1
|
Zou D, Zhang X, Li S, Xiao X, Gonzalez NM, Minze LJ, Li XC, Chen W. Aerobic glycolysis enables the effector differentiation potential of stem-like CD4 + T cells to combat cancer. Cell Mol Immunol 2024; 21:527-529. [PMID: 38514872 PMCID: PMC11061150 DOI: 10.1038/s41423-024-01154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Affiliation(s)
- Dawei Zou
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Xiaolong Zhang
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Shuang Li
- Department of Cardiovascular Science, Houston Methodist Research Institute, Houston, TX, USA
| | - Xiang Xiao
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Nancy M Gonzalez
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Laurie J Minze
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Xian C Li
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA.
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
3
|
Bauer J, Nelde A, Bilich T, Walz JS. Antigen Targets for the Development of Immunotherapies in Leukemia. Int J Mol Sci 2019; 20:ijms20061397. [PMID: 30897713 PMCID: PMC6471800 DOI: 10.3390/ijms20061397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Immunotherapeutic approaches, including allogeneic stem cell transplantation and donor lymphocyte infusion, have significantly improved the prognosis of leukemia patients. Further efforts are now focusing on the development of immunotherapies that are able to target leukemic cells more specifically, comprising monoclonal antibodies, chimeric antigen receptor (CAR) T cells, and dendritic cell- or peptide-based vaccination strategies. One main prerequisite for such antigen-specific approaches is the selection of suitable target structures on leukemic cells. In general, the targets for anti-cancer immunotherapies can be divided into two groups: (1) T-cell epitopes relying on the presentation of peptides via human leukocyte antigen (HLA) molecules and (2) surface structures, which are HLA-independently expressed on cancer cells. This review discusses the most promising tumor antigens as well as the underlying discovery and selection strategies for the development of anti-leukemia immunotherapies.
Collapse
Affiliation(s)
- Jens Bauer
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany.
| | - Annika Nelde
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany.
| | - Tatjana Bilich
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany.
| | - Juliane S Walz
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
4
|
Zhang W, Lu X, Cui P, Piao C, Xiao M, Liu X, Wang Y, Wu X, Liu J, Yang L. Phase I/II clinical trial of a Wilms' tumor 1-targeted dendritic cell vaccination-based immunotherapy in patients with advanced cancer. Cancer Immunol Immunother 2019; 68:121-130. [PMID: 30306202 PMCID: PMC11028035 DOI: 10.1007/s00262-018-2257-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
Abstract
Dendritic cell (DC)-based immunotherapies have been created for a broad expanse of cancers, and DC vaccines prepared with Wilms' tumor protein 1 (WT1) peptides have shown great therapeutic efficacy in these diseases. In this paper, we report the results of a phase I/II study of a DC-based vaccination for advanced breast, ovarian, and gastric cancers, and we offer evidence that patients can be effectively vaccinated with autologous DCs pulsed with WT1 peptide. There were ten patients who took part in this clinical study; they were treated biweekly with a WT1 peptide-pulsed DC vaccination, with toxicity and clinical and immunological responses as the principal endpoints. All of the adverse events to DC vaccinations were tolerable under an adjuvant setting. The clinical response was stable disease in seven patients. Karnofsky Performance Scale scores were enhanced, and computed tomography scans revealed tumor shrinkage in three of seven patients. Human leukocyte antigen (HLA)/WT1-tetramer and cytoplasmic IFN-γ assays were used to examine the induction of a WT-1-specific immune response. The immunological responses to DC vaccination were significantly correlated with fewer myeloid-derived suppressor cells (P = 0.045) in the pretreated peripheral blood. These outcomes offered initial clinical evidence that the WT1 peptide-pulsed DC vaccination is a potential treatment for advanced cancer.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 South Lane, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Xu Lu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, FL2, Building 3, Park B, Shunyi District Airport High Tech Zoon, Beijing, 101300, China
| | - Peilin Cui
- Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Chunmei Piao
- Department of Oncology, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing, 100029, China
| | - Man Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 571199, China
| | - Xuesong Liu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, FL2, Building 3, Park B, Shunyi District Airport High Tech Zoon, Beijing, 101300, China
| | - Yue Wang
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, FL2, Building 3, Park B, Shunyi District Airport High Tech Zoon, Beijing, 101300, China
| | - Xuan Wu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, FL2, Building 3, Park B, Shunyi District Airport High Tech Zoon, Beijing, 101300, China
| | - Jingwei Liu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, FL2, Building 3, Park B, Shunyi District Airport High Tech Zoon, Beijing, 101300, China.
| | - Lin Yang
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 South Lane, Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
5
|
Ueda N, Uemura Y, Zhang R, Kitayama S, Iriguchi S, Kawai Y, Yasui Y, Tatsumi M, Ueda T, Liu TY, Mizoro Y, Okada C, Watanabe A, Nakanishi M, Senju S, Nishimura Y, Kuzushima K, Kiyoi H, Naoe T, Kaneko S. Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response. Stem Cell Reports 2018; 10:1935-1946. [PMID: 29805109 PMCID: PMC5993651 DOI: 10.1016/j.stemcr.2018.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
CD4+ T helper (Th) cell activation is essential for inducing cytotoxic T lymphocyte (CTL) responses against malignancy. We reprogrammed a Th clone specific for chronic myelogenous leukemia (CML)-derived b3a2 peptide to pluripotency and re-differentiated the cells into original TCR-expressing T-lineage cells (iPS-T cells) with gene expression patterns resembling those of group 1 innate lymphoid cells. CD4 gene transduction into iPS-T cells enhanced b3a2 peptide-specific responses via b3a2 peptide-specific TCR. iPS-T cells upregulated CD40 ligand (CD40L) expression in response to interleukin-2 and interleukin-15. In the presence of Wilms tumor 1 (WT1) peptide, antigen-specific dendritic cells (DCs) conditioned by CD4-modified CD40Lhigh iPS-T cells stimulated WT1-specific CTL priming, which eliminated WT1 peptide-expressing CML cells in vitro and in vivo. Thus, CD4 modification of CD40Lhigh iPS-T cells generates innate lymphoid helper-like cells inducing bcr-abl-specific TCR signaling that mediates effectiveanti-leukemic CTL responses via DC maturation, showing potential for adjuvant immunotherapy against leukemia. iPSC-derived T cells have molecular similarity to group 1 innate lymphoid cells iPSC-derived CD40Lhigh T cell-adjuvants induce leukemia-specific CTLs via DCs
Collapse
MESH Headings
- Biomarkers
- CD40 Ligand/metabolism
- Cell Differentiation
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Gene Expression
- Humans
- Immunity, Innate
- Immunophenotyping
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/immunology
- Induced Pluripotent Stem Cells/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Receptors, Antigen, T-Cell/genetics
- T-Cell Antigen Receptor Specificity/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- WT1 Proteins/immunology
Collapse
Affiliation(s)
- Norihiro Ueda
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | - Yasushi Uemura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center (NCC), 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan; Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan.
| | - Rong Zhang
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center (NCC), 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan; Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | - Shuichi Kitayama
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shoichi Iriguchi
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Kawai
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yutaka Yasui
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minako Tatsumi
- Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | - Tatsuki Ueda
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tian-Yi Liu
- Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan; Key Laboratory of Cancer Center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Yasutaka Mizoro
- Department of Life Science Frontiers, CiRA, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chihiro Okada
- Department of Life Science Frontiers, CiRA, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akira Watanabe
- Department of Life Science Frontiers, CiRA, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mahito Nakanishi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8561, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kiyotaka Kuzushima
- Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan; Department of Cellular Oncology, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 464-8603, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomoki Naoe
- National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-ku, Nagoya 460-0001, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|