1
|
Li C, Ling Y, Kuang H. Research progress on FSH-FSHR signaling in the pathogenesis of non-reproductive diseases. Front Cell Dev Biol 2024; 12:1506450. [PMID: 39633710 PMCID: PMC11615068 DOI: 10.3389/fcell.2024.1506450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Follicle-stimulating hormone (FSH), a glycoprotein hormone synthesized and secreted by the anterior pituitary gland, plays a critical role in reproductive development and regulation by binding to FSH receptor (FSHR). Beyond reproductive tissue, FSHRs have been identified in various non-reproductive tissues, indicating broader functions. FSH levels chronically rise during menopause and remain elevated in postmenopausal life. This increase in FSH level has been indicated to be associated with heightened risk of several non-reproductive diseases, including osteoporosis, hypercholesterolemia, type 2 diabetes mellitus, obesity, cardiovascular disease, Alzheimer's disease, and certain cancers. In this review, we will examine the role of FSH-FSHR signaling in the pathogenesis of these non-reproductive diseases and explore therapeutic strategies targeting FSH-FSHR signaling pathways.
Collapse
Affiliation(s)
- Chenhe Li
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, Jiangxi, China
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yan Ling
- Department of Obstetrics and Gynecology, Jiangxi provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Haibin Kuang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Wei L, Li Y, Chen J, Wang Y, Wu J, Yang H, Zhang Y. Alternative splicing in ovarian cancer. Cell Commun Signal 2024; 22:507. [PMID: 39425166 PMCID: PMC11488268 DOI: 10.1186/s12964-024-01880-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024] Open
Abstract
Ovarian cancer is the second leading cause of gynecologic cancer death worldwide, with only 20% of cases detected early due to its elusive nature, limiting successful treatment. Most deaths occur from the disease progressing to advanced stages. Despite advances in chemo- and immunotherapy, the 5-year survival remains below 50% due to high recurrence and chemoresistance. Therefore, leveraging new research perspectives to understand molecular signatures and identify novel therapeutic targets is crucial for improving the clinical outcomes of ovarian cancer. Alternative splicing, a fundamental mechanism of post-transcriptional gene regulation, significantly contributes to heightened genomic complexity and protein diversity. Increased awareness has emerged about the multifaceted roles of alternative splicing in ovarian cancer, including cell proliferation, metastasis, apoptosis, immune evasion, and chemoresistance. We begin with an overview of altered splicing machinery, highlighting increased expression of spliceosome components and associated splicing factors like BUD31, SF3B4, and CTNNBL1, and their relationships to ovarian cancer. Next, we summarize the impact of specific variants of CD44, ECM1, and KAI1 on tumorigenesis and drug resistance through diverse mechanisms. Recent genomic and bioinformatics advances have enhanced our understanding. By incorporating data from The Cancer Genome Atlas RNA-seq, along with clinical information, a series of prognostic models have been developed, which provided deeper insights into how the splicing influences prognosis, overall survival, the immune microenvironment, and drug sensitivity and resistance in ovarian cancer patients. Notably, novel splicing events, such as PIGV|1299|AP and FLT3LG|50,941|AP, have been identified in multiple prognostic models and are associated with poorer and improved prognosis, respectively. These novel splicing variants warrant further functional characterization to unlock the underlying molecular mechanisms. Additionally, experimental evidence has underscored the potential therapeutic utility of targeting alternative splicing events, exemplified by the observation that knockdown of splicing factor BUD31 or antisense oligonucleotide-induced BCL2L12 exon skipping promotes apoptosis of ovarian cancer cells. In clinical settings, bevacizumab, a humanized monoclonal antibody that specifically targets the VEGF-A isoform, has demonstrated beneficial effects in the treatment of patients with advanced epithelial ovarian cancer. In conclusion, this review constitutes the first comprehensive and detailed exposition of the intricate interplay between alternative splicing and ovarian cancer, underscoring the significance of alternative splicing events as pivotal determinants in cancer biology and as promising avenues for future diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Liwei Wei
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Yisheng Li
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Jiawang Chen
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, 325101, China
| | - Yuanmei Wang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huanming Yang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
| | - Yi Zhang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
3
|
Haldar S, Agrawal H, Saha S, Straughn AR, Roy P, Kakar SS. Overview of follicle stimulating hormone and its receptors in reproduction and in stem cells and cancer stem cells. Int J Biol Sci 2022; 18:675-692. [PMID: 35002517 PMCID: PMC8741861 DOI: 10.7150/ijbs.63721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/21/2021] [Indexed: 11/05/2022] Open
Abstract
Follicle stimulating hormone (FSH) and its receptor (FSHR) have been reported to be responsible for several physiological functions and cancers. The responsiveness of stem cells and cancer stem cells towards the FSH-FSHR system make the function of FSH and its receptors more interesting in the context of cancer biology. This review is comprised of comprehensive information on FSH-FSHR signaling in normal physiology, gonadal stem cells, cancer cells, and potential options of utilizing FSH-FSHR system as an anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Swati Haldar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.,Current address: Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand 249405
| | - Himanshu Agrawal
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences Rishikesh, Uttarakhand 249203, India
| | - Alex R Straughn
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sham S Kakar
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
4
|
An Expert Review on the Combination of Relugolix with Definitive Radiation Therapy for Prostate Cancer. Int J Radiat Oncol Biol Phys 2021; 113:278-289. [PMID: 34923058 DOI: 10.1016/j.ijrobp.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022]
Abstract
Androgen deprivation therapy (ADT) is an integral component in the management of prostate cancer across multiple disease states. Traditionally, luteinizing hormone-releasing hormone (LHRH) agonists constituted the backbone of ADT. However, gonadotropin-releasing hormone receptor hormone (GnRH) antagonists are also available, which offer faster testosterone suppression and reduced likelihood of ADT-related adverse effects compared to LHRH agonists, including the potential for fewer ADT-associated major cardiac events. Until recently, all forms of LHRH agonists and GnRH antagonist formulations are of parenteral administration. However, recently relugolix gained FDA approval as the first oral GnRH antagonist. Relugolix achieves faster and more complete testosterone suppression compared to an LHRH agonist. This translates to more rapid prostate-specific antigen response compared to LHRH agonists. After discontinuation of relugolix, testosterone recovers faster than after GnRH agonists or injectable GnRH antagonist therapy. Overall, these factors provide opportunities for more precisely defined ADT duration when combined with radiation therapy. The rapid onset and offset testosterone suppression with relugolix, however, may require physicians to rethink the mechanism and goals of ADT when prescribing. As an oral formulation, relugolix enables patients to avoid pain and injection site reactions, limit extra office visits for injections, and achieve a shorter duration of experiencing the side effects of castrate testosterone levels. This convenience and tolerability may enhance physicians' willingness to prescribe ADT and patients' feeling of control over their ADT course, but the potential advantages are accompanied by the risks of patients choosing to discontinue therapy to escape side effects of ADT. This article focuses on different aspects of what is known and unknown regarding the optimal use of ADT and radiation therapy, and how relugolix, due to its properties, fit into our current treatment paradigms for localized prostate cancer.
Collapse
|
5
|
Zhuang M, Zhao J, Wu J, Fu S, Han P, Song X. The circular RNA expression profile in ovarian serous cystadenocarcinoma reveals a complex circRNA-miRNA regulatory network. BMC Med Genomics 2021; 14:276. [PMID: 34857007 PMCID: PMC8638095 DOI: 10.1186/s12920-021-01132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background Ovarian serous cystadenocarcinoma is one of the most serious gynecological malignancies. Circular RNA (circRNA) is a type of noncoding RNA with a covalently closed continuous loop structure. Abnormal circRNA expression might be associated with tumorigenesis because of its complex biological mechanisms by, for example, functioning as a microRNA (miRNA) sponge. However, the circRNA expression profile in ovarian serous cystadenocarcinoma and their associations with other RNAs have not yet been characterized. The main purpose of this study was to reveal the circRNA expression profile in ovarian serous cystadenocarcinoma. Methods We collected six specimens from three patients with ovarian serous cystadenocarcinoma and adjacent normal tissues. After RNA sequencing, we analyzed the expression of circRNAs with relevant mRNAs and miRNAs to characterize potential function. Results 15,092 unique circRNAs were identified in six specimens. Approximately 46% of these circRNAs were not recorded in public databases. We then reported 353 differentially expressed circRNAs with oncogenes and tumor-suppressor genes. Furthermore, a conjoint analysis with relevant mRNAs revealed consistent changes between circRNAs and their homologous mRNAs. Overall, construction of a circRNA–miRNA network suggested that 4 special circRNAs could be used as potential biomarkers. Conclusions Our study revealed the circRNA expression profile in the tissues of patients with ovarian serous cystadenocarcinoma. The differential expression of circRNAs was thought to be associated with ovarian serous cystadenocarcinoma in the enrichment analysis, and co-expression analysis with relevant mRNAs and miRNAs illustrated the latent regulatory network. We also constructed a complex circRNA–miRNA interaction network and then demonstrated the potential function of certain circRNAs to aid future diagnosis and treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01132-5.
Collapse
Affiliation(s)
- Minhui Zhuang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jing Wu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.,School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Shilong Fu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China.
| | - Ping Han
- Department of Gynecology and Obstetrics, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China.
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| |
Collapse
|
6
|
Park J, Park Y, Koh I, Kim NK, Baek KH, Yun BS, Lee KJ, Song JY, Lee E, Kwack K. Association of an APBA3 Missense Variant with Risk of Premature Ovarian Failure in the Korean Female Population. J Pers Med 2020; 10:jpm10040193. [PMID: 33114509 PMCID: PMC7720130 DOI: 10.3390/jpm10040193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
Premature ovarian failure (POF) is a complex disease of which the etiology is influenced by numerous genetic variations. Several POF candidate genes have been reported. However, no causal genes with high odds ratio (OR) have yet been discovered. This study included 564 females of Korean ethnicity, comprising 60 patients with POF and 182 controls in the discovery set and 105 patients with POF and 217 controls in the replication set. We conducted genome-wide association analysis to search for novel candidate genes predicted to influence POF development using Axiom Precision Medicine Research Arrays and additive model logistic regression analysis. One statistically significant single nucleotide polymorphism (SNP), rs55941146, which encodes a missense alteration (Val > Gly) in the APBA3 gene, was identified with OR values for association with POF of 13.33 and 4.628 in the discovery and replication sets, respectively. No rs55941146 minor allele homozygotes were present in either cases or controls. The APBA3 protein binds FIH-1 that inhibits hypoxia inducible factor-1α (HIF-1α). HIF-1α contributes to granulosa cell proliferation, which is crucial for ovarian follicle growth, by regulating cell proliferation factors and follicle stimulating hormone-mediated autophagy. Our data demonstrate that APBA3 is a candidate novel causal gene for POF.
Collapse
Affiliation(s)
- JeongMan Park
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488, Korea; (J.P.); (Y.P.); (N.K.K.); (K.-H.B.)
| | - YoungJoon Park
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488, Korea; (J.P.); (Y.P.); (N.K.K.); (K.-H.B.)
| | - Insong Koh
- Department of Biomedical Informatics, Hanyang University, Seoul 04763, Korea;
| | - Nam Keun Kim
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488, Korea; (J.P.); (Y.P.); (N.K.K.); (K.-H.B.)
| | - Kwang-Hyun Baek
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488, Korea; (J.P.); (Y.P.); (N.K.K.); (K.-H.B.)
| | - Bo-Seong Yun
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seongnam, Gyeonggi-do 13497, Korea;
| | - Kyung Ju Lee
- Department of Obstetrics and Gynecology, Korea University Medical Center, Seoul 02841, Korea;
| | - Jae Yun Song
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul 02841, Korea; (J.Y.S.); (E.L.)
| | - Eunil Lee
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul 02841, Korea; (J.Y.S.); (E.L.)
| | - KyuBum Kwack
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488, Korea; (J.P.); (Y.P.); (N.K.K.); (K.-H.B.)
- Correspondence: ; Tel.: +82-31-881-7141
| |
Collapse
|
7
|
Bergandi L, Canosa S, Pittatore G, Silvagno F, Doublier S, Gennarelli G, Benedetto C, Revelli A. Human recombinant FSH induces chemoresistance in human breast cancer cells via HIF-1α activation†. Biol Reprod 2020; 100:1521-1535. [PMID: 30939201 DOI: 10.1093/biolre/ioz050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/18/2019] [Accepted: 03/31/2019] [Indexed: 12/29/2022] Open
Abstract
Breast cancer patients under 40 years of age who are candidate to chemotherapy with alkylating drugs may undergo controlled ovarian stimulation (COS) with recombinant human follicle-stimulating hormone (rhFSH) in order to get fertility preservation by mature oocyte cryostorage. The direct effect(s) of exogenous rhFSH on the chemosensitivity of breast cancer is currently unknown. To clarify this issue, we incubated four different breast cancer cell lines with rhFSH (10 IU/L, 24 h) and then we exposed them to doxorubicin (DOX) or cyclophosphamide (CPA). The effect(s) of rhFSH on human breast cancer cells treated with DOX or CPA was measured in terms of (1) cell viability, (2) cytotoxicity, (3) multidrug resistance (MDR) genes and proteins expression and activities, and (4) hypoxia-inducible factor 1-alpha (HIF-1α) activation. Pretreatment with rhFSH significantly increased the viability of breast cancer cells after treatment with DOX or CPA, and reduced the lactate dehydrogenase leakage and reactive oxygen species production. Moreover, after preincubation with rhFSH, the MDR proteins (Pgp, MPR1, and BCRP) expression and activity resulted upregulated and the HIF-1α pathway activated. In addition, the use of a widely used HIF-1α inhibitor, the 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), prevented the rhFSH effect on the onset of MDR. Taken together, these observations suggest that a short exposure to rhFSH induces chemoresistance to DOX and CPA in human breast cancer cells via HIF-1α activation.
Collapse
Affiliation(s)
- L Bergandi
- Department of Oncology, University of Torino, Torino, Italy
| | - S Canosa
- Gynecology and Obstetrics 1, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, S. Anna Hospital, University of Torino, Torino, Italy
| | - G Pittatore
- Gynecology and Obstetrics 1, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, S. Anna Hospital, University of Torino, Torino, Italy
| | - F Silvagno
- Department of Oncology, University of Torino, Torino, Italy
| | - S Doublier
- Department of Oncology, University of Torino, Torino, Italy
| | - G Gennarelli
- Department of Oncology, University of Torino, Torino, Italy
| | - C Benedetto
- Gynecology and Obstetrics 1, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, S. Anna Hospital, University of Torino, Torino, Italy
| | - A Revelli
- Gynecology and Obstetrics 1, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, S. Anna Hospital, University of Torino, Torino, Italy
| |
Collapse
|
8
|
Wu Y, Xia L, Guo Q, Zhu J, Deng Y, Wu X. Identification of Chemoresistance-Associated Key Genes and Pathways in High-Grade Serous Ovarian Cancer by Bioinformatics Analyses. Cancer Manag Res 2020; 12:5213-5223. [PMID: 32636682 PMCID: PMC7335306 DOI: 10.2147/cmar.s251622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/12/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose High-grade serous ovarian cancer (HGSOC) is the leading cause of death among gynecological malignancies. This is mainly attributed to its high rates of chemoresistance. To date, few studies have investigated the molecular mechanisms underlying this resistance to treatment in ovarian cancer patients. In this study, we aimed to explore these molecular mechanisms using bioinformatics analysis. Methods We analyzed microarray data set GSE51373, which included 16 platinum-sensitive HGSOC samples and 12 platinum-resistant control samples. Differentially expressed genes (DEGs) were identified using RStudio. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using DAVID, and a DEG-associated protein–protein interaction (PPI) network was constructed using STRING. Hub genes in the PPI network were identified, and the prognostic value of the top ten hub genes was evaluated. MGP, one of the hub genes, was verified by immunohistochemistry. Results All samples were confirmed to be of high quality. A total of 109 DEGs were identified, and the top ten enriched GO terms and four KEGG pathways were obtained. Specifically, the PI3K-AKT signaling pathway and the Rap1 signaling pathway were identified as having significant roles in chemoresistance in HGSOC. Furthermore, based on the PPI network, KIT, FOXM1, FGF2, HIST1H4D, ZFPM2, IFIT2, CCNO, MGP, RHOBTB3, and CDC7 were identified as hub genes. Five of these hub genes could predict the prognosis of HGSOC patients. Positive immunostaining signals for MGP were observed in the chemoresistant samples. Conclusion Taken together, the findings of this study may provide novel insights into HGSOC chemoresistance and identify important therapeutic targets.
Collapse
Affiliation(s)
- Yong Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Lingfang Xia
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Qinhao Guo
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jun Zhu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yu Deng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Progranulin expression induced by follicle-stimulating hormone in ovarian cancer cell lines depends on the histological subtype. Med Oncol 2020; 37:59. [PMID: 32474861 DOI: 10.1007/s12032-020-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
Epithelial ovarian cancer (EOC) is a heterogeneous disease that can be categorized into four major histological subtypes. Its etiology remains poorly understood due mainly to this heterogeneity. Follicle-stimulating hormone (FSH) has been implicated as a risk factor in EOC and has been suggested that may influence the development of specific subtypes. In addition, FSH regulates different aspects of ovarian cancer tumorigenesis. FSH downstream target genes in EOC have not been fully identified. Progranulin (PGRN) overexpression is associated with cell proliferation, invasion, chemoresistance, and shortened overall survival in ovarian cancer. Recently, we demonstrated that PGRN expression is regulated through the PI3K signaling pathway in clear cell ovarian carcinoma (CCOC) cells. In contrast, we also demonstrated that PGRN synthesis in serous ovarian cancer (SOC) cells is regulated via PKC but not by the PI3K signaling pathway. Several studies have demonstrated that FSH induces PKC and PI3K activation. Thus, this study was to investigate the effect of FSH on PGRN production in the CCOC cell line TOV-21G as compared to the SOC cell lines SKOV3 and OVCAR3. Cultured TOV-21G, SKOV3, and OVCAR3 cells were incubated with different concentrations of FSH for 48 h. PGRN mRNA and protein expression were assessed by RT-PCR and Western blotting, while PGRN secretion was measured by ELISA. PGRN mRNA and protein expression, as well as PGRN secretion, significantly increased after FSH stimulation in TOV-21G but not in SKOV3 and OVCAR3 cells. These data indicate that FSH induces PGRN expression and secretion only in CCOC cells. Establishing specific features for CCOC could reveal potential diagnostic and therapeutic targets.
Collapse
|
10
|
Garrido MP, Bruneau N, Vega M, Selman A, Tapia JC, Romero C. Follicle-stimulating hormone promotes nerve growth factor and vascular endothelial growth factor expression in epithelial ovarian cells. Histol Histopathol 2020; 35:961-971. [PMID: 32369181 DOI: 10.14670/hh-18-226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the first cause of death for gynecological malignances in developed countries and around 80% correspond to Epithelial Ovarian Cancer (EOC). Overexpression of Nerve Growth Factor (NGF) and its high affinity receptor TRKA are involved in EOC progression, modulating several oncogenic processes such as angiogenesis by the increase of Vascular Endothelial Growth Factor (VEGF). FSH receptors (FSH-R) are present in EOC, but their changes and contribution during EOC progression are still not thoroughly known. The aims of this study were to evaluate the abundance of FSH receptors during EOC differentiation and to determine whether FSH modulates oncoproteins such as NGF and VEGF in ovarian cells. FSH-R expression in EOC tissues and cell lines (A2780, poorly differentiated EOC cells and HOSE, non-tumoral ovarian surface epithelial cells) were measured by RT-PCR and laser capture of epithelial cells from EOC samples by qPCR. FSH-R protein levels were evaluated by immunohisto/cytochemistry. Additionally, ovarian explants and ovarian cell lines were stimulated with FSH and/or FSH-R inhibitor to assess NGF and VEGF mRNA and protein levels. The results showed that FSH-R levels decreased during EOC progression, nevertheless these receptors are still present in poorly differentiated EOC. FSH increased NGF expression in ovarian cells, which was prevented using a FSH-R inhibitor. Similarly, in ovarian cancer explants, FSH increased NGF and VEGF mRNA, as well as NGF protein levels. These results suggest that FSH would display a key role not only in initial stages of EOC, but also in late stages of this disease, by modulation of NGF and VEGF levels in EOC cells.
Collapse
Affiliation(s)
- Maritza P Garrido
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago, Chile.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nicole Bruneau
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Margarita Vega
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago, Chile.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alberto Selman
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago, Chile.,National Institute of Cancer, Santiago, Chile
| | - Julio C Tapia
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carmen Romero
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago, Chile.,Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago, Chile.
| |
Collapse
|
11
|
Serum Follicle-Stimulating Hormone Levels Are Associated with Cardiometabolic Risk Factors in Post-Menopausal Korean Women. J Clin Med 2020; 9:jcm9041161. [PMID: 32325717 PMCID: PMC7230188 DOI: 10.3390/jcm9041161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Menopause compounds many cardiometabolic risk factors through endogenous estrogen withdrawal. This study aimed to find the association between serum follicle-stimulating hormone (FSH) levels and cardiometabolic risk factors in post-menopausal Korean women. A total of 608 post-menopausal women from eight randomized double-blind, placebo-controlled clinical trials on menopause during the year 2012–2019 were analyzed. Cardiometabolic risk factors such as body mass index, waist circumference, systolic blood pressure, fasting glucose, triglycerides (TG), high density lipoprotein-cholesterol (HDL-C), and TG/HDL-C ratio were significantly improved as the FSH quartiles increased. Metabolic syndrome (MetS) and the number of components of MetS decreased as FSH quartiles increased. In regression analysis, FSH level was negatively associated with cardiometabolic risk factors including body mass index, body weight, waist circumference, fasting glucose and TG, while it was positively associated with HDL-C. The odds ratio of MetS in the first quartile of FSH was 2.682 compared with that in the fourth quartile of FSH in a logistic regression model. Serum FSH levels had a negative correlation with cardiometabolic risk factors in post-menopausal Korean women, suggesting that a low FSH can be a predictor for cardiovascular disease in post-menopausal women.
Collapse
|
12
|
Ma Z, Shuai Y, Gao X, Wen X, Ji J. Circular RNAs in the tumour microenvironment. Mol Cancer 2020; 19:8. [PMID: 31937318 PMCID: PMC6958568 DOI: 10.1186/s12943-019-1113-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a new class of endogenous non-coding RNAs (ncRNAs) widely expressed in eukaryotic cells. Mounting evidence has highlighted circRNAs as critical regulators of various tumours. More importantly, circRNAs have been revealed to recruit and reprogram key components involved in the tumour microenvironment (TME), and mediate various signaling pathways, thus affecting tumourigenesis, angiogenesis, immune response, and metastatic progression. In this review, we briefly introduce the biogenesis, characteristics and classification of circRNAs, and describe various mechanistic models of circRNAs. Further, we provide the first systematic overview of the interplay between circRNAs and cellular/non-cellular counterparts of the TME and highlight the potential of circRNAs as prospective biomarkers or targets in cancer clinics. Finally, we discuss the biological mechanisms through which the circRNAs drive development of resistance, revealing the mystery of circRNAs in drug resistance of tumours. SHORT CONCLUSION Deep understanding the emerging role of circRNAs and their involvements in the TME may provide potential biomarkers and therapeutic targets for cancer patients. The combined targeting of circRNAs and co-activated components in the TME may achieve higher therapeutic efficiency and become a new mode of tumour therapy in the future.
Collapse
Affiliation(s)
- Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China
| | - You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China
| | - Xianzi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China. .,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China.
| |
Collapse
|
13
|
Gonadotropins and Their Association with the Risk of Prediabetes and Type 2 Diabetes in Middle-Aged Postmenopausal Women. DISEASE MARKERS 2019; 2019:2384069. [PMID: 31467615 PMCID: PMC6701309 DOI: 10.1155/2019/2384069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/29/2019] [Accepted: 07/19/2019] [Indexed: 01/14/2023]
Abstract
Recent studies have suggested that a low concentration of follicle-stimulating hormone (FSH) is associated with a higher prevalence of metabolic disturbances in postmenopausal women. In this study, we aim to evaluate the association between FSH, luteinizing hormone (LH), and LH/FSH ratio values and the risk of insulin resistance (HOMA-IR >2.0), prediabetes (IFG), and type 2 diabetes in a 5-year prospective study in postmenopausal women. 114 postmenopausal women were divided into 4 groups: group 1 (baseline and follow-up normoglycemic women), group 2 (normoglycemic women at baseline progressing to IFG), group 3 (women with baseline and follow-up IFG), and group 4 (women with baseline IFG progressing to diabetes). Baseline and follow-up anthropometric measurements and blood collections were performed. Serum/plasma was assayed for glucose, HDL-C, TG, C-reactive protein (CRP), 17beta-estradiol, estrone, insulin, thyroid-stimulating hormone (TSH), FSH, and LH. Homeostatic model assessment of insulin resistance (HOMA-IR) and LH/FSH ratios were calculated. The baseline concentrations of FSH and LH statistically decreased across all four groups (the highest concentrations in group 1 and the lowest in group 4; p < 0.001). A logistic regression analysis showed that a 1 SD decrease in the z-score of FSH concentration is associated with a threefold increased risk of IFG and a fivefold increased risk of HOMA-IR of >2.0 and diabetes. The LH concentration had odds ratio (OR) values about two times lower than the FSH concentration. The ORs of the LH/FSH ratio were only significant for IFG. In conclusion, FSH concentration is strongly associated with insulin resistance, prediabetes, and diabetes in postmenopausal women with normal or impaired fasting glucose. LH and the LH/FSH ratio are also related to metabolic disturbances after menopause, yet to a lesser extent.
Collapse
|
14
|
Liu K, Kang M, Zhou Z, Qin W, Wang R. Bioinformatics analysis identifies hub genes and pathways in nasopharyngeal carcinoma. Oncol Lett 2019; 18:3637-3645. [PMID: 31516577 PMCID: PMC6732963 DOI: 10.3892/ol.2019.10707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to identify genes associated with and the underlying mechanisms in nasopharyngeal carcinoma (NPC) using microarray data. GSE12452 and GSE34573 gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. GEO2R was utilized to obtain differentially expressed genes (DEGs). In addition, the Database for Annotation, Visualization and Integrated Discovery was used to perform pathway enrichment analyses for DEGs using the Gene Ontology (GO) annotation along with the Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, Cytoscape was used to perform module analysis of the protein-protein interaction (PPI) network and pathways of the hub genes were studied. A total of 298 genes were ascertained as DEGs in the two datasets. To functionally categorize these DEGs, we obtained 82 supplemented GO terms along with 7 KEGG pathways. Subsequently, a PPI network consisting of 10 hub genes with high degrees of interaction was constructed. These hub genes included cyclin-dependent kinase (CDK) 1, structural maintenance of chromosomes (SMC) 4, kinetochore-associated (KNTC) 1, kinesin family member (KIF) 23, aurora kinase A (AURKA), ATAD (ATPase family AAA domain containing) 2, NDC80 kinetochore complex component, enhancer of zeste 2 polycomb repressive complex 2 subunit, BUB1 mitotic checkpoint serine/threonine kinase and protein regulator of cytokinesis 1. CDK1, SMC4, KNTC1, KIF23, AURKA and ATAD2 presented with high areas under the curve in receiver operator curves, suggesting that these genes may be diagnostic markers for nasopharyngeal carcinoma. In conclusion, it was proposed that CDK1, SMC4, KNTC1, KIF23, AURKA and ATAD2 may be involved in the tumorigenesis of NPC. Furthermore, they may be utilized as molecular biomarkers in early diagnosis of NPC.
Collapse
Affiliation(s)
- Kang Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning 530021, P.R. China
| | - Min Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning 530021, P.R. China
| | - Ziyan Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning 530021, P.R. China
| | - Wen Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning 530021, P.R. China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning 530021, P.R. China
| |
Collapse
|
15
|
Li X, Xu M, Ding L, Tang J. MiR-27a: A Novel Biomarker and Potential Therapeutic Target in Tumors. J Cancer 2019; 10:2836-2848. [PMID: 31258791 PMCID: PMC6584939 DOI: 10.7150/jca.31361] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, time sequencing, conserved and small non-coding RNA molecules (19-25 bp long) that regulate gene expression at the post-transcriptional level by binding to the partial sequence homology of the 3'-untranslated region of target messenger (m)RNA. The miRNA-27 family consists of miR-27a and miR-27b, which are transcribed from different chromosomes and different in nucleotide at the 3' end. It has been reported that miR-27a was located on chromosome 19 and played a vital role in tumor development. Increasing evidences support a vital role for miR-27a in modulating polymorphisms, tumorigenesis, proliferation, apoptosis, invasion, migration and angiogenesis. Apart from it, miR-27a could affect drug sensitivity, treatment of cancer and patients prognosis. The miR-27a could be an oncogene or a tumor suppressor in several types of cancer, including colon cancer, pancreatic cancer, breast cancer, bladder cancer and hepatocellular carcinoma. In this review, we discuss the role of miR-27a in tumor biology and clinical significance in detail and offer novel insights into molecular targeting therapy for human cancers.
Collapse
Affiliation(s)
- Xingwang Li
- School of Clinical Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, PR China
| | - Min Xu
- School of Clinical Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, PR China
| | - Li Ding
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Jinhai Tang
- School of Clinical Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, PR China.,Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
16
|
Li S, Ji X, Wang R, Miao Y. Follicle-stimulating hormone promoted pyruvate kinase isozyme type M2-induced glycolysis and proliferation of ovarian cancer cells. Arch Gynecol Obstet 2019; 299:1443-1451. [PMID: 30809696 DOI: 10.1007/s00404-019-05100-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/15/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE Reprogramming of cell metabolism is essential for tumor progression and the best-studied metabolic phenomenon of cancer cells is aerobic glycolysis, in which pyruvate kinase isozyme type M2 (PKM2) plays a critical role. Follicle-stimulating hormone (FSH) contributes to epithelial ovarian cancer progression and has been shown to regulate cell metabolism in ovaries. The aim of this study was to investigate the interaction between FSH and PKM2 and their effect on aerobic glycolysis and cell proliferation in ovarian cancer. METHODS SKOV3 and OVCAR3 ovarian cancer cells were treated with FSH at various doses to investigate its effect on cell proliferation and PKM2 expression. siRNA-PKM2-transfected SKOV3 and OVCAR3 cells were treated with FSH to examine whether the changes induced by FSH could be altered by siRNA-PKM2. Glucose and lactate levels were evaluated to observe the change in glycolysis in these cells. RESULTS In the current study, FSH upregulated the expression of PKM2 and glycolysis in SKOV3 and OVCAR3 cells. PKM2 knockdown reduced FSH-induced cell growth and glycolysis. Moreover, FSH attenuated apoptosis that was induced by the inhibition of PKM2. CONCLUSIONS Collectively, the findings of this study indicated that FSH promoted glycolysis in epithelial ovarian cancer cells. Knockdown of PKM2 inhibited aerobic glycolysis and cell proliferation induced by FSH.
Collapse
Affiliation(s)
- Shuangdi Li
- Department of Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China
| | - Xiaoning Ji
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China
| | - Renchen Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China
| | - Yi Miao
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China.
| |
Collapse
|
17
|
Gonadotropin regulation of ankyrin-repeat and SOCS-box protein 9 (ASB9) in ovarian follicles and identification of binding partners. PLoS One 2019; 14:e0212571. [PMID: 30811458 PMCID: PMC6392328 DOI: 10.1371/journal.pone.0212571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/05/2019] [Indexed: 11/23/2022] Open
Abstract
Ankyrin-repeat and SOCS-box protein 9 (ASB9) is a member of the large SOCS-box containing proteins family and acts as the specific substrate recognition component of E3 ubiquitin ligases in the process of ubiquitination and proteasomal degradation. We previously identified ASB9 as a differentially expressed gene in granulosa cells (GC) of bovine ovulatory follicles. This study aimed to further investigate ASB9 mRNA and protein regulation, identify binding partners in GC of bovine ovulatory follicles, and study its function. GC were obtained from small follicles (SF: 2–4 mm), dominant follicles at day 5 of the estrous cycle (DF), and ovulatory follicles, 24 hours following hCG injection (OF). Analyses by RT-PCR showed a 104-fold greater expression of ASB9 in GC of OF than in DF. Steady-state levels of ASB9 in follicular walls (granulosa and theca cells) analyzed at 0, 6, 12, 18 and 24 hours after hCG injection showed a significant induction of ASB9 expression at 12 and 18 hours, reaching a maximum induction of 10.2-fold at 24 hours post-hCG as compared to 0 hour. These results were confirmed in western blot analysis showing strongest ASB9 protein amounts in OF. Yeast two-hybrid screening of OF-cDNAs library resulted in the identification of 10 potential ASB9 binding partners in GC but no interaction was found between ASB9 and creatine kinase B (CKB) in these GC. Functional studies using CRISPR-Cas9 approach revealed that ASB9 inhibition led to increased GC proliferation and modulation of target genes expression. Overall, these results support a physiologically relevant role of ASB9 in the ovulatory follicle by targeting specific proteins likely for degradation, contributing to reduced GC proliferation, and could be involved in the final GC differentiation into luteal cells.
Collapse
|
18
|
Dizeyi N, Trzybulska D, Al-Jebari Y, Huhtaniemi I, Lundberg Giwercman Y. Cell-based evidence regarding the role of FSH in prostate cancer. Urol Oncol 2019; 37:290.e1-290.e8. [PMID: 30611646 DOI: 10.1016/j.urolonc.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/12/2018] [Accepted: 12/16/2018] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Conversion of androgen-responsive prostate cancer (CaP) to castration-resistant CaP is associated with an acceleration of the disease that often requires treatment modalities other than androgen deprivation therapy only. Recently, follicle-stimulating hormone (FSH) has been shown to play a role in CaP growth, and clinical data showed that high serum concentration of FSH in chemically castrated CaP patients was associated with a shorter time of progression to castration-resistant CaP. In this study, we sought to investigate if FSH could have direct effects on CaP cells, possibly through the androgen receptor and androgen receptor regulated genes, such as prostate-specific antigen (PSA). MATERIALS AND METHODS The human CaP cell lines PC-3, LNCaP and C4-2, and nonmalignant PNT1A cells, were utilized to investigate the effects of FSH. qPCR, Western blotting analysis, and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymetoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium assays were performed in order to analyze the FSH effects. RESULTS The FSH receptor was present in all cell lines except PNT1A. FSH significantly increased PSA mRNA (P < 0.01) and protein (P < 0.03) levels in C4-2 cells in a dose-dependent manner. In LNCaP cells, FSH also increased PSA protein level, although to a lesser extent than in C4-2 cells, and the expression was reduced by the antiandrogen enzalutamide. In PC-3 cells, FSH was shown to increase their proliferation (P < 0.03) and β-catenin expression. CONCLUSION These findings demonstrate that FSH may have a direct effect in CaP in an androgen-depleted environment. However, further research is needed to understand the significance of direct FSH action in the maintenance of CaP growth at the different phases of transition from androgen dependence to androgen independence.
Collapse
Affiliation(s)
- Nishtman Dizeyi
- Department of Translational Medicine, Molecular Genetic Reproductive Medicine, Lund University, Malmö, Sweden.
| | - Dorota Trzybulska
- Department of Translational Medicine, Molecular Genetic Reproductive Medicine, Lund University, Malmö, Sweden
| | - Yahia Al-Jebari
- Department of Translational Medicine,Molecular Reproductive Medicine, Lund University, Malmö, Sweden
| | - Ilpo Huhtaniemi
- Department of Surgery & Cancer, Imperial College, London, UK
| | - Yvonne Lundberg Giwercman
- Department of Translational Medicine, Molecular Genetic Reproductive Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
19
|
Chen Y, Wang G, Wang Y, Gao X, Wang K, Li J, Xue F. Capn4 regulates migration and invasion of ovarian carcinoma cells via targeting osteopontin-mediated PI3K/AKT signaling pathway. Oncol Lett 2018; 17:564-570. [PMID: 30655802 DOI: 10.3892/ol.2018.9524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 08/15/2018] [Indexed: 01/06/2023] Open
Abstract
Previous studies have demonstrated that calpain small subunit 4 (Capn4) is able to regulate the viability and metastasis of cancer cells. However, the regulatory effects and underlying molecular mechanism of Capn4 in ovarian carcinoma cells are not well understood. The purpose of the present study was to investigate the role of Capn4 in ovarian carcinoma cells and analyze the possible mechanism mediated by Capn4. The expression levels of Capn4 and osteopontin (OPN) were determined and the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway was analyzed in ovarian carcinoma cells. The results of the present study revealed that Capn4 and OPN were overexpressed in clinical ovarian carcinoma tissues and ovarian carcinoma cells. Capn4 silencing downregulated OPN expression, and suppressed ovarian carcinoma cell viability and migration. Capn4 silencing enhanced apoptosis of ovarian carcinoma cells by increasing activity of the capase-3 apoptosis signaling pathway. Capn4 promoted the metastasis of ovarian carcinoma cells by interacting with the PI3K/AKT signaling pathway via upregulation of OPN expression. In conclusion, the results of the present study indicate that Capn4 may be a potential therapeutic target for the treatment of ovarian carcinoma.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Gang Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiaoli Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kan Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jie Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
20
|
Robert T, Blanc R, Valsecchi D, Botta D, Ciccio G, Smajda S, Redjem H, Chaalala C, Piotin M. Tamoxifen treatment and occurrence of dural arteriovenous fistulas: An observational study on a series of patients presenting tamoxifen history and diagnosis of DAVf. J Neurol Sci 2017; 385:115-118. [PMID: 29406888 DOI: 10.1016/j.jns.2017.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022]
Affiliation(s)
- Thomas Robert
- Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France; Department of Neurosurgery, Neurocenter of the Southern Switzerland, Lugano, Switzerland.
| | - Raphaël Blanc
- Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France
| | - Daniele Valsecchi
- Department of Neurosurgery, Neurocenter of the Southern Switzerland, Lugano, Switzerland
| | - Daniele Botta
- Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France
| | - Gabriele Ciccio
- Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France
| | - Stanislas Smajda
- Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France
| | - Hocine Redjem
- Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France
| | - Chiraz Chaalala
- Department of Neurosurgery, Hôpital Notre-Dame, CHUM, Montreal, Canada
| | - Michel Piotin
- Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France
| |
Collapse
|
21
|
Huang Y, Zhou Y, Xia L, Tang J, Wen H, Zhang M. Luteinizing hormone compromises the in vivo anti-tumor effect of cisplatin on human epithelial ovarian cancer cells. Oncol Lett 2017; 15:3141-3146. [PMID: 29435048 DOI: 10.3892/ol.2017.7655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/02/2017] [Indexed: 02/07/2023] Open
Abstract
Platinum-based chemotherapy is the most common therapeutic regimen used to treat patients with ovarian cancer. However, the emergence of drug resistance to platinum compromises the clinical success of this treatment. Epithelial ovarian cancer is usually accompanied by an increased level of luteinizing hormone (LH). Therefore, the effect of LH on platinum resistance requires further investigation. In the current study, the effect of cisplatin and/or LH on platinum resistance was examined using the SKOV3ip1 and HeyA8 models. Following therapy, tumors were examined for proliferation (ki67) and apoptosis (cleaved caspase-3). Cisplatin alone and in combination with LH significantly inhibited tumor growth in SKOV3ip1- and HeyA8-implanted mice. Treatment with LH alone had minimal effect in the models. However, treatment with cisplatin combined with LH was less effective than treatment with cisplatin alone. Additionally, ki67 counts were significantly increased and cleaved caspase-3 counts were significantly reduced in mice treated with cisplatin combined with LH compared with mice treated with cisplatin alone. Such results indicate that LH weakens the anti-tumor effect of cisplatin in vivo and that LH may contribute to the development of drug resistance to cisplatin in ovarian cancer.
Collapse
Affiliation(s)
- Yan Huang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yuqi Zhou
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Lingfang Xia
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jia Tang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hao Wen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Meiqin Zhang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
22
|
Papadimitriou K, Kountourakis P, Kottorou AE, Antonacopoulou AG, Rolfo C, Peeters M, Kalofonos HP. Follicle-Stimulating Hormone Receptor (FSHR): A Promising Tool in Oncology? Mol Diagn Ther 2017; 20:523-530. [PMID: 27392476 DOI: 10.1007/s40291-016-0218-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The cellular pathway of follicle-stimulating hormone (FSH) and its receptor (FSHR) is typically involved in reproduction in mammals. In humans, the FSHR is normally found in cells of the testis and the ovary, while it is scarcely expressed in other normal tissues. The expression of FSH/FSHR is studied in prostate, thyroid, and ovarian cancer tissues. Recently, the expression of FSHR was uniformly documented in malignant vascular endothelial cells from different tumor types, while in normal or inflammatory tissues its expression was scarce, suggesting a potential role of a pan-receptor in cancer. Subsequent studies have attempted to verify this unique specificity of this molecule and further define its features in malignant microenvironments but have had conflicting results, mostly because of differing techniques and immaturity of antibodies. Still, the lack of FSHR expression in most non-cancerous cells, in contrast to its specific correlation with the malignant tissue microenvironment, implies a potential role as both a diagnostic and a therapeutic tool. FSHR might also have a very specific role in malignancies, such as angiogenic and/or growth factor malignancies, but this is yet to be validated. Moreover, the expression of FSHR in endothelial malignant cells could have a predictive impact on disease progression, especially in relation to therapies targeting the tumor vasculature. In this review we look deep into the physiology of the FSH/FSHR pathway and evaluate the potential of FSHR as a predictive and prognostic tool in oncology.
Collapse
Affiliation(s)
| | | | | | | | - Christian Rolfo
- Department of Medical Oncology, University Hospital of Antwerp, 10 Wilrijksraat, 2650, Edegem, Belgium
| | - Marc Peeters
- Department of Medical Oncology, University Hospital of Antwerp, 10 Wilrijksraat, 2650, Edegem, Belgium
| | | |
Collapse
|
23
|
Salehi E, Aflatoonian R, Moeini A, Yamini N, Asadi E, Khosravizadeh Z, Tarzjani MD, Harat ZN, Abolhassani F. Apoptotic biomarkers in cumulus cells in relation to embryo quality in polycystic ovary syndrome. Arch Gynecol Obstet 2017; 296:1219-1227. [PMID: 28988321 DOI: 10.1007/s00404-017-4523-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE To investigate associations between gene expression pattern of apoptotic biomarkers in cumulus cells of polycystic ovary syndrome (PCOS) patients and the quality of oocytes and embryos. METHODS 40 intracytoplasmic sperm injection patients, of whom 20 were PCOS and 20 were healthy women, were included in this study. Serum hormone levels were measured using Radioimmunoassay for each patient. The expression of survivin, caspase-3, and caspase-7 in 200 cumulus complexes surrounding mature oocytes (100 in PCOS versus 100 in control groups) collected individually at pick up was examined by real-time polymerase chain reaction (real-time PCR). RESULTS The expression levels of survivin were significantly lower in PCOS patients than those of normal women while caspase-3 and caspase-7 expression levels were higher in PCOS patients (p < 0.05). There was a statistically significant correlation between the levels of these genes and embryo quality. CONCLUSIONS This study reveals that the measurement of survivin, caspase-3, caspase-7 levels in cumulus cells of PCOS patients could be used as genetic biomarkers for oocyte and embryo selection under an ART program. However, further prospective studies are required to elucidate this issue.
Collapse
Affiliation(s)
- Ensieh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, 16 Azar Avenue, Poor Sina Street, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Number 12, East Hafez Avenue, Bani Hashem Street, Resalat Highway, Tehran, Iran
| | - Ashraf Moeini
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Number 12, East Hafez Avenue, Bani Hashem Street, Resalat Highway, Tehran, Iran.,Department of Gynecology and Obstetrics, School of Medicine, Tehran University of Medical Science, 16 Azar Avenue, Poor Sina Street, Tehran, Iran.,Vali-e-Asr Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazila Yamini
- Department of ART, Embryology Laboratory, Arash Women's Hospital, Tehran University of Medical Science, Resalat Highway, Tehran, Iran
| | - Ebrahim Asadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, 16 Azar Avenue, Poor Sina Street, Tehran, Iran
| | - Zahra Khosravizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, 16 Azar Avenue, Poor Sina Street, Tehran, Iran
| | - Masoumeh Dehghan Tarzjani
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, 16 Azar Avenue, Poor Sina Street, Tehran, Iran
| | - Zhila Naghibi Harat
- Department of ART, Embryology Laboratory, Southern California Center, New Port Beach, CA, USA
| | - Farid Abolhassani
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, 16 Azar Avenue, Poor Sina Street, Tehran, Iran.
| |
Collapse
|
24
|
Wang N, Shao H, Chen Y, Xia F, Chi C, Li Q, Han B, Teng Y, Lu Y. Follicle-Stimulating Hormone, Its Association with Cardiometabolic Risk Factors, and 10-Year Risk of Cardiovascular Disease in Postmenopausal Women. J Am Heart Assoc 2017; 6:JAHA.117.005918. [PMID: 28855169 PMCID: PMC5634260 DOI: 10.1161/jaha.117.005918] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cardiovascular disease is the leading cause of mortality in postmenopausal women. Follicle-stimulating hormone (FSH) shows negative associations with obesity and diabetes mellitus in postmenopausal women. We aimed to study the associations between FSH and 10-year risk of atherosclerotic cardiovascular disease (ASCVD) in postmenopausal women. METHODS AND RESULTS SPECT-China (the Survey on Prevalence in East China for Metabolic Diseases and Risk Factors) is a 22-site, population-based study conducted during 2014-2015. This study included 2658 postmenopausal women. A newly developed effective tool for 10-year ASCVD risk prediction among Chinese was adopted. Regression analyses were performed to assess the relationship among FSH, 10-year ASCVD risk, and multiple cardiometabolic risk factors. With the increase in FSH quartiles, the mean 10-year ASCVD risk in postmenopausal women decreased from 4.9% to 3.3%, and most metabolic parameters were significantly ameliorated (all P for trend <0.05). In regression analyses, a 1-SD increment in ln-FSH was negatively associated with continuous (B -0.12, 95% confidence interval, -0.16, -0.09, P<0.05) and categorical (odds ratio 0.65, 95% confidence interval, 0.49, 0.85, P<0.05) 10-year ASCVD risk. These significant associations existed in subgroups with or without medication use, obesity, diabetes mellitus, hypertension, and dyslipidemia. Body mass index and waist circumference (both B -0.35, 95% confidence interval, -0.40, -0.30, P<0.05) had the largest associations of all metabolic measures, and blood pressure had the smallest association. CONCLUSIONS Serum FSH levels were negatively associated with 10-year ASCVD risk in postmenopausal women. Among cardiometabolic factors, obesity indices had the largest associations with FSH. These results indicated that a low FSH might be a risk factor or a biomarker for cardiovascular disease risk in postmenopausal women.
Collapse
Affiliation(s)
- Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hongfang Shao
- Centre for Reproductive Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chen Chi
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qin Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bing Han
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yincheng Teng
- Centre for Reproductive Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Zhou J, Yao W, Li C, Wu W, Li Q, Liu H. Administration of follicle-stimulating hormone induces autophagy via upregulation of HIF-1α in mouse granulosa cells. Cell Death Dis 2017; 8:e3001. [PMID: 28817115 PMCID: PMC5596559 DOI: 10.1038/cddis.2017.371] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/25/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023]
Abstract
Recent studies reported the important role of autophagy in follicular development. However, the underlying molecular mechanisms remain elusive. In this study, we investigated the effect of follicle-stimulating hormone (FSH) on mouse granulosa cells (MGCs). Results indicated that autophagy was induced by FSH, which is known to be the dominant hormone regulating follicular development and granulosa cell (GC) proliferation. The activation of mammalian target of rapamycin (mTOR), a master regulator of autophagy, was inhibited during the process of MGC autophagy. Moreover, MHY1485 (an agonist of mTOR) significantly suppressed autophagy signaling by activating mTOR. The expression of hypoxia-inducible factor 1-alpha (HIF-1α) was increased after FSH treatment. Blocking hypoxia-inducible factor 1-alpha attenuated autophagy signaling. In vitro, CoCl2-induced hypoxia enhanced cell autophagy and affected the expression of beclin1 and BCL2/adenovirus E1B interacting protein 3 (Bnip3) in the presence of FSH. Knockdown of beclin1 and Bnip3 suppressed autophagy signaling in MGCs. Furthermore, our in vivo study demonstrated that the FSH-induced increase in weight was significantly reduced after effectively inhibiting autophagy with chloroquine, which was correlated with incomplete mitophagy process through the PINK1-Parkin pathway, delayed cell cycle, and reduced cell proliferation rate. In addition, chloroquine treatment decreased inhibin alpha subunit, but enhanced the expression of 3 beta-hydroxysteroid dehydrogenase. Blocking autophagy resulted in a significantly lower percentage of antral and preovulatory follicles after FSH stimulation. In conclusion, our results indicate that FSH induces autophagy signaling in MGCs via HIF-1α. In addition, our results provide evidence that autophagy induced by FSH is related to follicle development and atresia.
Collapse
Affiliation(s)
- Jilong Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
26
|
Jiang H, Wu D, Xu D, Yu H, Zhao Z, Ma D, Jin J. Eupafolin Exhibits Potent Anti-Angiogenic and Antitumor Activity in Hepatocellular Carcinoma. Int J Biol Sci 2017; 13:701-711. [PMID: 28655996 PMCID: PMC5485626 DOI: 10.7150/ijbs.17534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 04/20/2017] [Indexed: 12/13/2022] Open
Abstract
Eupafolin is a flavonoid extracted from the common sage herb which has been used in China as traditional medicine. Previous studies had reported that eupafolin had antioxidative, anti-inflammatory and antitumor effects. However, the function and the mechanism of eupafolin to exert its antitumor activity, especially its effect on tumor angiogenesis, have not been elucidated. Herein, we showed that eupafolin significantly inhibited vascular endothelial growth factor (VEGF)-induced cell proliferation, migration and tube formation of human umbilical vascular endothelial cells (HUVECs) in a dose-dependent manner. Meanwhile, the new blood microvessels induced by VEGF in the matrigel plug were also substantially suppressed by eupafolin. The results of HCC xenograft experiments demonstrated eupafolin remarkably inhibited tumor growth and tumor angiogenesis in vivo, suggesting the antitumor activity exerted by eupafolin was closely correlated with its potency on tumor angiogenesis. Mechanism investigations revealed that eupafolin significantly blocked VEGF-induced activation of VEGFR2 in HUVEC cells as well as its downstream signaling pathway. In addition to the effect on endothelial cells, through inhibiting Akt activity in tumor cells, VEGF secretion in HepG2 was dramatically decreased after eupafolin treatment. Our study was the first to report the activity of eupafolin against tumor angiogenesis as well as the underlying mechanism by which eupafolin to exert its anti-angiogenic activity.
Collapse
Affiliation(s)
- Honglei Jiang
- General Surgery department, the fourth affiliated hospital of China medical university, Shenyang, China
| | - Dan Wu
- Infectious disease department, Shengjing hospital of China medical university, Shenyang, China
| | - Dong Xu
- General Surgery department, the fourth affiliated hospital of China medical university, Shenyang, China
| | - Hao Yu
- General Surgery department, the fourth affiliated hospital of China medical university, Shenyang, China
| | - Zheming Zhao
- General Surgery department, the fourth affiliated hospital of China medical university, Shenyang, China
| | - Dongyan Ma
- General Surgery department, the fourth affiliated hospital of China medical university, Shenyang, China
| | - Junzhe Jin
- General Surgery department, the fourth affiliated hospital of China medical university, Shenyang, China
| |
Collapse
|
27
|
Crawford ED, Schally AV, Pinthus JH, Block NL, Rick FG, Garnick MB, Eckel RH, Keane TE, Shore ND, Dahdal DN, Beveridge TJR, Marshall DC. The potential role of follicle-stimulating hormone in the cardiovascular, metabolic, skeletal, and cognitive effects associated with androgen deprivation therapy. Urol Oncol 2017; 35:183-191. [PMID: 28325650 DOI: 10.1016/j.urolonc.2017.01.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 11/25/2022]
Abstract
PURPOSE To explore how follicle-stimulating hormone (FSH) may contribute to cardiovascular, metabolic, skeletal, and cognitive events in men treated for prostate cancer, with various forms of androgen deprivation therapy (ADT). MATERIALS AND METHODS A colloquium of prostate cancer experts was convened in May 2015, to discuss the role of FSH in the development of unwanted effects associated with ADT. Subsequently, a literature review (Medline, PubMed, and relevant congress abstract databases) was performed to further explore and evaluate the collected evidence. RESULTS It has become evident that, in the setting of ADT, FSH can promote the development of atherosclerotic plaque formation, metabolic syndrome, and insulin resistance. Data also suggest that FSH is an important mediator of bone remodeling, particularly bone resorption, and thereby increases the risk for bone fracture. Additional evidence implicates a role for FSH in bone metastasis as well. The influence of FSH on ADT-induced cognitive deficits awaits further elucidation; however, the possibility that FSH may be involved therein cannot be ruled out. CONCLUSIONS The widespread molecular and physiological consequences of FSH system activation in normal and pathological conditions are becoming better understood. Progress in this area has been achieved by the development of additional investigative and clinical measures to better evaluate specific adverse effects. More research is needed on FSH function in the development of cancer as well as its association with cardiovascular, metabolic, musculoskeletal, and cognitive effects in ADT.
Collapse
Affiliation(s)
- E David Crawford
- Department of Urologic Oncology, School of Medicine, University of Colorado, Denver, Denver, CO.
| | - Andrew V Schally
- Endocrine, Polypeptide and Cancer Institute, Miami Veterans Affairs Medical Center, Miami, FL; Department of Pathology, University of Miami School of Medicine, Miami, FL; Department of Medicine, University of Miami School of Medicine, Miami, FL
| | - Jehonathan H Pinthus
- Department of Surgery, Juravinski Cancer Centre, McMaster University, Hamilton, Ontario, Canada
| | - Norman L Block
- Endocrine, Polypeptide and Cancer Institute, Miami Veterans Affairs Medical Center, Miami, FL; Department of Pathology, University of Miami School of Medicine, Miami, FL; Department of Medicine, University of Miami School of Medicine, Miami, FL
| | - Ferenc G Rick
- Endocrine, Polypeptide and Cancer Institute, Miami Veterans Affairs Medical Center, Miami, FL; Department of Urology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Marc B Garnick
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Robert H Eckel
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Denver, CO
| | - Thomas E Keane
- Department of Urology, Medical University of South Carolina, Charleston, SC
| | - Neal D Shore
- Carolina Urologic Research Center, Myrtle Beach, SC
| | | | | | | |
Collapse
|
28
|
Ma WZ, Zheng XM, Hei CC, Zhao CJ, Xie SS, Chang Q, Cai YF, Jia H, Pei XY, Wang YR. Optimal FSH usage in revascularization of allotransplanted ovarian tissue in mice. J Ovarian Res 2017; 10:5. [PMID: 28095884 PMCID: PMC5240196 DOI: 10.1186/s13048-016-0299-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
Backgroud Ovarian transplantation is a useful method for preserving the fertility of young women with cancer who undergo radiotherapy and chemotherapy. Follicle-stimulating hormone (FSH) is use to protect transplanted ovarian tissues from ischemia injury through promoting revascularization after transplantation, but the side effect of high level FSH is ovarian overstimulation leading to substantial follicular loss. In this study, we investigated the optimal usage of FSH on revascularization in the in vitro cultured ovarian tissues before and after transplantation. Results FSH mainly exhibited an additive response in the gene and protein expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and follicle stimulating hormone receptor (FSHR) with its raised concentrations (0.15 IU/ml, 0.30 IU/ml and 0.60 IU/ml) and prolonged treatment (3 h, 6 h, 12 h, 24 h). The concentrations with 0.60 IU/ml FSH could obviously promoted the expression of VEGF, bFGF and FSHR, but under this concentration FSH could also overstimulated the ovarian tissue leading to follicular loss. With the increase of culture time, the gene and protein expression of VEGF and bFGF both were up-regulated in all of the FSH added groups, but FSHR expression decreased when culture time exceeded 12 h. So we chose 0.30 IU/ml FSH added concentration and 6 h culture time as the FSH usage condition in functional revascularization verification experiment, and found that under this condition FSH promoted 2.5 times increase of vascular density in treated group than in control group after ovarian tissues transplantation. Conclusion Ovarian intervention with 0.30 IU/ml FSH for 6 h is an optimal FSH usage condition which could accelerate the revascularization in the allotransplanted ovarian tissue and can not produce ovarian overstimulation.
Collapse
Affiliation(s)
- Wen-Zhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China
| | - Xiao-Min Zheng
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China
| | - Chang-Chun Hei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China
| | - Cheng-Jun Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China
| | - Sha-Sha Xie
- The No, 1 People's Hospital of xingtai, Hongxing street No.16, No, Xingtai, 054000, China
| | - Qing Chang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China
| | - Yu-Fang Cai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China
| | - Hua Jia
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China
| | - Xiu-Ying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China.
| | - Yan-Rong Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China.
| |
Collapse
|
29
|
Xie J, Liu JH, Liu H, Liao XZ, Chen Y, Lin MG, Gu YY, Liu TL, Wang DM, Ge H, Mo SL. Tanshinone IIA combined with adriamycin inhibited malignant biological behaviors of NSCLC A549 cell line in a synergistic way. BMC Cancer 2016; 16:899. [PMID: 27863471 PMCID: PMC5116215 DOI: 10.1186/s12885-016-2921-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022] Open
Abstract
Background The study was designed to develop a platform to verify whether the extract of herbs combined with chemotherapy drugs play a synergistic role in anti-tumor effects, and to provide experimental evidence and theoretical reference for finding new effective sensitizers. Methods Inhibition of tanshinone IIA and adriamycin on the proliferation of A549, PC9 and HLF cells were assessed by CCK8 assays. The combination index (CI) was calculated with the Chou-Talalay method, based on the median-effect principle. Migration and invasion ability of A549 cells were determined by wound healing assay and transwell assay. Flow cytometry was used to detect the cell apoptosis and the distribution of cell cycles. TUNEL staining was used to detect the apoptotic cells. Immunofluorescence staining was used to detect the expression of Cleaved Caspase-3. Western blotting was used to detect the proteins expression of relative apoptotic signal pathways. CDOCKER module in DS 2.5 was used to detect the binding modes of the drugs and the proteins. Results Both tanshinone IIA and adriamycin could inhibit the growth of A549, PC9, and HLF cells in a dose- and time-dependent manner, while the proliferative inhibition effect of tanshinone IIA on cells was much weaker than that of adriamycin. Different from the cancer cells, HLF cells displayed a stronger sensitivity to adriamycin, and a weaker sensitivity to tanshinone IIA. When tanshinone IIA combined with adriamycin at a ratio of 20:1, they exhibited a synergistic anti-proliferation effect on A549 and PC9 cells, but not in HLF cells. Tanshinone IIA combined with adriamycin could synergistically inhibit migration, induce apoptosis and arrest cell cycle at the S and G2 phases in A549 cells. Both groups of the single drug treatment and the drug combination up-regulated the expressions of Cleaved Caspase-3 and Bax, but down-regulated the expressions of VEGF, VEGFR2, p-PI3K, p-Akt, Bcl-2, and Caspase-3 protein. Compared with the single drug treatment groups, the drug combination groups were more statistically significant. The molecular docking algorithms indicated that tanshinone IIA could be docked into the active sites of all the tested proteins with H-bond and aromatic interactions, compared with that of adriamycin. Conclusions Tanshinone IIA can be developed as a novel agent in the postoperative adjuvant therapy combined with other anti-tumor agents, and improve the sensibility of chemotherapeutics for non-small cell lung cancer with fewer side effects. In addition, this experiment can not only provide a reference for the development of more effective anti-tumor medicine ingredients, but also build a platform for evaluating the anti-tumor effects of Chinese herbal medicines in combination with chemotherapy drugs. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2921-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Xie
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., People's Republic of China
| | - Jia-Hui Liu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Heng Liu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Xiao-Zhong Liao
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yuling Chen
- Kiang Wu Hospital, Macau S.A.R., People's Republic of China
| | - Mei-Gui Lin
- Liwan District Shiweitang Street Community Health Service Center, Guangzhou, 510360, People's Republic of China
| | - Yue-Yu Gu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Tao-Li Liu
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, People's Republic of China
| | - Dong-Mei Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Hui Ge
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| | - Sui-Lin Mo
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
30
|
Cardenas C, Alvero AB, Yun BS, Mor G. Redefining the origin and evolution of ovarian cancer: a hormonal connection. Endocr Relat Cancer 2016; 23:R411-22. [PMID: 27440787 DOI: 10.1530/erc-16-0209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022]
Abstract
Ovarian cancer has the highest mortality of all female reproductive cancers. Late diagnosis, tumour heterogeneity and the development of chemoresistance contribute to this statistic and work against patient survival. Current studies have revealed novel concepts that impact our view on how ovarian cancer develops. The greatest impact is on our understanding that, as a disease, ovarian cancer has multiple cellular origins and that these malignant precursors are mostly derived from outside of the ovaries. In this review, we propose a new concept of a step-wise developmental process that may underwrite ovarian tumorigenesis and progression: (1) migration/recruitment to the ovaries; (2) seeding and establishment in the ovaries; (3) induction of a dormant cancer stage; and (4) expansion and tumor progression. We will discuss the relationship of each step with the changing ovarian function and milieu during the reproductive age and the subsequent occurrence of menopause. The realization that ovarian cancer development and progression occurs in distinct steps is critical for the search of adequate markers for early detection that will offer personalized strategies for prevention and therapy.
Collapse
Affiliation(s)
- Carlos Cardenas
- Department of ObstetricsGynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ayesha B Alvero
- Department of ObstetricsGynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bo Seong Yun
- Department of Obstetrics and GynecologyCHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
| | - Gil Mor
- Department of ObstetricsGynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
31
|
Xia L, Wen H, Han X, Tang J, Huang Y. Luteinizing hormone inhibits cisplatin-induced apoptosis in human epithelial ovarian cancer cells. Oncol Lett 2016; 11:1943-1947. [PMID: 26998105 DOI: 10.3892/ol.2016.4122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 12/10/2015] [Indexed: 11/06/2022] Open
Abstract
The elevation of Luteinizing hormone (LH) is commonly observed in epithelial ovarian cancer. This correlation suggests a causal relationship between LH and ovarian cancer. LH has been reported to inhibit apoptosis in ovarian cancer cells. Programmed cell death gene 6 (PDCD6), also known as apoptosis-linked gene-2, is an apoptotic mediator that is required for apoptosis to numerous death stimuli. Therefore, the aim of the present study was to determine whether PDCD6 may be induced by LH in ovarian cancer, and whether LH may affect the apoptosis through PDCD6. Flow cytometry was used to detect the effects of cisplatin on the induction of apoptosis by LH. PDCD6 expression was monitored by quantitative polymerase chain reaction and western blotting. The signaling transduction pathways were also investigated by western blotting. The present study demonstrated that LH reduced cisplatin-induced apoptosis in ovarian OVCAR-3 and SKOV-3 cancer cells. The results indicated that PDCD6 expression was inhibited by LH. In addition, the inhibition of PDCD6, induced by LH, was mediated through the activation of the phosphatidylinositol 3-kinase/protein kinase B and p44/42 mitogen-activated protein kinase transduction signaling pathways. The present results suggest that LH affects the sensitivity of ovarian cancer cells to chemotherapy, primarily by signaling to inhibit apoptosis and to additionally suppress PDCD6.
Collapse
Affiliation(s)
- Lingfang Xia
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hao Wen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xiaotian Han
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jia Tang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yan Huang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
32
|
Wang XJ, Xiong GP, Luo XM, Huang SZ, Liu J, Huang XL, Xie YZ, Lin WP. Dibutyl Phthalate Inhibits the Effects of Follicle-Stimulating Hormone on Rat Granulosa Cells Through Down-Regulation of Follicle-Stimulating Hormone Receptor. Biol Reprod 2016; 94:144. [PMID: 26962121 DOI: 10.1095/biolreprod.115.136002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/07/2016] [Indexed: 11/01/2022] Open
Abstract
Dibutyl phthalate (DBP) is used worldwide in solvents and plasticizers. The cytotoxicity and potential tumorigenic effect of DBP have been reported. DBP has also been shown to impact reproductive function. In this study, to further evaluate the effects of DBP on granulosa cells (GCs), we treated rat GCs in vitro with DBP before evaluation of the biological alterations of these GCs. We found that DBP did not induce significant GC death at the tested concentrations. However, follicle-stimulating hormone (FSH)-induced KIT ligand (KITLG) expression in GCs was significantly reduced at both mRNA and protein levels by DBP treatment in a dose-dependent manner. The down-regulation of KITLG was due to the down-regulation of expression of FSH receptor (FSHR) in GCs. Down-regulation of FSHR impaired FSH-induced intracellular signaling in GCs, demonstrated by decreased phosphorylation of AKT and mechanistic target of rapamycin (mTOR). Furthermore, DBP treatment also reduced FSH-induced expression of hypoxia-inducible factor 1-alpha (HIF1A), which is an important signaling component for KITLG expression. Other FSH-induced biological effects, such as production of estradiol and progesterone, as well as GC proliferation, were also suppressed by DBP. Therefore, our study discovered a unique mechanism underlying the toxicity of DBP on GCs. These findings may initiate the development of novel therapeutic interventions for DBP-induced damage to GCs.
Collapse
Affiliation(s)
- Xue-Jin Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Gong-Peng Xiong
- Department of Hepatobiliary Surgery, Liver Disease Center of Xiamen Traditional Hospital affiliated to Fujian University of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Xiang-Min Luo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Su-Zhen Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jin Liu
- Public Health Institute of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xiao-Lan Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yuan-Zhi Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Wen-Ping Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
33
|
Gharwan H, Bunch KP, Annunziata CM. The role of reproductive hormones in epithelial ovarian carcinogenesis. Endocr Relat Cancer 2015; 22:R339-63. [PMID: 26373571 DOI: 10.1530/erc-14-0550] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2015] [Indexed: 12/12/2022]
Abstract
Epithelial ovarian cancer comprises ∼85% of all ovarian cancer cases. Despite acceptance regarding the influence of reproductive hormones on ovarian cancer risk and considerable advances in the understanding of epithelial ovarian carcinogenesis on a molecular level, complete understanding of the biologic processes underlying malignant transformation of ovarian surface epithelium is lacking. Various hypotheses have been proposed over the past several decades to explain the etiology of the disease. The role of reproductive hormones in epithelial ovarian carcinogenesis remains a key topic of research. Primary questions in the field of ovarian cancer biology center on its developmental cell of origin, the positive and negative effects of each class of hormones on ovarian cancer initiation and progression, and the role of the immune system in the ovarian cancer microenvironment. The development of the female reproductive tract is dictated by the hormonal milieu during embryogenesis. Intensive research efforts have revealed that ovarian cancer is a heterogenous disease that may develop from multiple extra-ovarian tissues, including both Müllerian (fallopian tubes, endometrium) and non-Müllerian structures (gastrointestinal tissue), contributing to its heterogeneity and distinct histologic subtypes. The mechanism underlying ovarian localization, however, remains unclear. Here, we discuss the role of reproductive hormones in influencing the immune system and tipping the balance against or in favor of developing ovarian cancer. We comment on animal models that are critical for experimentally validating existing hypotheses in key areas of endocrine research and useful for preclinical drug development. Finally, we address emerging therapeutic trends directed against ovarian cancer.
Collapse
Affiliation(s)
- Helen Gharwan
- National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Kristen P Bunch
- National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Christina M Annunziata
- National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA
| |
Collapse
|
34
|
Yang Y, Chen J, Wu H, Pei X, Chang Q, Ma W, Ma H, Hei C, Zheng X, Cai Y, Zhao C, Yu J, Wang Y. The Increased Expression of Connexin and VEGF in Mouse Ovarian Tissue Vitrification by Follicle Stimulating Hormone. BIOMED RESEARCH INTERNATIONAL 2015; 2015:397264. [PMID: 26539488 PMCID: PMC4620037 DOI: 10.1155/2015/397264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/23/2015] [Accepted: 08/30/2015] [Indexed: 01/16/2023]
Abstract
Ovarian follicular damages were caused by cryoinjury during the process of ovarian vitrification and ischemia/reperfusion during the process of ovarian transplantation. And appropriate FSH plays an important role in antiapoptosis during ovarian follicle development. Therefore, in this study, 0.3 IU/mL FSH was administered into medium during mouse ovarian cryopreservation by vitrification to ascertain the function of FSH on ovarian vitrification and avascular transplantation. The results suggested that the expressions of Cx37, Cx43, apoptotic molecular caspase-3, and angiogenesis molecular VEGF were confirmed using immunohistochemistry, western blotting, and real-time PCR, and the results suggested that the treatment with FSH remarkably increased the number of morphologically normal follicles in vitrified/warmed ovaries by upregulating the expression of Cx37, Cx43, VEGF, and VEGF receptor 2, but downregulating the expression of caspase-3. In addition, the vitrified/warmed ovaries were transplanted, and the related fertility was analyzed, and the results suggested that the fertility, neoangiogenesis, and follicle reserve were remarkably increased in the FSH administrated group. Taken together, administration of 0.3 IU/mL FSH during ovarian cryopreservation by vitrification can maintain ovarian survival during ovarian vitrification and increases the blood supply with avascular transplantation via upregulation of Cx43, Cx37, and VEGF/VEGFR2, as well as through its antiapoptotic effects.
Collapse
Affiliation(s)
- Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Jie Chen
- Department of Human Anatomy, Inner Mongolia Medical University, Hohhot 010010, China
| | - Hao Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Qing Chang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Wenzhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Changchun Hei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaomin Zheng
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Yufang Cai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Chengjun Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Yanrong Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
35
|
Chen J, Bai M, Ning C, Xie B, Zhang J, Liao H, Xiong J, Tao X, Yan D, Xi X, Chen X, Yu Y, Bast RC, Zhang Z, Feng Y, Zheng W. Gankyrin facilitates follicle-stimulating hormone-driven ovarian cancer cell proliferation through the PI3K/AKT/HIF-1α/cyclin D1 pathway. Oncogene 2015; 35:2506-17. [PMID: 26364616 DOI: 10.1038/onc.2015.316] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 06/04/2015] [Accepted: 07/21/2015] [Indexed: 12/20/2022]
Abstract
Gankyrin is a regulatory subunit of the 26kD proteasome complex. As a novel oncoprotein, gankyrin is expressed aberrantly in cancers from several different sites and has been shown to contribute to oncogenesis in endometrial and cervical carcinomas. Neither gankyrin's contribution to the development of epithelial ovarian cancer nor its interaction with follicle-stimulating hormone (FSH)-driven proliferation in ovarian cancer has been studied. Here we have found that gankyrin is overexpressed in ovarian cancers compared with benign ovarian cystadenomas and that gankyrin regulates FSH upregulation of cyclin D1. Importantly, gankyrin regulates PI3K/AKT signaling by downregulating PTEN. Prolonged AKT activation by FSH stimulation of the FSH receptor (FSHR) promotes gankyrin expression, which, in turn, enhances AKT activation by inhibiting PTEN. Overexpression of gankyrin decreases hypoxia inducible factor-1α (HIF-1α) protein levels, but has little effect on HIF-1α mRNA levels, which could be attributed to gankyrin mediating HIF-1α protein stability via the ubiquitin-proteasome pathway. Reduction in HIF-1α protein stability led to attenuation of the binding with cyclin D1 promoter, resulted in abolishment of the negative regulation of cyclin D1 by HIF-1α, which promotes proliferation of ovarian cancer cells. Our results document that gankyrin regulates HIF-1α protein stability and cyclin D1 expression, ultimately mediating FSH-driven ovarian cancer cell proliferation.
Collapse
Affiliation(s)
- J Chen
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - M Bai
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - C Ning
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - B Xie
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - J Zhang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - H Liao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - J Xiong
- Department of Neuropathology, Huashan Hospital of Fudan University, Shanghai, China
| | - X Tao
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - D Yan
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - X Xi
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - X Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Y Yu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Department of Experimental Therapeutics, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - R C Bast
- Department of Experimental Therapeutics, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Z Zhang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Y Feng
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - W Zheng
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
36
|
KIM YOUNGGIUN, LIM HYUNGHO, LEE SUHHA, SHIN MALSOON, KIM CHANGJU, YANG HYEONJEONG. Betaine inhibits vascularization via suppression of Akt in the retinas of streptozotocin-induced hyperglycemic rats. Mol Med Rep 2015; 12:1639-44. [PMID: 25891515 PMCID: PMC4464397 DOI: 10.3892/mmr.2015.3613] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/03/2015] [Indexed: 01/07/2023] Open
Abstract
Diabetic retinopathy is a severe microvascular complication amongst patients with diabetes, and is the primary cause of visual loss through neovascularization. Betaine is one of the components of Fructus Lycii. In the present study, the effects of betaine on the expression levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF)-1α in association with the Akt pathway were investigated in the retinas of streptozotocin (STZ)-induced diabetic rats using western blot and immunohistochemical analyses. The results of the present study revealed that the expression levels of VEGF, HIF-1α, and Akt were increased in the retinas of the STZ-induced diabetic rats. Betaine treatment attenuated this increase in VEGF and HIF-1α expression via suppression of diabetes-induced Akt activation in the retinas of the diabetic rats. The results suggested that betaine may potentially be used to delay the onset of complications associated with diabetic retinopathy via inhibition of retinal neovascularization in patients with diabetes.
Collapse
Affiliation(s)
- YOUNG-GIUN KIM
- Department of Oriental Medical Rehabilitation, Gil Oriental Medical Hospital, College of Oriental Medicine, Gachon University, Incheon 405-760, Republic of Korea
| | - HYUNG-HO LIM
- Department of Oriental Medical Rehabilitation, Gil Oriental Medical Hospital, College of Oriental Medicine, Gachon University, Incheon 405-760, Republic of Korea
| | - SUH-HA LEE
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Gyeonggi-do 130-701, Republic of Korea
| | - MAL-SOON SHIN
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Gyeonggi-do 130-701, Republic of Korea
| | - CHANG-JU KIM
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Gyeonggi-do 130-701, Republic of Korea
| | - HYEON JEONG YANG
- Department of Anesthesiology and Pain Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do 463-721, Republic of Korea,Correspondence to: Professor Hyeon Jeong Yang, Department of Anesthesiology and Pain Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do 463-721, Republic of Korea, E-mail:
| |
Collapse
|
37
|
Chen CY, Chung IH, Tsai MM, Tseng YH, Chi HC, Tsai CY, Lin YH, Wang YC, Chen CP, Wu TI, Yeh CT, Tai DI, Lin KH. Thyroid hormone enhanced human hepatoma cell motility involves brain-specific serine protease 4 activation via ERK signaling. Mol Cancer 2014; 13:162. [PMID: 24980078 PMCID: PMC4087245 DOI: 10.1186/1476-4598-13-162] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 06/19/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The thyroid hormone, 3, 3', 5-triiodo-L-thyronine (T3), has been shown to modulate cellular processes via interactions with thyroid hormone receptors (TRs), but the secretory proteins that are regulated to exert these effects remain to be characterized. Brain-specific serine protease 4 (BSSP4), a member of the human serine protease family, participates in extracellular matrix remodeling. However, the physiological role and underlying mechanism of T3-mediated regulation of BSSP4 in hepatocellular carcinogenesis are yet to be established. METHODS The thyroid hormone response element was identified by reporter and chromatin immunoprecipitation assays. The cell motility was analyzed via transwell and SCID mice. The BSSP4 expression in clinical specimens was examined by Western blot and quantitative reverse transcription polymerase chain reaction. RESULTS Upregulation of BSSP4 at mRNA and protein levels after T3 stimulation is a time- and dose-dependent manner in hepatoma cell lines. Additionally, the regulatory region of the BSSP4 promoter stimulated by T3 was identified at positions -609/-594. BSSP4 overexpression enhanced tumor cell migration and invasion, both in vitro and in vivo. Subsequently, BSSP4-induced migration occurs through the ERK 1/2-C/EBPβ-VEGF cascade, similar to that observed in HepG2-TRα1 and J7-TRα1 cells. BSSP4 was overexpressed in clinical hepatocellular carcinoma (HCC) patients, compared with normal subjects, and positively associated with TRα1 and VEGF to a significant extent. Importantly, a mild association between BSSP4 expression and distant metastasis was observed. CONCLUSIONS Our findings collectively support a potential role of T3 in cancer cell progression through regulation of the BSSP4 protease via the ERK 1/2-C/EBPβ-VEGF cascade. BSSP4 may thus be effectively utilized as a novel marker and anti-cancer therapeutic target in HCC.
Collapse
Affiliation(s)
- Cheng-Yi Chen
- Department of Biochemistry, School of Medicine, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, 251 Taipei, Taiwan
| | - I-Hsiao Chung
- Department of Biochemistry, School of Medicine, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan, Taiwan
| | - Ming-Ming Tsai
- Department of Nursing, Chang-Gung University of Science and Technology, 333 Taoyuan, Taiwan
| | - Yi-Hsin Tseng
- Department of Biochemistry, School of Medicine, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan, Taiwan
| | - Hsiang-Cheng Chi
- Department of Biochemistry, School of Medicine, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan, Taiwan
| | - Chung-Ying Tsai
- Department of Biochemistry, School of Medicine, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan, Taiwan
| | - Yang-Hsiang Lin
- Department of Biochemistry, School of Medicine, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan, Taiwan
| | - You-Ching Wang
- Department of Biochemistry, School of Medicine, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan, Taiwan
| | - Chie-Pein Chen
- Department of Medical Research, Mackay Memorial Hospital, 251 Taipei, Taiwan
- Division of High Risk Pregnancy, Mackay Memorial Hospital, 104 Taipei, Taiwan
| | - Tzu-I Wu
- Department of Biochemistry, School of Medicine, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Medical Research Central, Chang Gung Memorial Hospital, 333 Taoyuan, Taiwan
| | - Dar-In Tai
- Medical Research Central, Chang Gung Memorial Hospital, 333 Taoyuan, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, School of Medicine, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan, Taiwan
| |
Collapse
|
38
|
Cai J, Xu L, Tang H, Yang Q, Yi X, Fang Y, Zhu Y, Wang Z. The role of the PTEN/PI3K/Akt pathway on prognosis in epithelial ovarian cancer: a meta-analysis. Oncologist 2014; 19:528-35. [PMID: 24718516 DOI: 10.1634/theoncologist.2013-0333] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The PTEN/PI3K/Akt signaling pathway, a key player in mediating apoptosis, metabolism, cell proliferation, and cell growth, is frequently dysregulated in many cancers. However, the pathway's prognostic impact in epithelial ovarian cancer (EOC) is still inconsistent. We performed a meta-analysis based on individual study outcomes to more precisely evaluate its clinical significance in EOC patients. Methods. We searched all potentially relevant studies published between January 1, 1990, and March 1, 2013, that assessed the association between PTEN, PI3K, and Akt status and survival in EOC. Meta-analysis was performed using a fixed-effect or random-effects model as appropriate. We investigated the possibility of publication bias through a funnel plot and identified the heterogeneity by I(2) statistics. Results. Eleven eligible studies were analyzed for PTEN, 5 for PI3K, and 11 for pAkt. High PI3K and pAkt expression was associated with poor overall survival (OS; pooled adjusted hazard ratio [HR] = 1.44, 95% CI, 1.08-1.91 for PI3K; HR = 1.60, 95% CI, 1.26-2.04 for pAkt). In addition, both the meta-analyses of univariate and multivariate estimates showed that only high pAkt expression was significantly associated with poor progression-free survival (PFS; pooled unadjusted HR = 1.24, 95% CI, 1.10-1.39; pooled adjusted HR = 1.65, 95% CI, 1.07-2.55). Conclusion. Published studies suggest that high pAkt expression is significantly associated with poor OS and PFS in EOC patients, but currently available evidence is insufficient to recommend that PTEN, PI3K, or Akt be used as prognostic predictors in EOC in clinical practice.
Collapse
Affiliation(s)
- Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Modi DA, Sunoqrot S, Bugno J, Lantvit DD, Hong S, Burdette JE. Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells. NANOSCALE 2014; 6:2812-20. [PMID: 24468839 DOI: 10.1039/c3nr05042d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles.
Collapse
Affiliation(s)
- Dimple A Modi
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland Ave. Chicago, IL 60607, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Roach M. Current trends for the use of androgen deprivation therapy in conjunction with radiotherapy for patients with unfavorable intermediate-risk, high-risk, localized, and locally advanced prostate cancer. Cancer 2014; 120:1620-9. [PMID: 24591080 DOI: 10.1002/cncr.28594] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/06/2022]
Abstract
Androgen deprivation therapy (ADT) is now a well-established standard of care in combination with definitive radiotherapy for patients with unfavorable intermediate-risk to high-risk locally advanced prostate cancer. It is also well established that combination modality treatment with ADT and radiotherapy is superior to either of these modalities alone for the treatment of patients with high-risk locally advanced disease. Current treatment guidelines for prostate cancer in the United States are based on the estimated risk of recurrence and death. This review examines the clinical evidence underpinning the use of ADT and radiotherapy among patients with high-risk localized and locally advanced disease in the United States. This review also considers the rationale for moving from traditional luteinizing hormone-releasing hormone agonists to more recently developed gonadotrophin-releasing hormone antagonists.
Collapse
Affiliation(s)
- Mack Roach
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, California; Department of Urology, University of California at San Francisco, San Francisco, California
| |
Collapse
|
41
|
Dong Y, Xie X, Wang Z, Hu C, Zheng Q, Wang Y, Chen R, Xue T, Chen J, Gao D, Wu W, Ren Z, Cui J. Increasing matrix stiffness upregulates vascular endothelial growth factor expression in hepatocellular carcinoma cells mediated by integrin β1. Biochem Biophys Res Commun 2014; 444:427-32. [PMID: 24472554 DOI: 10.1016/j.bbrc.2014.01.079] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/20/2014] [Indexed: 12/11/2022]
Abstract
Matrix stiffness as a novel regulation factor involves in modulating the pathogenesis of hepatocellular carcinoma (HCC) invasion or metastasis. However, the mechanism by which matrix stiffness modulates HCC angiogenesis remains unknown. Here, using buffalo rat HCC models with different liver matrix stiffness backgrounds and an in vitro cell culture system of mechanically tunable Collagen1 (COL1)-coated polyacrylamide gel, we investigated the effects of different matrix stiffness levels on vascular endothelial growth factor (VEGF) expression in HCC cells and explored its regulatory mechanism for controlling HCC angiogenesis. Tissue microarray analysis showed that the expression levels of VEGF and CD31 were gradually upregulated in tumor tissues with increasing COL1 and lysyl oxidase (LOX) expression, indicating a positive correlation between tumor angiogenesis and matrix rigidity. The expression of VEGF and the phosphorylation levels of PI3K and Akt were all upregulated in HCC cells on high-stiffness gel than on low-stiffness gel. Meanwhile, alteration of intergrin β1 expression was found to be the most distinctive, implying that it might mediate the response of HCC cells to matrix stiffness simulation. After integrin β1 was blocked in HCC cells using specific monoclonal antibody, the expression of VEGF and the phosphorylation levels of PI3K and Akt at different culture times were accordingly suppressed and downregulated in the treatment group as compared with those in the control group. All data suggested that the extracellular matrix stiffness stimulation signal was transduced into HCC cells via integrin β1, and this signal activated the PI3K/Akt pathway and upregulated VEGF expression. This study unveils a new paradigm in which matrix stiffness as initiators to modulate HCC angiogenesis.
Collapse
Affiliation(s)
- Yinying Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Xiaoying Xie
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Zhiming Wang
- Department of Oncology, Zhongshan Hospital Subdivision, Fudan University, Shanghai 200052, PR China
| | - Chao Hu
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, PR China
| | - Qiongdan Zheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Yaohui Wang
- Department of Radiology, Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Tongchun Xue
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Jie Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Weizhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China.
| |
Collapse
|
42
|
Discrepancy of uterine leiomyoma and myometrium to hypoxia-induced endoplasmic reticulum stress after uterine occlusion therapy accounts for therapeutic effect. Arch Gynecol Obstet 2013; 289:1039-45. [PMID: 24287709 DOI: 10.1007/s00404-013-3100-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 11/14/2013] [Indexed: 01/16/2023]
Abstract
PURPOSE Uterine artery occlusion (UAO) is a promising method for the treatment of leiomyoma. This study is intended to demonstrate the discrepancy of ER stress-induced apoptosis in leiomyoma and myometrium as a result of UAO therapy. METHODS Primary cultured leiomyoma and myometrial cells were incubated in low oxygen supply (1 % O2). Then, real time RT-PCR and Western blotting were performed to analyze the mRNA and protein levels of ER stress-related molecules including GRP78, CHOP, JNK, Bax, Bcl-2 and Caspase4. Furthermore, the activity of Caspase4 was detected. Tissues of leiomyoma and myometria were also collected before and 30 min after UAO during surgery and evaluated. RESULTS The leiomyoma cells and tissues expressed higher ER stress-related molecules compared to myometrial cells or tissues, while the levels of Bcl-2, an anti-apoptotic protein, declined. In myometrial cells, an elevated level of Caspase4 activation as well as its expression was not significant during the first 12 h, suggesting that hypoxia might not intensely affect the myometrium compared with leiomyoma. CONCLUSION ER stress-related apoptosis partly accounts for the effects of UAO therapy on uterine leiomyoma, which leads to the death of leiomyoma while maintaining the survival of the uterus itself.
Collapse
|
43
|
Duncan WC, Nio-Kobayashi J. Targeting angiogenesis in the pathological ovary. Reprod Fertil Dev 2013; 25:362-71. [PMID: 22951108 DOI: 10.1071/rd12112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/13/2012] [Indexed: 12/17/2022] Open
Abstract
The ovary is a key tissue in the study of physiological neo-vascularisation in the adult and its study has highlighted important molecules involved in the regulation of angiogenesis in vivo. These include vascular endothelial growth factor, delta-like ligand 4, thrombospondin-1, prokineticin-1 and prostaglandin E2. Targeting these molecular pathways has therapeutic potential and their manipulation has an increasing preclinical and clinical role in the management of the pathological ovary. Targeting angiogenic pathways has utility in the promotion of ovarian angiogenesis to improve tissue and follicle survival and function as well as the prevention and management of ovarian hyperstimulation syndrome. There is a theoretical possibility that targeting angiogenesis may improve the function of the polycystic ovary and a real role for targeting angiogenesis in ovarian cancer.
Collapse
Affiliation(s)
- W Colin Duncan
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | |
Collapse
|
44
|
Tao X, Zhao N, Jin H, Zhang Z, Liu Y, Wu J, Bast RC, Yu Y, Feng Y. FSH enhances the proliferation of ovarian cancer cells by activating transient receptor potential channel C3. Endocr Relat Cancer 2013; 20:415-29. [PMID: 23580589 PMCID: PMC3669658 DOI: 10.1530/erc-12-0005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies have suggested that FSH plays an important role in ovarian epithelial carcinogenesis. We demonstrated that FSH stimulates the proliferation and invasion of ovarian cancer cells, inhibits apoptosis and facilitates neovascularisation. Our previous work has shown that transient receptor potential channel C3 (TRPC3) contributes to the progression of human ovarian cancer. In this study, we further investigated the interaction between FSH and TRPC3. We found that FSH stimulation enhanced the expression of TRPC3 at both the mRNA and protein levels. siRNA-mediated silencing of TRPC3 expression inhibited the ability of FSH to stimulate proliferation and blocked apoptosis in ovarian cancer cell lines. FSH stimulation was associated with the up-regulation of TRPC3, while also facilitating the influx of Ca(2)(+) after treatment with a TRPC-specific agonist. Knockdown of TRPC3 abrogated FSH-stimulated Akt/PKB phosphorylation, leading to decreased expression of downstream effectors including survivin, HIF1-α and VEGF. Ovarian cancer specimens were analysed for TRPC3 expression; higher TRPC3 expression levels correlated with early relapse and worse prognosis. Association with poor disease-free survival and overall survival remained after adjusting for clinical stage and grade. In conclusion, TRPC3 plays a significant role in the stimulating activity of FSH and could be a potential therapeutic target for the treatment of ovarian cancer, particularly in postmenopausal women with elevated FSH levels.
Collapse
Affiliation(s)
- Xiang Tao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Naiqing Zhao
- Department of Biostatistics, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongyan Jin
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Zhenbo Zhang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital of Jiao Tong University, Shanghai 200080, China
| | - Yintao Liu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Jian Wu
- Department of Pathology, Gongli Hospital, Shanghai, 200135, China
| | - Robert C. Bast
- Department of Experimental Therapeutics, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yinhua Yu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
- To whom correspondence and offprint requests should be addressed: Youji Feng, Department of Gynecology, Obstetrics and Gynecology, Hospital of Fudan University, Shanghai 200011, China; Department of Obstetrics and Gynecology, Shanghai First People's Hospital of Jiao Tong University, Shanghai 200080, China. Phone: 8621-63240090-3082; Fax: 8621-63241377; Yinhua Yu, Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China. Phone: 8621-33189900; Fax: 8621-63455090;
| | - Youji Feng
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital of Jiao Tong University, Shanghai 200080, China
- To whom correspondence and offprint requests should be addressed: Youji Feng, Department of Gynecology, Obstetrics and Gynecology, Hospital of Fudan University, Shanghai 200011, China; Department of Obstetrics and Gynecology, Shanghai First People's Hospital of Jiao Tong University, Shanghai 200080, China. Phone: 8621-63240090-3082; Fax: 8621-63241377; Yinhua Yu, Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China. Phone: 8621-33189900; Fax: 8621-63455090;
| |
Collapse
|
45
|
Gonadotropins activate oncogenic pathways to enhance proliferation in normal mouse ovarian surface epithelium. Int J Mol Sci 2013; 14:4762-82. [PMID: 23449028 PMCID: PMC3634497 DOI: 10.3390/ijms14034762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy affecting American women. The gonadotropins, follicle stimulating hormone (FSH) and luteinizing hormone (LH), have been implicated as growth factors in ovarian cancer. In the present study, pathways activated by FSH and LH in normal ovarian surface epithelium (OSE) grown in their microenvironment were investigated. Gonadotropins increased proliferation in both three-dimensional (3D) ovarian organ culture and in a two-dimensional (2D) normal mouse cell line. A mouse cancer pathway qPCR array using mRNA collected from 3D organ cultures identified Akt as a transcriptionally upregulated target following stimulation with FSH, LH and the combination of FSH and LH. Activation of additional pathways, such as Birc5, Cdk2, Cdk4, and Cdkn2a identified in the 3D organ cultures, were validated by western blot using the 2D cell line. Akt and epidermal growth factor receptor (EGFR) inhibitors blocked gonadotropin-induced cell proliferation in 3D organ and 2D cell culture. OSE isolated from 3D organ cultures stimulated with LH or hydrogen peroxide initiated growth in soft agar. Hydrogen peroxide stimulated colonies were further enhanced when supplemented with FSH. LH colony formation and FSH promotion were blocked by Akt and EGFR inhibitors. These data suggest that the gonadotropins stimulate some of the same proliferative pathways in normal OSE that are activated in ovarian cancers.
Collapse
|
46
|
Zhang Z, Wang Q, Ma J, Yi X, Zhu Y, Xi X, Feng Y, Jin Z. Reactive oxygen species regulate FSH-induced expression of vascular endothelial growth factor via Nrf2 and HIF1α signaling in human epithelial ovarian cancer. Oncol Rep 2013; 29:1429-34. [PMID: 23404377 DOI: 10.3892/or.2013.2278] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/14/2012] [Indexed: 11/05/2022] Open
Abstract
Follicle-stimulating hormone (FSH) and the FSH receptor contribute to tumor angiogenesis and are acknowledged risk factors for ovarian epithelial cancer (OEC). Accumulating evidence suggests that FSH can induce vascular endothelial growth factor (VEGF) and hypoxia inducible factor 1α (HIF1α) expression. We previously demonstrated that FSH induces reactive oxygen species (ROS) production and activates Nrf2 signaling. This study was performed to investigate whether FSH induces VEGF expression via a ROS-mediated Nrf2 signaling pathway. In the current study, OET cells were treated with FSH; dichlorofluorescein staining was used to determine ROS generation, western blotting was used to quantify Nrf2 expression and VEGF expression was measured using an ELISA. Nrf2 and HIF1α were knocked down using siRNAs to investigate the role of the Nrf2 and HIF1α signaling pathways in FSH-induced VEGF expression. The chromatin immunoprecipitation assay (ChIP) was used to determine HIF1α binding to the VEGF promoter. Finally, it was found that FSH induced ROS production and activated Nrf2 signaling; elimination of ROS or knockdown of Nrf2 blocked FSH-induced VEGF expression. Knockdown of Nrf2 impaired HIF1α signaling activation. Blockage of the FSH-ROS-Nrf2-HIF1α signaling pathway attenuated FSH-induced binding of HIF1α to the VEGF promoter. Collectively, this study indicates that ROS and aberrant expression of Nrf2 play an important role in FSH-induced angiogenesis in OEC, and provides insight into the mechanisms of FSH-induced VEGF expression. Elimination of ROS or inhibition of Nrf2 may represent potential therapeutic targets for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Zhenbo Zhang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University, Affiliated First People's Hospital, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lai Y, Zhang X, Zhang Z, Shu Y, Luo X, Yang Y, Wang X, Yang G, Li L, Feng Y. The microRNA-27a: ZBTB10-specificity protein pathway is involved in follicle stimulating hormone-induced VEGF, Cox2 and survivin expression in ovarian epithelial cancer cells. Int J Oncol 2012; 42:776-84. [PMID: 23254909 DOI: 10.3892/ijo.2012.1743] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/23/2012] [Indexed: 11/06/2022] Open
Abstract
Previously, we demonstrated that follicle stimulating hormone (FSH) enhanced VEGF expression and facilitated ovarian cancer angiogenesis via the PI3K/AKT signaling pathway. In this study, we further investigated the involvement of microRNA-27a: ZBTB10‑specificity protein pathway in the mechanism of FSH-induced VEGF, Cox2 and survivin expression. Treatment with FSH resulted in significant increase in the expression of VEGF, Cox2, survivin, Sp1 proteins and microRNA-27a in a dose-dependent manner, whereas reverse protein expression pattern was observed in ZBTB10. Downregulation of microRNA-27a using antisense microRNA-27a blocked FSH-induced VEGF, Cox2 and survivin expression. Overexpression of ZBTB10 also attenuated the FSH-induced expression of these molecules. The enhanced expression of VEGF, Cox2 and survivin was also abolished by knocking down Sp1 using small interfering RNA. Collectively, these results indicated that stimulation of ovarian cancer cell VEGF, Cox2 and survivin expression by FSH involves the microRNA‑27a: ZBTB10-specificity protein pathway.
Collapse
Affiliation(s)
- Yunli Lai
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cheng JC, Klausen C, Leung PCK. Hypoxia-inducible factor 1 alpha mediates epidermal growth factor-induced down-regulation of E-cadherin expression and cell invasion in human ovarian cancer cells. Cancer Lett 2012; 329:197-206. [PMID: 23142284 DOI: 10.1016/j.canlet.2012.10.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/23/2012] [Accepted: 10/29/2012] [Indexed: 01/11/2023]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) regulates the transcription of a number of genes under hypoxia and other extracellular stimulations. It has been shown that E-cadherin is down-regulated by epidermal growth factor receptor (EGF) stimulation, and that cells with low E-cadherin expression are more invasive. Our recent study demonstrated a novel mechanism by which EGF down-regulates E-cadherin expression through production of hydrogen peroxide (H(2)O(2)) and the activation of p38 MAPK in human ovarian cancer cells. In this study, we were interested in examining the potential role of HIF-1α in cell invasion under normoxic conditions, specifically when cells are treated with EGF, which is known to down-regulate E-cadherin and increase invasiveness. We show that EGF treatment induces HIF-1α expression in two human ovarian cancer cell lines (SKOV3 and OVCAR5), and that this effect is diminished by treatment with a membrane-permeable H(2)O(2) scavenger, PEG-catalase. However, the induction of HIF-1α by EGF did not require the activation of p38 MAPK. Treatment with siRNA targeting HIF-1α reduces both basal and EGF-induced HIF-1α levels. Importantly, treatment with HIF-1α siRNA diminishes the up-regulation of Snail and Slug as well as the down-regulation of E-cadherin by EGF. The involvement of HIF-1α in the down-regulation of E-cadherin was confirmed with cobalt chloride (CoCl(2)), a hypoxia-mimetic reagent. Finally, we also show that EGF-induced cell invasion is attenuated by treatment with HIF-1α siRNA. This study demonstrates an important role for HIF-1α in mediating the effects of EGF on Snail, Slug and E-cadherin expression as well as invasiveness in human ovarian cancer cells.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | | |
Collapse
|
49
|
Desch A, Strozyk EA, Bauer AT, Huck V, Niemeyer V, Wieland T, Schneider SW. Highly invasive melanoma cells activate the vascular endothelium via an MMP-2/integrin αvβ5-induced secretion of VEGF-A. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:693-705. [PMID: 22659470 DOI: 10.1016/j.ajpath.2012.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/21/2012] [Accepted: 04/05/2012] [Indexed: 01/14/2023]
Abstract
Tumor cell extravasation is a critical step in the metastatic cascade and requires interaction between the tumor cell and the endothelium. Although cancer progression depends on a complex network of mechanisms, including inflammation and coagulation, the involvement of tumor-induced endothelium activation and the subsequent release of procoagulatory factors in this process are not well understood. Using tissue sections from patients with malignant melanoma, immunofluorescence studies for the presence of von Willebrand factor (VWF) clearly demonstrated endothelium activation and the formation of ultra-large VWF fibers in these patients. In vitro analyses revealed that supernatants from highly invasive melanoma cells induced an acute endothelium activation measured by VWF, P-selectin, and angiopoietin-2 release. Proteome profiling identified vascular endothelial growth factor A (VEGF-A) as the main mediator of endothelium activation. Inhibition and knock-down of VEGF-A in melanoma cells led to a rigorous decrease in VWF exocytosis. Selective small-interfering RNA to matrix metalloproteinase-2 (MMP-2) inhibited endothelium activation, and this effect correlated with reduced VEGF-A content in the supernatants of melanoma cells. Further experiments showed that active MMP-2 regulates VEGF-A in melanoma cells on a transcriptional level via an integrin αvβ5/phosphoinositide-3-kinase-dependent pathway. In conclusion, these results indicate an important role of VEGF-A in acute endothelium activation and provide clear evidence that MMP-2 plays a pivotal role in the autocrine regulation of VEGF-A expression in melanoma cells.
Collapse
Affiliation(s)
- Anna Desch
- Division of Experimental Dermatology, Department of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Cao J, Chen Y, Fu J, Qian YW, Ren YB, Su B, Luo T, Dai RY, Huang L, Yan JJ, Wu MC, Yan YQ, Wang HY. High expression of proline-rich tyrosine kinase 2 is associated with poor survival of hepatocellular carcinoma via regulating phosphatidylinositol 3-kinase/AKT pathway. Ann Surg Oncol 2012; 20 Suppl 3:S312-23. [PMID: 22618716 DOI: 10.1245/s10434-012-2372-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND The peritumoral environment has been implicated to be important in the process of metastasis and recurrence in hepatocellular carcinoma (HCC). Our aims were to assess the prognostic value of proline-rich tyrosine kinase 2 (Pyk2) in HCC and investigate related molecular mechanism. METHODS Expression of Pyk2 was tested by immunohistochemistry in tissue microarrays containing 141 paired HCC samples. Correlation between Pyk2 and vascular endothelial growth factor (VEGF) expression in clinical samples was analyzed by Spearman rank correlation. Matrigel invasion, anchorage-independent growth assay and immunoblotting were performed to study the effect of Pyk2 on the invasion and progression of HCC cells and phosphoinositide 3-kinase (PI3K)/AKT pathway activation. RESULTS Higher Pyk2 density in both tumor and peritumor was associated with lower overall survival (P = 0.044; P = 0.041, respectively), serum AFP levels > 1,000 ng/ml (P = 0.013; P = 0.032, respectively) and postoperative distant metastasis (both P < 0.001). However, only higher peritumoral Pyk2 density was related to lower disease-free survival (P = 0.014) and vascular invasion (P = 0.035). A significant correlation between Pyk2 and VEGF density in tumor or peritumoral liver tissue was observed (r = 0. 3133, P = 0.0002; r = 0.5176, P < 0.0001, respectively). Immunoblotting showed that Pyk2 activated PI3K-AKT pathway to upregulate VEGF expression in HL-7702, SMMC-7721 and HepG2 cells. CONCLUSIONS High Pyk2, especially peritumoral Pyk2 was associated with poor survival, disease recurrence, and metastasis in HCC. PI3K-AKT pathway was involved in Pyk2-mediated VEGF expression during HCC progression and invasion.
Collapse
Affiliation(s)
- Jie Cao
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|