytotoxic T lymphocyte and natural killer cells taking part in tumor surveillance, the pathogenesis of inflammation, and autoimmune disorders. The aim of the present study is to analyze the association between polymorphisms rs763361 and rs727088 in the CD226 gene and their impact on the pathogenesis of non-small-cell lung cancer (NSCLC). Materials and methods Polymerase chain reaction (PCR)-restriction fragment length polymorphisms (RFLP) were used to genotype the single nucleotide polymorphisms (SNPs) rs763361 and rs727088 of the CD226 gene in 302 NSCLC patients and 389 ethnicity matched healthy controls. Results The frequencies of the T allele and TT genotype of rs763361 (T allele odds ratio [OR] 1.42, 95% confidence interval [CI] 1.14–1.77; TT genotype OR 2.73, 95% CI 1.70–4.39), as well as the G allele and GG genotype of rs727088 (G allele OR 1.89, 95% CI 1.50–2.39; GG genotype OR 4.62, 95% CI 2.31–9.20) in the NSCLC patients were significantly higher than that of normal controls, indicating that both of these two SNPs as risk factors were associated with NSCLC (P<0.05). Results of stratified analysis revealed that the polymorphism of rs727088 was associated with lymph node invasion and clinical stage cancer (P<0.05). However, there was no association between SNP rs763361 and clinical characteristics. Conclusion Our results demonstrated that CD226 gene polymorphisms (T allele of rs763361 and G allele of rs727088) as risk factors were associated with NSCLC.
Collapse
Affiliation(s)
- Zhi-Xin Qiu
- Department of Respiratory Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Ying Peng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wei-Min Li
- Department of Respiratory Medicine, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
45
|
Battella S, Cox MC, Santoni A, Palmieri G. Natural killer (NK) cells and anti-tumor therapeutic mAb: unexplored interactions. J Leukoc Biol 2015; 99:87-96. [PMID: 26136506 DOI: 10.1189/jlb.5vmr0415-141r] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/16/2015] [Indexed: 12/11/2022] Open
Abstract
Tumor-targeting mAb are widely used in the treatment of a variety of solid and hematopoietic tumors and represent the first immunotherapeutic approach successfully arrived to the clinic. Nevertheless, the role of distinct immune mechanisms in contributing to their therapeutic efficacy is not completely understood and may vary depending on tumor- or antigen/antibody-dependent characteristics. Availability of next-generation, engineered, tumor-targeting mAb, optimized in their capability to recruit selected immune effectors, re-enforces the need for a deeper understanding of the mechanisms underlying anti-tumor mAb functionality. NK cells participate with a major role to innate anti-tumor responses, by exerting cytotoxic activity and producing a vast array of cytokines. As the CD16 (low-affinity FcγRIIIA)-activating receptor is expressed on the majority of NK cells, its effector functions can be ideally recruited against therapeutic mAb-opsonized tumor cells. The exact role of NK cells in determining therapeutic efficacy of tumor-targeting mAb is still unclear and much sought after. This knowledge will be instrumental to design innovative combination schemes with newly validated immunomodulatory agents. We will summarize what is known about the role of NK cells in therapeutic anti-tumor mAb therapy, with particular emphasis on RTX chimeric anti-CD20 mAb, the first one used in clinical practice for treating B cell malignancies.
Collapse
Affiliation(s)
- Simone Battella
- Departments of *Experimental Medicine and Molecular Medicine, Hematology Unit, Sant'Andrea Hospital, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Maria Christina Cox
- Departments of *Experimental Medicine and Molecular Medicine, Hematology Unit, Sant'Andrea Hospital, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Angela Santoni
- Departments of *Experimental Medicine and Molecular Medicine, Hematology Unit, Sant'Andrea Hospital, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Gabriella Palmieri
- Departments of *Experimental Medicine and Molecular Medicine, Hematology Unit, Sant'Andrea Hospital, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
46
|
Abstract
Using the immune system to control cancer has been investigated for over a century. Yet it is only over the last several years that therapeutic agents acting directly on the immune system have demonstrated improved overall survival for cancer patients in phase III clinical trials. Furthermore, it appears that some patients treated with such agents have been cured of metastatic cancer. This has led to increased interest and acceleration in the rate of progress in cancer immunotherapy. Most of the current immunotherapeutic success in cancer treatment is based on the use of immune-modulating antibodies targeting critical checkpoints (CTLA-4 and PD-1/PD-L1). Several other immune-modulating molecules targeting inhibitory or stimulatory pathways are being developed. The combined use of these medicines is the subject of intense investigation and holds important promise. Combination regimens include those that incorporate targeted therapies that act on growth signaling pathways, as well as standard chemotherapy and radiation therapy. In fact, these standard therapies have intrinsic immune-modulating properties that can support antitumor immunity. In the years ahead, adoptive T-cell therapy will also be an important part of treatment for some cancer patients. Other areas which are regaining interest are the use of oncolytic viruses that immunize patients against their own tumors and the use of vaccines against tumor antigens. Immunotherapy has demonstrated unprecedented durability in controlling multiple types of cancer and we expect its use to continue expanding rapidly.
Collapse
|
47
|
Zhao C, Lu F, Chen H, Zhao X, Sun J, Chen H. Dysregulation of JAM-A plays an important role in human tumor progression. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:7242-7248. [PMID: 25400822 PMCID: PMC4230059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Junctional adhesion molecule A (JAM-A) is a transmembrane protein that belongs to the immunoglobulin (Ig) superfamily. Evidence determines that JAM-A plays a role in numerous cellular processes, including tight junction assembly, leukocyte migration, platelet activation, angiogenesis and virus binding. Recent research suggests that JAM-A is dysregulated in various cancers and is vital for tumor progression. JAM-A is implicated in carcinogenesis via different signal pathways such as TGF-β1 signaling. Furthermore, JAM-A expression in cancers is usually associated with certain outcome of patients and might be a prognostic indicator. In this review, the correlation between JAM-A expression and human cancers will be described.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Pathology, School of Basic Medical Science, Wuhan UniversityWuhan 430071, P. R. China
| | - Funian Lu
- Department of Pathology, School of Basic Medical Science, Wuhan UniversityWuhan 430071, P. R. China
| | - Hongxia Chen
- Department of Pathology, School of Basic Medical Science, Wuhan UniversityWuhan 430071, P. R. China
| | - Xianda Zhao
- Department of Pathology, School of Basic Medical Science, Wuhan UniversityWuhan 430071, P. R. China
| | - Jun Sun
- Department of Pathology, Maternal and Child Health Hospital of Hubei ProvinceWuhan 430072, P. R. China
| | - Honglei Chen
- Department of Pathology, School of Basic Medical Science, Wuhan UniversityWuhan 430071, P. R. China
| |
Collapse
|
48
|
Tajima T, Nakamura A, Morikawa S, Ishizu K. Neonatal screening and a new cause of congenital central hypothyroidism. Ann Pediatr Endocrinol Metab 2014; 19:117-21. [PMID: 25346914 PMCID: PMC4208260 DOI: 10.6065/apem.2014.19.3.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 08/14/2014] [Indexed: 11/20/2022] Open
Abstract
Congenital central hypothyroidism (C-CH) is a rare disease in which thyroid hormone deficiency is caused by insufficient thyrotropin (TSH) stimulation of a normally-located thyroid gland. Most patients with C-CH have low free thyroxine levels and inappropriately low or normal TSH levels, although a few have slightly elevated TSH levels. Autosomal recessive TSH deficiency and thyrotropin-releasing hormone receptor-inactivating mutations are known to be genetic causes of C-CH presenting in the absence of other syndromes. Recently, deficiency of the immunoglobulin superfamily member 1 (IGSF1) has also been demonstrated to cause C-CH. IGSF1 is a plasma membrane glycoprotein highly expressed in the pituitary. Its physiological role in humans remains unknown. IGSF1 deficiency causes TSH deficiency, leading to hypothyroidism. In addition, approximately 60% of patients also suffer a prolactin deficiency. Moreover, macroorchidism and delayed puberty are characteristic features. Thus, although the precise pathophysiology of IGSF1 deficiency is not established, IGSF1 is considered to be a new factor controlling growth and puberty in children.
Collapse
Affiliation(s)
- Toshihiro Tajima
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan
| | - Akie Nakamura
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan
| | - Shuntaro Morikawa
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan
| | - Katsura Ishizu
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan
| |
Collapse
|
49
|
Suurväli J, Jouneau L, Thépot D, Grusea S, Pontarotti P, Du Pasquier L, Rüütel Boudinot S, Boudinot P. The Proto-MHC of Placozoans, a Region Specialized in Cellular Stress and Ubiquitination/Proteasome Pathways. THE JOURNAL OF IMMUNOLOGY 2014; 193:2891-901. [DOI: 10.4049/jimmunol.1401177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Kennedy RB, Ovsyannikova IG, Haralambieva IH, Lambert ND, Pankratz VS, Poland GA. Genetic polymorphisms associated with rubella virus-specific cellular immunity following MMR vaccination. Hum Genet 2014; 133:1407-17. [PMID: 25098560 DOI: 10.1007/s00439-014-1471-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 07/18/2014] [Indexed: 12/11/2022]
Abstract
Rubella virus causes a relatively benign disease in most cases, although infection during pregnancy can result in serious birth defects. An effective vaccine has been available since the early 1970s and outbreaks typically do not occur among highly vaccinated (≥2 doses) populations. Nevertheless, considerable inter-individual variation in immune response to rubella immunization does exist, with single-dose seroconversion rates ~95 %. Understanding the mechanisms behind this variability may provide important insights into rubella immunity. In the current study, we examined associations between single nucleotide polymorphisms (SNPs) in selected cytokine, cytokine receptor, and innate/antiviral genes and immune responses following rubella vaccination in order to understand genetic influences on vaccine response. Our approach consisted of a discovery cohort of 887 subjects aged 11-22 at the time of enrollment and a replication cohort of 542 older adolescents and young adults (age 18-40). Our data indicate that SNPs near the butyrophilin genes (BTN3A3/BTN2A1) and cytokine receptors (IL10RB/IFNAR1) are associated with variations in IFNγ secretion and that multiple SNPs in the PVR gene, as well as SNPs located in the ADAR gene, exhibit significant associations with rubella virus-specific IL-6 secretion. This information may be useful, not only in furthering our understanding immune responses to rubella vaccine, but also in identifying key pathways for targeted adjuvant use to boost immunity in those with weak or absent immunity following vaccination.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 First Street SW, Rochester, MN, 55905, USA
| | | | | | | | | | | |
Collapse
|