1
|
Elahimanesh M, Shokri N, Mohammadi P, Parvaz N, Najafi M. Step by step analysis on gene datasets of growth phases in hematopoietic stem cells. Biochem Biophys Rep 2024; 39:101737. [PMID: 38881758 PMCID: PMC11176649 DOI: 10.1016/j.bbrep.2024.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/18/2024] Open
Abstract
Background Umbilical cord blood hematopoietic stem cells (UCB-HSCs) have important roles in the treatment of illnesses based on their self-renewal and potency characteristics. Knowing the gene profiles and signaling pathways involved in each step of the cell cycle could improve the therapeutic approaches of HSCs. The aim of this study was to predict the gene profiles and signaling pathways involved in the G0, G1, and differentiation stages of HSCs. Methods Interventional (n = 8) and non-interventional (n = 3) datasets were obtained from the Gene Expression Omnibus (GEO) database, and were crossed and analyzed to determine the high- and low-express genes related to each of the G0, G1, and differentiation stages of HSCs. Then, the scores of STRING were annotated to the gene data. The gene networks were constructed using Cytoscape software, and enriched with the KEGG and GO databases. Results The high- and low-express genes were determined due to inter and intra intersections of the interventional and non-interventional data. The non-interventional data were applied to construct the gene networks (n = 6) with the nodes improved using the interventional data. Several important signaling pathways were suggested in each of the G0, G1, and differentiation stages. Conclusion The data revealed that the different signaling pathways are activated in each of the G0, G1, and differentiation stages so that their genes may be targeted to improve the HSC therapy.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Clinical Biochemistry Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Mohammadi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Najmeh Parvaz
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Steffan BN, Townsend EA, Denlinger LC, Johansson MW. Eosinophil-Epithelial Cell Interactions in Asthma. Int Arch Allergy Immunol 2024; 185:1033-1047. [PMID: 38885626 PMCID: PMC11534548 DOI: 10.1159/000539309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Eosinophils have numerous roles in type 2 inflammation depending on their activation states in the blood and airway or after encounter with inflammatory mediators. Airway epithelial cells have a sentinel role in the lung and, by instructing eosinophils, likely have a foundational role in asthma pathogenesis. SUMMARY In this review, we discuss various topics related to eosinophil-epithelial cell interactions in asthma, including the influence of eosinophils and eosinophil products, e.g., granule proteins, on epithelial cell function, expression, secretion, and plasticity; the effects of epithelial released factors, including oxylipins, cytokines, and other mediators on eosinophils, e.g., on their activation, expression, and survival; possible mechanisms of eosinophil-epithelial cell adhesion; and the role of intra-epithelial eosinophils in asthma. KEY MESSAGES We suggest that eosinophils and their products can have both injurious and beneficial effects on airway epithelial cells in asthma and that there are bidirectional interactions and signaling between eosinophils and airway epithelial cells in asthma.
Collapse
Affiliation(s)
- Breanne N. Steffan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Elizabeth A. Townsend
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Loren C. Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Mats W. Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Guo X, Bai Y, Jia X, Wu P, Luo L, Wang J, Li H, Guo H, Li J, Guo Z, Yun K, Gao C, Yan J. DNA methylation profiling reveals potential biomarkers of β-lactams induced fatal anaphylactic shock. Forensic Sci Int 2024; 356:111943. [PMID: 38290418 DOI: 10.1016/j.forsciint.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/30/2023] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
Anaphylaxis is a serious reaction of systemic hypersensitivity with that rapid onset and sudden death. Drug hypersensitivity, particularly induced by β-lactams, is one of the most frequent causes of anaphylaxis in adults. But identification of anaphylactic shock, in forensic sciences recently, is difficult, because it mainly depends on nonspecific characteristic morphological changes, as well as exclusion and circumstantial evidence. Here, we detected DNA methylation signatures of β-lactams-induced fatal anaphylactic shock with the Illumina Infinium Human Methylation EPIC BeadChip, to screen potential forensic biomarkers and reveal the molecular mechanisms of drug-induced anaphylaxis with fatal shock and sudden death. Our results indicated that DNA methylation was associated with β-lactams-induced fatal anaphylactic shock, in which the hypomethylation played a vital role. We found that 1459 differentially methylated positions (DMPs) were mainly involved in β-lactams-induced fatal anaphylactic shock by regulating MAPK and other signaling pathways. 18 DNA methylation signatures that could separate β-lactams-induced anaphylactic shock from healthy individuals were identified. The altered methylation of DMPs can affect the transcription of corresponding genes and promote β-lactams-induced fatal anaphylactic shock. The results suggest that DNA methylation can detect forensic identification markers of drug-induced anaphylaxis with fatal shock and sudden death, and it is an effective method for the forensic diagnosis.
Collapse
Affiliation(s)
- Xiangjie Guo
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China; Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory of Drug Toxicology and Drug for Radiation Injury, China Institute for Radiation Protection, Taiyuan, ShanXi, China.
| | - Yaqin Bai
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao Jia
- College of Pharmacy, Nankai University, Tianjin, China
| | - Peng Wu
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Luo
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiaqi Wang
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hao Li
- Institute of Forensic Science of China, Beijing, China
| | - Hualin Guo
- China Astronaut Research and Training Center, Beijing, China
| | - Jianguo Li
- Shanxi Key Laboratory of Drug Toxicology and Drug for Radiation Injury, China Institute for Radiation Protection, Taiyuan, ShanXi, China
| | - Zhongyuan Guo
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Keming Yun
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Cairong Gao
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Jiangwei Yan
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Liu J, Luo L, Xu Z, Yang X, Yu J, He K, Hong S. NOD1 mediated D. pteronyssinus-induced allergic airway inflammation through RIP2/NF-κB. Immunobiology 2023; 228:152394. [PMID: 37224660 DOI: 10.1016/j.imbio.2023.152394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Dermatophagoides pteronyssinus (D. pteronyssinus) is the main cause of allergic airway inflammation. As the earliest intracytoplasmic pathogen recognition receptors (PRR), NOD1 has been identified as key inflammatory mediator in NOD-like receptor (NLR) family. OBJECTIVE Our primary aim is to elucidate whether NOD1 and its downstream regulatory proteins mediate D. pteronyssinus-induced allergic airway inflammation. METHODS Mouse and cell models of D. pteronyssinus-induced allergic airway inflammation were established. NOD1 was inhibited in bronchial epithelium cells (BEAS-2B cells) and mice by cell transfection or application of inhibitor. The change of downstream regulatory proteins was detected by quantitative real-time PCR (qRT-PCR) and Western blot. The relative expression of inflammatory cytokines was evaluated by ELISA. RESULTS The expression level of NOD1 and its downstream regulatory proteins increased in BEAS-2B cells and mice after treating with D. pteronyssinus extract, followed by the aggravation of inflammatory response. Moreover, inhibition of NOD1 decreased the inflammatory response, which also downregulated the expression of downstream regulatory proteins and inflammatory cytokines. CONCLUSIONS NOD1 involves in the development of D. pteronyssinus-induced allergic airway inflammation. Inhibition of NOD1 reduces D. pteronyssinus-induced airway inflammation.
Collapse
Affiliation(s)
- Jiaxi Liu
- Graduate School of Nanjing Medical University, Nanjing, 101Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
| | - Liang Luo
- Department of Critical Care Medicine, Wuxi No.2 People's Hospital affiliated Wuxi Clinical College of Nantong University, No. 68 Zhongshan Road, Wuxi 214002, Jiangsu Province, China
| | - Zuyu Xu
- Graduate School of Nanjing Medical University, Nanjing, 101Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
| | - Xiucheng Yang
- Graduate School of Nanjing Medical University, Nanjing, 101Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
| | - Jinyan Yu
- Graduate School of Nanjing Medical University, Nanjing, 101Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
| | - Kaiyue He
- Department of Clinical Laboratory, Wuxi No.2 People's Hospital affiliated Wuxi Clinical College of Nantong University, No. 68 Zhongshan Road, Wuxi 214002, Jiangsu Province, China
| | - Shanchao Hong
- Department of Clinical Laboratory, Wuxi No.2 People's Hospital affiliated Wuxi Clinical College of Nantong University, No. 68 Zhongshan Road, Wuxi 214002, Jiangsu Province, China.
| |
Collapse
|
5
|
Lv X, Tang W, Qin J, Wang W, Dong J, Wei Y. The crosslinks between ferroptosis and autophagy in asthma. Front Immunol 2023; 14:1140791. [PMID: 37063888 PMCID: PMC10090423 DOI: 10.3389/fimmu.2023.1140791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Autophagy is an evolutionarily conserved cellular process capable of degrading various biological molecules and organelles via the lysosomal pathway. Ferroptosis is a type of oxidative stress-dependent regulated cell death associated with the iron accumulation and lipid peroxidation. The crosslinks between ferroptosis and autophagy have been focused on since the dependence of ferroptosis on autophagy was discovered. Although the research and theories on the relationship between autophagy and ferroptosis remain scattered and fragmented, the crosslinks between these two forms of regulated cell death are closely related to the treatment of various diseases. Thereof, asthma as a chronic inflammatory disease has a tight connection with the occurrence of ferroptosis and autophagy since the crosslinked signal pathways may be the crucial regulators or exactly regulated by cells and secretion in the immune system. In addition, non-immune cells associated with asthma are also closely related to autophagy and ferroptosis. Further studies of cross-linking asthma inflammation with crosslinked signaling pathways may provide us with several key molecules that regulate asthma through specific regulators. The crosslinks between autophagy and ferroptosis provide us with a new perspective to interpret and understand the manifestations of asthma, potential drug discovery targets, and new therapeutic options to effectively intervene in the imbalance caused by abnormal inflammation in asthma. Herein, we introduce the main molecular mechanisms of ferroptosis, autophagy, and asthma, describe the role of crosslinks between ferroptosis and autophagy in asthma based on their common regulatory cells or molecules, and discuss potential drug discovery targets and therapeutic applications in the context of immunomodulatory and symptom alleviation.
Collapse
Affiliation(s)
- Xiaodi Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Ying Wei, ; Jingcheng Dong,
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Ying Wei, ; Jingcheng Dong,
| |
Collapse
|
6
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|
7
|
NOD2 Signaling Circuitry during Allergen Sensitization Does Not Worsen Experimental Neutrophilic Asthma but Promotes a Th2/Th17 Profile in Asthma Patients but Not Healthy Subjects. Int J Mol Sci 2022; 23:ijms231911894. [PMID: 36233196 PMCID: PMC9569442 DOI: 10.3390/ijms231911894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Nucleotide-binding oligomerization domain 2 (NOD2) recognizes pathogens associated with the development of asthma. Moreover, NOD2 adjuvants are used in vaccine design to boost immune responses. Muramyl di-peptide (MDP) is a NOD2 ligand, which is able to promote Th2/Th17 responses. Furthermore, polymorphisms of the NOD2 receptor are associated with allergy and asthma development. This study aimed to evaluate if MDP given as an adjuvant during allergen sensitization may worsen the development of Th2/Th17 responses. We used a mouse model of Th2/Th17-type allergic neutrophil airway inflammation (AAI) to dog allergen, with in vitro polarization of human naive T cells by dendritic cells (DC) from healthy and dog-allergic asthma subjects. In the mouse model, intranasal co-administration of MDP did not modify the AAI parameters, including Th2/Th17-type lung inflammation. In humans, MDP co-stimulation of allergen-primed DC did not change the polarization profile of T cells in healthy subjects but elicited a Th2/Th17 profile in asthma subjects, as compared with MDP alone. These results support the idea that NOD2 may not be involved in the infection-related development of asthma and that, while care has to be taken in asthma patients, NOD2 adjuvants might be used in non-sensitized individuals.
Collapse
|
8
|
Role of Carbon Monoxide in Oxidative Stress-Induced Senescence in Human Bronchial Epithelium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5199572. [PMID: 36193088 PMCID: PMC9526622 DOI: 10.1155/2022/5199572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022]
Abstract
Prolonged or excessive stimulation from inhaled toxins may cause oxidative stress and DNA damage that can lead to stress-induced senescence in epithelial cells, which can contribute to several airway diseases. Mounting evidence has shown carbon monoxide (CO) confers cytoprotective effects. We investigated the effects of CO on oxidative stress-induced senescence in human airway epithelium and elucidated the underlying molecular mechanisms. Here, CO pretreatment reduced H2O2-mediated increases in total reactive oxygen species (ROS) production and mitochondrial superoxide in a human bronchial epithelial cell line (BEAS-2B). H2O2 treatment triggered a premature senescence-like phenotype with enlarged and flattened cell morphology accompanied by increased SA-β-gal activity, cell cycle arrest in G0/G1, reduced cell viability, and increased transcription of senescence-associated secretory phenotype (SASP) genes. Additionally, exposure to H2O2 increased protein levels of cellular senescence markers (p53 and p21), reduced Sirtuin 3 (SIRT3) and manganese superoxide dismutase (MnSOD) levels, and increased p53 K382 acetylation. These H2O2-mediated effects were attenuated by pretreatment with a CO-containing solution. SIRT3 silencing induced mitochondrial superoxide production and triggered a senescence-like phenotype, whereas overexpression decreased mitochondrial superoxide production and alleviated the senescence-like phenotype. Air-liquid interface (ALI) culture of primary human bronchial cells, which becomes a fully differentiated pseudostratified mucociliary epithelium, was used as a model. We found that apical and basolateral exposure to H2O2 induced a vacuolated structure that impaired the integrity of ALI cultures, increased goblet cell numbers, decreased SCGB1A1+ club cell numbers, increased p21 protein levels, and increased SASP gene transcription, consistent with our observations in BEAS-2B cells. These effects were attenuated in the apical presence of a CO-containing solution. In summary, we revealed that CO has a pivotal role in epithelial senescence by regulating ROS production via the SIRT3/MnSOD/p53/p21 pathway. This may have important implications in the prevention and treatment of age-associated respiratory pathologies.
Collapse
|
9
|
Alvarez-Simon D, Ait Yahia S, de Nadai P, Audousset C, Chamaillard M, Boneca IG, Tsicopoulos A. NOD-like receptors in asthma. Front Immunol 2022; 13:928886. [PMID: 36189256 PMCID: PMC9515552 DOI: 10.3389/fimmu.2022.928886] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/23/2022] [Indexed: 12/28/2022] Open
Abstract
Asthma is an extremely prevalent chronic inflammatory disease of the airway where innate and adaptive immune systems participate collectively with epithelial and other structural cells to cause airway hyperresponsiveness, mucus overproduction, airway narrowing, and remodeling. The nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a family of intracellular innate immune sensors that detect microbe-associated molecular patterns and damage-associated molecular patterns, well-recognized for their central roles in the maintenance of tissue homeostasis and host defense against bacteria, viruses and fungi. In recent times, NLRs have been increasingly acknowledged as much more than innate sensors and have emerged also as relevant players in diseases classically defined by their adaptive immune responses such as asthma. In this review article, we discuss the current knowledge and recent developments about NLR expression, activation and function in relation to asthma and examine the potential interventions in NLR signaling as asthma immunomodulatory therapies.
Collapse
Affiliation(s)
- Daniel Alvarez-Simon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Saliha Ait Yahia
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Camille Audousset
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Mathias Chamaillard
- Laboratory of Cell Physiology, INSERM U1003, University of Lille, Lille, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, INSERM U1306, Unité Biologie et génétique de la paroi bactérienne, Paris, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
- *Correspondence: Anne Tsicopoulos,
| |
Collapse
|
10
|
Solstad A, Hogaboam O, Forero A, Hemann EA. RIG-I-like Receptor Regulation of Immune Cell Function and Therapeutic Implications. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:845-854. [PMID: 36130131 PMCID: PMC9512390 DOI: 10.4049/jimmunol.2200395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/30/2022] [Indexed: 01/04/2023]
Abstract
Retinoic acid-inducible gene I-like receptors (RLRs) are cytosolic RNA sensors critical for initiation of antiviral immunity. Activation of RLRs following RNA recognition leads to production of antiviral genes and IFNs for induction of broad antiviral immunity. Although the RLRs are ubiquitously expressed, much of our understanding of these molecules comes from their study in epithelial cells and fibroblasts. However, RLR activation is critical for induction of immune function and long-term protective immunity. Recent work has focused on the roles of RLRs in immune cells and their contribution to programming of effective immune responses. This new understanding of RLR function in immune cells and immune programming has led to the development of vaccines and therapeutics targeting the RLRs. This review covers recent advances in our understanding of the contribution of RLRs to immune cell function during infection and the emerging RLR-targeting strategies for induction of immunity against cancer and viral infection.
Collapse
Affiliation(s)
- Abigail Solstad
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH
| | - Octavia Hogaboam
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH
- Infectious Diseases Institute, The Ohio State University, Columbus, OH; and
| | - Emily A Hemann
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH;
- Infectious Diseases Institute, The Ohio State University, Columbus, OH; and
| |
Collapse
|
11
|
Cui H, Duan R, Niu H, Yu T, Huang K, Chen C, Hao K, Yang T, Wang C. Integrated analysis of mRNA and long noncoding RNA profiles in peripheral blood mononuclear cells of patients with bronchial asthma. BMC Pulm Med 2022; 22:174. [PMID: 35501805 PMCID: PMC9059365 DOI: 10.1186/s12890-022-01945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background Bronchial asthma is a heterogeneous disease with distinct disease phenotypes and underlying pathophysiological mechanisms. Long non-coding RNAs (lncRNAs) are involved in numerous functionally different biological and physiological processes. The aim of this study was to identify differentially expressed lncRNAs and mRNAs in patients with asthma and further explore the functions and interactions between lncRNAs and mRNAs. Methods Ten patients with asthma and 9 healthy controls were enrolled in this study. RNA was isolated from peripheral blood mononuclear cells. We performed microarray analysis to evaluate lncRNA and mRNA expression. The functions of the differentially expressed mRNAs were analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. A global signal transduction network was constructed to identify the core mRNAs. An lncRNA–mRNA network was constructed. Five mRNAs showing the greatest differences in expression levels or high degrees in the gene–gene functional interaction network, with their correlated lncRNAs, were validated by real-time quantitative polymerase chain reaction. Results We identified 2229 differentially expressed mRNAs and 1397 lncRNAs between the asthma and control groups. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified many pathways associated with inflammation and cell survival. The gene–gene functional interaction network suggested that some core mRNAs are involved in the pathogenesis of bronchial asthma. The lncRNA–mRNA co-expression network revealed correlated lncRNAs. CXCL8, FOXO3, JUN, PIK3CA, and G0S2 and their related lncRNAs NONHSAT115963, AC019050.1, MTCYBP3, KB-67B5.12, and HNRNPA1P12 were identified according to their differential expression levels and high degrees in the gene–gene network. Conclusions We identified the core mRNAs and their related lncRNAs and predicted the biological processes and signaling pathways involved in asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01945-9.
Collapse
Affiliation(s)
- Han Cui
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Geriatric, Beijing Hospital, Beijing, China
| | - Ruirui Duan
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Hongtao Niu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tao Yu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ke Huang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chen Chen
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ting Yang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China. .,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China. .,Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.
| | - Chen Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China. .,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China. .,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China. .,Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
12
|
Tsang MSM, Hou T, Chan BCL, Wong CK. Immunological Roles of NLR in Allergic Diseases and Its Underlying Mechanisms. Int J Mol Sci 2021; 22:1507. [PMID: 33546184 PMCID: PMC7913164 DOI: 10.3390/ijms22041507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Our understanding on the immunological roles of pathogen recognition in innate immunity has vastly increased over the past 20 years. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLR) are cytosolic pattern recognition receptors (PRR) that are responsible for sensing microbial motifs and endogenous damage signals in mammalian cytosol for immune surveillance and host defense. The accumulating discoveries on these NLR sensors in allergic diseases suggest that the pathogenesis of allergic diseases may not be confined to the adaptive immune response. Therapy targeting NLR in murine models also shields light on its potential in the treatment of allergies in man. In this review, we herein summarize the recent understanding of the role of NLR sensors and their molecular mechanisms involved in allergic inflammation, including atopic dermatitis and allergic asthma.
Collapse
Affiliation(s)
- Miranda Sin-Man Tsang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China; (M.S.-M.T.); (T.H.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | - Tianheng Hou
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China; (M.S.-M.T.); (T.H.)
| | - Ben Chung-Lap Chan
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China; (M.S.-M.T.); (T.H.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China;
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
The genetics of asthma and the promise of genomics-guided drug target discovery. THE LANCET RESPIRATORY MEDICINE 2020; 8:1045-1056. [PMID: 32910899 DOI: 10.1016/s2213-2600(20)30363-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 12/27/2022]
Abstract
Asthma is an inflammatory airway disease that is estimated to affect 339 million people globally. The symptoms of about 5-10% of patients with asthma are not adequately controlled with current therapy, and little success has been achieved in developing drugs that target the underlying mechanisms of asthma rather than suppressing symptoms. Over the past 3 years, well powered genetic studies of asthma have increased the number of independent asthma-associated genetic loci to 128. In this Series paper, we describe the immense progress in asthma genetics over the past 13 years and link asthma genetic variants to possible drug targets. Further studies are needed to establish the functional significance of gene variants associated with asthma in subgroups of patients and to describe the biological networks within which they function. The genomics-guided discovery of plausible drug targets for asthma could pave the way for the repurposing of existing drugs for asthma and the development of new treatments.
Collapse
|
14
|
Sun X, Hou T, Cheung E, Iu TNT, Tam VWH, Chu IMT, Tsang MSM, Chan PKS, Lam CWK, Wong CK. Anti-inflammatory mechanisms of the novel cytokine interleukin-38 in allergic asthma. Cell Mol Immunol 2020; 17:631-646. [PMID: 31645649 PMCID: PMC7264207 DOI: 10.1038/s41423-019-0300-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/15/2019] [Indexed: 12/13/2022] Open
Abstract
We elucidated the anti-inflammatory mechanisms of IL-38 in allergic asthma. Human bronchial epithelial cells and eosinophils were cocultured upon stimulation with the viral RLR ligand poly (I:C)/LyoVec or infection-related cytokine TNF-α to induce expression of cytokines/chemokines/adhesion molecules. House dust mite (HDM)-induced allergic asthma and humanized allergic asthma NOD/SCID murine models were established to assess anti-inflammatory mechanisms in vivo. IL-38 significantly inhibited induced proinflammatory IL-6, IL-1β, CCL5, and CXCL10 production, and antiviral interferon-β and intercellular adhesion molecule-1 expression in the coculture system. Mass cytometry and RNA-sequencing analysis revealed that IL-38 could antagonize the activation of the intracellular STAT1, STAT3, p38 MAPK, ERK1/2, and NF-κB pathways, and upregulate the expression of the host defense-related gene POU2AF1 and anti-allergic response gene RGS13. Intraperitoneal injection of IL-38 into HDM-induced allergic asthma mice could ameliorate airway hyperreactivity by decreasing the accumulation of eosinophils in the lungs and inhibiting the expression of the Th2-related cytokines IL-4, IL-5, and IL-13 in the bronchoalveolar lavage fluid (BALF) and lung homogenates. Histological examination indicated lung inflammation was alleviated by reductions in cell infiltration and goblet cell hyperplasia, together with reduced Th2, Th17, and innate lymphoid type 2 cell numbers but increased proportions of regulatory T cells in the lungs, spleen, and lymph nodes. IL-38 administration suppressed airway hyperreactivity and asthma-related IL-4 and IL-5 expression in humanized mice, together with significantly decreased CCR3+ eosinophil numbers in the BALF and lungs, and a reduced percentage of human CD4+CRTH2+ Th2 cells in the lungs and mediastinal lymph nodes. Together, our results demonstrated the anti-inflammatory mechanisms of IL-38 and provided a basis for the development of a regulatory cytokine-based treatment for allergic asthma.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tianheng Hou
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Edwin Cheung
- Cancer Centre; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau, China
| | - Tiffany Nga-Teng Iu
- Cancer Centre; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau, China
| | - Victor Wai-Hou Tam
- Cancer Centre; Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau, China
| | - Ida Miu-Ting Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Miranda Sin-Man Tsang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul Kay-Sheung Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Christopher Wai-Kei Lam
- Faculty of Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Yu X, Song Z, Rao L, Tu Q, Zhou J, Yin Y, Chen D. Synergistic induction of CCL5, CXCL9 and CXCL10 by IFN-γ and NLRs ligands on human fibroblast-like synoviocytes-A potential immunopathological mechanism for joint inflammation in rheumatoid arthritis. Int Immunopharmacol 2020; 82:106356. [PMID: 32151958 DOI: 10.1016/j.intimp.2020.106356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
Interferon-γ (IFN-γ) is traditionally regarded as a proinflammatory cytokine by virtue of its strong macrophage activating potential and its association with Th1 driven immune responses. NOD1 and NOD2 are cytoplasmic receptors that can initiate the initial immune response by sensing bacterial components or danger signals. In this study, we investigated the immunopathological roles of IFN-γ and NOD1, 2 ligands iE-DAP/MDP on the activation of fibroblast-like synoviocytes (FLS) in RA. FLS constitutively express functional NOD1 and NOD2, and the gene and protein expression of NOD1 and NOD2 could be enhanced by the treatment with IFN-γ. The synergistic effect was observed in the combined treatment of IFN-γ and NOD1 ligand iE-DAP or NOD2 ligand MDP on the release of CCL5, CXCL9 and CXCL10 from FLS, and its effect was in a dose-dependent manner. The co-stimulation which IFN-γ combined with iE-DAP/MDP could abolish the inhibition of CXCL8 level by IFN-γ alone. Further investigations showed that synergistic effects on the production of CCL5, CXCL9 and CXCL10 in FLS stimulated by IFN-γ and iE-DAP/MDP were differentially regulated by intracellular activation of NF-κB, p38MAPK and ERK pathways. In conclusion, our data confirmed the inflammatory effect of IFN-γ and iE-DAP/MDP on human FLS for the first time and therefore provided a new insight into the IFN-γ combined with NOD1 or NOD2 activated immunopathological mechanisms mediated by distinct intracellular signal transduction in joint inflammation of RA.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Department of Clinical Laboratory; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhixin Song
- Department of Clinical Laboratory; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lubei Rao
- Department of Clinical Laboratory; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qianqian Tu
- Department of Clinical Laboratory; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jie Zhou
- Department of Clinical Laboratory; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Dapeng Chen
- Department of Clinical Laboratory; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| |
Collapse
|
16
|
Xu T, Ge X, Lu C, Dai W, Chen H, Xiao Z, Wu L, Liang G, Ying S, Zhang Y, Dai Y. Baicalein attenuates OVA-induced allergic airway inflammation through the inhibition of the NF-κB signaling pathway. Aging (Albany NY) 2019; 11:9310-9327. [PMID: 31692453 PMCID: PMC6874438 DOI: 10.18632/aging.102371] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/12/2019] [Indexed: 01/02/2023]
Abstract
Asthma is a type of chronic lung inflammation with restrictions in effective therapy. NF-κB pathway activation has been suggested to play an important role in the pathogenesis of asthma. Baicalein, one of the major active flavonoids found in Scutellaria baicalensis, exhibits potent anti-inflammatory properties by inhibiting NF-κB activity. Herein, we report that Baicalein significantly reduces OVA-induced airway hyperresponsiveness (AHR), airway inflammation, serum IgE levels, mucus production, and collagen deposition around the airway. Additionally, western blot analysis and immunofluorescence assay showed that Baicalein attenuates the activation of NF-κB, which was mainly reflected by IκBα phosphorylation and degradation, p65 nuclear translocation and downstream iNOS expression. Furthermore, in human epithelial cells, Baicalein blocked TNF-α-induced NF-κB activation. Our study provides evidence that Baicalein administration alleviates the pathological changes in asthma through inactivating the NF-κB/iNOS pathway. Baicalein might be a promising potential therapy agent for patients with allergic asthma in the future.
Collapse
Affiliation(s)
- Tingting Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangting Ge
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chun Lu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Dai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongjin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhongxiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Liqin Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Songmin Ying
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Pharmacology and Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuanrong Dai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Eosinophils are short-lived granulocytes that contain a variety of proteins and lipids traditionally associated with host defense against parasites. The primary goal of this review is to examine more recent evidence that challenged this rather outdated role of eosinophils in the context of pulmonary infections with helminths, viruses, and bacteria. RECENT FINDINGS While eosinophil mechanisms that counter parasites, viruses, and bacteria are similar, the kinetics and impact may differ by pathogen type. Major antiparasitic responses include direct killing and immunoregulation, as well as some mechanisms by which parasite survival/growth is supported. Antiviral defenses may be as unembellished as granule protein-induced direct killing or more urbane as serving as a conduit for better adaptive immune responses to the invading virus. Although sacrificial, eosinophil DNA emitted in response to bacteria helps trap bacteria to limit dissemination. Herein, we discuss the current research redefining eosinophils as multifunctional cells that are active participants in host defense against lung pathogens. Eosinophils recognize and differentially respond to invading pathogens, allowing them to deploy innate defense mechanisms to contain and clear the infection, or modulate the immune response. Modern technology and animal models have unraveled hitherto unknown capabilities of this surreptitious cell that indubitably has more functions awaiting discovery.
Collapse
Affiliation(s)
- Kim S LeMessurier
- Department of Pediatrics, Division of Pulmonology, Allergy - Immunology, and Sleep, University of Tennessee Health Science Center, Memphis, TN, USA
- Children's Foundation Research Institute, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Amali E Samarasinghe
- Department of Pediatrics, Division of Pulmonology, Allergy - Immunology, and Sleep, University of Tennessee Health Science Center, Memphis, TN, USA.
- Children's Foundation Research Institute, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| |
Collapse
|
18
|
Belhaj R, Kaabachi W, Khalfallah I, Hamdi B, Hamzaoui K, Hamzaoui A. Gene Variants, mRNA and NOD1/2 Protein Levels in Tunisian Childhood Asthma. Lung 2019; 197:377-385. [PMID: 30874883 DOI: 10.1007/s00408-019-00209-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/18/2019] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Asthma is a common respiratory childhood disease that results from an interaction between genetic, environmental and immunologic factors. The implication of nucleotide-binding and oligomerization domain 1 and 2 (NOD1/CARD4, NOD2/CARD15) was highlighted in many inflammatory diseases. METHODS In this case-control study, we analyzed the association of three NOD2 polymorphisms and one NOD1 variant, in 338 Tunisian asthmatic children and 425 healthy Controls, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. We also assessed NOD1 and NOD2 mRNA and protein levels by qRT-PCR and ELISA techniques. RESULTS The homozygous AA genotype of rs2075820 was a risk factor for asthma (OR 2.39). The influence of the E266K variant in the presence of the heterozygous AG genotype was higher in male than female groups. The homozygous AA genotype was a risk factor associated with asthma, for patients aged between 6 and 18 years OR 2.39, IC95% (1.04-5.49) p < 0.01. The mRNA expression of NOD1, but not NOD2, was enhanced in asthma patients compared to Controls. We noted a significant difference between asthmatics and healthy controls in NOD1 protein expression (asthma patients : 31.18 ± 10.9 pg/ml, Controls: 20.10 ± 2.58 pg/ml; p < 0.001). CONCLUSIONS The NOD1 rs2075820 variant was associated with a higher childhood asthma risk and the NOD1 expression at mRNA and protein levels was significantly increased in asthma patients.
Collapse
Affiliation(s)
- Rafik Belhaj
- University of Sciences Tunis, Tunis El Manar University, Tunis, Tunisia. .,Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia.
| | - Wajih Kaabachi
- University of Sciences Tunis, Tunis El Manar University, Tunis, Tunisia.,Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia
| | - Ikbel Khalfallah
- Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia.,Department of Respiratory Diseases, Hospital A. Mami, Pavillon B, Ariana, Tunisia
| | - Basma Hamdi
- Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia.,Department of Respiratory Diseases, Hospital A. Mami, Pavillon B, Ariana, Tunisia
| | - Kamel Hamzaoui
- University of Sciences Tunis, Tunis El Manar University, Tunis, Tunisia.,Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia.,Department of Respiratory Diseases, Hospital A. Mami, Pavillon B, Ariana, Tunisia
| | - Agnes Hamzaoui
- Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia.,Department of Respiratory Diseases, Hospital A. Mami, Pavillon B, Ariana, Tunisia.,Unit Research Homeostasis and Cell dysfunction, Medicine Faculty of Tunis, 15 Rue Djebel Lakdar 1007, Tunisia, Tunisia
| |
Collapse
|
19
|
Percopo CM, Krumholz JO, Fischer ER, Kraemer LS, Ma M, Laky K, Rosenberg HF. Impact of eosinophil-peroxidase (EPX) deficiency on eosinophil structure and function in mouse airways. J Leukoc Biol 2018; 105:151-161. [PMID: 30285291 DOI: 10.1002/jlb.3ab0318-090rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 12/15/2022] Open
Abstract
Eosinophil peroxidase (EPX) is a major constituent of the large cytoplasmic granules of both human and mouse eosinophilic leukocytes. Human EPX deficiency is a rare, autosomal-recessive disorder limited to the eosinophil lineage. Our intent was to explore the impact of EPX gene deletion on eosinophil content, structure, and function. In response to repetitive intranasal challenge with a filtrate of the allergen, Alternaria alternata, we found significantly fewer eosinophils peripherally and in the respiratory tracts of EPX-/- mice compared to wild-type controls; furthermore, both the major population (Gr1-/lo ) and the smaller population of Gr1hi eosinophils from EPX-/- mice displayed lower median fluorescence intensities (MFIs) for Siglec F. Quantitative evaluation of transmission electron micrographs of lung eosinophils confirmed the relative reduction in granule outer matrix volume in cells from the EPX-/- mice, a finding analogous to that observed in human EPX deficiency. Despite the reduced size of the granule matrix, the cytokine content of eosinophils isolated from allergen-challenged EPX-/ - and wild-type mice were largely comparable to one another, although the EPX-/- eosinophils contained reduced concentrations of IL-3. Other distinguishing features of lung eosinophils from allergen-challenged EPX-/- mice included a reduced fraction of surface TLR4+ cells and reduced MFI for NOD1. Interestingly, the EPX gene deletion had no impact on eosinophil-mediated clearance of gram-negative Haemophilus influenzae from the airways. As such, although no clinical findings have been associated with human EPX deficiency, our findings suggest that further evaluation for alterations in eosinophil structure and function may be warranted.
Collapse
Affiliation(s)
- Caroline M Percopo
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Julia O Krumholz
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Elizabeth R Fischer
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Laura S Kraemer
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Michelle Ma
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Karen Laky
- Food Allergy Research Unit, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Zhu J, Dong J, Ji L, Jiang P, Leung TF, Liu D, Ng LG, Tsang MSM, Jiao D, Lam CWK, Wong CK. Anti-Allergic Inflammatory Activity of Interleukin-37 Is Mediated by Novel Signaling Cascades in Human Eosinophils. Front Immunol 2018; 9:1445. [PMID: 29988381 PMCID: PMC6023969 DOI: 10.3389/fimmu.2018.01445] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/11/2018] [Indexed: 12/21/2022] Open
Abstract
IL-1 family regulatory cytokine IL-37b can suppress innate immunity and inflammatory activity in inflammatory diseases. In this study, IL-37b showed remarkable in vitro suppression of inflammatory tumor necrosis factor-α, IL-1β, IL-6, CCL2, and CXCL8 production in the coculture of human primary eosinophils and human bronchial epithelial BEAS-2B cells with the stimulation of bacterial toll-like receptor-2 ligand peptidoglycan, while antagonizing the activation of intracellular nuclear factor-κB, PI3K–Akt, extracellular signal-regulated kinase 1/2, and suppressing the gene transcription of allergic inflammation-related PYCARD, S100A9, and CAMP as demonstrated by flow cytometry, RNA-sequencing, and bioinformatics. Results therefore elucidated the novel anti-inflammation-related molecular mechanisms mediated by IL-37b. Using the house dust mite (HDM)-induced humanized asthmatic NOD/SCID mice for preclinical study, intravenous administration of IL-37b restored the normal plasma levels of eosinophil activators CCL11 and IL-5, suppressed the elevated concentrations of Th2 and asthma-related cytokines IL-4, IL-6, and IL-13 and inflammatory IL-17, CCL5, and CCL11 in lung homogenate of asthmatic mice. Histopathological results of lung tissue illustrated that IL-37b could mitigate the enhanced mucus, eosinophil infiltration, thickened airway wall, and goblet cells. Together with similar findings using the ovalbumin- and HDM-induced allergic asthmatic mice further validated the therapeutic potential of IL-37b in allergic asthma. The above results illustrate the novel IL-37-mediated regulation of intracellular inflammation mechanism linking bacterial infection and the activation of human eosinophils and confirm the in vivo anti-inflammatory activity of IL-37b on human allergic asthma.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Jie Dong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Lu Ji
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Peiyong Jiang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Ting Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Dehua Liu
- Institute of Chinese Medicine, State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Lai Guan Ng
- Singapore Immunology Network, Singapore, Singapore
| | - Miranda Sin-Man Tsang
- Institute of Chinese Medicine, State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Delong Jiao
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Christopher Wai-Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong.,Institute of Chinese Medicine, State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
21
|
Lee YZ, Yap HM, Shaari K, Tham CL, Sulaiman MR, Israf DA. Blockade of Eosinophil-Induced Bronchial Epithelial-Mesenchymal Transition with a Geranyl Acetophenone in a Coculture Model. Front Pharmacol 2017; 8:837. [PMID: 29201006 PMCID: PMC5696322 DOI: 10.3389/fphar.2017.00837] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/03/2017] [Indexed: 01/10/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is currently recognized as the main cellular event that contributes to airway remodeling. Eosinophils can induce EMT in airway epithelial cells via increased transforming growth factor (TGF)-β production. We assessed the effect of synthetic 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA) upon eosinophil-induced EMT in a cellular model. The human eosinophil cell line EoL-1 was used to induce EMT in BEAS-2B human bronchial epithelial cells. The induction of EMT was dose-dependently suppressed following tHGA treatment in which the epithelial morphology and E-cadherin expression were not altered. Protein and mRNA expression of vimentin, collagen I and fibronectin in eosinophil-induced epithelial cells were also significantly suppressed by tHGA treatment. Following pathway analysis, we showed that tHGA suppressed eosinophil-induced activator protein-1-mediated TGF-β production by targeting c-Jun N-terminal kinase and phosphoinositide 3-kinase signaling pathways. These findings corroborated previous findings on the ability of tHGA to inhibit experimental murine airway remodeling.
Collapse
Affiliation(s)
- Yu Z Lee
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Hui M Yap
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Chau L Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Mohd R Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Daud A Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
22
|
Liu Y, Feng GZ, Du Q, Jin XX, Du XR. Fine particulate matter aggravates allergic airway inflammation through thymic stromal lymphopoietin activation in mice. Mol Med Rep 2017; 16:4201-4207. [PMID: 28765890 DOI: 10.3892/mmr.2017.7089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 04/25/2017] [Indexed: 11/05/2022] Open
Abstract
Fine particulate matter (PM2.5) has been linked to exacerbation of allergic airway inflammation in mice. However, the mechanism underlying exposure to PM2.5 and subsequent and adverse effects remains to be fully elucidated. Therefore, the present study aimed to investigate the effects of PM2.5 by different levels on airway inflammation in mouse models of in allergic and steroid‑resistant asthma. BALB/c mice were nasally instilled with PBS (control) or 10, 31.6 or 100 µg PM2.5, and randomly assigned into nine groups. The acute asthma model was previously induced to investigate the change of inflammatory cells in bronchoalveolar lavage fluid (BALF). Histopathological changes of the lung were assessed, in addition to levels of interleukin (IL)‑4 and IL‑13 in BALF and immunoglobulin Ein serum. Thymic stromal lymphopoietin (TSLP) proteinexpression levels were assessed by western blotting. The present study demonstrated that medium‑ and high‑dose PM2.5 is linked to acute exacerbation of allergic airway inflammation in mice. In conclusion, the pathological mechanisms of PM2.5 may be associated with allergic/steroid‑resistant airway inflammation, T‑cell helper (Th)1/Th2 cytokine production and upregulation of TSLP expression in a murine model of allergic and steroid-resistant asthma.
Collapse
Affiliation(s)
- Yan Liu
- Department of Respiratory, The Central Hospital of Maanshan, Maanshan, Anhui 243000, P.R. China
| | - Gan-Zhu Feng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Qiang Du
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Xiao-Xiang Jin
- Department of Respiratory, The Central Hospital of Maanshan, Maanshan, Anhui 243000, P.R. China
| | - Xing-Ran Du
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| |
Collapse
|
23
|
Jiao D, Wong CK, Tsang MSM, Chu IMT, Liu D, Zhu J, Chu M, Lam CWK. Activation of Eosinophils Interacting with Bronchial Epithelial Cells by Antimicrobial Peptide LL-37: Implications in Allergic Asthma. Sci Rep 2017; 7:1848. [PMID: 28500314 PMCID: PMC5431911 DOI: 10.1038/s41598-017-02085-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/05/2017] [Indexed: 01/21/2023] Open
Abstract
The role of antimicrobial peptide LL-37 in asthma exacerbation is unclear. Microbial infection, which is the most common inducer of asthma exacerbation, is accompanied by elevated LL-37. The present study found that co-culture of eosinophils and bronchial epithelial cell line BEAS-2B significantly enhanced intercellular adhesion molecule-1 on both cells and CD18 expression on eosinophils upon LL-37 stimulation. IL-6, CXCL8 and CCL4 were substantially released in co-culture in the presence of LL-37. LL-37 triggered the activation of eosinophils interacting with BEAS-2B cells in a P2X purinoceptor 7/epidermal growth factor receptor-dependent manner. Eosinophils and BEAS-2B cells differentially contribute to the expression of cytokines/chemokines in co-culture, while soluble mediators were sufficient to mediate the intercellular interactions. Intracellular p38-mitogen-activated protein kinase, extracellular signal-regulated kinase and NF-κB signaling pathways were essential for LL-37-mediated activation of eosinophils and BEAS-2B cells. By using the ovalbumin-induced asthmatic model, intranasal administration of mCRAMP (mouse ortholog of LL-37) in combination with ovalbumin during the allergen challenge stage significantly enhanced airway hyperresponsiveness and airway inflammation in sensitized mice, thereby implicating a deteriorating role of LL-37 in allergic asthma. This study provides evidence of LL-37 in triggering asthma exacerbation via the activation of eosinophils interacting with bronchial epithelial cells in inflammatory airway.
Collapse
Affiliation(s)
- Delong Jiao
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China. .,Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, the Chinese University of Hong Kong, Hong Kong, China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Miranda Sin-Man Tsang
- Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, the Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ida Miu-Ting Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Dehua Liu
- Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, the Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Jing Zhu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Man Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Christopher Wai-Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
24
|
Hu X, Wang J, Xia Y, Simayi M, Ikramullah S, He Y, Cui S, Li S, Wushouer Q. Resveratrol induces cell cycle arrest and apoptosis in human eosinophils from asthmatic individuals. Mol Med Rep 2016; 14:5231-5236. [PMID: 27779703 DOI: 10.3892/mmr.2016.5884] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 08/15/2016] [Indexed: 12/07/2022] Open
Abstract
Eosinophils exert a number of inflammatory effects through the degranulation and release of intracellular mediators, and are considered to be key effector cells in allergic disorders, including asthma. In order to investigate the regulatory effects of the natural polyphenol, resveratrol, on eosinophils derived from asthmatic individuals, the cell counting Kit‑8 assay and flow cytometry analysis were used to determine cell proliferation and cell cycle progression in these cells, respectively. Cellular apoptosis was detected using annexin V-fluorescein isothiocyanate/propidium iodide double‑staining. The protein expression levels of p53, p21, cyclin‑dependent kinase 2 (CDK2), cyclin A, cyclin E, Bim, B‑cell lymphoma (Bcl)‑2 and Bcl‑2‑associated X protein (Bax) were measured by western blot analysis following resveratrol treatment. The results indicated that resveratrol effectively suppressed the proliferation of eosinophils from asthmatic patients in a concentration‑ and time‑dependent manner. In addition, resveratrol was observed to arrest cell cycle progression in G1/S phase by increasing the protein expression levels of p53 and p21, and concurrently reducing the protein expression levels of CDK2, cyclin A and cyclin E. Furthermore, resveratrol treatment significantly induced apoptosis in eosinophils, likely through the upregulation of Bim and Bax protein expression levels and the downregulation of Bcl‑2 protein expression. These findings suggested that resveratrol may be a potential agent for the treatment of asthma by decreasing the number of eosinophils.
Collapse
Affiliation(s)
- Xin Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Jing Wang
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yu Xia
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Mihereguli Simayi
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Syed Ikramullah
- Department of Medicine, The Changji Branch of The First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang 831100, P.R. China
| | - Yuanbing He
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Shihong Cui
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Shuang Li
- Department of Medicine, The Changji Branch of The First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang 831100, P.R. China
| | - Qimanguli Wushouer
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
25
|
Wong CK, Chu IMT, Hon KL, Tsang MSM, Lam CWK. Aberrant Expression of Bacterial Pattern Recognition Receptor NOD2 of Basophils and Microbicidal Peptides in Atopic Dermatitis. Molecules 2016; 21:471. [PMID: 27077833 PMCID: PMC6273189 DOI: 10.3390/molecules21040471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/22/2022] Open
Abstract
Atopic dermatitis (AD) is a chronically relapsing inflammatory skin disease, associated with basophil infiltration into skin lesions and Staphylococcus aureus (S.aureus)-induced inflammation. Pattern recognition receptors (PRRs), including microbicidal peptide human neutrophil α-defensins (HNP) and dermcidin, can exert immunomodulating activity in innate immunity and skin inflammation. We investigated the plasma concentration of HNP and dermcidin, the expression of bacterial toll-like receptor (TLR) and nucleotide-binding oligomerization domain (NOD)-like receptors of basophils and plasma concentration and ex vivo induction of AD-related inflammatory cytokines and chemokines using ELISA and flow cytometry, in AD patients and control subjects. Plasma concentrations of HNP, dermcidin and AD-related Th2 chemokines CCL17, CCL22 and CCL27 were significantly elevated in AD patients compared with controls (all p < 0.05). Plasma concentrations of CCL27 and CCL22 were found to correlate positively with SCORing atopic dermatitis (SCORAD), objective SCORAD, % area affected, lichenification and disease intensity, and CCL27 also correlated positively with pruritus in AD patients (all p < 0.05). Protein expressions of NOD2 but not TLR2 of basophils were significantly down-regulated in AD patients compared with controls (p = 0.001). Correspondingly, there were lower ex vivo % inductions of allergic inflammatory tumor necrosis factor-α, IL-6 and CXCL8 from peripheral blood mononuclear cells upon NOD2 ligand S. aureus derived muramyl dipeptide stimulation in AD patients comparing with controls. The aberrant activation of bacterial PRRs of basophils and anti-bacterial innate immune response should be related with the allergic inflammation of AD.
Collapse
Affiliation(s)
- Chun-Kwok Wong
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
- Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ida Miu-Ting Chu
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Kam-Lun Hon
- Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Pediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Miranda Sin-Man Tsang
- Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China.
| | - Christopher Wai-Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
26
|
Nicodemus-Johnson J, Naughton KA, Sudi J, Hogarth K, Naurekas ET, Nicolae DL, Sperling AI, Solway J, White SR, Ober C. Genome-Wide Methylation Study Identifies an IL-13-induced Epigenetic Signature in Asthmatic Airways. Am J Respir Crit Care Med 2016; 193:376-85. [PMID: 26474238 PMCID: PMC4803084 DOI: 10.1164/rccm.201506-1243oc] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/15/2015] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Epigenetic changes to airway cells have been proposed as important modulators of the effects of environmental exposures on airway diseases, yet no study to date has shown epigenetic responses to exposures in the airway that correlate with disease state. The type 2 cytokine IL-13 is a key mediator of allergic airway diseases, such as asthma, and is up-regulated in response to many asthma-promoting exposures. OBJECTIVES To directly study the epigenetic response of airway epithelial cells (AECs) to IL-13 and test whether IL-13-induced epigenetic changes differ between individuals with and without asthma. METHODS Genome-wide DNA methylation and gene expression patterns were studied in 58 IL-13-treated and untreated primary AEC cultures and validated in freshly isolated cells of subjects with and without asthma using the Illumina Human Methylation 450K and HumanHT-12 BeadChips. IL-13-mediated comethylation modules were identified and correlated with clinical phenotypes using weighted gene coexpression network analysis. MEASUREMENTS AND MAIN RESULTS IL-13 altered global DNA methylation patterns in cultured AECs and were significantly enriched near genes associated with asthma. Importantly, a significant proportion of this IL-13 epigenetic signature was validated in freshly isolated AECs from subjects with asthma and clustered into two distinct modules, with module 1 correlated with asthma severity and lung function and module 2 with eosinophilia. CONCLUSIONS These results suggest that a single exposure of IL-13 may selectively induce long-lasting DNA methylation changes in asthmatic airways that alter specific AEC pathways and contribute to asthma phenotypes.
Collapse
Affiliation(s)
| | | | | | | | | | - Dan L. Nicolae
- Department of Human Genetics
- Section of Genetic Medicine, Department of Medicine, and
- Department of Statistics, University of Chicago, Chicago, Illinois
| | | | | | | | | |
Collapse
|
27
|
Rosenberg HF. Eosinophils. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016. [PMCID: PMC7173586 DOI: 10.1016/b978-0-12-374279-7.03007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Eosinophils have been traditionally understood as end-stage, primarily cytotoxic effector cells. Recent studies have had profound impact on this limited view and have led to new research on the functions and capabilities of this unique leukocyte lineage. Novel insights into eosinophil development, localization, modes of degranulation, and the nature of their granule contents have provided a better understanding of these cells as immunomodulatory mediators in health and disease.
Collapse
|
28
|
Aberrant expression of regulatory cytokine IL-35 and pattern recognition receptor NOD2 in patients with allergic asthma. Inflammation 2015; 38:348-60. [PMID: 25326182 DOI: 10.1007/s10753-014-0038-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We investigated the plasma concentration of the novel regulatory cytokine IL-35 and intracytosolic pattern recognition receptors nucleotide-binding oligomerization domain (NOD)-like receptors in granulocytes and explored their potential implication in disease severity monitoring of allergic asthma. The expression of circulating IL-35 and other pro-inflammatory mediators in asthmatic patients or control subjects were evaluated using enzyme-linked immunosorbent assay (ELISA). The intracellular expressions of NOD1 and NOD2 in CCR3+ granulocytes were assessed using flow cytometry. Plasma concentrations of IL-35, IL-17A, basophil activation marker basogranulin, and eosinophilic airway inflammation biomarker periostin were significantly elevated in allergic asthmatic patients compared to non-atopic control subjects (all probability (p) <0.05). Both granulocyte markers exhibited significant and positive correlation with plasma IL-35 concentration in asthmatic patients (all p < 0.05). Significant positive correlation was also identified between plasma concentrations of IL-35 and periostin with disease severity score in asthmatic patients (both p < 0.05). The basophil activation allergenicity test was positive in allergic asthmatic patients but not in control subjects. Despite significantly elevated eosinophil count in allergic asthmatic patients, downregulation of NOD2 in CCR3+ granulocytes was observed in these patients (both p < 0.05). A negative correlation between plasma concentrations of tumor necrosis factor family member LIGHT and soluble herpesvirus entry mediator was observed in patients with elevated plasma concentration of IL-35 (p < 0.05). Aberrant expression of NOD2 in granulocytes may be contributed to the impaired innate immunity predisposing allergic asthma. IL-35 may serve as a potential surrogate biomarker for disease severity of allergic asthma.
Collapse
|
29
|
Jiao D, Wong CK, Qiu HN, Dong J, Cai Z, Chu M, Hon KL, Tsang MSM, Lam CWK. NOD2 and TLR2 ligands trigger the activation of basophils and eosinophils by interacting with dermal fibroblasts in atopic dermatitis-like skin inflammation. Cell Mol Immunol 2015; 13:535-50. [PMID: 26388234 DOI: 10.1038/cmi.2015.77] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 12/23/2022] Open
Abstract
The skin of patients with atopic dermatitis (AD) has a unique predisposition for colonization by Staphylococcus aureus (S. aureus), which contributes to the inflammation and grim prognosis of AD. Although the mechanism underlying the S. aureus-induced exacerbation of AD remains unclear, recent studies have found a pivotal role for pattern recognition receptors in regulating the inflammatory responses in S. aureus infection. In the present study, we used a typical mouse model of AD-like skin inflammation and found that S. aureus-associated nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and toll-like receptor 2 (TLR2) ligands exacerbated AD-like symptoms, which were further deteriorated by the in vivo expansion of basophils and eosinophils. Subsequent histological analyses revealed that dermal fibroblasts were pervasive in the AD-like skin lesions. Co-culture of human dermal fibroblasts with basophils and eosinophils resulted in a vigorous cytokine/chemokine response to the NOD2/TLR2 ligands and the enhanced expression of intercellular adhesion molecule-1 on the dermal fibroblasts. Basophils and eosinophils were primarily responsible for the AD-related cytokine/chemokine expression in the co-cultures. Direct intercellular contact was necessary for the crosstalk between basophils and dermal fibroblasts, while soluble mediators were sufficient to mediate the eosinophil-fibroblast interactions. Moreover, the intracellular p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and nuclear factor-kappa B signaling pathways were essential for NOD2/TLR2 ligand-mediated activation of basophils, eosinophils, and dermal fibroblasts in AD-related inflammation. This study provides the evidence of NOD2/TLR2-mediated exacerbation of AD through activation of innate immune cells and therefore sheds light on a novel mechanistic pathway by which S. aureus contributes to the pathophysiology of AD.
Collapse
Affiliation(s)
- Delong Jiao
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.,Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China
| | - Huai-Na Qiu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Jie Dong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Zhe Cai
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Man Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Kam-Lun Hon
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Miranda Sin-Man Tsang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.,Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China
| | - Christopher Wai-Kei Lam
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
| |
Collapse
|
30
|
Dong J, Wong CK, Cai Z, Jiao D, Chu M, Lam CWK. Amelioration of allergic airway inflammation in mice by regulatory IL-35 through dampening inflammatory dendritic cells. Allergy 2015; 70:921-32. [PMID: 25869299 DOI: 10.1111/all.12631] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND IL-35, a new member of the IL-12 family, is an inhibitory cytokine produced by regulatory T and B lymphocytes that play a suppressive role in the inflammatory diseases. This study focuses on the cellular mechanism regulating the anti-inflammatory activity of IL-35 in asthmatic mice. METHODS Ovalbumin-induced asthmatic and humanized asthmatic mice were adopted to evaluate the in vivo anti-inflammatory activities of IL-35. For monitoring the airway, Penh value (% baseline) was measured using a whole-body plethysmograph. RESULTS In this study using ovalbumin-induced asthmatic mice, we observed that intraperitoneal injection of IL-35 during the allergen sensitization stage was more efficient than administration in the challenge stage for the amelioration of airway hyper-responsiveness. This was reflected by the significantly reduced concentration of asthma-related Th2 cytokines IL-5 and IL-13, as well as eosinophil counts in bronchoalveolar lavage fluid (all P < 0.05). IL-35 also significantly attenuated the accumulation of migratory CD11b+CD103(-) dendritic cells (DC) in the mediastinal lymph node (mLN) and lung of mice (all P < 0.05). IL-35 markedly inhibited the ovalbumin-induced conversion of recruited monocytes into inflammatory DC, which were then substantially reduced in mLN to cause less T-cell proliferation (all P < 0.05). Further study using the humanized asthmatic murine model also indicated human IL-35 exhibited a regulatory impact on allergic asthma. CONCLUSION Our findings suggest that IL-35 can act as a crucial regulatory cytokine to inhibit the development of allergic airway inflammation via suppressing the formation of inflammatory DC at the inflammatory site and their accumulation in the draining lymph nodes.
Collapse
Affiliation(s)
- J. Dong
- Department of Chemical Pathology; The Chinese University of Hong Kong; Prince of Wales Hospital; Shatin, NT, Hong Kong China
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen
| | - C. K. Wong
- Department of Chemical Pathology; The Chinese University of Hong Kong; Prince of Wales Hospital; Shatin, NT, Hong Kong China
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen
- Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China; The Chinese University of Hong Kong; Hong Kong
| | - Z. Cai
- Department of Chemical Pathology; The Chinese University of Hong Kong; Prince of Wales Hospital; Shatin, NT, Hong Kong China
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen
| | - D. Jiao
- Department of Chemical Pathology; The Chinese University of Hong Kong; Prince of Wales Hospital; Shatin, NT, Hong Kong China
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen
| | - M. Chu
- Department of Chemical Pathology; The Chinese University of Hong Kong; Prince of Wales Hospital; Shatin, NT, Hong Kong China
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen
| | - C. W. K. Lam
- State Key Laboratory of Quality Research in Chinese Medicine; Macau Institute for Applied Research in Medicine and Health; Macau University of Science and Technology; Taipa, Macau China
| |
Collapse
|
31
|
Im H, Ammit AJ. The NLRP3 inflammasome: role in airway inflammation. Clin Exp Allergy 2014; 44:160-72. [PMID: 24118105 DOI: 10.1111/cea.12206] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asthma is characterized by airway inflammation, airway hyperresponsiveness and airway remodelling. Uncontrolled airway inflammation or repeated asthma exacerbations can lead to airway remodelling, which cannot be reversed by current pharmacological treatment, and consequently lead to decline in lung function. Thus, it is critical to understand airway inflammation in asthma and infectious exacerbation. The inflammasome has emerged as playing a key role in innate immunity and inflammation. Upon ligand sensing, inflammasome components assemble and self-oligomerize, leading to caspase-1 activation and maturation of pro-IL-1β and pro-IL-18 into bioactive cytokines. These bioactive cytokines then play a pivotal role in the initiation and amplification of inflammatory processes. In addition to facilitating the proteolytic activation of IL-1β and IL-18, inflammasomes also participate in cell death through caspase-1-mediated pyroptosis. In this review, we describe the structure and function of the inflammasome and provide an overview of our current understanding of role of the inflammasome in airway inflammation. We focus on nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome as it is the best-characterized subtype shown expressed in airway and considered to play a key role in chronic airway diseases such as asthma.
Collapse
Affiliation(s)
- H Im
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
32
|
Abstract
Maternal peripheral insulin resistance and increased inflammation are two features of pregnancies, complicated by gestational diabetes mellitus (GDM). The nucleotide-binding oligomerisation domain (NOD) intracellular molecules recognise a wide range of microbial products, as well as other intracellular danger signals, thereby initiating inflammation through activation of nuclear factor κB (NFκB). The aim of this study was to determine whether levels of NOD1 and NOD2 are increased in adipose tissue of women with GDM. The effect of NOD1 and NOD2 activation on inflammation and the insulin signalling pathway was also assessed. NOD1, but not NOD2, expression was higher in omental and subcutaneous adipose tissues obtained from women with GDM when compared with those from women with normal glucose tolerance (NGT). In both omental and subcutaneous adipose tissues from NGT and GDM women, the NOD1 ligand g-d-glutamyl-meso-diaminopimelic acid (iE-DAP) significantly induced the expression and secretion of the pro-inflammatory cytokine interleukin 6 (IL6) and chemokine IL8; COX2 (PTGS2) gene expression and subsequent prostaglandin production; the expression and secretion of the extracellular matrix remodelling enzyme matrix metalloproteinase 9 (MMP9) and the gene expression and secretion of the adhesion molecules ICAM1 and VCAM1. There was no effect of the NOD2 ligand muramyl dipeptide on any of the endpoints tested. The effects of the NOD1 ligand iE-DAP were mediated via NFκB, as the NFκB inhibitor BAY 11-7082 significantly attenuated iE-DAP-induced expression and secretion of pro-inflammatory cytokines, COX2 gene expression and subsequent prostaglandin production, MMP9 expression and secretion and ICAM1 and VCAM1 gene expression and secretion. In conclusion, the present findings describe an important role for NOD1 in the development of insulin resistance and inflammation in pregnancies complicated by GDM.
Collapse
Affiliation(s)
- Martha Lappas
- ObstetricsNutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Level 4/163 Studley Road, Heidelberg, Victoria 3084, AustraliaMercy Perinatal Research CentreMercy Hospital for Women, Heidelberg, Victoria, AustraliaObstetricsNutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Level 4/163 Studley Road, Heidelberg, Victoria 3084, AustraliaMercy Perinatal Research CentreMercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
33
|
Effect of tumor necrosis factor family member LIGHT (TNFSF14) on the activation of basophils and eosinophils interacting with bronchial epithelial cells. Mediators Inflamm 2014; 2014:136463. [PMID: 24782592 PMCID: PMC3982468 DOI: 10.1155/2014/136463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/09/2014] [Accepted: 02/04/2014] [Indexed: 12/13/2022] Open
Abstract
Allergic asthma can cause airway structural remodeling, involving the accumulation of extracellular matrix and thickening of smooth muscle. Tumor necrosis factor (TNF) family ligand LIGHT (TNFSF14) is a cytokine that binds herpesvirus entry mediator (HVEM)/TNFRSF14 and lymphotoxin β receptor (LTβR). LIGHT induces asthmatic cytokine IL-13 and fibrogenic cytokine transforming growth factor-β release from allergic asthma-related eosinophils expressing HVEM and alveolar macrophages expressing LTβR, respectively, thereby playing crucial roles in asthmatic airway remodeling. In this study, we investigated the effects of LIGHT on the coculture of human basophils/eosinophils and bronchial epithelial BEAS-2B cells. The expression of adhesion molecules, cytokines/chemokines, and matrix metalloproteinases (MMP) was measured by flow cytometry, multiplex, assay or ELISA. Results showed that LIGHT could significantly promote intercellular adhesion, cell surface expression of intercellular adhesion molecule-1, release of airway remodeling-related IL-6, CXCL8, and MMP-9 from BEAS-2B cells upon interaction with basophils/eosinophils, probably via the intercellular interaction, cell surface receptors HVEM and LTβR on BEAS-2B cells, and extracellular signal-regulated kinase, p38 mitogen activated protein kinase, and NF-κB signaling pathways. The above results, therefore, enhance our understanding of the immunopathological roles of LIGHT in allergic asthma and shed light on the potential therapeutic targets for airway remodeling.
Collapse
|