1
|
Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, Cheng Q, Luo P, Zhang Y, Han X. Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther 2023; 8:200. [PMID: 37179335 PMCID: PMC10182360 DOI: 10.1038/s41392-023-01451-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Infection susceptibility, poor vaccination efficacy, age-related disease onset, and neoplasms are linked to innate and adaptive immune dysfunction that accompanies aging (known as immunosenescence). During aging, organisms tend to develop a characteristic inflammatory state that expresses high levels of pro-inflammatory markers, termed inflammaging. This chronic inflammation is a typical phenomenon linked to immunosenescence and it is considered the major risk factor for age-related diseases. Thymic involution, naïve/memory cell ratio imbalance, dysregulated metabolism, and epigenetic alterations are striking features of immunosenescence. Disturbed T-cell pools and chronic antigen stimulation mediate premature senescence of immune cells, and senescent immune cells develop a proinflammatory senescence-associated secretory phenotype that exacerbates inflammaging. Although the underlying molecular mechanisms remain to be addressed, it is well documented that senescent T cells and inflammaging might be major driving forces in immunosenescence. Potential counteractive measures will be discussed, including intervention of cellular senescence and metabolic-epigenetic axes to mitigate immunosenescence. In recent years, immunosenescence has attracted increasing attention for its role in tumor development. As a result of the limited participation of elderly patients, the impact of immunosenescence on cancer immunotherapy is unclear. Despite some surprising results from clinical trials and drugs, it is necessary to investigate the role of immunosenescence in cancer and other age-related diseases.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Qimeng Liang
- Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 4500052, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Tian Y, Morin-Poulard I, Liu X, Vanzo N, Crozatier M. A mechanosensitive vascular niche for Drosophila hematopoiesis. Proc Natl Acad Sci U S A 2023; 120:e2217862120. [PMID: 37094122 PMCID: PMC10160988 DOI: 10.1073/pnas.2217862120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/09/2023] [Indexed: 04/26/2023] Open
Abstract
Hematopoietic stem and progenitor cells maintain blood cell homeostasis by integrating various cues provided by specialized microenvironments or niches. Biomechanical forces are emerging as key regulators of hematopoiesis. Here, we report that mechanical stimuli provided by blood flow in the vascular niche control Drosophila hematopoiesis. In vascular niche cells, the mechanosensitive channel Piezo transduces mechanical forces through intracellular calcium upregulation, leading to Notch activation and repression of FGF ligand transcription, known to regulate hematopoietic progenitor maintenance. Our results provide insight into how the vascular niche integrates mechanical stimuli to regulate hematopoiesis.
Collapse
Affiliation(s)
- Yushun Tian
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Ismaël Morin-Poulard
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Xiaohui Liu
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Nathalie Vanzo
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Michèle Crozatier
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| |
Collapse
|
3
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
4
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Mobasheri A, Trumble TN, Byron CR. Editorial: One Step at a Time: Advances in Osteoarthritis. Front Vet Sci 2021; 8:727477. [PMID: 34336985 PMCID: PMC8322576 DOI: 10.3389/fvets.2021.727477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| | - Troy N. Trumble
- Veterinary Population Medicine, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Christopher R. Byron
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
6
|
Jimeno-Almazán A, Pallarés JG, Buendía-Romero Á, Martínez-Cava A, Franco-López F, Sánchez-Alcaraz Martínez BJ, Bernal-Morel E, Courel-Ibáñez J. Post-COVID-19 Syndrome and the Potential Benefits of Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5329. [PMID: 34067776 PMCID: PMC8156194 DOI: 10.3390/ijerph18105329] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/25/2023]
Abstract
The coronavirus disease (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection, is leading to unknown and unusual health conditions that are challenging to manage. Post-COVID-19 syndrome is one of those challenges, having become increasingly common as the pandemic evolves. The latest estimates suggest that 10 to 20% of the SARS-CoV-2 patients who undergo an acute symptomatic phase are experiencing effects of the disease beyond 12 weeks after diagnosis. Although research is beginning to examine this new condition, there are still serious concerns about the diagnostic identification, which limits the best therapeutic approach. Exercise programs and physical activity levels are well-known modulators of the clinical manifestations and prognosis in many chronic diseases. This narrative review summarizes the up-to-date evidence on post-COVID-19 syndrome to contribute to a better knowledge of the disease and explains how regular exercise may improve many of these symptoms and could reduce the long-term effects of COVID-19.
Collapse
Affiliation(s)
- Amaya Jimeno-Almazán
- Department of Infectious Diseases, Hospital Universitario Santa Lucía, Cartagena, 30202 Murcia, Spain;
- Human Performance & Sport Sciences Laboratory, University of Murcia, 30720 Murcia, Spain; (J.G.P.); (Á.B.-R.); (A.M.-C.); (F.F.-L.)
| | - Jesús G. Pallarés
- Human Performance & Sport Sciences Laboratory, University of Murcia, 30720 Murcia, Spain; (J.G.P.); (Á.B.-R.); (A.M.-C.); (F.F.-L.)
| | - Ángel Buendía-Romero
- Human Performance & Sport Sciences Laboratory, University of Murcia, 30720 Murcia, Spain; (J.G.P.); (Á.B.-R.); (A.M.-C.); (F.F.-L.)
| | - Alejandro Martínez-Cava
- Human Performance & Sport Sciences Laboratory, University of Murcia, 30720 Murcia, Spain; (J.G.P.); (Á.B.-R.); (A.M.-C.); (F.F.-L.)
| | - Francisco Franco-López
- Human Performance & Sport Sciences Laboratory, University of Murcia, 30720 Murcia, Spain; (J.G.P.); (Á.B.-R.); (A.M.-C.); (F.F.-L.)
| | | | - Enrique Bernal-Morel
- Department of Infectious Diseases, Hospital General Universitario Reina Sofía, University of Murcia, IMIB, 30003 Murcia, Spain;
| | - Javier Courel-Ibáñez
- Human Performance & Sport Sciences Laboratory, University of Murcia, 30720 Murcia, Spain; (J.G.P.); (Á.B.-R.); (A.M.-C.); (F.F.-L.)
- Department of Physical Training, Post-COVID-19 Rehabilitation Unit, Hospital QuirónSalud, 30011 Murcia, Spain
| |
Collapse
|
7
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Laparra JM, Boscá L. NOD1-Targeted Immunonutrition Approaches: On the Way from Disease to Health. Biomedicines 2021; 9:biomedicines9050519. [PMID: 34066406 PMCID: PMC8148154 DOI: 10.3390/biomedicines9050519] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Immunonutrition appears as a field with great potential in modern medicine. Since the immune system can trigger serious pathophysiological disorders, it is essential to study and implement a type of nutrition aimed at improving immune system functioning and reinforcing it individually for each patient. In this sense, the nucleotide-binding oligomerization domain-1 (NOD1), one of the members of the pattern recognition receptors (PRRs) family of innate immunity, has been related to numerous pathologies, such as cancer, diabetes, or cardiovascular diseases. NOD1, which is activated by bacterial-derived peptidoglycans, is known to be present in immune cells and to contribute to inflammation and other important pathways, such as fibrosis, upon recognition of its ligands. Since immunonutrition is a significant developing research area with much to discover, we propose NOD1 as a possible target to consider in this field. It is relevant to understand the cellular and molecular mechanisms that modulate the immune system and involve the activation of NOD1 in the context of immunonutrition and associated pathological conditions. Surgical or pharmacological treatments could clearly benefit from the synergy with specific and personalized nutrition that even considers the health status of each subject.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
- Correspondence: (S.G.-R.); (L.B.); Tel.: +34-91-497-2747 (L.B.)
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas (CIBERehd), 28029 Madrid, Spain
| | - José M. Laparra
- Madrid Institute for Advanced studies in Food (IMDEA Food), Ctra. Cantoblanco 8, 28049 Madrid, Spain;
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
- Correspondence: (S.G.-R.); (L.B.); Tel.: +34-91-497-2747 (L.B.)
| |
Collapse
|