1
|
Lv M, Zhang Z, Cui Y. Unconventional T cells in brain homeostasis, injury and neurodegeneration. Front Immunol 2023; 14:1273459. [PMID: 37854609 PMCID: PMC10579804 DOI: 10.3389/fimmu.2023.1273459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
The interaction between peripheral immune cells and the brain is an important component of the neuroimmune axis. Unconventional T cells, which include natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, γδ T cells, and other poorly defined subsets, are a special group of T lymphocytes that recognize a wide range of nonpolymorphic ligands and are the connection between adaptive and innate immunity. Recently, an increasing number of complex functions of these unconventional T cells in brain homeostasis and various brain disorders have been revealed. In this review, we describe the classification and effector function of unconventional T cells, review the evidence for the involvement of unconventional T cells in the regulation of brain homeostasis, summarize the roles and mechanisms of unconventional T cells in the regulation of brain injury and neurodegeneration, and discuss immunotherapeutic potential as well as future research goals. Insight of these processes can shed light on the regulation of T cell immunity on brain homeostasis and diseases and provide new clues for therapeutic approaches targeting brain injury and neurodegeneration.
Collapse
Affiliation(s)
- Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Pawar A, Zabetakis I, Gavankar T, Lordan R. Milk polar lipids: Untapped potential for pharmaceuticals and nutraceuticals. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
3
|
The Role of CD1 Gene Polymorphism in the Genetic Susceptibility to Spondyloarthropathies in the Moroccan Population and the Possible Cross-Link with Celiac Disease. Vaccines (Basel) 2023; 11:vaccines11020237. [PMID: 36851115 PMCID: PMC9963915 DOI: 10.3390/vaccines11020237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Spondyloarthropathies (SpA) are a group of chronic inflammatory disorders usually affecting the axial spine and asymmetrical peripheral joints. Strong evidence links genetic and environmental factors to SpA pathogenesis. The HLA-B27 is the most important genetic factor associated with SpA. Nevertheless, the involvement of other HLA and non-HLA loci has been also reported. Some patients with SpA may also manifest features of celiac disease (CeD), thus suggesting a genetic overlap across these autoimmune diseases. Recently, CD1 glycoproteins, a class of molecules able to bind and present non peptidic antigens to T cells, aroused interest for their contribution to the pathogenesis of CeD. Therefore, to evaluate whether functional polymorphisms of CD1A and E genes also influence susceptibility to SpA, we analyzed 86 patients from Morocco affected by SpA and 51 healthy controls, using direct sequencing analysis. An increase of CD1E*01/01 homozygous genotype (p = 0.046) was found in SpA, compared with controls. CD1E*01/01 genotype was associated particularly to patients with sacroiliac joints/spine/peripheral joints pain (p = 0.0068), while a decrease of CD1E*01/02 genotype was evidenced compared to controls (p = 0.0065). Results from haplotypes analysis demonstrated that CD1A*02-E*02 decreased the risk of SpA, while CD1A*02-E*01 increased risk to develop disease. Our data indicate a relationship between CD1 genes and susceptibility to SpA in the Moroccan population and suggest the existence of shared genetic risk loci across SpA and CeD that might be useful to explain common pathogenetic features and define novel therapeutic strategies.
Collapse
|
4
|
Lee SW, Park HJ, Van Kaer L, Hong S. Roles and therapeutic potential of CD1d-Restricted NKT cells in inflammatory skin diseases. Front Immunol 2022; 13:979370. [PMID: 36119077 PMCID: PMC9478174 DOI: 10.3389/fimmu.2022.979370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens rather than peptides. Due to their immunoregulatory properties, extensive work has been done to elucidate the immune functions of NKT cells in various immune contexts such as autoimmunity for more than two decades. In addition, as research on barrier immunity such as the mucosa-associated lymphoid tissue has flourished in recent years, the role of NKT cells to immunity in the skin has attracted substantial attention. Here, we review the contributions of NKT cells to regulating skin inflammation and discuss the factors that can modulate the functions of NKT cells in inflammatory skin diseases such as atopic dermatitis. This mini-review article will mainly focus on CD1d-dependent NKT cells and their therapeutic potential in skin-related immune diseases.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
- *Correspondence: Seokmann Hong,
| |
Collapse
|
5
|
Abstract
Natural killer T (NKT) cells are a unique subset of T lymphocytes with the expression of T cell receptor (TCR) and NK cell lineage receptors. These cells can rapidly release large quantities of cytokines and function as a bridge between innate and adaptive immunity. To date, multiple reports have investigated the role of NKT cells under various pathological conditions, such as cancer, autoimmune disease, and infection. Knowledge about NKT cells in neurological diseases is increasing, albeit limited. Here, we review evidence for the involvement of NKT cells in neurological diseases, and discuss immunotherapeutic potential and future study goals. As the development and function of NKT cells become increasingly well understood, the next few years should yield many new insights into NKT cell function, and mechanistic regulation in neurological disorders.
Collapse
Affiliation(s)
- Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Ban Y, Dong W, Zhang L, Zhou T, Altiti AS, Ali K, Mootoo DR, Blaho VA, Hla T, Ren Y, Ma X. Abrogation of Endogenous Glycolipid Antigen Presentation on Myelin-Laden Macrophages by D-Sphingosine Ameliorates the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Front Immunol 2019; 10:404. [PMID: 30941120 PMCID: PMC6433838 DOI: 10.3389/fimmu.2019.00404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/15/2019] [Indexed: 01/20/2023] Open
Abstract
Background: Although myelin is composed of mostly lipids, the pathological role of myelin lipids in demyelinating diseases remains elusive. The principal lipid of the myelin sheath is β-galactosylceramide (β-Galcer). Its α-anomer (α-Galcer) has been demonstrated to be antigenically presented by macrophages via CD1d, a MHC class I-like molecule. Myelin, which is mostly composed of β-Galcer, has been long considered as an immunologically-inert neuron insulator, because the antigen-binding cleft of CD1d is highly α-form-restricted. Results: Here, we report that CD1d-mediated antigenic presentation of myelin-derived galactosylceramide (Mye-GalCer) by macrophages contributed significantly to the progression of experimental autoimmune encephalomyelitis (EAE). Surprisingly, this presentation was recognizable by α-Galcer:CD1d-specific antibody (clone L363), but incapable of triggering expansion of iNKT cells and production of iNKT signature cytokines (IFNγ and IL-4). Likewise, a synthesized analog of Mye-Galcer, fluorinated α-C-GalCer (AA2), while being efficiently presented via CD1d on macrophages, failed to stimulate production of IFNγ and IL-4. However, AA2 significantly exacerbated EAE progression. Further analyses revealed that the antigenic presentations of both Mye-GalCer and its analog (AA2) in α-form via CD1d promoted IL-17 production from T cells, leading to elevated levels of IL-17 in EAE spinal cords and sera. The IL-17 neutralizing antibody significantly reduced the severity of EAE symptoms in AA2-treated mice. Furthermore, D-sphingosine, a lipid possessing the same hydrophobic base as ceramide but without a carbohydrate residue, efficiently blocked this glycolipid antigen presentation both in vitro and in spinal cords of EAE mice, and significantly decreased IL-17 and ameliorated the pathological symptoms. Conclusion: Our findings reveal a novel pathway from the presentation of Mye-GalCer to IL-17 production, and highlight the promising therapeutic potential of D-sphingosine for the human disorder of multiple sclerosis.
Collapse
Affiliation(s)
- Yi Ban
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States
| | - Wenjuan Dong
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States
| | - Lixing Zhang
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology, Shanghai Jiaotong University, Shanghai, China
| | - Tian Zhou
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States.,Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Chongqing University, Chongqing, China
| | - Ahmad S Altiti
- Department of Chemistry, Hunter College, City University of New York, New York, NY, United States
| | - Khaleel Ali
- Department of Chemistry, Hunter College, City University of New York, New York, NY, United States
| | - David R Mootoo
- Department of Chemistry, Hunter College, City University of New York, New York, NY, United States
| | - Victoria A Blaho
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Medical Medicine, New York, NY, United States.,Sanford Burnham Prepys Medical Discovery Institute, La Jolla, CA, United States
| | - Timothy Hla
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Medical Medicine, New York, NY, United States
| | - Yi Ren
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States.,State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
7
|
Van Kaer L, Postoak JL, Wang C, Yang G, Wu L. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE. Cell Mol Immunol 2019; 16:531-539. [PMID: 30874627 DOI: 10.1038/s41423-019-0221-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) in which the immune system damages the protective insulation surrounding the nerve fibers that project from neurons. A hallmark of MS and its animal model, experimental autoimmune encephalomyelitis (EAE), is autoimmunity against proteins of the myelin sheath. Most studies in this field have focused on the roles of CD4+ T lymphocytes, which form part of the adaptive immune system as both mediators and regulators in disease pathogenesis. Consequently, the treatments for MS often target the inflammatory CD4+ T-cell responses. However, many other lymphocyte subsets contribute to the pathophysiology of MS and EAE, and these subsets include CD8+ T cells and B cells of the adaptive immune system, lymphocytes of the innate immune system such as natural killer cells, and subsets of innate-like T and B lymphocytes such as γδ T cells, natural killer T cells, and mucosal-associated invariant T cells. Several of these lymphocyte subsets can act as mediators of CNS inflammation, whereas others exhibit immunoregulatory functions in disease. Importantly, the efficacy of some MS treatments might be mediated in part by effects on lymphocytes other than CD4+ T cells. Here we review the contributions of distinct subsets of lymphocytes on the pathogenesis of MS and EAE, with an emphasis on lymphocytes other than CD4+ T cells. A better understanding of the distinct lymphocyte subsets that contribute to the pathophysiology of MS and its experimental models will inform the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Joshua L Postoak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Chuan Wang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Guan Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
8
|
Van Kaer L, Wu L. Therapeutic Potential of Invariant Natural Killer T Cells in Autoimmunity. Front Immunol 2018; 9:519. [PMID: 29593743 PMCID: PMC5859017 DOI: 10.3389/fimmu.2018.00519] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/28/2018] [Indexed: 11/13/2022] Open
Abstract
Tolerance against self-antigens is regulated by a variety of cell types with immunoregulatory properties, such as CD1d-restricted invariant natural killer T (iNKT) cells. In many experimental models of autoimmunity, iNKT cells promote self-tolerance and protect against autoimmunity. These findings are supported by studies with patients suffering from autoimmune diseases. Based on these studies, the therapeutic potential of iNKT cells in autoimmunity has been explored. Many of these studies have been performed with the potent iNKT cell agonist KRN7000 or its structural variants. These findings have generated promising results in several autoimmune diseases, although mechanisms by which iNKT cells modulate autoimmunity remain incompletely understood. Here, we will review these preclinical studies and discuss the prospects for translating their findings to patients suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
9
|
Antigen-oriented T cell migration contributes to myelin peptide induced-EAE and immune tolerance. Clin Immunol 2016; 169:36-46. [PMID: 27327113 DOI: 10.1016/j.clim.2016.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/05/2016] [Accepted: 06/07/2016] [Indexed: 02/08/2023]
Abstract
Treatment with soluble myelin peptide can efficiently and specifically induce tolerance to demyelination autoimmune diseases including multiple sclerosis, however the mechanism underlying this therapeutic effect remains to be elucidated. In actively induced mouse model of experimental autoimmune encephalomyelitis (EAE) we analyzed T cell and innate immune cell responses in the central nervous system (CNS) and spleen after intraperitoneal (i.p.) infusion of myelin oligodendrocyte glycoprotein (MOG). We found that i.p. MOG infusion blocked effector T cell recruitment to the CNS and protected mice from EAE and lymphoid organ atrophy. Innate immune CD11b(+) cells preferentially recruited MOG-specific effector T cells, particularly when activated to become competent antigen presenting cells (APCs). During EAE development, mature APCs were enriched in the CNS rather than in the spleen, attracting effector T cells to the CNS. Increased myelin antigen exposure induced CNS-APC maturation, recruiting additional effector T cells to the CNS, causing symptoms of disease. MOG triggered functional maturation of splenic APCs. MOG presenting APCs interacted with MOG-specific T cells in the spleen, aggregating to cluster around CD11b(+) cells, and were trapped in the periphery. This process was MHC II dependent as an MHC II directed antibody blocked CD4(+) T cell cluster formation. These findings highlight the role of myelin peptide-loaded APCs in myelin peptide-induced EAE and immune tolerance.
Collapse
|
10
|
Van Kaer L, Wu L, Parekh VV. Natural killer T cells in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Immunology 2015; 146:1-10. [PMID: 26032048 DOI: 10.1111/imm.12485] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease that causes demyelination of neurons in the central nervous system. Traditional therapies for MS have involved anti-inflammatory and immunosuppressive drugs with significant side effects that often only provide short-term relief. A more desirable outcome of immunotherapy would be to protect against disease before its clinical manifestation or to halt disease after its initiation. One attractive approach to accomplish this goal would be to restore tolerance by targeting immunoregulatory cell networks. Although much of the work in this area has focused on CD4(+) Foxp3(+) regulatory T cells, other studies have investigated natural killer T (NKT) cells, a subset of T cells that recognizes glycolipid antigens in the context of the CD1d glycoprotein. Studies with human MS patients have revealed alterations in the numbers and functions of NKT cells, which have been partially supported by studies with the experimental autoimmune encephalomyelitis model of MS. Additional studies have shown that activation of NKT cells with synthetic lipid antigens can, at least under certain experimental conditions, protect mice against the development of MS-like disease. Although mechanisms of this protection remain to be fully investigated, current evidence suggests that it involves interactions with other immunoregulatory cell types such as regulatory T cells and immunosuppressive myeloid cells. These studies have provided a strong foundation for the rational design of NKT-cell-based immunotherapies for MS that induce tolerance while sparing overall immune function. Nevertheless, additional pre-clinical and clinical studies will be required to bring this goal to fruition.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Vrajesh V Parekh
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
11
|
Sag D, Krause P, Hedrick CC, Kronenberg M, Wingender G. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Invest 2014; 124:3725-40. [PMID: 25061873 DOI: 10.1172/jci72308] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/05/2014] [Indexed: 12/11/2022] Open
Abstract
Invariant natural killer T (iNKT) cells rapidly produce copious amounts of multiple cytokines after activation, thereby impacting a wide variety of different immune reactions. However, strong activation of iNKT cells with α-galactosylceramide (αGalCer) reportedly induces a hyporeactive state that resembles anergy. In contrast, we determined here that iNKT cells from mice pretreated with αGalCer retain cytotoxic activity and maintain the ability to respond to TCR-dependent as well as TCR-independent cytokine-mediated stimulation. Additionally, αGalCer-pretreated iNKT cells acquired characteristics of regulatory cells, including production and secretion of the immunomodulatory cytokine IL-10. Through the production of IL-10, αGalCer-pretreated iNKT cells impaired antitumor responses and reduced disease in experimental autoimmune encephalomyelitis, a mouse model of autoimmune disease. Furthermore, a subset of iNKT cells with a similar inhibitory phenotype and function were present in mice not exposed to αGalCer and were enriched in mouse adipose tissue and detectable in human PBMCs. These data demonstrate that IL-10-producing iNKT cells with regulatory potential (NKT10 cells) represent a distinct iNKT cell subset.
Collapse
|
12
|
Roozbeh M, Mohammadpour H, Azizi G, Ghobadzadeh S, Mirshafiey A. The potential role of iNKT cells in experimental allergic encephalitis and multiple sclerosis. Immunopharmacol Immunotoxicol 2014; 36:105-13. [DOI: 10.3109/08923973.2014.897726] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Ando T, Ito H, Ohtaki H, Seishima M. Toll-like receptor agonists and alpha-galactosylceramide synergistically enhance the production of interferon-gamma in murine splenocytes. Sci Rep 2014; 3:2559. [PMID: 23994875 PMCID: PMC3759050 DOI: 10.1038/srep02559] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/10/2013] [Indexed: 11/09/2022] Open
Abstract
Vα14 natural killer T (iNKT) cells activated by alpha-galactosylceramide (GalCer) secrete a large amount of cytokines. Toll-like receptors (TLRs) play a critical role in the innate immune responses via the recognition of pathological antigen. Previously we demonstrated that the iNKT cells activated by GalCer augmented LPS-induced NO production in peritoneal cells. In this study, we examined the effect of GalCer and TLR agonists by IFN-γ production from splenocytes. Splenocytes pretreated with GalCer induced TLR3, 4, 7/8, and 9 agonists in vitro, resulting in the enhancement of IFN-γ mRNA expression. In particular, IFN-γ stimulated by GalCer and LPS was increased in NK cells and CD8 T cells, and inhibited by a neutralizing anti-IL-12 antibody. Pretreatment with GalCer enhanced the phosphorylation of IκB-α induced by LPS stimulation. The present study showed that co-stimulation of GalCer and TLR agonists powerfully induced the production of IFN-γ from splenocytes.
Collapse
Affiliation(s)
- Tatsuya Ando
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | | | | | | |
Collapse
|
14
|
Th17 lymphocyte levels are higher in patients with ruptured than non-ruptured lumbar discs, and are correlated with pain intensity. Injury 2013; 44:1805-10. [PMID: 23680281 DOI: 10.1016/j.injury.2013.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 02/16/2013] [Accepted: 04/13/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND Th17 lymphocytes have important roles in inflammation and autoimmune disease. Research on relationship between Th17 lymphocytes and pain associated with lumbar disc herniation (LDH) is limited. The purpose of this study was to examine the association of pain and Th17 lymphocyte and interleukin (IL)-17 levels in patients with herniated and non-herniated lumbar discs. METHODS Thirty-four patients with single lumbar intervertebral disc herniation (median age, 44 years), and 17 healthy adults (median age, 37 years) were enrolled. Patients were divided into 2 groups depending on their magnetic resonance imaging (MRI) results and visual observations during surgery (group P, non-ruptured disc, n=15; group E, ruptured disc, n=19). Patients received posterior or transforaminal lumbar interbody fusion. Preoperative pain intensity was recorded using a visual analogue scale (VAS) score. The percentage of Th17 lymphocytes and IL-17 and prostaglandin E2 (PGE2) levels in peripheral blood were determined. Disc tissue was examined by immunohistochemistry for Th17 and IL-17 expression. RESULTS Preoperative VAS pain scores were significantly higher in group E than group P (8.32±1.04 vs. 6.33±2.68, respectively, p=0.009). Similarly, PGE2 level was greater in group E than group P (3.75±1.41pg/ml vs. 2.63±0.89pg/ml, respectively, p=0.011). Compared to healthy controls (1.05±0.19%), the percentage of Th17 cells was significantly greater in group P (1.52±0.62%, p=0.031), and the percentage in group E (2.99±1.09%, p<0.001) was significantly greater than in group P. The IL-17 expressions were similar. VAS pain score was positively correlated with Th17 proportion (r=0.489, p=0.003), and IL-17 concentration (r=0.458, p=0.007). PGE2 was also positively correlated with Th17 proportion (r=0.539, p=0.001), and IL-17 concentration (r=0.500, p=0.003). The expression of IL-17 was higher in the cells of group E and group P compared with normal tissue (p<0.001). CONCLUSIONS Immune system activation is responsible, at least in part, for the pain experienced by patients with LDH, and increased levels of Th17 lymphocytes and IL-17 contribute to the pain.
Collapse
|
15
|
Shiozaki M, Tashiro T, Koshino H, Shigeura T, Watarai H, Taniguchi M, Mori K. Synthesis and biological activity of hydroxylated analogues of KRN7000 (α-galactosylceramide). Carbohydr Res 2013; 370:46-66. [PMID: 23454137 DOI: 10.1016/j.carres.2013.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 11/25/2022]
Abstract
KRN7000 is one of the α-galactosylceramides, which has a 2-hexacosanoylamino-3,4-dihydroxyoctadecyl group. This compound, known as a ligand for the activation of CD1d mediated invariant natural killer T cells (iNKT cells) which release both T helper 1 (Th1) cytokines such as IFNγ and Th2 cytokines such as IL-4, has been anticipated as an antitumor drug, because of its strong secretion of IFNγ. This time, we focused on the hydroxylated analogues of KRN7000 which could be thought of as increasing hydrophilicity and showing bias to Th2 cytokine (IL-4) secretion. Therefore, they may become the drugs for autoimmune diseases for the following reasons: (i) compound OCH, one of the α-galactosylceramide analogues with a shorter sphingosine chain than KRN7000, increases hydrophilicity relative to KRN7000; and (ii) OCH is known to induce much more Th2 cytokines (IL-4) than Th1 cytokines from iNKT cells compared to KRN7000. Naturally, OCH has become one of the candidate drugs for autoimmune diseases. The more hydroxylated derivatives of KRN7000 are anticipated to induce Th2 bias. Therefore, eight analogues with 1-4 excess hydroxyl groups on the lipid chain of KRN7000 were synthesized to examine if they behave in the same way as OCH. As a result, three out of eight compounds biased largely to IL-4 secretion, and their effectiveness for experimental autoimmune encephalomyelitis (EAE) was examined. It was recognized that two compounds (†)RCAI-147/-160 showed good suppression of EAE symptoms.
Collapse
Affiliation(s)
- Masao Shiozaki
- Laboratory for Immune Regulation, Research Center for Allergy and Immunology, RIKEN, Wako-shi, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Hemdan NYA, Birkenmeier G, Wichmann G, Abu El-Saad AM, Krieger T, Conrad K, Sack U. Interleukin-17-producing T helper cells in autoimmunity. Autoimmun Rev 2010; 9:785-92. [PMID: 20647062 DOI: 10.1016/j.autrev.2010.07.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/15/2010] [Indexed: 02/06/2023]
Abstract
With all the incredible progress in scientific research over the past two decades, the trigger of the majority of autoimmune disorders remains largely elusive. Research on the biology of T helper type 17 (T(H)17) cells over the last decade not only clarified previous observations of immune regulations and disease manifestations, but also provided considerable information on the signaling pathways mediating the effects of this lineage and its seemingly dual role in fighting the invading pathogens on one hand, and in frightening the host by inducing chronic inflammation and autoimmunity on the other hand. In this context, recent reports have implicated T(H)17 cells in mediating host defense as well as a growing list of autoimmune diseases in genetically-susceptible individuals. Herein, we summarize the current knowledge on T(H)17 in autoimmunity with emphasis on its differentiation factors and some mechanisms involved in initiating pathological events of autoimmunity.
Collapse
Affiliation(s)
- Nasr Y A Hemdan
- Department of Zoology, Faculty of Science, University of Alexandria, Egypt.
| | | | | | | | | | | | | |
Collapse
|