1
|
Grab AL, Kim PS, John L, Bisht K, Wang H, Baumann A, Van de Velde H, Sarkar I, Shome D, Reichert P, Manta C, Gryzik S, Reijmers RM, Weinhold N, Raab MS. Pre-Clinical Assessment of SAR442257, a CD38/CD3xCD28 Trispecific T Cell Engager in Treatment of Relapsed/Refractory Multiple Myeloma. Cells 2024; 13:879. [PMID: 38786100 PMCID: PMC11120574 DOI: 10.3390/cells13100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Current treatment strategies for multiple myeloma (MM) are highly effective, but most patients develop relapsed/refractory disease (RRMM). The anti-CD38/CD3xCD28 trispecific antibody SAR442257 targets CD38 and CD28 on MM cells and co-stimulates CD3 and CD28 on T cells (TCs). We evaluated different key aspects such as MM cells and T cells avidity interaction, tumor killing, and biomarkers for drug potency in three distinct cohorts of RRMM patients. We found that a significantly higher proportion of RRMM patients (86%) exhibited aberrant co-expression of CD28 compared to newly diagnosed MM (NDMM) patients (19%). Furthermore, SAR442257 mediated significantly higher TC activation, resulting in enhanced MM killing compared to bispecific functional knockout controls for all relapse cohorts (Pearson's r = 0.7). Finally, patients refractory to anti-CD38 therapy had higher levels of TGF-β (up to 20-fold) compared to other cohorts. This can limit the activity of SAR442257. Vactoserib, a TGF-β inhibitor, was able to mitigate this effect and restore sensitivity to SAR442257 in these experiments. In conclusion, SAR442257 has high potential for enhancing TC cytotoxicity by co-targeting CD38 and CD28 on MM and CD3/CD28 on T cells.
Collapse
Affiliation(s)
- Anna Luise Grab
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter S. Kim
- Sanofi Research and Development, Sanofi North America, Cambridge, MA 02141, USA (K.B.); (H.W.); (H.V.d.V.)
| | - Lukas John
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kamlesh Bisht
- Sanofi Research and Development, Sanofi North America, Cambridge, MA 02141, USA (K.B.); (H.W.); (H.V.d.V.)
| | - Hongfang Wang
- Sanofi Research and Development, Sanofi North America, Cambridge, MA 02141, USA (K.B.); (H.W.); (H.V.d.V.)
| | - Anja Baumann
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Helgi Van de Velde
- Sanofi Research and Development, Sanofi North America, Cambridge, MA 02141, USA (K.B.); (H.W.); (H.V.d.V.)
| | - Irene Sarkar
- LUMICKS, 1059 CM Amsterdam, The Netherlands; (I.S.); (D.S.); (R.M.R.)
| | - Debarati Shome
- LUMICKS, 1059 CM Amsterdam, The Netherlands; (I.S.); (D.S.); (R.M.R.)
| | - Philipp Reichert
- GMMG Central Study Lab, Biobank, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Calin Manta
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
| | - Stefanie Gryzik
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
| | | | - Niels Weinhold
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marc S. Raab
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Sarmoko, Ramadhanti M, Zulkepli NA. CD59: Biological function and its potential for drug target action. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Brennan K, Iversen KF, Blanco-Fernández A, Lund T, Plesner T, Mc Gee MM. Extracellular Vesicles Isolated from Plasma of Multiple Myeloma Patients Treated with Daratumumab Express CD38, PD-L1, and the Complement Inhibitory Proteins CD55 and CD59. Cells 2022; 11:3365. [PMID: 36359760 PMCID: PMC9658084 DOI: 10.3390/cells11213365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 09/26/2023] Open
Abstract
Daratumumab (DARA) has improved the outcome of treatment of multiple myeloma (MM). DARA acts via complement-dependent and -independent mechanisms. Resistance to DARA may result from upregulation of the complement inhibitory proteins CD55 and CD59, downregulation of the DARA target CD38 on myeloma cells or altered expression of the checkpoint inhibitor ligand programmed death ligand-1 (PD-L1) or other mechanisms. In this study, EVs were isolated from peripheral blood (PB) and bone marrow (BM) from multiple myeloma (MM) patients treated with DARA and PB of healthy controls. EV size and number and the expression of CD38, CD55, CD59 and PD-L1 as well as the EV markers CD9, CD63, CD81, CD147 were determined by flow cytometry. Results reveal that all patient EV samples express CD38, PD-L1, CD55 and CD59. The level of CD55 and CD59 are elevated on MM PB EVs compared with healthy controls, and the level of PD-L1 on MM PB EVs is higher in patients responding to treatment with DARA. CD147, a marker of various aspects of malignant behaviour of cancer cells and a potential target for therapy, was significantly elevated on MM EVs compared with healthy controls. Furthermore, mass spectrometry data suggests that MM PB EVs bind DARA. This study reveals a MM PB and BM EV protein signature that may have diagnostic and prognostic value.
Collapse
Affiliation(s)
- Kieran Brennan
- School of Biomolecular & Biomedical Science, University College Dublin (UCD), Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin 4, Ireland
| | - Katrine F. Iversen
- Institute of Regional Health Science, University of Southern Denmark, 7100 Vejle, Denmark
- Department of Internal Medicine, Section of Hematology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Alfonso Blanco-Fernández
- Flow Cytometry Core Technology, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Thomas Lund
- Department of Hematology, Odense University Hospital, 5000 Odense, Denmark
| | - Torben Plesner
- Institute of Regional Health Science, University of Southern Denmark, 7100 Vejle, Denmark
- Department of Internal Medicine, Section of Hematology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Margaret M. Mc Gee
- School of Biomolecular & Biomedical Science, University College Dublin (UCD), Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin 4, Ireland
| |
Collapse
|
4
|
Molecular Determinants Underlying the Anti-Cancer Efficacy of CD38 Monoclonal Antibodies in Hematological Malignancies. Biomolecules 2022; 12:biom12091261. [PMID: 36139103 PMCID: PMC9496523 DOI: 10.3390/biom12091261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
CD38 was first discovered as a T-cell antigen and has since been found ubiquitously expressed in various hematopoietic cells, including plasma cells, NK cells, B cells, and granulocytes. More importantly, CD38 expression levels on malignant hematopoietic cells are significantly higher than counterpart healthy cells, thus presenting itself as a promising therapeutic target. In fact, for many aggressive hematological cancers, including CLL, DLBCL, T-ALL, and NKTL, CD38 expression is significantly associated with poorer prognosis and a hyperproliferative or metastatic phenotype. Studies have shown that, beyond being a biomarker, CD38 functionally mediates dysregulated survival, adhesion, and migration signaling pathways, as well as promotes an immunosuppressive microenvironment conducive for tumors to thrive. Thus, targeting CD38 is a rational approach to overcoming these malignancies. However, clinical trials have surprisingly shown that daratumumab monotherapy has not been very effective in these other blood malignancies. Furthermore, extensive use of daratumumab in MM is giving rise to a subset of patients now refractory to daratumumab treatment. Thus, it is important to consider factors modulating the determinants of response to CD38 targeting across different blood malignancies, encompassing both the transcriptional and post-transcriptional levels so that we can diversify the strategy to enhance daratumumab therapeutic efficacy, which can ultimately improve patient outcomes.
Collapse
|
5
|
Talaat IM, Elemam NM, Saber-Ayad M. Complement System: An Immunotherapy Target in Colorectal Cancer. Front Immunol 2022; 13:810993. [PMID: 35173724 PMCID: PMC8841337 DOI: 10.3389/fimmu.2022.810993] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor and the second most fatal cancer worldwide. Several parts of the immune system contribute to fighting cancer including the innate complement system. The complement system is composed of several players, namely component molecules, regulators and receptors. In this review, we discuss the complement system activation in cancer specifically CRC and highlight the possible interactions between the complement system and the various TME components. Additionally, the role of the complement system in tumor immunity of CRC is reviewed. Hence, such work could provide a framework for researchers to further understand the role of the complement system in CRC and explore the potential therapies targeting complement activation in solid tumors such as CRC.
Collapse
Affiliation(s)
- Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Cairo University, Cairo, Egypt
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| |
Collapse
|
6
|
Luo S, Wang M, Wang H, Hu D, Zipfel PF, Hu Y. How Does Complement Affect Hematological Malignancies: From Basic Mechanisms to Clinical Application. Front Immunol 2020; 11:593610. [PMID: 33193442 PMCID: PMC7658260 DOI: 10.3389/fimmu.2020.593610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022] Open
Abstract
Complement, as a central immune surveillance system, can be activated within seconds upon stimulation, thereby displaying multiple immune effector functions. However, in pathologic scenarios (like in tumor progression), activated complement can both display protective effects to control tumor development and passively promotes the tumor growth. Clinical investigations show that patients with several hematological malignancies often display abnormal level of specific complement components, which in turn modulates complement activation or deregulated cascade. In the past decades, complement-dependent cytotoxicity and complement-dependent cell-mediated phagocytosis were fully approved to display vital roles in monoclonal antibody-based immunotherapies, especially in therapies against hematological malignancies. However, tumor-mediated complement evasion presents a big challenge for such a therapy. This review aims to provide an integrative overview on the roles of the complement in tumor promotion, highlights complement mediated effects on antibody-based immunotherapy against distinct hematological tumors, hopefully provides a theoretical basis for the development of complement-based cancer targeted therapies.
Collapse
Affiliation(s)
- Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
The Role of Complement in the Mechanism of Action of Therapeutic Anti-Cancer mAbs. Antibodies (Basel) 2020; 9:antib9040058. [PMID: 33126570 PMCID: PMC7709112 DOI: 10.3390/antib9040058] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Unconjugated anti-cancer IgG1 monoclonal antibodies (mAbs) activate antibody-dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells and antibody-dependent cellular phagocytosis (ADCP) by macrophages, and these activities are thought to be important mechanisms of action for many of these mAbs in vivo. Several mAbs also activate the classical complement pathway and promote complement-dependent cytotoxicity (CDC), although with very different levels of efficacy, depending on the mAb, the target antigen, and the tumor type. Recent studies have unraveled the various structural factors that define why some IgG1 mAbs are strong mediators of CDC, whereas others are not. The role of complement activation and membrane inhibitors expressed by tumor cells, most notably CD55 and CD59, has also been quite extensively studied, but how much these affect the resistance of tumors in vivo to IgG1 therapeutic mAbs still remains incompletely understood. Recent studies have demonstrated that complement activation has multiple effects beyond target cell lysis, affecting both innate and adaptive immunity mediated by soluble complement fragments, such as C3a and C5a, and by stimulating complement receptors expressed by immune cells, including NK cells, neutrophils, macrophages, T cells, and dendritic cells. Complement activation can enhance ADCC and ADCP and may contribute to the vaccine effect of mAbs. These different aspects of complement are also briefly reviewed in the specific context of FDA-approved therapeutic anti-cancer IgG1 mAbs.
Collapse
|
8
|
Mechanisms of Resistance to Anti-CD38 Daratumumab in Multiple Myeloma. Cells 2020; 9:cells9010167. [PMID: 31936617 PMCID: PMC7017193 DOI: 10.3390/cells9010167] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Daratumumab (Dara) is the first-in-class human-specific anti-CD38 mAb approved for the treatment of multiple myeloma (MM). Although recent data have demonstrated very promising results in clinical practice and trials, some patients do not achieve a partial response, and ultimately all patients undergo progression. Dara exerts anti-MM activity via antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), complement-dependent cytotoxicity (CDC), and immunomodulatory effects. Deregulation of these pleiotropic mechanisms may cause development of Dara resistance. Knowledge of this resistance may improve the therapeutic management of MM patients.
Collapse
|
9
|
Yan B, Chen B, Min S, Gao Y, Zhang Y, Xu P, Li C, Chen J, Luo G, Liu C. iTRAQ-based Comparative Serum Proteomic Analysis of Prostate Cancer Patients with or without Bone Metastasis. J Cancer 2019; 10:4165-4177. [PMID: 31413735 PMCID: PMC6691707 DOI: 10.7150/jca.33497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/12/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Once prostate cancer developed bone metastasis, the quality of life and prognosis of patients are seriously affected as no effective treatment is currently available. It is necessary to explore the mechanism of bone metastasis and new therapeutic targets. Purpose: To find out the differentially expressed serum proteins in prostate cancer patients with bone metastasis and analyze the expression of key proteins in prostate cancer tissues, serum and prostate cancer cell lines. So as to provide a basis for revealing the mechanism of bone metastasis and designing new therapeutic targets. Methods: iTRAQ-based proteomics method was used to compare serum differential proteins in prostate cancer patients with and without bone metastasis. Three key proteins (CD59, haptoglobin and tetranectin) which had significant fold changes were selected to validate the results of mass spectrometry. Immunohistochemistry and ELISA were applied to tissues and serum samples from prostate cancer patients, respectively, for validation. Finally, western blot, flow cytometry, and immunocytochemistry were used to analyze the expression of the three differentially expressed proteins in the prostate cancer cell lines PC3, LNCap, and Du145. Results: Thirty-two differentially expressed proteins related to bone metastasis of prostate cancer were identified, of which 11 were up-regulated and 21 were down-regulated. CD59 and haptoglobin were up-regulated in prostate cancer with bone metastasis while tetranectin was down-regulated. Tetranectin showed differential expression in epithelial and stromal cells of prostate cancer and hyperplasia tissues.The expression of CD59 was highest in PC3 and lowest in LNCap, while the expression of haptoglobin and tetranectin was the highest in DU145 and lowest in PC3. Conclusion: Mass spectrometry analysis showed that there were more differentially expressed proteins in the serum of patients with bone metastasis than those without metastasis. It has been verified that CD59, haptoglobin and tetranectin are prostate cancer bone metastasis related proteins.
Collapse
Affiliation(s)
- Bo Yan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Urology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Binshen Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shaoju Min
- Department of Clinical Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yubo Gao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiming Zhang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaoming Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiasheng Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangheng Luo
- Department of Urology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Geller A, Yan J. The Role of Membrane Bound Complement Regulatory Proteins in Tumor Development and Cancer Immunotherapy. Front Immunol 2019; 10:1074. [PMID: 31164885 PMCID: PMC6536589 DOI: 10.3389/fimmu.2019.01074] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
It has long been understood that the control and surveillance of tumors within the body involves an intricate dance between the adaptive and innate immune systems. At the center of the interplay between the adaptive and innate immune response sits the complement system—an evolutionarily ancient response that aids in the destruction of microorganisms and damaged cells, including cancer cells. Membrane-bound complement regulatory proteins (mCRPs), such as CD46, CD55, and CD59, are expressed throughout the body in order to prevent over-activation of the complement system. These mCRPs act as a double-edged sword however, as they can also over-regulate the complement system to the extent that it is no longer effective at eliminating cancerous cells. Recent studies are now indicating that mCRPs may function as a biomarker of a malignant transformation in numerous cancer types, and further, are being shown to interfere with anti-tumor treatments. This highlights the critical roles that therapeutic blockade of mCRPs can play in cancer treatment. Furthermore, with the complement system having the ability to both directly and indirectly control adaptive T-cell responses, the use of a combinatorial approach of complement-related therapy along with other T-cell activating therapies becomes a logical approach to treatment. This review will highlight the biomarker-related role that mCRP expression may have in the classification of tumor phenotype and predicted response to different anti-cancer treatments in the context of an emerging understanding that complement activation within the Tumor Microenvironment (TME) is actually harmful for tumor control. We will discuss what is known about complement activation and mCRPs relating to cancer and immunotherapy, and will examine the potential for combinatorial approaches of anti-mCRP therapy with other anti-tumor therapies, especially checkpoint inhibitors such as anti PD-1 and PD-L1 monoclonal antibodies (mAbs). Overall, mCRPs play an essential role in the immune response to tumors, and understanding their role in the immune response, particularly in modulating currently used cancer therapeutics may lead to better clinical outcomes in patients with diverse cancer types.
Collapse
Affiliation(s)
- Anne Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jun Yan
- Immuno-Oncology Program, Department of Medicine, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
11
|
Abstract
CD59 has been identified as a glycosylphosphatidylinositol-anchored membrane protein that acts as an inhibitor of the formation of the membrane attack complex to regulate complement activation. Recent studies have shown that CD59 is highly expressed in several cancer cell lines and tumor tissues. CD59 also regulates the function, infiltration and phenotypes of a variety of immune cells in the tumor microenvironment. Herein, we summarized recent advances related to the functions and mechanisms of CD59 in the tumor microenvironment. Therapeutic strategies that seek to modulate the functions of CD59 in the tumor microenvironment could be a promising direction for tumor immunotherapy.
Collapse
Affiliation(s)
- Ronghua Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| |
Collapse
|
12
|
Alaterre E, Raimbault S, Goldschmidt H, Bouhya S, Requirand G, Robert N, Boireau S, Seckinger A, Hose D, Klein B, Moreaux J. CD24, CD27, CD36 and CD302 gene expression for outcome prediction in patients with multiple myeloma. Oncotarget 2017; 8:98931-98944. [PMID: 29228738 PMCID: PMC5716778 DOI: 10.18632/oncotarget.22131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/27/2017] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is a B cell neoplasia characterized by clonal plasma cell (PC) proliferation. Minimal residual disease monitoring by multi-parameter flow cytometry is a powerful tool for predicting treatment efficacy and MM outcome. In this study, we compared CD antigens expression between normal and malignant plasma cells to identify new potential markers to discriminate normal from malignant plasma cells, new potential therapeutic targets for monoclonal-based treatments and new prognostic factors. Nine genes were significantly overexpressed and 16 were significantly downregulated in MMC compared with BMPC (ratio ≥2; FDR CD24, CD27, CD36 and CD302) was associated with a prognostic value in two independent cohorts of patients with MM (HM cohort and TT2 cohort, n=345). The expression level of these four genes was then used to develop a CD gene risk score that classified patients in two groups with different survival (P = 2.06E-6) in the HM training cohort. The prognostic value of the CD gene risk score was validated in two independent cohorts of patients with MM (TT2 cohort and HOVON65/GMMGHD4 cohort, n=282 patients). The CD gene risk score remained a prognostic factor that separated patients in two groups with significantly different overall survival also when using publicly available data from a cohort of relapsing patients treated with bortezomib (n=188). In conclusion, the CD gene risk score allows identifying high risk patients with MM based on CD24, CD27, CD36 and CD302 expression and could represent a powerful tool for simple outcome prediction in MM.
Collapse
Affiliation(s)
- Elina Alaterre
- HORIBA Medical, Parc Euromédecine, Montpellier, France.,Institute of Human Genetics, CNRS-UM UMR9002, Montpellier, France
| | | | - Hartmut Goldschmidt
- Medizinische Klinik und Poliklinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany.,Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Salahedine Bouhya
- CHU Montpellier, Department of Clinical Hematology, Montpellier, France
| | - Guilhem Requirand
- Department of Biological Haematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, CNRS-UM UMR9002, Montpellier, France
| | - Nicolas Robert
- Department of Biological Haematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, CNRS-UM UMR9002, Montpellier, France
| | - Stéphanie Boireau
- Department of Biological Haematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, CNRS-UM UMR9002, Montpellier, France
| | - Anja Seckinger
- Medizinische Klinik und Poliklinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany.,Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Dirk Hose
- Medizinische Klinik und Poliklinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany.,Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Bernard Klein
- Department of Biological Haematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, CNRS-UM UMR9002, Montpellier, France.,University of Montpellier, UFR Medecine, Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Haematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, CNRS-UM UMR9002, Montpellier, France.,University of Montpellier, UFR Medecine, Montpellier, France
| |
Collapse
|
13
|
Oduor CI, Movassagh M, Kaymaz Y, Chelimo K, Otieno J, Ong'echa JM, Moormann AM, Bailey JA. Human and Epstein-Barr Virus miRNA Profiling as Predictive Biomarkers for Endemic Burkitt Lymphoma. Front Microbiol 2017; 8:501. [PMID: 28400759 PMCID: PMC5368269 DOI: 10.3389/fmicb.2017.00501] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/10/2017] [Indexed: 11/17/2022] Open
Abstract
Endemic Burkitt lymphoma (eBL) is an aggressive B cell lymphoma and is associated with Epstein-Barr virus (EBV) and Plasmodium falciparum malaria co-infections. Central to BL oncogenesis is the over-expression of the MYC proto-oncogene which is caused by a translocation of an Ig enhancer in approximation to the myc gene. While whole genome/transcriptome sequencing methods have been used to define driver mutations and transcriptional dysregulation, microRNA (miRNA) dysregulation and differential expression has yet to be fully characterized. We hypothesized that both human and EBV miRNAs contribute to eBL clinical presentation, disease progression, and poor outcomes. Using sensitive and precise deep sequencing, we identified miRNAs from 17 Kenyan eBL patient tumor samples and delineated the complement of both host and EBV miRNAs. One human miRNA, hsa-miR-10a-5p was found to be differentially expressed (DE), being down-regulated in jaw tumors relative to abdominal and in non-survivors compared to survivors. We also examined EBV miRNAs, which made up 2.7% of the miRNA composition in the eBL samples. However, we did not find any significant associations regarding initial patient outcome or anatomical presentation. Gene ontology analysis and pathway enrichment of previously validated targets of miR-10a-5p suggest that it can promote tumor cell survival as well as aid in evasion of apoptosis. To examine miR-10a-5p regulatory effect on gene expression in eBL, we performed a pairwise correlation coefficient analysis on the expression levels of all its validated targets. We found a significant enrichment of correlated target genes consistent with miR-10a-5p impacting expression. The functions of genes and their correlation fit with multiple target genes impacting tumor resilience. The observed downregulation of miR-10a and associated genes suggests a role for miRNA in eBL patient outcomes and has potential as a predictive biomarker that warrants further investigation.
Collapse
Affiliation(s)
- Cliff I Oduor
- Center for Global Health Research, Kenya Medical Research InstituteKisumu, Kenya; Department of Biomedical Sciences and Technology, Maseno UniversityMaseno, Kenya
| | - Mercedeh Movassagh
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School Worcester, MA, USA
| | - Yasin Kaymaz
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School Worcester, MA, USA
| | - Kiprotich Chelimo
- Department of Biomedical Sciences and Technology, Maseno University Maseno, Kenya
| | - Juliana Otieno
- Jaramogi Oginga Odinga Teaching and Referral Hospital, Ministry of Medical Services Kisumu, Kenya
| | - John M Ong'echa
- Center for Global Health Research, Kenya Medical Research Institute Kisumu, Kenya
| | - Ann M Moormann
- Program in Molecular Medicine, University of Massachusetts Medical School Worcester, MA, USA
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical SchoolWorcester, MA, USA; Division of Transfusion Medicine, Department of Medicine, University of Massachusetts Medical SchoolWorcester, MA, USA
| |
Collapse
|
14
|
Kourtzelis I, Rafail S. The dual role of complement in cancer and its implication in anti-tumor therapy. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:265. [PMID: 27563652 DOI: 10.21037/atm.2016.06.26] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chronic inflammation has been linked to the initiation of carcinogenesis, as well as the advancement of established tumors. The polarization of the tumor inflammatory microenvironment can contribute to either the control, or the progression of the disease. The emerging participation of members of the complement cascade in several hallmarks of cancer, renders it a potential target for anti-tumor treatment. Moreover, the presence of complement regulatory proteins (CRPs) in most types of tumor cells is known to impede anti-tumor therapies. This review focuses on our current knowledge of complement's potential involvement in shaping the inflammatory tumor microenvironment and its role on the regulation of angiogenesis and hypoxia. Furthermore, we discuss approaches using complement-based therapies as an adjuvant in tumor immunotherapy.
Collapse
Affiliation(s)
- Ioannis Kourtzelis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stavros Rafail
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
15
|
Carvalho S, Levi‐Schaffer F, Sela M, Yarden Y. Immunotherapy of cancer: from monoclonal to oligoclonal cocktails of anti-cancer antibodies: IUPHAR Review 18. Br J Pharmacol 2016; 173:1407-24. [PMID: 26833433 PMCID: PMC4831314 DOI: 10.1111/bph.13450] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/14/2016] [Accepted: 01/20/2016] [Indexed: 12/11/2022] Open
Abstract
Antibody-based therapy of cancer employs monoclonal antibodies (mAbs) specific to soluble ligands, membrane antigens of T-lymphocytes or proteins located at the surface of cancer cells. The latter mAbs are often combined with cytotoxic regimens, because they block survival of residual fractions of tumours that evade therapy-induced cell death. Antibodies, along with kinase inhibitors, have become in the last decade the mainstay of oncological pharmacology. However, partial and transient responses, as well as emergence of tumour resistance, currently limit clinical application of mAbs. To overcome these hurdles, oligoclonal antibody mixtures are being tested in animal models and in clinical trials. The first homo-combination of two mAbs, each engaging a distinct site of HER2, an oncogenic receptor tyrosine kinase (RTK), has been approved for treatment of breast cancer. Likewise, a hetero-combination of antibodies to two distinct T-cell antigens, PD1 and CTLA4, has been approved for treatment of melanoma. In a similar vein, additive or synergistic anti-tumour effects observed in animal models have prompted clinical testing of hetero-combinations of antibodies simultaneously engaging distinct RTKs. We discuss the promise of antibody cocktails reminiscent of currently used mixtures of chemotherapeutics and highlight mechanisms potentially underlying their enhanced clinical efficacy.
Collapse
Affiliation(s)
- Silvia Carvalho
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
| | - Francesca Levi‐Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Michael Sela
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | - Yosef Yarden
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
16
|
Wang Y, Wang X, Ferrone CR, Schwab JH, Ferrone S. Intracellular antigens as targets for antibody based immunotherapy of malignant diseases. Mol Oncol 2015; 9:1982-93. [PMID: 26597109 DOI: 10.1016/j.molonc.2015.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
This review discusses the potential use of intracellular tumor antigens as targets of antibody-based immunotherapy for the treatment of solid tumors. In addition, it describes the characteristics of the intracellular tumor antigens targeted with antibodies which have been described in the literature and have been identified in the authors' laboratory. Finally, the mechanism underlying the trafficking of the intracellular tumor antigens to the plasma membrane of tumor cells are reviewed.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Xinhui Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Joseph H Schwab
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States; Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States.
| |
Collapse
|
17
|
Nisin ZP, a Bacteriocin and Food Preservative, Inhibits Head and Neck Cancer Tumorigenesis and Prolongs Survival. PLoS One 2015; 10:e0131008. [PMID: 26132406 PMCID: PMC4489501 DOI: 10.1371/journal.pone.0131008] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/26/2015] [Indexed: 01/14/2023] Open
Abstract
The use of small antimicrobial peptides or bacteriocins, like nisin, to treat cancer is a new approach that holds great promise. Nisin exemplifies this new approach because it has been used safely in humans for many years as a food preservative, and recent laboratory studies support its anti-tumor potential in head and neck cancer. Previously, we showed that nisin (2.5%, low content) has antitumor potential in head and neck squamous cell carcinoma (HNSCC) in vitro and in vivo. The current studies explored a naturally occurring variant of nisin (nisin ZP; 95%, high content) for its antitumor effects in vitro and in vivo. Nisin ZP induced the greatest level of apoptosis in HNSCC cells compared to low content nisin. HNSCC cells treated with increasing concentrations of nisin ZP exhibited increasing levels of apoptosis and decreasing levels of cell proliferation, clonogenic capacity, and sphere formation. Nisin ZP induced apoptosis through a calpain-dependent pathway in HNSCC cells but not in human oral keratinocytes. Nisin ZP also induced apoptosis dose-dependently in human umbilical vein endothelial cells (HUVEC) with concomitant decreases in vascular sprout formation in vitro and reduced intratumoral microvessel density in vivo. Nisin ZP reduced tumorigenesis in vivo and long-term treatment with nisin ZP extended survival. In addition, nisin treated mice exhibited normal organ histology with no evidence of inflammation, fibrosis or necrosis. In summary, nisin ZP exhibits greater antitumor effects than low content nisin, and thus has the potential to serve as a novel therapeutic for HNSCC.
Collapse
|
18
|
Song G, Cho WC, Gu L, He B, Pan Y, Wang S. Increased CD59 protein expression is associated with the outcome of patients with diffuse large B-cell lymphoma treated with R-CHOP. Med Oncol 2014; 31:56. [PMID: 24924474 DOI: 10.1007/s12032-014-0056-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/29/2014] [Indexed: 11/26/2022]
Abstract
The objective was to investigate the expression and prognostic value of CD59 expression in patients with diffuse large B-cell lymphoma (DLBCL) who underwent rituximab-cyclophosphamide, adriamycin, vincristine, and prednisone (R-CHOP). The immunohistochemical expressions of CD59 in 186 well-characterized DLBCL patients were evaluated using tissue microarrays and then were related to known tumor- and patient-related variables and to survival. The results show that CD59 expressions were not statistically different between the germinal center B-cell-like-type and the activated B-cell-like-type. We also analyzed the relationships of CD59 expression with overall survival (OS) and progression-free survival (PFS) in DLBCL patients who were uniformly treated with R-CHOP. The high expression of CD59 was correlated with poor OS and PFS compared with the low-expression CD59. Our findings indicate that the CD59 level at onset is an independent predictor of the prognosis of DLBCL patients treated with R-CHOP.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Murine-Derived/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- CD59 Antigens/blood
- Cyclophosphamide/administration & dosage
- Disease-Free Survival
- Doxorubicin/administration & dosage
- Female
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Prednisone/administration & dosage
- Prognosis
- Rituximab
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Guoqi Song
- Medical School of Southeast University, Nanjing, 210009, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
19
|
Cai B, Xie S, Liu F, Simone LC, Caplan S, Qin X, Naslavsky N. Rapid degradation of the complement regulator, CD59, by a novel inhibitor. J Biol Chem 2014; 289:12109-12125. [PMID: 24616098 DOI: 10.1074/jbc.m113.547083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is increased interest in immune-based monoclonal antibody therapies for different malignancies because of their potential specificity and limited toxicity. The activity of some therapeutic monoclonal antibodies is partially dependent on complement-dependent cytolysis (CDC), in which the immune system surveys for invading pathogens, infected cells, and malignant cells and facilitates their destruction. CD59 is a ubiquitously expressed cell-surface glycosylphosphatidylinositol-anchored protein that protects cells from CDC. However, in certain tumors, CD59 expression is enhanced, posing a significant obstacle for treatment, by hindering effective monoclonal antibody-induced CDC. In this study, we used non-small lung carcinoma cells to characterize the mechanism of a novel CD59 inhibitor: the 114-amino acid recombinant form of the 4th domain of intermedilysin (rILYd4), a pore forming toxin secreted by Streptococcus intermedius. We compared the rates of internalization of CD59 in the presence of rILYd4 or anti-CD59 antibodies and determined that rILYd4 induces more rapid CD59 uptake at early time points. Most significantly, upon binding to rILYd4, CD59 is internalized and undergoes massive degradation in lysosomes within minutes. The remaining rILYd4·CD59 complexes recycle to the PM and are shed from the cell. In comparison, upon internalization of CD59 via anti-CD59 antibody binding, the antibody·CD59 complex is recycled via early and recycling endosomes, mostly avoiding degradation. Our study supports a novel role for rILYd4 in promoting internalization and rapid degradation of the complement inhibitor CD59, and highlights the potential for improving CDC-based immunotherapy.
Collapse
Affiliation(s)
- Bishuang Cai
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Shuwei Xie
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Fengming Liu
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Laura C Simone
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska 68198.
| | - Xuebin Qin
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska 68198.
| |
Collapse
|
20
|
Bakema JE, van Egmond M. Fc receptor-dependent mechanisms of monoclonal antibody therapy of cancer. Curr Top Microbiol Immunol 2014; 382:373-92. [PMID: 25116109 DOI: 10.1007/978-3-319-07911-0_17] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Targeted therapies like treatment with monoclonal antibodies (mAbs) have entered the arsenal of modern anticancer drugs. mAbs combine specificity with multiple effector functions that can lead to reduction of tumour burden. Direct mechanisms of action, including induction of apoptosis or growth inhibition, depend on the biology of the target antigen. Fc tails of mAbs have furthermore the potential to initiate complement-dependent lysis as well as immune effector cell-mediated tumour cell killing via binding to Fc receptors. Natural killer cells can induce apoptosis via antibody-dependent cellular cytotoxicity (ADCC), whereas macrophages are able to phagocytose mAb-opsonized tumour cells (antibody-dependent cellular phagocytosis; ADCP). Finally, neutrophils can induce non-apoptotic tumour cell death, especially in the presence of immunoglobulin A (IgA) antitumour mAbs. In spite of promising clinical successes in some malignancies, improvement of mAb immunotherapy is required to achieve overall complete remission in cancer patients. New strategies to enhance Fc receptor-mediated mechanisms of action or to overcome the immunosuppressive microenvironment of the tumour in mAb therapy of cancer are therefore currently being explored and will be addressed in this chapter.
Collapse
Affiliation(s)
- Jantine E Bakema
- Tumor Biology Section, Department of Otolaryngology/Head-Neck Surgery, VU University Medical Center, De Boelelaan 1117, 1007 MB, Amsterdam, The Netherlands
| | | |
Collapse
|
21
|
Wang K, Jiang Y, Zheng W, Liu Z, Li H, Lou J, Gu M, Wang X. Silencing of human phosphatidylethanolamine-binding protein 4 enhances rituximab-induced death and chemosensitization in B-cell lymphoma. PLoS One 2013; 8:e56829. [PMID: 23451095 PMCID: PMC3581549 DOI: 10.1371/journal.pone.0056829] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/15/2013] [Indexed: 01/10/2023] Open
Abstract
Rituximab is the first line drug to treat non Hodgkin's lymphoma (B-NHL) alone or in combination with chemotherapy. However, 30-40% of B-NHL patients are unresponsive to rituximab or resistant after therapy. Human phosphatidylethanolamine-binding protein 4 (hPEBP4) is a novel member of PEBP family and functions as an anti-apoptotic molecule. In this study, we found hPEBP4 to be expressed in up to 90% of B-cell lymphoma patients, but in only 16.7% of normal lymph nodes. Interestingly, hPEBP4 overexpression inhibited rituximab-mediated complement dependent cytotoxicity (R-CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) in B-NHL cells while downregulation of hPEBP4 augmented the therapeutic efficacy of rituximab both in vitro and in vivo. Furthermore, hPEBP4 silencing sensitized the primary B-acute lymphocytic leukemia (B-ALL) cells to R-CDC. During rituximab-mediated complement dependent cytotoxicity, hPEBP4 was recruited to the cell membrane in a PE-binding domain dependent manner and inhibited R-CDC induced calcium flux and reactive oxygen species (ROS) generation. These events contributed to the decrease of cell death induced by R-CDC in B-cell lymphomas. Meanwhile, hPEBP4 knockdown potentiated the chemosensitization of the rituximab in B-cell lymphoma cells by regulating the expression of Bcl-xl, Cycline E, p21(waf/cip1) and p53 and the activation of caspase-3 and caspase-9. Considering that hPEBP4 conferred cellular resistance to rituximab treatment and was preferentially expressed in lymphoma tissue, it could be a potential valuable target for adjuvant therapy for B-cell lymphoma.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- Antibodies, Monoclonal, Murine-Derived/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Line, Tumor
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Silencing
- Humans
- Immunohistochemistry
- In Vitro Techniques
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Microscopy, Confocal
- Phosphatidylethanolamine Binding Protein/genetics
- Phosphatidylethanolamine Binding Protein/metabolism
- Reactive Oxygen Species/metabolism
- Rituximab
Collapse
Affiliation(s)
- Kai Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yu Jiang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Weiyan Zheng
- Department of Hematology, First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhiyong Liu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hui Li
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jianzhou Lou
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Meidi Gu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaojian Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
22
|
Tumor Antigen-Specific Monoclonal Antibody-Based Immunotherapy, Cancer Initiating Cells and Disease Recurrence. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2013. [DOI: 10.1007/978-1-4614-7654-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Beyer I, Cao H, Persson J, Wang H, Liu Y, Yumul R, Li Z, Woodle D, Manger R, Gough M, Rocha D, Bogue J, Baldessari A, Berenson R, Carter D, Lieber A. Transient removal of CD46 is safe and increases B-cell depletion by rituximab in CD46 transgenic mice and macaques. Mol Ther 2012; 21:291-9. [PMID: 23089733 DOI: 10.1038/mt.2012.212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have developed a technology that depletes the complement regulatory protein (CRP) CD46 from the cell surface, and thereby sensitizes tumor cells to complement-dependent cytotoxicity triggered by therapeutic monoclonal antibodies (mAbs). This technology is based on a small recombinant protein, Ad35K++, which induces the internalization and subsequent degradation of CD46. In preliminary studies, we had demonstrated the utility of the combination of Ad35K++ and several commercially available mAbs such as rituximab, alemtuzumab, and trastuzumab in enhancing cell killing in vitro as well as in vivo in murine xenograft and syngeneic tumor models. We have completed scaled manufacturing of Ad35K++ protein in Escherichia coli for studies in nonhuman primates (NHPs). In macaques, we first defined a dose of the CD20-targeting mAb rituximab that did not deplete CD20-positive peripheral blood cells. Using this dose of rituximab, we then demonstrated that pretreatment with Ad35K++ reconstituted near complete elimination of B cells. Further studies demonstrated that the treatment was well tolerated and safe. These findings in a relevant large animal model provide the rationale for moving this therapy forward into clinical trials in patients with CD20-positive B-cell malignancies.
Collapse
Affiliation(s)
- Ines Beyer
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Identification of a novel short peptide seal specific to CD59 and its effect on HeLa cell growth and apoptosis. Cell Oncol (Dordr) 2012; 35:355-65. [PMID: 22945508 DOI: 10.1007/s13402-012-0096-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In the past, some small peptide ligands identified by phage display technologies have successfully been used in early cancer diagnostics and therapy. In the present study, a novel CD59-binding peptide was identified and its effect on HeLa cell growth and apoptosis was investigated. METHODS A phage display library was screened yielding a novel short peptide, sp22, that specifically binds to CD59, a protein that shows altered expression in various diseases, including cancer. The effect of ectopic sp22 administration and exogenous sp22 expression on the growth and apoptosis of HeLa cells was assessed. For the latter, we constructed and transfected a sp22-pIRES vector into HeLa cells. RESULTS Our results show that sp22 peptides can inhibit the level of CD59 mRNA expression, down-regulate Bcl-2 expression, increase Fas and caspase-3 expression, increase the level of cytolysis, and increase the apoptosis of HeLa cells. In contrast, sp22 peptides had no effect on normal human embryonic lung (HEL) cells exhibiting a relatively low CD59 expression level. Compared to untransfected HeLa cells, exogenously sp22 expressing HeLa cells showed a reduced CD59 expression, an increased complement-mediated lysis, a decreased cellular survival ratio, and an increase in apoptotic cells. CONCLUSION The newly identified sp22 peptide can, in a dose-dependent manner, inhibit CD59 expression. Concomitantly, sp22 can increase complement-mediated lysis and apoptosis signals. This information may be instrumental for the design of novel therapeutic strategies.
Collapse
|
25
|
Monoclonal antibodies for the treatment of cancer. Semin Cancer Biol 2012; 22:3-13. [PMID: 22245472 DOI: 10.1016/j.semcancer.2011.12.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 12/15/2011] [Indexed: 02/07/2023]
Abstract
Over the past decade, the clinical utility of monoclonal antibodies has been realized and antibodies are now a mainstay for the treatment of cancer. Antibodies have the unique capacity to target and kill tumor cells while simultaneously activating immune effectors to kill tumor cells through the complement cascade or antibody-dependent cellular cytotoxicity (ADCC). This multifaceted mechanism of action combined with target specificity underlies the capacity of antibodies to elicit anti-tumor responses while minimizing the frequency and magnitude of adverse events. This review will focus on mechanisms of action, clinical applications and putative mechanisms of resistance to monoclonal antibody therapy in the context of cancer.
Collapse
|
26
|
The effects of CD59 gene as a target gene on breast cancer cells. Cell Immunol 2011; 272:61-70. [PMID: 22000275 DOI: 10.1016/j.cellimm.2011.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/02/2011] [Accepted: 09/19/2011] [Indexed: 01/03/2023]
Abstract
The retroviral-vector-targeted CD59 gene (pSUPER-siCD59) was constructed and transfected into breast cells (MCF-7). The results demonstrated that the retroviral vector-mediated RNAi successfully suppressed human CD59 gene. The expression of CD59 decreased at both mRNA and protein levels. Knockdown of CD59 abrogated its protective effect on complement-mediated cytolysis. Fas and caspase-3 were remarkably upregulated, which induced apoptosis and tumor growth suppression in MCF-7 cells. In addition, overexpression of CD59 promoted the proliferation of MCF-7 cells and inhibited anti-apoptotic Bcl-2 expression. In conclusion, CD59 may be a promising target in the gene therapy of breast cancer.
Collapse
|
27
|
Ge X, Wu L, Hu W, Fernandes S, Wang C, Li X, Brown JR, Qin X. rILYd4, a human CD59 inhibitor, enhances complement-dependent cytotoxicity of ofatumumab against rituximab-resistant B-cell lymphoma cells and chronic lymphocytic leukemia. Clin Cancer Res 2011; 17:6702-11. [PMID: 21918174 DOI: 10.1158/1078-0432.ccr-11-0647] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Ofatumumab is an anti-CD20 antibody recently approved for treatment of fludarabine and alemtuzumab refractory chronic lymphocytic leukemia (CLL); it mediates much stronger complement-dependent cytotoxicity (CDC) than rituximab. Human CD59, a key membrane complement regulator that inhibits CDC, is highly expressed in B-cell malignancies and its upregulation is an important determinant of the sensitivity of B-cell malignancies to rituximab treatment. Previously, we have shown that the potent CD59 inhibitor rILYd4 sensitizes rituximab-resistant lymphoma cells to rituximab-mediated CDC. Here, we further investigated whether rILYd4 can sensitize B-cell malignancies to ofatumumab-mediated CDC and whether either ofatumumab-mediated CDC or rILYd4-enhanced ofatumumab-mediated CDC correlates with CD20 or CD59 expression, known biomarkers involved in rituximab activity. EXPERIMENTAL DESIGN Rituximab-resistant cell lines and primary CLL cells were used to investigate the antitumor efficacy of the combination of rILYd4 with ofatumumab or rituximab. Propidium iodide staining or alamarBlue assay were used to evaluate the CDC effect. The levels of CD20 and CD59 on the cell membrane were analyzed by flow cytometry. RESULTS rILYd4 enhanced CDC effects mediated by ofatumumab or rituximab on rituximab-resistant lymphoma cells and primary CLL cells in vitro. The sensitivity to CDC effects mediated by ofatumumab positively correlated with the ratio of CD20/CD59 and negatively correlated with CD59 levels on CLL cells. The degree to which rILYd4 enhanced CDC correlated positively with the CD59 levels on CLL cells. CONCLUSIONS These data suggest that rILYd4 may enhance the anticancer activity of ofatumumab and rituximab in B-cell malignancies that have relapsed after prior antibody-based therapies.
Collapse
Affiliation(s)
- Xiaowen Ge
- Center for Molecular Medicine, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hu W, Ge X, You T, Xu T, Zhang J, Wu G, Peng Z, Chorev M, Aktas BH, Halperin JA, Brown JR, Qin X. Human CD59 inhibitor sensitizes rituximab-resistant lymphoma cells to complement-mediated cytolysis. Cancer Res 2011; 71:2298-307. [PMID: 21252115 PMCID: PMC3622284 DOI: 10.1158/0008-5472.can-10-3016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rituximab efficacy in cancer therapy depends in part on induction of complement-dependent cytotoxicity (CDC). Human CD59 (hCD59) is a key complement regulatory protein that restricts the formation of the membrane attack complex, thereby inhibiting induction of CDC. hCD59 is highly expressed in B-cell non-Hodgkin's lymphoma (NHL), and upregulation of hCD59 is an important determinant of the sensitivity of NHL cells to rituximab treatment. Here, we report that the potent hCD59 inhibitor rILYd4 enhances CDC in vitro and in vivo, thereby sensitizing rituximab-resistant lymphoma cells and primary chronic lymphocytic leukemia cells (CLL) to rituximab treatment. By defining pharmcokinetic/pharmacodynamic profiles of rILYd4 in mice, we showed that by itself rILYd4 does not adversely mediate in vivo hemolysis of hCD59-expressing erythrocytes. Increasing expression levels of the complement regulators CD59 and CD55 in rituximab-resistant cells occur due to selection of preexisting clones rather than de novo induction of these proteins. Moreover, lymphoma cells overexpressing CD59 were directly responsible for the resistance to rituximab-mediated CDC therapy. Our results rationalize the use of rILYd4 as a therapeutic adjuvant for rituximab treatment of rituximab-resistant lymphoma and CLL. Furthermore, they suggest that preemptive elimination of CD59-overexpressing subpopulations along with rituximab treatment may be a useful approach to ablate or conquer rituximab resistance.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- Antineoplastic Agents/pharmacology
- Bacteriocins/genetics
- Bacteriocins/pharmacology
- CD59 Antigens/genetics
- CD59 Antigens/immunology
- CD59 Antigens/metabolism
- Cell Line, Tumor
- Complement System Proteins/immunology
- Complement System Proteins/metabolism
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/immunology
- Cytotoxins/genetics
- Cytotoxins/pharmacology
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/immunology
- Flow Cytometry
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Nude
- Recombinant Proteins/pharmacology
- Rituximab
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Weiguo Hu
- Department of Medicine, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA
- Harvard Medical School, Laboratory for Translational Research, One Kendall Square, Building 600, 3 Floor, Cambridge, MA 02139, USA
| | - Xiaowen Ge
- Harvard Medical School, Laboratory for Translational Research, One Kendall Square, Building 600, 3 Floor, Cambridge, MA 02139, USA
| | - Tao You
- Harvard Medical School, Laboratory for Translational Research, One Kendall Square, Building 600, 3 Floor, Cambridge, MA 02139, USA
| | - Ting Xu
- Sino Recombi Pharma, 218 Xing Hu Street, Biobay, Bldg#A2, Suite 212, Suzhou Industrial park, Suzhou 215125, China
| | - Jinyan Zhang
- Harvard Medical School, Laboratory for Translational Research, One Kendall Square, Building 600, 3 Floor, Cambridge, MA 02139, USA
- Department of General Surgery, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Gongxiong Wu
- Department of Medicine, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA
- Harvard Medical School, Laboratory for Translational Research, One Kendall Square, Building 600, 3 Floor, Cambridge, MA 02139, USA
| | - Zhihai Peng
- Department of General Surgery, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Michael Chorev
- Department of Medicine, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA
- Harvard Medical School, Laboratory for Translational Research, One Kendall Square, Building 600, 3 Floor, Cambridge, MA 02139, USA
| | - Bertal H. Aktas
- Department of Medicine, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA
- Harvard Medical School, Laboratory for Translational Research, One Kendall Square, Building 600, 3 Floor, Cambridge, MA 02139, USA
| | - Jose A. Halperin
- Department of Medicine, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA
- Harvard Medical School, Laboratory for Translational Research, One Kendall Square, Building 600, 3 Floor, Cambridge, MA 02139, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, 44 Binney Street, Dana Building D1B30, Boston, MA 02115, USA
| | - Xuebin Qin
- Department of Medicine, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA
- Harvard Medical School, Laboratory for Translational Research, One Kendall Square, Building 600, 3 Floor, Cambridge, MA 02139, USA
| |
Collapse
|