1
|
Li Y, Chen P, Huang H, Feng H, Ran H, Liu W. Quantification of dendritic cell subsets in human thymus tissues of various ages. IMMUNITY & AGEING 2021; 18:44. [PMID: 34794472 PMCID: PMC8600781 DOI: 10.1186/s12979-021-00255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/28/2021] [Indexed: 12/03/2022]
Abstract
Background Dendritic cells (DCs) in the thymus are involved in central tolerance formation, but they also have other functions in the thymus, such as pathogen recognition. The density changes of human thymic DCs have been hardly investigated. In this study, human thymus samples of various ages were collected for tissue sectioning and staining. The thymic cortex and medulla area as well as the densities of various subsets of thymic DCs were calculated. Results All common DC subsets were found in the human thymus of various ages. Most DCs had accumulated in the human thymic epithelial space, especially the medulla. We also found that the human thymic cortex had atrophied relatively faster than the medulla, which led to a gradual increase of the area ratio of the medulla to cortex with the increase of age. The densities of DC subsets in the human thymus showed various changes with increasing age, which contributed to the composition changes of DC subsets. The density of plasmacytoid DCs (pDCs) in the human thymus had increased gradually with aging, which suggested that pDCs plays another essential role in the thymus in addition to central tolerance. Conclusions Inconsistent with the shrinking of the epithelial space in the thymus, the densities of DC subsets in the epithelial space of the thymus are maintained at a constant level with aging to preserve highly efficient autoreactive thymocyte screening. An increasing density of the thymic pDCs with aging implies an extra function of DCs in the thymus beyond central tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-021-00255-8.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurosurgical Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Pei Chen
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Huang
- Department of Neurology, The First People's Hospital of Nanning, Nanning, 530022, China
| | - Huiyu Feng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Ran
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Weibin Liu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Marx A, Yamada Y, Simon-Keller K, Schalke B, Willcox N, Ströbel P, Weis CA. Thymus and autoimmunity. Semin Immunopathol 2021; 43:45-64. [PMID: 33537838 PMCID: PMC7925479 DOI: 10.1007/s00281-021-00842-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
The thymus prevents autoimmune diseases through mechanisms that operate in the cortex and medulla, comprising positive and negative selection and the generation of regulatory T-cells (Tregs). Egress from the thymus through the perivascular space (PVS) to the blood is another possible checkpoint, as shown by some autoimmune/immunodeficiency syndromes. In polygenic autoimmune diseases, subtle thymic dysfunctions may compound genetic, hormonal and environmental cues. Here, we cover (a) tolerance-inducing cell types, whether thymic epithelial or tuft cells, or dendritic, B- or thymic myoid cells; (b) tolerance-inducing mechanisms and their failure in relation to thymic anatomic compartments, and with special emphasis on human monogenic and polygenic autoimmune diseases and the related thymic pathologies, if known; (c) polymorphisms and mutations of tolerance-related genes with an impact on positive selection (e.g. the gene encoding the thymoproteasome-specific subunit, PSMB11), promiscuous gene expression (e.g. AIRE, PRKDC, FEZF2, CHD4), Treg development (e.g. SATB1, FOXP3), T-cell migration (e.g. TAGAP) and egress from the thymus (e.g. MTS1, CORO1A); (d) myasthenia gravis as the prototypic outcome of an inflamed or disordered neoplastic ‘sick thymus’.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Yosuke Yamada
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, Bezirkskrankenhaus, University of Regensburg, 93042, Regensburg, Germany
| | - Nick Willcox
- Neurosciences Group, Nuffield Department of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttigen, 37075, Göttingen, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
3
|
Abstract
After both sterile and infectious insults, damage is inflicted on tissues leading to accidental or programmed cell death. In addition, events of programmed cell death also take place under homeostatic conditions, such as in embryo development or in the turnover of hematopoietic cells. Mammalian tissues are seeded with myeloid immune cells, which harbor a plethora of receptors that allow the detection of cell death, modulating immune responses. The myeloid C-type lectin receptors (CLRs) are one of the most prominent families of receptors involved in tailoring immunity after sensing dead cells. In this chapter, we will cover a diversity of signals arising from different forms of cell death and how they are recognized by myeloid CLRs. We will also explore how myeloid cells develop their sentinel function, exploring how some of these CLRs identify cell death and the type of responses triggered thereof. In particular, we will focus on DNGR-1 (CLEC9A), Mincle (CLEC4E), CLL-1 (CLEC12A), LOX-1 (OLR1), CD301 (CLEC10A) and DEC-205 (LY75) as paradigmatic death-sensing CLRs expressed by myeloid cells. The molecular processes triggered after cell death recognition by myeloid CLRs contribute to the regulation of immune responses in pathologies associated with tissue damage, such as infection, autoimmunity and cancer. A better understanding of these processes may help to improve the current approaches for therapeutic intervention.
Collapse
|
4
|
Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:1-68. [PMID: 31810551 DOI: 10.1016/bs.ircmb.2019.07.004] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dendritic cells (DCs) are a unique class of immune cells that act as a bridge between innate and adaptive immunity. The discovery of DCs by Cohen and Steinman in 1973 laid the foundation for DC biology, and the advances in the field identified different versions of DCs with unique properties and functions. DCs originate from hematopoietic stem cells, and their differentiation is modulated by Flt3L. They are professional antigen-presenting cells that patrol the environmental interphase, sites of infection, or infiltrate pathological tissues looking for antigens that can be used to activate effector cells. DCs are critical for the initiation of the cellular and humoral immune response and protection from infectious diseases or tumors. DCs can take up antigens using specialized surface receptors such as endocytosis receptors, phagocytosis receptors, and C type lectin receptors. Moreover, DCs are equipped with an array of extracellular and intracellular pattern recognition receptors for sensing different danger signals. Upon sensing the danger signals, DCs get activated, upregulate costimulatory molecules, produce various cytokines and chemokines, take up antigen and process it and migrate to lymph nodes where they present antigens to both CD8 and CD4 T cells. DCs are classified into different subsets based on an integrated approach considering their surface phenotype, expression of unique and conserved molecules, ontogeny, and functions. They can be broadly classified as conventional DCs consisting of two subsets (DC1 and DC2), plasmacytoid DCs, inflammatory DCs, and Langerhans cells.
Collapse
Affiliation(s)
- Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Mansi Saxena
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
5
|
Gabrielsen ISM, Helgeland H, Akselsen H, D. Aass HC, Sundaram AYM, Snowhite IV, Pugliese A, Flåm ST, Lie BA. Transcriptomes of antigen presenting cells in human thymus. PLoS One 2019; 14:e0218858. [PMID: 31261375 PMCID: PMC6602790 DOI: 10.1371/journal.pone.0218858] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Antigen presenting cells (APCs) in the thymus play an essential role in the establishment of central tolerance, i.e. the generation of a repertoire of functional and self-tolerant T cells to prevent autoimmunity. In this study, we have compared the transcriptomes of four primary APCs from human thymus (mTECs, CD19+ B cells, CD141+ and CD123+ DCs). We investigated a set of genes including the HLA genes, genes encoding transcriptional regulators and finally, tissue-enriched genes, i.e, genes with a five-fold higher expression in a particular human tissue. We show that thymic CD141+ DCs express the highest levels of all classical HLA genes and 67% (14/21) of the HLA class I and II pathway genes investigated in this study. CD141+ DCs also expressed the highest levels of the transcriptional regulator DEAF1, whereas AIRE and FEZF2 expression were mainly found in primary human mTECs. We found expression of "tissue enriched genes" from the Human Protein Atlas (HPA) in all four APC types, but the mTECs were clearly dominating in the number of uniquely expressed tissue enriched genes (20% in mTECs, 7% in CD19+ B cells, 4% in CD123+ DCs and 2% in CD141+ DCs). The tissue enriched genes also overlapped with reported human autoantigens. This is, to our knowledge, the first study that performs RNA sequencing of mTECs, CD19+ B cells, CD141+ and CD123+ DCs isolated from the same individuals and provides insight into the transcriptomes of these human thymic APCs.
Collapse
Affiliation(s)
- Ingvild S. M. Gabrielsen
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Hanna Helgeland
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Helle Akselsen
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Hans Christian D. Aass
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Arvind Y. M. Sundaram
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Isaac V. Snowhite
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Alberto Pugliese
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Siri T. Flåm
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Benedicte A. Lie
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Marino M, Ascani S. An overview on the differential diagnostics of tumors of the anterior-superior mediastinum: the pathologist's perspective. MEDIASTINUM (HONG KONG, CHINA) 2019; 3:6. [PMID: 35118235 PMCID: PMC8794348 DOI: 10.21037/med.2018.12.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/06/2018] [Indexed: 11/06/2022]
Abstract
The thymus is the main organ in the (anterior) (pre-vascular) mediastinum, playing a central role in the maintenance of both cellular and humoral immunity. The function of the thymus has been long underlooked due to its involution starting during young adulthood and unawareness regarding its immunological function. A variety of primary tumors and inflammatory/reactive/disreactive processes occur in the mediastinum and may involve the anterior-superior compartment and the thymus. Maldevelopment processes also take place in the pre-vascular compartment mediastinum. Although infective diseases do not currently represent the main processes in western countries, they may represent a diagnostic challenge in developing countries. The purpose of this review is to provide a short overview of the main thymic cellular components, their tumors, pseudotumors, in order to provide insights into their clinical setting and the features which assist pathologists in their differential diagnosis (DD). Specific differential diagnostic points are provided, both for "solid" tumors as well as for haematological malignancies, together with a morphological overview of cases of concern that occur in the anterior mediastinum. The main immunohistochemical characteristics of neoplastic/non-neoplastic pathology and updated specific references are also provided.
Collapse
Affiliation(s)
- Mirella Marino
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Ascani
- Pathology Unit, Perugia University, Ospedale S. Maria, Terni, Italy
| |
Collapse
|
7
|
Abstract
Dendritic cells (DC) are professional antigen presenting cells comprising a variety of subsets, as either resident or migrating cells, in lymphoid and non-lymphoid organs. In the steady state DC continually process and present antigens on MHCI and MHCII, processes that are highly upregulated upon activation. By expressing differential sets of pattern recognition receptors different DC subsets are able to respond to a range of pathogenic and danger stimuli, enabling functional specialisation of the DC. The knowledge of functional specialisation of DC subsets is key to efficient priming of T cells, to the design of effective vaccine adjuvants and to understanding the role of different DC in health and disease. This review outlines mouse and human steady state DC subsets and key attributes that define their distinct functions.
Collapse
|
8
|
Kruglova NA, Meshkova TD, Kopylov AT, Mazurov DV, Filatov AV. Constitutive and activation-dependent phosphorylation of lymphocyte phosphatase-associated phosphoprotein (LPAP). PLoS One 2017; 12:e0182468. [PMID: 28827793 PMCID: PMC5565103 DOI: 10.1371/journal.pone.0182468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 07/19/2017] [Indexed: 12/15/2022] Open
Abstract
Lymphocyte phosphatase-associated phosphoprotein (LPAP) is a small transmembrane protein expressed exclusively in lymphocytes. LPAP is a component of a supramolecular complex composed of the phosphatase CD45, the co-receptor CD4, and the kinase Lck. In contrast to its immunologically important partners, the function of LPAP is unknown. We hypothesized that the biological role of LPAP may be determined by analyzing LPAP phosphorylation. In the present study, we identified LPAP phosphorylation sites by site-directed mutagenesis, phospho-specific antibodies, and protein immunoprecipitation coupled to mass spectrometry analysis. Our results confirmed previous reports that Ser-99, Ser-153, and Ser-163 are phosphorylated, as well as provided evidence for the phosphorylation of Ser-172. Using various SDS-PAGE techniques, we detected and quantified a set of LPAP phosphoforms that were assigned to a combination of particular phosphorylation events. The phosphorylation of LPAP appears to be a tightly regulated process. Our results support the model: following phorbol 12-myristate 13-acetate (PMA) or TCR/CD3 activation of T cells, LPAP is rapidly dephosphorylated at Ser-99 and Ser-172 and slowly phosphorylated at Ser-163. Ser-153 exhibited a high basal level of phosphorylation in both resting and activated cells. Therefore, we suggest that LPAP may function as a co-regulator of T-cell signaling.
Collapse
|
9
|
Seet CS, He C, Bethune MT, Li S, Chick B, Gschweng EH, Zhu Y, Kim K, Kohn DB, Baltimore D, Crooks GM, Montel-Hagen A. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids. Nat Methods 2017; 14:521-530. [PMID: 28369043 PMCID: PMC5426913 DOI: 10.1038/nmeth.4237] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/03/2017] [Indexed: 01/08/2023]
Abstract
Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3+TCRab+ single positive (SP) CD8+ or CD4+ cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports highly efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naïve phenotypes, a diverse TCR repertoire, and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen specific cytotoxicity and near complete lack of endogenous TCR Vβ expression, consistent with allelic exclusion of Vβ loci. ATOs provide a robust tool for studying human T cell development and stem cell based approaches to engineered T cell therapies.
Collapse
Affiliation(s)
- Christopher S Seet
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Chongbin He
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| | - Michael T Bethune
- Division of Biology and Biological Engineering, California Institute of Technology (Caltech), Pasadena, California, USA
| | - Suwen Li
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| | - Brent Chick
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| | - Eric H Gschweng
- Department of Microbiology, Immunology and Molecular Genetics, DGSOM, UCLA, Los Angeles, California, USA
| | - Yuhua Zhu
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| | - Kenneth Kim
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, DGSOM, UCLA, Los Angeles, California, USA.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, DGSOM, UCLA, Los Angeles, California, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology (Caltech), Pasadena, California, USA
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, DGSOM, UCLA, Los Angeles, California, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - Amélie Montel-Hagen
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| |
Collapse
|
10
|
Wu K, Zhao M, Ma C, Zhang H, Liu X, Zhou L, Zhao J, Gao L, Wang D. Thyrotropin Alters T Cell Development in the Thymus in Subclinical Hypothyroidism Mouse Model. Scand J Immunol 2017; 85:35-42. [PMID: 27864993 DOI: 10.1111/sji.12507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023]
Abstract
Subclinical hypothyroidism (SCH) is highly prevalent in the general population and is associated with potential deleterious effects. Although developing T cells express thyroid-stimulating hormone receptor (TSH-R), the changes of T cell development in thymus in SCH have not been fully clarified. SCH mouse model, which is characterized by elevated serum TSH but similar thyroid hormone levels, was used to study the role of TSH in T cell development. Thymus weight of SCH mice increased 18% compared with controls. Importantly, the frequencies of CD4+ and CD8+ single-positive (SP) thymocytes increased 38% and 44%, respectively. We demonstrated that TSH protected thymocytes from apoptosis as evidenced by a significant decrease of Annexin V-positive thymocytes in SCH mice. Further analysis showed that extracellular-regulated kinases (ERK) 1/2 in thymus were activated in SCH mice. With analysis of T cell receptor excision circles (TREC), we found that TSH increased recent thymic emigrants (RTE) in spleen tissue in SCH mice. Thus, these results suggest that TSH promoted T cell development and enhanced the thymic recent output in SCH mice, possibly by suppression of apoptosis of thymocytes, indicating that modification of the ERK signalling pathways.
Collapse
Affiliation(s)
- K Wu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - M Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - C Ma
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - H Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - X Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - L Zhou
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - J Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - L Gao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China.,Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - D Wang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Schwartz JA, Clayton KL, Mujib S, Zhang H, Rahman AKMNU, Liu J, Yue FY, Benko E, Kovacs C, Ostrowski MA. Tim-3 is a Marker of Plasmacytoid Dendritic Cell Dysfunction during HIV Infection and Is Associated with the Recruitment of IRF7 and p85 into Lysosomes and with the Submembrane Displacement of TLR9. THE JOURNAL OF IMMUNOLOGY 2017; 198:3181-3194. [PMID: 28264968 DOI: 10.4049/jimmunol.1601298] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/08/2017] [Indexed: 12/21/2022]
Abstract
In chronic diseases, such as HIV infection, plasmacytoid dendritic cells (pDCs) are rendered dysfunctional, as measured by their decreased capacity to produce IFN-α. In this study, we identified elevated levels of T cell Ig and mucin-domain containing molecule-3 (Tim-3)-expressing pDCs in the blood of HIV-infected donors. The frequency of Tim-3-expressing pDCs correlated inversely with CD4 T cell counts and positively with HIV viral loads. A lower frequency of pDCs expressing Tim-3 produced IFN-α or TNF-α in response to the TLR7 agonists imiquimod and Sendai virus and to the TLR9 agonist CpG. Thus, Tim-3 may serve as a biomarker of pDC dysfunction in HIV infection. The source and function of Tim-3 was investigated on enriched pDC populations from donors not infected with HIV. Tim-3 induction was achieved in response to viral and artificial stimuli, as well as exogenous IFN-α, and was PI3K dependent. Potent pDC-activating stimuli, such as CpG, imiquimod, and Sendai virus, induced the most Tim-3 expression and subsequent dysfunction. Small interfering RNA knockdown of Tim-3 increased IFN-α secretion in response to activation. Intracellular Tim-3, as measured by confocal microscopy, was dispersed throughout the cytoplasm prior to activation. Postactivation, Tim-3 accumulated at the plasma membrane and associated with disrupted TLR9 at the submembrane. Tim-3-expressing pDCs had reduced IRF7 levels. Furthermore, intracellular Tim-3 colocalized with p85 and IRF7 within LAMP1+ lysosomes, suggestive of a role in degradation. We conclude that Tim-3 is a biomarker of dysfunctional pDCs and may negatively regulate IFN-α, possibly through interference with TLR signaling and recruitment of IRF7 and p85 into lysosomes, enhancing their degradation.
Collapse
Affiliation(s)
- Jordan Ari Schwartz
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kiera L Clayton
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shariq Mujib
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hongliang Zhang
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - A K M Nur-Ur Rahman
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jun Liu
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Feng Yun Yue
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Erika Benko
- Maple Leaf Clinic, Toronto, Ontario M5G 1K2, Canada
| | - Colin Kovacs
- Maple Leaf Clinic, Toronto, Ontario M5G 1K2, Canada
| | - Mario A Ostrowski
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; .,Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Clinical Science Division, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|