1
|
Vervoordeldonk MYL, Hengeveld PJ, Levin MD, Langerak AW. B cell receptor signaling proteins as biomarkers for progression of CLL requiring first-line therapy. Leuk Lymphoma 2024; 65:1031-1043. [PMID: 38619476 DOI: 10.1080/10428194.2024.2341151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
The molecular landscape of chronic lymphocytic leukemia (CLL) has been extensively characterized, and various potent prognostic biomarkers were discovered. The genetic composition of the B-cell receptor (BCR) immunoglobulin (IG) was shown to be especially powerful for discerning indolent from aggressive disease at diagnosis. Classification based on the IG heavy chain variable gene (IGHV) somatic hypermutation status is routinely applied. Additionally, BCR IGH stereotypy has been implicated to improve risk stratification, through characterization of subsets with consistent clinical profiles. Despite these advances, it remains challenging to predict when CLL progresses to requiring first-line therapy, thus emphasizing the need for further refinement of prognostic indicators. Signaling pathways downstream of the BCR are essential in CLL pathogenesis, and dysregulated components within these pathways impact disease progression. Considering not only genomics but the entirety of factors shaping BCR signaling activity, this review offers insights in the disease for better prognostic assessment of CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Signal Transduction
- Disease Progression
- Biomarkers, Tumor/genetics
- Prognosis
Collapse
Affiliation(s)
- Mischa Y L Vervoordeldonk
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Paul J Hengeveld
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Anton W Langerak
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Bonato A, Chakraborty S, Bomben R, Canarutto G, Felician G, Martines C, Zucchetto A, Pozzo F, Vujovikj M, Polesel J, Chiarenza A, Del Principe MI, Del Poeta G, D'Arena G, Marasca R, Tafuri A, Laurenti L, Piazza S, Dimovski AJ, Gattei V, Efremov DG. NFKBIE mutations are selected by the tumor microenvironment and contribute to immune escape in chronic lymphocytic leukemia. Leukemia 2024; 38:1511-1521. [PMID: 38486128 PMCID: PMC11216988 DOI: 10.1038/s41375-024-02224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Loss-of-function mutations in NFKBIE, which encodes for the NF-κB inhibitor IκBε, are frequent in chronic lymphocytic leukemia (CLL) and certain other B-cell malignancies and have been associated with accelerated disease progression and inferior responses to chemotherapy. Using in vitro and in vivo murine models and primary patient samples, we now show that NFKBIE-mutated CLL cells are selected by microenvironmental signals that activate the NF-κB pathway and induce alterations within the tumor microenvironment that can allow for immune escape, including expansion of CD8+ T-cells with an exhausted phenotype and increased PD-L1 expression on the malignant B-cells. Consistent with the latter observations, we find increased expression of exhaustion markers on T-cells from patients with NFKBIE-mutated CLL. In addition, we show that NFKBIE-mutated murine CLL cells display selective resistance to ibrutinib and report inferior outcomes to ibrutinib treatment in NFKBIE-mutated CLL patients. These findings suggest that NFKBIE mutations can contribute to CLL progression through multiple mechanisms, including a bidirectional crosstalk with the microenvironment and reduced sensitivity to BTK inhibitor treatment.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Adenine/analogs & derivatives
- Adenine/pharmacology
- CD8-Positive T-Lymphocytes/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Mutation
- NF-kappa B/metabolism
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Pyrazoles/pharmacology
- Pyrazoles/therapeutic use
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Tumor Escape/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Alice Bonato
- Molecular Hematology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Supriya Chakraborty
- Molecular Hematology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, IRCCS Centro Di Riferimento Oncologico, Aviano, Italy
| | - Giulia Canarutto
- Computational Biology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giulia Felician
- Molecular Hematology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Claudio Martines
- Molecular Hematology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, IRCCS Centro Di Riferimento Oncologico, Aviano, Italy
| | - Federico Pozzo
- Clinical and Experimental Onco-Hematology Unit, IRCCS Centro Di Riferimento Oncologico, Aviano, Italy
| | - Marija Vujovikj
- Research Center for Genetic Engineering and Biotechnology, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Jerry Polesel
- Clinical and Experimental Onco-Hematology Unit, IRCCS Centro Di Riferimento Oncologico, Aviano, Italy
| | | | | | - Giovanni Del Poeta
- Hematology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giovanni D'Arena
- Hematology and Stem Cell Transplantation Unit, IRCCS Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | - Roberto Marasca
- Division of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Agostino Tafuri
- Division of Hematology, University Hospital Sant'Andrea, "Sapienza" University of Rome, Rome, Italy
| | - Luca Laurenti
- Hematology Unit, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Silvano Piazza
- Computational Biology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Aleksandar J Dimovski
- Research Center for Genetic Engineering and Biotechnology, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
- Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, IRCCS Centro Di Riferimento Oncologico, Aviano, Italy
| | - Dimitar G Efremov
- Molecular Hematology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy.
- Macedonian Academy of Sciences and Arts, Skopje, North Macedonia.
| |
Collapse
|
3
|
Macrophage- and BCR-derived but not TLR-derived signals support the growth of CLL and Richter syndrome murine models in vivo. Blood 2022; 140:2335-2347. [PMID: 36084319 DOI: 10.1182/blood.2022016272] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
A large amount of circumstantial evidence has accumulated suggesting that Toll-like receptor (TLR) signals are involved in driving chronic lymphocytic leukemia (CLL) cell proliferation, but direct in vivo evidence for this is still lacking. We have now further addressed this possibility by pharmacologically inhibiting or genetically inactivating the TLR pathway in murine CLL and human Richter syndrome (RS) patient-derived xenograft (PDX) cells. Surprisingly, we show that pharmacologic inhibition of TLR signaling by treatment with an IRAK1/4 inhibitor delays the growth of the transplanted malignant cells in recipient mice, but genetic inactivation of the same pathway by CRISPR/Cas9-mediated disruption of IRAK4 or its proximal adaptor MyD88 has no effect. We further show that treatment with the IRAK1/4 inhibitor results in depletion of macrophages and demonstrate that these cells can support the survival and enhance the proliferation of both murine Eμ-TCL1 leukemia and human RS cells. We also show that genetic disruption of the B-cell receptor (BCR) by CRISPR/Cas9 editing of the immunoglobulin M constant region gene inhibits the growth of human RS-PDX cells in vivo, consistent with our previous finding with murine Eμ-TCL1 leukemia cells. Finally, we show that genetic disruption of IRAK4 does not result in negative selection of human CLL cell lines xenografted in immunodeficient mice. The obtained data suggest that TLR signals are unlikely to represent a major driver of CLL/RS cell proliferation and provide further evidence that signals from macrophages and the BCR promote the growth and survival of CLL and RS cells in vivo.
Collapse
|
4
|
B Cell Receptor signaling and genetic lesions in TP53 and CDKN2A/CDKN2B cooperate in Richter Transformation. Blood 2021; 138:1053-1066. [PMID: 33900379 DOI: 10.1182/blood.2020008276] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/06/2021] [Indexed: 11/20/2022] Open
Abstract
B cell receptor (BCR) signals play a critical role in the pathogenesis of chronic lymphocytic leukemia (CLL), but their role in regulating CLL cell proliferation has still not been firmly established. Unlike normal B cells, CLL cells do not proliferate in vitro upon engagement of the BCR, suggesting that CLL cell proliferation is regulated by other signals from the microenvironment, such as those provided by Toll-like receptors or T cells. Here, we report that BCR engagement of human and murine CLL cells induces several positive regulators of the cell cycle, but simultaneously induces the negative regulators CDKN1A, CDKN2A and CDKN2B, which block cell cycle progression. We further show that introduction of genetic lesions that downregulate these cell cycle inhibitors, such as inactivating lesions in CDKN2A, CDKN2B and the CDKN1A regulator TP53, leads to more aggressive disease in a murine in vivo CLL model and spontaneous proliferation in vitro that is BCR-dependent but independent of costimulatory signals. Importantly, inactivating lesions in CDKN2A, CDKN2B and TP53 frequently co-occur in Richter syndrome, and BCR stimulation of human Richter syndrome cells with such lesions is sufficient to induce proliferation. We also show that tumor cells with combined TP53 and CDKN2A/2B abnormalities remain sensitive to BCR inhibitor treatment and are synergistically sensitive to the combination of a BCR and CDK4/6 inhibitor both in vitro and in vivo. These data provide evidence that BCR signals are directly involved in driving CLL cell proliferation and reveal a novel mechanism of Richter transformation.
Collapse
|
5
|
Abstract
Patients with chronic lymphocytic leukemia can be divided into three categories: those who are minimally affected by the problem, often never requiring therapy; those that initially follow an indolent course but subsequently progress and require therapy; and those that from the point of diagnosis exhibit an aggressive disease necessitating treatment. Likewise, such patients pass through three phases: development of the disease, diagnosis, and need for therapy. Finally, the leukemic clones of all patients appear to require continuous input from the exterior, most often through membrane receptors, to allow them to survive and grow. This review is presented according to the temporal course that the disease follows, focusing on those external influences from the tissue microenvironment (TME) that support the time lines as well as those internal influences that are inherited or develop as genetic and epigenetic changes occurring over the time line. Regarding the former, special emphasis is placed on the input provided via the B-cell receptor for antigen and the C-X-C-motif chemokine receptor-4 and the therapeutic agents that block these inputs. Regarding the latter, prominence is laid upon inherited susceptibility genes and the genetic and epigenetic abnormalities that lead to the developmental and progression of the disease.
Collapse
MESH Headings
- Disease Progression
- Humans
- Immunotherapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Mutation
- PAX5 Transcription Factor/metabolism
- Receptors, Antigen, B-Cell
- Signal Transduction
- Tumor Microenvironment
Collapse
Affiliation(s)
- Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Shih-Shih Chen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Kanti R Rai
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11549, USA
| |
Collapse
|
6
|
Laurenti L, Efremov DG. Therapeutic Targets in Chronic Lymphocytic Leukemia. Cancers (Basel) 2020; 12:cancers12113259. [PMID: 33158264 PMCID: PMC7694246 DOI: 10.3390/cancers12113259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/04/2023] Open
Affiliation(s)
- Luca Laurenti
- Department of Hematology, Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Correspondence: (L.L.); (D.G.E.)
| | - Dimitar G. Efremov
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
- Correspondence: (L.L.); (D.G.E.)
| |
Collapse
|
7
|
BDA-366, a putative Bcl-2 BH4 domain antagonist, induces apoptosis independently of Bcl-2 in a variety of cancer cell models. Cell Death Dis 2020; 11:769. [PMID: 32943617 PMCID: PMC7498462 DOI: 10.1038/s41419-020-02944-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Several cancer cell types, including chronic lymphocytic leukemia (CLL) and diffuse large B-cell lymphoma (DLBCL) upregulate antiapoptotic Bcl-2 to cope with oncogenic stress. BH3 mimetics targeting Bcl-2's hydrophobic cleft have been developed, including venetoclax as a promising anticancer precision medicine for treating CLL patients. Recently, BDA-366 was identified as a small molecule BH4-domain antagonist that could kill lung cancer and multiple myeloma cells. BDA-366 was proposed to switch Bcl-2 from an antiapoptotic into a proapoptotic protein, thereby activating Bax and inducing apoptosis. Here, we scrutinized the therapeutic potential and mechanism of action of BDA-366 in CLL and DLBCL. Although BDA-366 displayed selective toxicity against both cell types, the BDA-366-induced cell death did not correlate with Bcl-2-protein levels and also occurred in the absence of Bcl-2. Moreover, although BDA-366 provoked Bax activation, it did neither directly activate Bax nor switch Bcl-2 into a Bax-activating protein in in vitro Bax/liposome assays. Instead, in primary CLL cells and DLBCL cell lines, BDA-366 inhibited the activity of the PI3K/AKT pathway, resulted in Bcl-2 dephosphorylation and reduced Mcl-1-protein levels without affecting the levels of Bcl-2 or Bcl-xL. Hence, our work challenges the current view that BDA-366 is a BH4-domain antagonist of Bcl-2 that turns Bcl-2 into a pro-apoptotic protein. Rather, our results indicate that other mechanisms beyond switching Bcl-2 conformation underlie BDA-366's cell-death properties that may implicate Mcl-1 downregulation and/or Bcl-2 dephosphorylation.
Collapse
|
8
|
Detection of chronic lymphocytic leukemia subpopulations in peripheral blood by phage ligands of tumor immunoglobulin B cell receptors. Leukemia 2020; 35:610-614. [PMID: 32483301 PMCID: PMC7862058 DOI: 10.1038/s41375-020-0885-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 01/25/2023]
|
9
|
Mechanisms of B Cell Receptor Activation and Responses to B Cell Receptor Inhibitors in B Cell Malignancies. Cancers (Basel) 2020; 12:cancers12061396. [PMID: 32481736 PMCID: PMC7352865 DOI: 10.3390/cancers12061396] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
The B cell receptor (BCR) pathway has been identified as a potential therapeutic target in a number of common B cell malignancies, including chronic lymphocytic leukemia, diffuse large B cell lymphoma, Burkitt lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone B cell lymphoma, and Waldenstrom's macroglobulinemia. This finding has resulted in the development of numerous drugs that target this pathway, including various inhibitors of the kinases BTK, PI3K, and SYK. Several of these drugs have been approved in recent years for clinical use, resulting in a profound change in the way these diseases are currently being treated. However, the response rates and durability of responses vary largely across the different disease entities, suggesting a different proportion of patients with an activated BCR pathway and different mechanisms of BCR pathway activation. Indeed, several antigen-dependent and antigen-independent mechanisms have recently been described and shown to result in the activation of distinct downstream signaling pathways. The purpose of this review is to provide an overview of the mechanisms responsible for the activation of the BCR pathway in different B cell malignancies and to correlate these mechanisms with clinical responses to treatment with BCR inhibitors.
Collapse
|
10
|
Delvecchio VS, Sana I, Mantione ME, Vilia MG, Ranghetti P, Rovida A, Angelillo P, Scarfò L, Ghia P, Muzio M. Interleukin‐1 receptor‐associated kinase 4 inhibitor interrupts toll‐like receptor signalling and sensitizes chronic lymphocytic leukaemia cells to apoptosis. Br J Haematol 2020; 189:475-488. [DOI: 10.1111/bjh.16386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/11/2019] [Indexed: 01/22/2023]
Affiliation(s)
| | - Ilenia Sana
- Cell signalling Unit Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
- Università Vita‐Salute San Raffaele Milano Italy
| | - Maria Elena Mantione
- Cell signalling Unit Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Maria Giovanna Vilia
- Cell signalling Unit Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Pamela Ranghetti
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Alessandra Rovida
- Università Vita‐Salute San Raffaele Milano Italy
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Piera Angelillo
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Lydia Scarfò
- Università Vita‐Salute San Raffaele Milano Italy
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Paolo Ghia
- Università Vita‐Salute San Raffaele Milano Italy
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Marta Muzio
- Cell signalling Unit Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| |
Collapse
|
11
|
Catalytic antibody (catabody) platform for age-associated amyloid disease: From Heisenberg's uncertainty principle to the verge of medical interventions. Mech Ageing Dev 2019; 185:111188. [PMID: 31783036 DOI: 10.1016/j.mad.2019.111188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/31/2023]
Abstract
Quantum mechanics-based design of useful catalytic antibodies (catabodies) failed because of the uncertain structure of the dynamic catalyst-substrate complex. The Catabody Platform emerged from discovery of beneficial germline gene catabodies that hydrolyzed self-proteins by transient covalent pairing of the strong catabody nucleophile with a weak target protein electrophile. Catabodies have evolved by Darwinian natural selection for protection against misfolded self-proteins that threatened survival by causing amyloid disease. Ancient antibody scaffolds upregulate the catalytic activity of the antibody variable (V) domains. Healthy humans universally produce beneficial catabodies specific for at least 3 misfolded self-proteins, transthyretin, amyloid β peptide and tau protein. Catabody are superior to ordinary antibodies because of catalyst reuse for thousands of target destruction cycles with little or no risk of causing inflammation, a must for non-toxic removal of abundant targets such as amyloids. Library mining with electrophilic target analogs (ETAs) isolates therapy-grade catabodies (fast, specific). Ex vivo- and in vivo-verified catabodies specific for the misfolded protein are available to dissolve brain, cardiac and vertebral amyloids. Immunization with ETAs overcomes important ordinary vaccine limitations (no catabody induction, poor immunogenicity of key target epitopes). We conceive electrophilic longevity vaccines that can induce catabody synthesis for long-lasting protection against amyloid disease.
Collapse
|
12
|
Genomic prediction of relapse in recipients of allogeneic haematopoietic stem cell transplantation. Leukemia 2018; 33:240-248. [PMID: 30089915 PMCID: PMC6326954 DOI: 10.1038/s41375-018-0229-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/21/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
Abstract
Allogeneic haematopoietic stem cell transplantation currently represents the primary potentially curative treatment for cancers of the blood and bone marrow. While relapse occurs in approximately 30% of patients, few risk-modifying genetic variants have been identified. The present study evaluates the predictive potential of patient genetics on relapse risk in a genome-wide manner. We studied 151 graft recipients with HLA-matched sibling donors by sequencing the whole-exome, active immunoregulatory regions, and the full MHC region. To assess the predictive capability and contributions of SNPs and INDELs, we employed machine learning and a feature selection approach in a cross-validation framework to discover the most informative variants while controlling against overfitting. Our results show that germline genetic polymorphisms in patients entail a significant contribution to relapse risk, as judged by the predictive performance of the model (AUC = 0.72 [95% CI: 0.63-0.81]). Furthermore, the top contributing variants were predictive in two independent replication cohorts (n = 258 and n = 125) from the same population. The results can help elucidate relapse mechanisms and suggest novel therapeutic targets. A computational genomic model could provide a step toward individualized prognostic risk assessment, particularly when accompanied by other data modalities.
Collapse
|
13
|
|
14
|
|
15
|
Dal Bo M, D'Agaro T, Gobessi S, Zucchetto A, Dereani S, Rossi D, Zaja F, Pozzato G, Di Raimondo F, Gaidano G, Laurenti L, Del Poeta G, Efremov DG, Gattei V, Bomben R. The SIRT1/TP53 axis is activated upon B-cell receptor triggering via miR-132 up-regulation in chronic lymphocytic leukemia cells. Oncotarget 2016; 6:19102-17. [PMID: 26036258 PMCID: PMC4662478 DOI: 10.18632/oncotarget.3905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/28/2015] [Indexed: 12/13/2022] Open
Abstract
The B-cell receptor (BCR) plays an important role in the pathogenesis and progression of chronic lymphocytic leukemia (CLL). By global microRNA profiling of CLL cells stimulated or not stimulated by anti-IgM, significant up-regulation of microRNAs from the miR-132~212 cluster was observed both in IGHV gene unmutated (UM) and mutated (M) CLL cells. Parallel gene expression profiling identified SIRT1, a deacetylase targeting several proteins including TP53, among the top-ranked miR-132 target genes down-regulated upon anti-IgM exposure. The direct regulation of SIRT1 expression by miR-132 was demonstrated using luciferase assays. The reduction of SIRT1 mRNA and protein (P = 0.001) upon anti-IgM stimulation was associated with an increase in TP53 acetylation (P = 0.007), and the parallel up-regulation of the TP53 target gene CDKN1A. Consistently, miR-132 transfections of CLL-like cells resulted in down-regulation of SIRT1 and an induction of a TP53-dependent apoptosis. Finally, in a series of 134 CLL samples, miR-132, when expressed above the median value, associated with prolonged time-to-first-treatment in patients with M CLL (HR = 0.41; P = 0.02). Collectively, the miR-132/SIRT1/TP53 axis was identified as a novel pathway triggered by BCR engagement that further increases the complexity of the interactions between tumor microenvironments and CLL cells.
Collapse
Affiliation(s)
- Michele Dal Bo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Pordenone, Italy
| | - Tiziana D'Agaro
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Pordenone, Italy
| | - Stefania Gobessi
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Rome, Italy
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Pordenone, Italy
| | - Sara Dereani
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Pordenone, Italy
| | - Davide Rossi
- Division of Hematology, Department of Clinical and Experimental Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Francesco Zaja
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari "Carlo Melzi" DISM, Azienda Ospedaliera Universitaria S. Maria Misericordia, Udine, Italy
| | - Gabriele Pozzato
- Department of Internal Medicine and Hematology, Maggiore General Hospital, University of Trieste, Trieste, Italy
| | | | - Gianluca Gaidano
- Division of Hematology, Department of Clinical and Experimental Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Luca Laurenti
- Department of Hematology, Catholic University Hospital A. Gemelli, Rome, Italy
| | - Giovanni Del Poeta
- Division of Hematology, S. Eugenio Hospital and University of Tor Vergata, Rome, Italy
| | - Dimitar G Efremov
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Rome, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Pordenone, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Pordenone, Italy
| |
Collapse
|
16
|
Abstract
B cells provide immunity to extracellular pathogens by secreting a diverse repertoire of antibodies with high affinity and specificity for exposed antigens. The B cell receptor (BCR) is a transmembrane antibody, which facilitates the clonal selection of B cells producing secreted antibodies of the same specificity. The diverse antibody repertoire is generated by V(D)J recombination of heavy and light chain genes, whereas affinity maturation is mediated by activation-induced cytidine deaminase (AID)-mediated mutagenesis. These processes, which are essential for the generation of adaptive humoral immunity, also render B cells susceptible to chromosomal rearrangements and point mutations that in some cases lead to cancer. In this chapter, we will review the central role of PI3K s in mediating signals from the B cell receptor that not only facilitate the development of functional B cell repertoire, but also support the growth and survival of neoplastic B cells, focusing on chronic lymphocytic leukemia (CLL) B cells. Perhaps because of the central role played by PI3K in BCR signaling, B cell leukemia and lymphomas are the first diseases for which a PI3K inhibitor has been approved for clinical use.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/enzymology
- Cell Survival
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/physiopathology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Klaus Okkenhaug
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK.
| | - Jan A Burger
- Department of Leukemia, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Abstract
The majority of patients with chronic lymphocytic leukemia (CLL) respond to chemo-immunotherapy. However, long-term remission remains elusive and the majority of patients will die of complications related to CLL. In this review we discuss the recent developments in targeted therapy for CLL. Targeted therapy has evolved beyond the cell surface targeting of CD20 with rituximab. Our review focuses on the evolution of antibody therapy in CLL, strategies to target effector T cells to the tumor, inhibition of the B-cell receptor signaling pathway, and finally targeting the mediators of apoptosis. With our improved understanding of the biology of CLL, the evolution of targeted therapy has resulted in significant clinical responses in patients who are refractory to traditional treatment options and holds the potential for a future where we can manage this disease without chemotherapy.
Collapse
|
18
|
Liao W, Jordaan G, Nham P, Phan RT, Pelegrini M, Sharma S. Gene expression and splicing alterations analyzed by high throughput RNA sequencing of chronic lymphocytic leukemia specimens. BMC Cancer 2015; 15:714. [PMID: 26474785 PMCID: PMC4609092 DOI: 10.1186/s12885-015-1708-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 10/07/2015] [Indexed: 01/09/2023] Open
Abstract
Background To determine differentially expressed and spliced RNA transcripts in chronic lymphocytic leukemia specimens a high throughput RNA-sequencing (HTS RNA-seq) analysis was performed. Methods Ten CLL specimens and five normal peripheral blood CD19+ B cells were analyzed by HTS RNA-seq. The library preparation was performed with Illumina TrueSeq RNA kit and analyzed by Illumina HiSeq 2000 sequencing system. Results An average of 48.5 million reads for B cells, and 50.6 million reads for CLL specimens were obtained with 10396 and 10448 assembled transcripts for normal B cells and primary CLL specimens respectively. With the Cuffdiff analysis, 2091 differentially expressed genes (DEG) between B cells and CLL specimens based on FPKM (fragments per kilobase of transcript per million reads and false discovery rate, FDR q < 0.05, fold change >2) were identified. Expression of selected DEGs (n = 32) with up regulated and down regulated expression in CLL from RNA-seq data were also analyzed by qRT-PCR in a test cohort of CLL specimens. Even though there was a variation in fold expression of DEG genes between RNA-seq and qRT-PCR; more than 90 % of analyzed genes were validated by qRT-PCR analysis. Analysis of RNA-seq data for splicing alterations in CLL and B cells was performed by Multivariate Analysis of Transcript Splicing (MATS analysis). Skipped exon was the most frequent splicing alteration in CLL specimens with 128 significant events (P-value <0.05, minimum inclusion level difference >0.1). Conclusion The RNA-seq analysis of CLL specimens identifies novel DEG and alternatively spliced genes that are potential prognostic markers and therapeutic targets. High level of validation by qRT-PCR for a number of DEG genes supports the accuracy of this analysis. Global comparison of transcriptomes of B cells, IGVH non-mutated CLL (U-CLL) and mutated CLL specimens (M-CLL) with multidimensional scaling analysis was able to segregate CLL and B cell transcriptomes but the M-CLL and U-CLL transcriptomes were indistinguishable. The analysis of HTS RNA-seq data to identify alternative splicing events and other genetic abnormalities specific to CLL is an added advantage of RNA-seq that is not feasible with other genome wide analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1708-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Liao
- Division of Hematology-Oncology, UCLA-VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| | - Gwen Jordaan
- Division of Hematology-Oncology, UCLA-VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| | - Phillipp Nham
- Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| | - Ryan T Phan
- Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| | - Matteo Pelegrini
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, USA.
| | - Sanjai Sharma
- Division of Hematology-Oncology, UCLA-VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA. .,UCLA West Los Angeles VA Medical Center, 11301 Wilshire Blvd, Bldg 304, Rm E1-115, Los Angeles, CA, 90073, USA.
| |
Collapse
|
19
|
Bojarczuk K, Bobrowicz M, Dwojak M, Miazek N, Zapala P, Bunes A, Siernicka M, Rozanska M, Winiarska M. B-cell receptor signaling in the pathogenesis of lymphoid malignancies. Blood Cells Mol Dis 2015; 55:255-65. [PMID: 26227856 DOI: 10.1016/j.bcmd.2015.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/21/2015] [Indexed: 11/17/2022]
Abstract
B-cell receptor (BCR) signaling pathway plays a central role in B-lymphocyte development and initiation of humoral immunity. Recently, BCR signaling pathway has been shown as a major driver in the pathogenesis of B-cell malignancies. As a result, a vast array of BCR-associated kinases has emerged as rational therapeutic targets changing treatment paradigms in B cell malignancies. Based on high efficacy in early-stage clinical trials, there is rapid clinical development of inhibitors targeting BCR signaling pathway. Here, we describe the essential components of BCR signaling, their function in normal and pathogenic signaling and molecular effects of their inhibition in vitro and in vivo.
Collapse
Affiliation(s)
- Kamil Bojarczuk
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Malgorzata Bobrowicz
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Michal Dwojak
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Nina Miazek
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Piotr Zapala
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Anders Bunes
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Marta Siernicka
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Maria Rozanska
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland.
| |
Collapse
|
20
|
Excessive antigen reactivity may underlie the clinical aggressiveness of chronic lymphocytic leukemia stereotyped subset #8. Blood 2015; 125:3580-7. [PMID: 25900981 DOI: 10.1182/blood-2014-09-603217] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/11/2015] [Indexed: 12/19/2022] Open
Abstract
Subset #8 is a distinctive subset of patients with chronic lymphocytic leukemia (CLL) defined by the expression of stereotyped IGHV4-39/IGKV1(D)-39 B-cell receptors. Subset #8 patients experience aggressive disease and exhibit the highest risk for Richter transformation among all CLL. In order to obtain biological insight into this behavior, we profiled the antigen reactivity and signaling capacity of subset #8 vs other clinically aggressive stereotyped subsets, namely subsets #1 and #2. Twenty-seven monoclonal antibodies (mAbs) from subsets #1, #2, and #8 CLL clones were prepared as recombinant human immunoglobulin G1 and used as primary antibodies in enzyme-linked immunosorbent assays against representatives of the major classes of established antigenic targets for CLL. Subset #8 CLL mAbs exhibited broad polyreactivity as they bound to all antigens tested, in clear contrast with the mAbs from the other subsets. Antigen challenge of primary CLL cells indicated that the promiscuous antigen-binding activity of subset #8 mAbs could lead to significant cell activation, again in contrast to the less responsive CLL cells from subsets #1 and #2. These features constitute a distinctive profile for CLL subset #8, supporting the existence of distinct mechanisms of aggressiveness in different immunogenetic subsets of CLL.
Collapse
|
21
|
Two types of BCR interactions are positively selected during leukemia development in the Eμ-TCL1 transgenic mouse model of CLL. Blood 2015; 125:1578-88. [PMID: 25564405 DOI: 10.1182/blood-2014-07-587790] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a common B-cell malignancy characterized by a highly variable course and outcome. The disease is believed to be driven by B-cell receptor (BCR) signals generated by external antigens and/or cell-autonomous BCR interactions, but direct in vivo evidence for this is still lacking. To further define the role of the BCR pathway in the development and progression of CLL, we evaluated the capacity of different types of antigen/BCR interactions to induce leukemia in the Eμ-TCL1 transgenic mouse model. We show that cell autonomous signaling capacity is a uniform characteristic of the leukemia-derived BCRs and represents a prerequisite for CLL development. Low-affinity BCR interactions with autoantigens generated during apoptosis are also positively selected, suggesting that they contribute to the pathogenesis of the disease. In contrast, high-affinity BCR interactions are not selected, regardless of antigen form or presentation. We also show that the capacity of the leukemic cells to respond to cognate antigen correlates inversely with time to leukemia development, suggesting that signals induced by external antigen increase the aggressiveness of the disease. Collectively, these findings provide in vivo evidence that the BCR pathway drives the development and can influence the clinical course of CLL.
Collapse
|
22
|
Efremov DG, Gobessi S. Signal-dependent and signal-independent functions of the B-cell receptor in chronic lymphocytic leukemia. Haematologica 2014; 99:1645-6. [PMID: 25420278 DOI: 10.3324/haematol.2014.117754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Dimitar G Efremov
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, Rome, Italy
| | - Stefania Gobessi
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, Rome, Italy
| |
Collapse
|
23
|
Deficient synthesis of class-switched, HIV-neutralizing antibodies to the CD4 binding site and correction by electrophilic gp120 immunogen. AIDS 2014; 28:2201-11. [PMID: 25022597 DOI: 10.1097/qad.0000000000000392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE HIV is vulnerable to antibodies that recognize a linear CD4 binding site epitope of gp120 (C), but inducing C-directed antibody synthesis by traditional vaccine principles is difficult. We wished to understand the basis for deficient C-directed antibody synthesis and validate correction of the deficiency by an electrophilic gp120 analog (E-gp120) immunogen that binds B-cell receptors covalently. METHODS Serum antibody responses to a C peptide and full-length gp120 epitopes induced by HIV infection in humans and immunization of mice with gp120 or E-gp120 were monitored. HIV neutralization by monoclonal and variable domain-swapped antibodies was determined from tissue culture and humanized mouse infection assays. RESULTS We describe deficient C-directed IgG but not IgM antibodies in HIV-infected patients and mice immunized with gp120 accompanied by robust synthesis of IgGs to the immunodominant gp120 epitopes. Immunization with the E-gp120 corrected the deficient C-directed IgG synthesis without overall increased immunogenicity of the C or other gp120 epitopes. E-gp120-induced monoclonal IgGs neutralized diverse HIV strains heterologous to the immunogen. A C-directed IgG neutralized HIV more potently compared to its larger IgM counterpart containing the same variable domains, suggesting obstructed access to HIV surface-expressed C. An E-gp120-induced IgG suppressed HIV infection in humanized mice, validating the tissue culture neutralizing activity. CONCLUSION A C-selective physiological defect of IgM→IgG class-switch recombination (CSR) or restricted post-CSR B-cell development limits the functional utility of the humoral immune response to gp120. The E-gp120 immunogen is useful to bypass the restriction and induce broadly neutralizing C-directed IgGs (see Supplemental Video Abstract, http://links.lww.com/QAD/A551).
Collapse
|
24
|
Mele S, Devereux S, Ridley AJ. Rho and Rap guanosine triphosphatase signaling in B cells and chronic lymphocytic leukemia. Leuk Lymphoma 2014; 55:1993-2001. [PMID: 24237579 DOI: 10.3109/10428194.2013.866666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic lymphocytic leukemia (CLL) cells proliferate predominantly in niches in the lymph nodes, where signaling from the B cell receptor (BCR) and the surrounding microenvironment are critical for disease progression. In addition, leukemic cells traffic constantly from the bloodstream into the lymph nodes, migrate within lymphatic tissues and egress back to the bloodstream. These processes are driven by chemokines and their receptors, and depend on changes in cell migration and integrin-mediated adhesion. Here we describe how Rho and Rap guanosine triphosphatases (GTPases) contribute to both BCR signaling and chemokine receptor signaling, particularly by regulating cytoskeletal dynamics and integrin activity. We propose that new inhibitors of BCR-activated kinases are likely to affect CLL cell trafficking via Rho and Rap GTPases, and that upstream regulators or downstream effectors could be good targets for therapeutic intervention in CLL.
Collapse
Affiliation(s)
- Silvia Mele
- Randall Division of Cell and Molecular Biophysics, King's College London , London , UK
| | | | | |
Collapse
|
25
|
Sivina M, Kreitman RJ, Arons E, Ravandi F, Burger JA. The bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) blocks hairy cell leukaemia survival, proliferation and B cell receptor signalling: a new therapeutic approach. Br J Haematol 2014; 166:177-88. [PMID: 24697238 PMCID: PMC4104473 DOI: 10.1111/bjh.12867] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/17/2014] [Indexed: 12/19/2022]
Abstract
B cell receptor (BCR) signalling plays a critical role in the progression of several B-cell malignancies, but its role in hairy cell leukaemia (HCL) is ambiguous. Bruton tyrosine kinase (BTK), a key player in BCR signalling, as well as B cell migration and adhesion, can be targeted with ibrutinib, a selective, irreversible BTK inhibitor. We analysed BTK expression and function in HCL and analysed the effects of ibrutinib on HCL cells. We demonstrated uniform BTK protein expression in HCL cells. Ibrutinib significantly inhibited HCL proliferation and cell cycle progression. Accordingly, ibrutinib also reduced HCL cell survival after BCR triggering with anti-immunoglobulins and abrogated the activation of kinases downstream of the BCR (PI3K and MAPK). Ibrutinib also inhibited BCR-dependent secretion of the chemokines CCL3 and CCL4 by HCL cells. Interestingly, ibrutinib inhibited also CXCL12-induced signalling, a key pathway for bone marrow homing. Collectively, our data support the clinical development of ibrutinib in patients with HCL.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adult
- Agammaglobulinaemia Tyrosine Kinase
- Aged
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Chemokine CCL3/metabolism
- Chemokine CCL4/metabolism
- Chemokine CXCL12/antagonists & inhibitors
- Chemokine CXCL12/physiology
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical/methods
- Female
- Humans
- Leukemia, Hairy Cell/genetics
- Leukemia, Hairy Cell/metabolism
- Leukemia, Hairy Cell/pathology
- Male
- Middle Aged
- Mutation
- Neoplasm Proteins/metabolism
- Phosphorylation/drug effects
- Piperidines
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins B-raf/genetics
- Pyrazoles/administration & dosage
- Pyrazoles/pharmacology
- Pyrimidines/administration & dosage
- Pyrimidines/pharmacology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Signal Transduction/drug effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Mariela Sivina
- Department of Leukemia, The University of Texas, M. D. Anderson Cancer Center, Houston, TX
| | - Robert J. Kreitman
- Laboratory of Molecular Biology, National Cancer Institutes of Health, Bethesda, MD
| | - Evgeny Arons
- Laboratory of Molecular Biology, National Cancer Institutes of Health, Bethesda, MD
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas, M. D. Anderson Cancer Center, Houston, TX
| | - Jan A. Burger
- Department of Leukemia, The University of Texas, M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
26
|
Feng G, Wang X. Role of spleen tyrosine kinase in the pathogenesis of chronic lymphocytic leukemia. Leuk Lymphoma 2014; 55:2699-705. [PMID: 24547708 DOI: 10.3109/10428194.2014.891026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The antigen-dependent B-cell receptor (BCR) is triggered by binding to external antigens and transmits signals in normal B lymphocytes. Tonic signaling through the BCR plays a crucial role in the pathogenesis and progression of chronic lymphocytic leukemia (CLL). Spleen tyrosine kinase (Syk) is a key component of both BCR signals, and regulates multiple physiological functions of B lymphocytes. Studies have defined enhanced gene expression and protein expression of Syk in CLL cells which are closely related to the status of the immunoglobulin heavy chain variable region genes (IgVH). Recently, abrogating the BCR-induced signaling pathway by Syk inhibitors has represented a novel and active therapeutic approach for CLL. Studies of the correlation between Syk and ZAP-70 expression in CLL cells have brought a new perspective to determining the value of Syk in evaluating the effect of therapy and the prognosis of CLL. Therefore, we here review the role of Syk in the pathogenesis of CLL and provide an update of progress in the clinical development of Syk inhibitors.
Collapse
Affiliation(s)
- Gege Feng
- Department of Hematology, Provincial Hospital Affiliated to Shandong University , Jinan, Shandong , P. R. China
| | | |
Collapse
|
27
|
Burger JA, Gribben JG. The microenvironment in chronic lymphocytic leukemia (CLL) and other B cell malignancies: insight into disease biology and new targeted therapies. Semin Cancer Biol 2014; 24:71-81. [PMID: 24018164 DOI: 10.1016/j.semcancer.2013.08.011] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 02/03/2023]
Abstract
Over the last decade, the active role of the microenvironment in the pathogenesis of B cell lymphomas has been recognized, delivering signals that favor clonal expansion and drug resistance. We are only beginning to understand the complex cross talk between neoplastic B cells and the tissue microenvironment, for example in secondary lymphoid organs, but some key cellular and molecular players have emerged. Mesenchymal stromal cells, nurselike cells (NLC) and lymphoma-associated macrophages (LAM), in concert with T cells, natural killer cells and extracellular matrix components participate in the dialog with the neoplastic B cells. B cell receptor signaling, activation via TNF family members (i.e. BAFF, APRIL), and tissue homing chemokine receptors and adhesion molecules are important in the interaction between malignant B cells and their microenvironment. Disrupting this cross talk is an attractive novel strategy for treating patients with B cell malignancies. Here, we summarize the cellular and molecular interactions between B cell lymphoma/leukemia cells and their microenvironment, and the therapeutic targets that are emerging, focusing on small molecule inhibitors that are targeting B cell receptor-associated kinases SYK, BTK, and PI3Ks, as well as on immunomodulatory agents and T cell mediated therapies. Clinically relevant aspects of new targeted therapeutics will be discussed, along with an outlook into future therapeutic strategies.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Adhesion Molecules/genetics
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/therapy
- Molecular Targeted Therapy
- Signal Transduction
- T-Lymphocytes/metabolism
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK.
| |
Collapse
|
28
|
Arnason JE, Brown JR. B cell receptor pathway in chronic lymphocytic leukemia: specific role of CC-292. Immunotargets Ther 2014; 3:29-38. [PMID: 27471698 PMCID: PMC4918232 DOI: 10.2147/itt.s37419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia. The current treatment paradigm involves the use of chemoimmunotherapy, when patients develop an indication for therapy. With this strategy, a majority of patients will obtain a remission, though cure remains elusive. While treatable, the majority of CLL patients will die of complications of their disease. Recent advances in the understanding of the importance of the B cell receptor (BCR) pathway in CLL have led to the development of a number of agents targeting this pathway. In this review, we discuss recent developments in the targeting of the BCR pathway, with a focus on CC-292. CC-292 covalently binds to Bruton's tyrosine kinase, a key mediator of BCR signaling, and has demonstrated preclinical and clinical activity in CLL, with acceptable tolerability. Based on the success of CC-292 and other inhibitors of the BCR pathway, these agents are being investigated in combination with standard therapy, with the hope that they will increase the depth and length of response, without significant toxicity.
Collapse
Affiliation(s)
- Jon E Arnason
- Beth Israel Deaconess Medical Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- CLL Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Abstract
Over the past 3 years, ibrutinib (PCI-32765) has emerged as a breakthrough in targeted therapy for patients with certain types of B cell malignancies. Early stage clinical trials found ibrutinib to be particularly active in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), providing the rationale for ongoing phase 3 trials. In contrast to conventional chemo-immunotherapy, ibrutinib is not myelosuppressive, and responses are not affected by disease features that predict failure to respond to or short remission durations after chemo-immunotherapy, such as del17p. In CLL, ibrutinib characteristically causes an early redistribution of tissue-resident CLL cells into the blood, with rapid resolution of enlarged lymph nodes, along with a surge in lymphocytosis. Later, after weeks to months of continuous ibrutinib therapy, the growth- and survival-inhibitory activities of ibrutinib result in the normalization of lymphocyte counts and remissions in a majority of patients. This review discusses the discovery, preclinical and clinical development of ibrutinib, its pathophysiological basis, and outlines perspectives for future use of ibrutinib.
Collapse
Affiliation(s)
- Jan A Burger
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center , Houston, TX , USA
| | | |
Collapse
|
30
|
Herishanu Y, Katz BZ, Lipsky A, Wiestner A. Biology of chronic lymphocytic leukemia in different microenvironments: clinical and therapeutic implications. Hematol Oncol Clin North Am 2013; 27:173-206. [PMID: 23561469 DOI: 10.1016/j.hoc.2013.01.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of mature monoclonal B cells in peripheral blood, bone marrow, spleen, and lymph nodes. The trafficking, survival, and proliferation of CLL cells is tightly regulated by the surrounding tissue microenvironment and is mediated by antigenic stimulation, close interaction with various accessory cells and exposure to different cytokines, chemokines, and extracellular matrix components. In the last decade there have been major advances in the understanding of the reciprocal interactions between CLL cells and the various microenvironmental compartments. This article discusses the role of the microenvironment in the context of efforts to develop novel therapeutics that target the biology of CLL.
Collapse
Affiliation(s)
- Yair Herishanu
- Hematology Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
| | | | | | | |
Collapse
|
31
|
Plevova K, Francova HS, Burckova K, Brychtova Y, Doubek M, Pavlova S, Malcikova J, Mayer J, Tichy B, Pospisilova S. Multiple productive immunoglobulin heavy chain gene rearrangements in chronic lymphocytic leukemia are mostly derived from independent clones. Haematologica 2013; 99:329-38. [PMID: 24038023 DOI: 10.3324/haematol.2013.087593] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In chronic lymphocytic leukemia, usually a monoclonal disease, multiple productive immunoglobulin heavy chain gene rearrangements are identified sporadically. Prognostication of such cases based on immunoglobulin heavy variable gene mutational status can be problematic, especially if the different rearrangements have discordant mutational status. To gain insight into the possible biological mechanisms underlying the origin of the multiple rearrangements, we performed a comprehensive immunogenetic and immunophenotypic characterization of 31 cases with the multiple rearrangements identified in a cohort of 1147 patients with chronic lymphocytic leukemia. For the majority of cases (25/31), we provide evidence of the co-existence of at least two B lymphocyte clones with a chronic lymphocytic leukemia phenotype. We also identified clonal drifts in serial samples, likely driven by selection forces. More specifically, higher immunoglobulin variable gene identity to germline and longer complementarity determining region 3 were preferred in persistent or newly appearing clones, a phenomenon more pronounced in patients with stereotyped B-cell receptors. Finally, we report that other factors, such as TP53 gene defects and therapy administration, influence clonal selection. Our findings are relevant to clonal evolution in the context of antigen stimulation and transition of monoclonal B-cell lymphocytosis to chronic lymphocytic leukemia.
Collapse
|
32
|
Stankovic T, Skowronska A. The role of ATM mutations and 11q deletions in disease progression in chronic lymphocytic leukemia. Leuk Lymphoma 2013; 55:1227-39. [PMID: 23906020 DOI: 10.3109/10428194.2013.829919] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract ATM gene alteration is a frequent event in pathogenesis of chronic lymphocytic leukemia (CLL) and occurs as monoallelic loss in the form of 11q23 deletion, with and without mutation in the remaining ATM allele. ATM is a principal DNA damage response gene and biallelic ATM alterations lead to ATM functional loss and chemoresistance. The introduction of new therapies, such as intensive chemoimmunotherapy and inhibition of B-cell receptor (BCR) signaling, has changed clinical responses for the majority of CLL tumors including those with 11q deletion, but it remains to be determined whether these strategies can prevent clonal evolution of tumors with biallelic ATM alterations. In this review we discuss ATM function and the consequences of its loss during CLL pathogenesis, differences in clinical behavior of tumors with monoallelic and biallelic ATM alterations, and we outline possible approaches for targeting the ATM null CLL phenotype.
Collapse
Affiliation(s)
- Tatjana Stankovic
- School of Cancer Sciences, University of Birmingham , Birmingham , UK
| | | |
Collapse
|
33
|
Chronic lymphocytic leukemia cells are activated and proliferate in response to specific T helper cells. Cell Rep 2013; 4:566-77. [PMID: 23933259 DOI: 10.1016/j.celrep.2013.07.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 05/27/2013] [Accepted: 07/10/2013] [Indexed: 11/22/2022] Open
Abstract
There is increasing interest in the chronic lymphocytic leukemia (CLL) microenvironment and the mechanisms that may promote CLL cell survival and proliferation. A role for T helper (Th) cells has been suggested, but current evidence is only circumstantial. Here we show that CLL patients had memory Th cells that were specific for endogenous CLL antigens. These Th cells activated autologous CLL cell proliferation in vitro and in human → mouse xenograft experiments. Moreover, CLL cells were efficient antigen-presenting cells that could endocytose and process complex proteins through antigen uptake pathways, including the B cell receptor. Activation of CLL cells by Th cells was contact and CD40L dependent. The results suggest that CLL is driven by ongoing immune responses related to Th cell-CLL cell interaction. We propose that Th cells support malignant B cells and that they could be targeted in the treatment of CLL.
Collapse
|
34
|
Burger JA, Chiorazzi N. B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol 2013; 34:592-601. [PMID: 23928062 DOI: 10.1016/j.it.2013.07.002] [Citation(s) in RCA: 255] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
Abstract
B cell receptor (BCR) signaling plays an important pathogenic role in chronic lymphocytic leukemia (CLL) and B cell lymphomas, based on structural restrictions of the BCR, and BCR-dependent survival and growth of the malignant B cells. In CLL and lymphoma subtypes, ligand-independent ('tonic') and ligand-dependent BCR signaling have been characterized, which can involve mutations of BCR pathway components or be triggered by (auto)antigens present in the tissue microenvironment. In CLL, based on high response rates and durable remissions in early-stage clinical trials, there is rapid clinical development of inhibitors targeting BCR-associated kinases [Bruton's tyrosine kinase (BTK), phosphoinositide 3-kinase (PI3K)δ], which will change treatment paradigms in CLL and other B cell malignancies. Here, we discuss the evolution of this field, from BCR-related prognostic markers, to mechanisms of BCR activation, and targeting of BCR-associated kinases, the emerging Achilles' heel in CLL pathogenesis.
Collapse
MESH Headings
- Animals
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | | |
Collapse
|
35
|
Que X, Widhopf II GF, Amir S, Hartvigsen K, Hansen LF, Woelkers D, Tsimikas S, Binder CJ, Kipps TJ, Witztum JL. IGHV1-69-encoded antibodies expressed in chronic lymphocytic leukemia react with malondialdehyde-acetaldehyde adduct, an immunodominant oxidation-specific epitope. PLoS One 2013; 8:e65203. [PMID: 23840319 PMCID: PMC3688726 DOI: 10.1371/journal.pone.0065203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/17/2013] [Indexed: 01/27/2023] Open
Abstract
The immunoglobulins expressed by chronic lymphocytic leukemia (CLL) B cells are highly restricted, suggesting they are selected for binding either self or foreign antigen. Of the immunoglobulin heavy-chain variable (IGHV) genes expressed in CLL, IGHV1-69 is the most common, and often is expressed with little or no somatic mutation, and restricted IGHD and IGHJ gene usage. We found that antibodies encoded by one particular IGHV1-69 subset, designated CLL69C, with the HCDR3 encoded by the IGHD3-3 gene in reading frame 2 and IGHJ6, specifically bound to oxidation-specific epitopes (OSE), which are products of enhanced lipid peroxidation and a major target of innate natural antibodies. Specifically, CLL69C bound immunodominant OSE adducts termed MAA (malondialdehyde–acetaldehyde-adducts), which are found on apoptotic cells, inflammatory tissues, and atherosclerotic lesions. It also reacted specifically with MAA-specific peptide mimotopes. Light chain shuffling indicated that non-stochastically paired L chain of IGLV3-9 contributes to the antigen binding of CLL69C. A nearly identical CLL69C Ig heavy chain was identified from an MAA-enriched umbilical cord phage displayed Fab library, and a derived Fab with the same HCDR3 rearrangement displayed identical MAA-binding properties. These data support the concept that OSE (MAA-epitopes), which are ubiquitous products of inflammation, may play a role in clonal selection and expansion of CLL B cells.
Collapse
MESH Headings
- Acetaldehyde/immunology
- Adult
- Amino Acid Sequence
- Animals
- Antibodies, Neoplasm/chemistry
- Antibodies, Neoplasm/metabolism
- Antibody Specificity
- Apoptosis
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Base Sequence
- Epitopes/immunology
- HEK293 Cells
- Humans
- Immunoglobulin Heavy Chains/chemistry
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Light Chains/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Lipid Peroxidation
- Lipoproteins, LDL/immunology
- Malondialdehyde/immunology
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Oxidation-Reduction
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Protein Binding
- Rabbits
Collapse
Affiliation(s)
- Xuchu Que
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (XQ); (JLW)
| | - George F. Widhopf II
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Shahzada Amir
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Karsten Hartvigsen
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lotte F. Hansen
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Douglas Woelkers
- Department of Reproductive Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Sotirios Tsimikas
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Christoph J. Binder
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas J. Kipps
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Joseph L. Witztum
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (XQ); (JLW)
| |
Collapse
|
36
|
Ramsay AD, Rodriguez-Justo M. Chronic lymphocytic leukaemia--the role of the microenvironment pathogenesis and therapy. Br J Haematol 2013; 162:15-24. [PMID: 23617880 DOI: 10.1111/bjh.12344] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic lymphocytic leukaemia/small lymphocytic lymphoma (CLL) is one of the more common forms of B cell malignancy. Although the condition has a variable clinical course, the trend is towards eventual relapse and the disease is considered incurable. Whilst the majority of the circulating CD5-positive neoplastic B cells are arrested in the G0 phase of the cell cycle, those in the bone marrow and lymphoid tissues proliferate at a rate of 0·1-1% of the entire clone per day. This proliferation is supported by the tissue microenvironment, which has been shown to induce upregulation of anti-apoptotic proteins and enhance the survival of the neoplastic cells. Microenvironmental factors are also thought to be important in tumour relapse and resistance to therapy. This review outlines the main signalling pathways involved in these tumour cell-stromal interactions, and includes potential therapeutic strategies based on the manipulation of key components within the CLL microenvironment.
Collapse
Affiliation(s)
- Alan D Ramsay
- Department of Cellular Pathology, University College Hospital London, London, UK.
| | | |
Collapse
|
37
|
Burger JA. The CLL cell microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 792:25-45. [PMID: 24014291 DOI: 10.1007/978-1-4614-8051-8_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cross talk between CLL cells and accessory stromal cells in specialized tissue microenvironments, such as the secondary lymphoid organs, favors CLL progression by promoting malignant B cell growth and drug resistance. Disrupting the cross talk between CLL cells and their milieu is an attractive, novel strategy for treating CLL patients. This chapter summarizes current knowledge about cellular and molecular interactions between CLL cells and their supportive tissue microenvironment and the therapeutic targets that are emerging, focusing on the CXCR4-CXCL12 axis and small molecule inhibitors that are targeting the B cell receptor-associated kinases SYK, BTK, and PI3Kδ. Clinically relevant aspects of these new therapeutics will be discussed, along with an outlook into future biologically oriented therapeutic strategies. The rapid progress in dissecting the CLL microenvironment and the promising early results of these new targeted treatments in CLL indicate that CLL has become a role model for microenvironment-dependent cancers.
Collapse
Affiliation(s)
- Jan A Burger
- Unit 428, Department of Leukemia, The University of Texas MD Anderson Cancer Center, 301402, Houston, TX, 77230-1402, USA,
| |
Collapse
|
38
|
Niemann CU, Jones J, Wiestner A. Towards Targeted Therapy of Chronic Lymphocytic Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 792:259-91. [DOI: 10.1007/978-1-4614-8051-8_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|