1
|
Xu S, Dai B, Cheng H, Tai L, Lang L, Sun Y, Shi Z, Wang KL, Zhao W. Electric-Field Control of Spin Diffusion Length and Electric-Assisted D'yakonov-Perel' Mechanism in Ultrathin Heavy Metal and Ferromagnetic Insulator Heterostructure. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6368. [PMID: 36143680 PMCID: PMC9501297 DOI: 10.3390/ma15186368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Electric-field control of spin dynamics is significant for spintronic device applications. Thus far, effectively electric-field control of magnetic order, magnetic damping factor and spin-orbit torque (SOT) has been studied in magnetic materials, but the electric field control of spin relaxation still remains unexplored. Here, we use ionic liquid gating to control spin-related property in the ultra-thin (4 nm) heavy metal (HM) platinum (Pt) and ferromagnetic insulator (FMI) yttrium iron garnet (Y3Fe5O12, YIG) heterostructure. It is found that the anomalous Hall effect (AHE), spin relaxation time and spin diffusion length can be effectively controlled by the electric field. The anomalous Hall resistance is almost twice as large as at 0 voltage after applying a small voltage of 5.5 V. The spin relaxation time can vary by more than 50 percent with the electric field, from 41.6 to 64.5 fs. In addition, spin relaxation time at different gate voltage follows the reciprocal law of the electron momentum scattering time, which indicates that the D'yakonov-Perel' mechanism is dominant in the Pt/YIG system. Furthermore, the spin diffusion length can be effectively controlled by an ionic gate, which can be well explained by voltage-modulated interfacial spin scattering. These results help us to improve the interface spin transport properties in magnetic materials, with great contributions to the exploration of new physical mechanisms and spintronics device.
Collapse
Affiliation(s)
- Shijie Xu
- Fert Beijing Institute, Ministry of Industry and Information Technology Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
- Shanghai Key Laboratory of Special Artificial Microstructure, Pohl Institute of Solid State Physics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Hefei Innovation Research Institute, Anhui High Reliability Chips Engineering Laboratory, Beihang University, Hefei 230013, China
| | - Bingqian Dai
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
| | - Houyi Cheng
- Fert Beijing Institute, Ministry of Industry and Information Technology Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
- Hefei Innovation Research Institute, Anhui High Reliability Chips Engineering Laboratory, Beihang University, Hefei 230013, China
| | - Lixuan Tai
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
| | - Lili Lang
- Shanghai Key Laboratory of Special Artificial Microstructure, Pohl Institute of Solid State Physics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yadong Sun
- Shanghai Key Laboratory of Special Artificial Microstructure, Pohl Institute of Solid State Physics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhong Shi
- Shanghai Key Laboratory of Special Artificial Microstructure, Pohl Institute of Solid State Physics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kang L. Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
| | - Weisheng Zhao
- Fert Beijing Institute, Ministry of Industry and Information Technology Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
- Hefei Innovation Research Institute, Anhui High Reliability Chips Engineering Laboratory, Beihang University, Hefei 230013, China
| |
Collapse
|
2
|
Shen RS, Guo YD, Yan XH, Zeng HL, Liang MS, Chen P, Yang MS, Ni Y. Electrically controlled spin reversal and spin polarization of electronic transport in nanoporous graphene nanoribbons. Phys Chem Chem Phys 2021; 23:20702-20708. [PMID: 34516595 DOI: 10.1039/d1cp02547c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on first-principles calculations, the spin-dependent electronic transport of nanoporous graphene nanoribbons is investigated. A three-terminal configuration is proposed, which can electronically control the spin polarization of transmission, instead of magnetic methods. By modulating the gate voltage, not only could the transmission be switched between completely spin up and spin down polarized states to realize a dual-spin filter, but also the spin polarization could be finely tuned between 100% and -100%. Any ratio of spin up to spin down transport electrons can be realized, providing more possibilities for the design of nanoelectronic devices. Further analysis shows that the transmission spectra, with two distinct transmission peaks with opposite spins around EF, are the key point, which are contributed by p orbitals. And such a phenomenon is robust to the width and length of the nanoporous graphene nanoribbons, suggesting that it is an intrinsic feature of these systems. The electrical control on spin polarization is realized in pure-carbon systems, showing great application potential.
Collapse
Affiliation(s)
- Rui-Song Shen
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yan-Dong Guo
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China. .,Key Laboratory of Radio Frequency and Micro Nano Electronics of Jiangsu Province, Nanjing 210023, China
| | - Xiao-Hong Yan
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China. .,Key Laboratory of Radio Frequency and Micro Nano Electronics of Jiangsu Province, Nanjing 210023, China.,College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.,School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hong-Li Zeng
- College of Natural Science, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
| | - Miao-Shen Liang
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Pei Chen
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Mou-Shu Yang
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yang Ni
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|