1
|
Campos DP, Granger-Neto HP, Júnior JES, Faux P, Santos FR. Population Genomics of the Critically Endangered Brazilian Merganser. Animals (Basel) 2023; 13:3759. [PMID: 38136797 PMCID: PMC10741106 DOI: 10.3390/ani13243759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The Brazilian merganser (Mergus octosetaceus) is one of the most endangered bird species in South America and comprises less than 250 mature individuals in wild environments. This is a species extremely sensitive to environmental disturbances and restricted to a few "pristine" freshwater habitats in Brazil, and it has been classified as Critically Endangered on the IUCN Red List since 1994. Thus, biological conservation studies are vital to promote adequate management strategies and to avoid the decline of merganser populations. In this context, to understand the evolutionary dynamics and the current genetic diversity of remaining Brazilian merganser populations, we used the "Genotyping by Sequencing" approach to genotype 923 SNPs in 30 individuals from all known areas of occurrence. These populations revealed a low genetic diversity and high inbreeding levels, likely due to the recent population decline associated with habitat loss. Furthermore, it showed a moderate level of genetic differentiation between all populations located in four separated areas of the highly threatened Cerrado biome. The results indicate that urgent actions for the conservation of the species should be accompanied by careful genetic monitoring to allow appropriate in situ and ex situ management to increase the long-term species' survival in its natural environment.
Collapse
Affiliation(s)
- Davidson P. Campos
- Department of Genetics, Ecology and Evolution, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.P.C.); (H.P.G.-N.); (J.E.S.J.)
| | - Henry Paul Granger-Neto
- Department of Genetics, Ecology and Evolution, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.P.C.); (H.P.G.-N.); (J.E.S.J.)
| | - José E. Santos Júnior
- Department of Genetics, Ecology and Evolution, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.P.C.); (H.P.G.-N.); (J.E.S.J.)
| | - Pierre Faux
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet-Tolosan, France;
| | - Fabrício R. Santos
- Department of Genetics, Ecology and Evolution, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.P.C.); (H.P.G.-N.); (J.E.S.J.)
| |
Collapse
|
2
|
Bánfai Z, Kövesdi E, Sümegi K, Büki G, Szabó A, Magyari L, Ádám V, Pálos F, Miseta A, Kásler M, Melegh B. Characterization of Danube Swabian population samples on a high-resolution genome-wide basis. BMC Genomics 2023; 24:9. [PMID: 36624381 PMCID: PMC9830925 DOI: 10.1186/s12864-022-09092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND German-derived ethnicities are one of the largest ethnic groups in Hungary, dating back to the formation of the Kingdom of Hungary, which took place at the beginning of the 11th century. Germans arrived in Hungary in many waves. The most significant immigration wave took place following the collapse of the Ottoman Empire in East-Central Europe which closed the 150 year long Ottoman occupation. To date, there are no comprehensive genome-wide studies investigating the genetic makeup of the Danube Swabians. Here we analyzed 47 Danube Swabian samples collected from elderly Swabian individuals living in the Dunaszekcső-Bár area, in Danube side villages of Southwest Hungary. These Swabians, according to self-declaration, did not admix with other ethnic groups for 3-6 succeeding generations. Using Illumina Infinium 720 K Beadchip genotype data, we applied allele frequency-based and haplotype-based genome-wide marker data analyses to investigate the ancestry and genetic composition of the collected Danube Swabian samples. RESULTS Haplotype-based analyses like identity by descent segment analysis show that the investigated Danube Swabians possess significant German and other West European ancestry, but their Hungarian ancestry is also prominent. Our results suggest that their main source of ancestry can be traced back to Western Europe, presumably to the region of Germany. CONCLUSION This is the first analysis of Danube Swabian population samples based on genome-wide autosomal data. Our results establish the basis for conducting further comprehensive research on Danube Swabians and on other German ethnicities of the Carpathian basin, which can help reconstruct their origin, and identify their major archaic genomic patterns.
Collapse
Affiliation(s)
- Zsolt Bánfai
- grid.9679.10000 0001 0663 9479Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary
| | - Erzsébet Kövesdi
- grid.9679.10000 0001 0663 9479Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Institute of Physiology, Medical School, Hungary, University of Pécs, Ifjúság út 12, H-7624 Pécs, Hungary
| | - Katalin Sümegi
- grid.9679.10000 0001 0663 9479Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Gergely Büki
- grid.9679.10000 0001 0663 9479Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary
| | - András Szabó
- grid.9679.10000 0001 0663 9479Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary
| | - Lili Magyari
- grid.9679.10000 0001 0663 9479Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary
| | - Valerián Ádám
- grid.9679.10000 0001 0663 9479Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Ferenc Pálos
- grid.9679.10000 0001 0663 9479Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Attila Miseta
- grid.9679.10000 0001 0663 9479Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság út 13, H-7624 Pécs, Hungary
| | - Miklós Kásler
- grid.419617.c0000 0001 0667 8064National Institute of Oncology, Ráth György u. 7-9, H-1122 Budapest, Hungary
| | - Béla Melegh
- grid.9679.10000 0001 0663 9479Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary
| |
Collapse
|
3
|
Herzig AF, Ciullo M, Leutenegger AL, Perdry H. Moment estimators of relatedness from low-depth whole-genome sequencing data. BMC Bioinformatics 2022; 23:254. [PMID: 35751014 PMCID: PMC9233360 DOI: 10.1186/s12859-022-04795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Background Estimating relatedness is an important step for many genetic study designs. A variety of methods for estimating coefficients of pairwise relatedness from genotype data have been proposed. Both the kinship coefficient \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varphi$$\end{document}φ and the fraternity coefficient \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\psi$$\end{document}ψ for all pairs of individuals are of interest. However, when dealing with low-depth sequencing or imputation data, individual level genotypes cannot be confidently called. To ignore such uncertainty is known to result in biased estimates. Accordingly, methods have recently been developed to estimate kinship from uncertain genotypes. Results We present new method-of-moment estimators of both the coefficients \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varphi$$\end{document}φ and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\psi$$\end{document}ψ calculated directly from genotype likelihoods. We have simulated low-depth genetic data for a sample of individuals with extensive relatedness by using the complex pedigree of the known genetic isolates of Cilento in South Italy. Through this simulation, we explore the behaviour of our estimators, demonstrate their properties, and show advantages over alternative methods. A demonstration of our method is given for a sample of 150 French individuals with down-sampled sequencing data. Conclusions We find that our method can provide accurate relatedness estimates whilst holding advantages over existing methods in terms of robustness, independence from external software, and required computation time. The method presented in this paper is referred to as LowKi (Low-depth Kinship) and has been made available in an R package (https://github.com/genostats/LowKi). Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04795-8.
Collapse
Affiliation(s)
| | - M Ciullo
- Institute of Genetics and Biophysics A. Buzzati-Traverso - CNR, Naples, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | | | - A-L Leutenegger
- Inserm, Université Paris Cité, UMR 1141, NeuroDiderot, 75019, Paris, France
| | - H Perdry
- CESP Inserm U1018, Université Paris-Saclay, UVSQ, Villejuif, France
| |
Collapse
|
4
|
Ruggiero D, Nutile T, Nappo S, Tirozzi A, Bellenguez C, Leutenegger AL, Ciullo M. Genetics of PlGF plasma levels highlights a role of its receptors and supports the link between angiogenesis and immunity. Sci Rep 2021; 11:16821. [PMID: 34413389 PMCID: PMC8376970 DOI: 10.1038/s41598-021-96256-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
Placental growth factor (PlGF) is a member of the vascular endothelial growth factor family and is involved in bone marrow-derived cell activation, endothelial stimulation and pathological angiogenesis. High levels of PlGF have been observed in several pathological conditions especially in cancer, cardiovascular, autoimmune and inflammatory diseases. Little is known about the genetics of circulating PlGF levels. Indeed, although the heritability of circulating PlGF levels is around 40%, no studies have assessed the relation between PlGF plasma levels and genetic variants at a genome-wide level. In the current study, PlGF plasma levels were measured in a population-based sample of 2085 adult individuals from three isolated populations of South Italy. A GWAS was performed in a discovery cohort (N = 1600), followed by a de novo replication (N = 468) from the same populations. The meta-analysis of the discovery and replication samples revealed one signal significantly associated with PlGF circulating levels. This signal was mapped to the PlGF co-receptor coding gene NRP1, indicating its important role in modulating the PlGF plasma levels. Two additional signals, at the PlGF receptor coding gene FLT1 and RAPGEF5 gene, were identified at a suggestive level. Pathway and TWAS analyses highlighted genes known to be involved in angiogenesis and immune response, supporting the link between these processes and PlGF regulation. Overall, these data improve our understanding of the genetic variation underlying circulating PlGF levels. This in turn could lead to new preventive and therapeutic strategies for a wide variety of PlGF-related pathologies.
Collapse
Affiliation(s)
- Daniela Ruggiero
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", National Research Council of Italy (CNR), Via Pietro Castellino, 111, 80131, Naples, Italy.
- IRCCS Neuromed, Pozzilli, Isernia, Italy.
| | - Teresa Nutile
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", National Research Council of Italy (CNR), Via Pietro Castellino, 111, 80131, Naples, Italy
| | | | | | - Celine Bellenguez
- CHU Lille, U1167 - Labex DISTALZ - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Inserm, Institut Pasteur de Lille, Univ. Lille, 59000, Lille, France
| | - Anne-Louise Leutenegger
- UMR 946, Genetic Variation and Human Diseases, Inserm, 75010, Paris, France
- UMR946, Université Paris-Diderot, Sorbonne Paris Cité, 75010, Paris, France
| | - Marina Ciullo
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", National Research Council of Italy (CNR), Via Pietro Castellino, 111, 80131, Naples, Italy.
- IRCCS Neuromed, Pozzilli, Isernia, Italy.
| |
Collapse
|
5
|
Sadeghi R, Moradi-Shahrbabak M, Miraei Ashtiani SR, Schlamp F, Cosgrove EJ, Antczak DF. Genetic Diversity of Persian Arabian Horses and Their Relationship to Other Native Iranian Horse Breeds. J Hered 2020; 110:173-182. [PMID: 30590570 DOI: 10.1093/jhered/esy061] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
The principal aims of this study were to explore genetic diversity and genome-wide selection signatures in Persian Arabian horses and to determine genetic relationship of Persian Arabians with other Iranian horse breeds. We evaluated 71 horses from 8 matrilineal strains tracing to 47 mares from the mid to late 19th century, using the equine 670k single nucleotide polymorphism (SNP) BeadChip. Mean observed and expected heterozygosity were (0.43) and (0.45), respectively, average inbreeding measures (inbreeding estimates based on runs of homozygosity and pedigree information) were low, indicating high genetic diversity in Persian Arabian horses. Analysis of population genetic structure using STRUCTURE and principal component analysis suggested that Persian Arabian horses can be divided into 3 groups, however the groups do not match traditional matrilineal strains. In total, 15 genomic regions were identified by at least 2 of the 3 implemented methods, Tajima's D, H, and H12, as potentially under selection in Persian Arabian horses. Most of these peaks were found on chromosome 9, overlapping with QTLs previously associated with horse temperament. Biological function analysis of identified candidate genes highlighted enrichment of GO term "response to lipopolysaccharide" and KEGG pathway "chemokine-mediated signaling pathway," which are associated with immune responses and may have been targets of selection in Persian Arabian horses. Independent analyses of SNP data from 30 horses of 4 other Iranian breeds suggested distinct population structure between Persian Arabian, and Turkemen and Caspian horse breeds. Overall, the results of this study suggest a rich genetic diversity in the Persian Arabian horses and a clear genetic differentiation with Turkemen and Caspian breeds.
Collapse
Affiliation(s)
- Raheleh Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.,Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Mohammad Moradi-Shahrbabak
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Seyed Reza Miraei Ashtiani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Florencia Schlamp
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY
| | - Elissa J Cosgrove
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY
| | - Doug F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
6
|
Inter-individual genomic heterogeneity within European population isolates. PLoS One 2019; 14:e0214564. [PMID: 31596857 PMCID: PMC6785074 DOI: 10.1371/journal.pone.0214564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
A number of studies carried out since the early ‘70s has investigated the effects of isolation on genetic variation within and among human populations in diverse geographical contexts. However, no extensive analysis has been carried out on the heterogeneity among genomes within isolated populations. This issue is worth exploring since events of recent admixture and/or subdivision could potentially disrupt the genetic homogeneity which is to be expected when isolation is prolonged and constant over time. Here, we analyze literature data relative to 87,815 autosomal single-nucleotide polymorphisms, which were obtained from a total of 28 European populations. Our results challenge the traditional paradigm of population isolates as structured as genetically (and genomically) uniform entities. In fact, focusing on the distribution of variance of intra-population diversity measures across individuals, we show that the inter-individual heterogeneity of isolated populations is at least comparable to the open ones. More in particular, three small and highly inbred isolates (Sappada, Sauris and Timau in Northeastern Italy) were found to be characterized by levels of inter-individual heterogeneity largely exceeding that of all other populations, possibly due to relatively recent events of genetic introgression. Finally, we propose a way to monitor the effects of inter-individual heterogeneity in disease-gene association studies.
Collapse
|
7
|
Nutile T, Ruggiero D, Herzig AF, Tirozzi A, Nappo S, Sorice R, Marangio F, Bellenguez C, Leutenegger AL, Ciullo M. Whole-Exome Sequencing in the Isolated Populations of Cilento from South Italy. Sci Rep 2019; 9:4059. [PMID: 30858532 PMCID: PMC6411969 DOI: 10.1038/s41598-019-41022-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/22/2019] [Indexed: 12/21/2022] Open
Abstract
The present study describes the genetic architecture of the isolated populations of Cilento, through the analysis of exome sequence data of 245 representative individuals of these populations. By annotating the exome variants and cataloguing them according to their frequency and functional effects, we identified 347,684 variants, 67.4% of which are rare and low frequency variants, and 1% of them (corresponding to 319 variants per person) are classified as high functional impact variants; also, 39,946 (11.5% of the total) are novel variants, for which we determined a significant enrichment for deleterious effects. By comparing the allele frequencies in Cilento with those from the Tuscan population from the 1000 Genomes Project Phase 3, we highlighted an increase in allele frequency in Cilento especially for variants which map to genes involved in extracellular matrix formation and organization. Furthermore, among the variants showing increased frequency we identified several known rare disease-causing variants. By different population genetics analyses, we corroborated the status of the Cilento populations as genetic isolates. Finally, we showed that exome data of Cilento represents a useful local reference panel capable of improving the accuracy of genetic imputation, thus adding power to genetic studies of human traits in these populations.
Collapse
Affiliation(s)
- T Nutile
- Institute of Genetics and Biophysics A. Buzzati-Traverso-CNR, Naples, Italy
| | - D Ruggiero
- Institute of Genetics and Biophysics A. Buzzati-Traverso-CNR, Naples, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - A F Herzig
- Inserm, UMR 946, Genetic variation and Human diseases, F-75010, Paris, France.,Université Paris-Diderot, Sorbonne Paris Cité, UMR946, F-75010, Paris, France
| | - A Tirozzi
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - S Nappo
- AORN Santobono-Pausilipon Hospital, Naples, Italy
| | - R Sorice
- Institute of Genetics and Biophysics A. Buzzati-Traverso-CNR, Naples, Italy
| | - F Marangio
- Institute of Genetics and Biophysics A. Buzzati-Traverso-CNR, Naples, Italy
| | - C Bellenguez
- Inserm, U1167, RID-AGE-Risk factors and molecular determinants of aging-related diseases, F-59000, Lille, France.,Institut Pasteur de Lille, F-59000, Lille, France.,Univ. Lille, U1167-Excellence Laboratory LabEx DISTALZ, F-59000, Lille, France
| | - A L Leutenegger
- Inserm, UMR 946, Genetic variation and Human diseases, F-75010, Paris, France.,Université Paris-Diderot, Sorbonne Paris Cité, UMR946, F-75010, Paris, France
| | - M Ciullo
- Institute of Genetics and Biophysics A. Buzzati-Traverso-CNR, Naples, Italy. .,IRCCS Neuromed, Pozzilli, Isernia, Italy.
| |
Collapse
|
8
|
Herzig AF, Nutile T, Ruggiero D, Ciullo M, Perdry H, Leutenegger AL. Detecting the dominance component of heritability in isolated and outbred human populations. Sci Rep 2018; 8:18048. [PMID: 30575761 PMCID: PMC6303332 DOI: 10.1038/s41598-018-36050-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/10/2018] [Indexed: 11/21/2022] Open
Abstract
Inconsistencies between published estimates of dominance heritability between studies of human genetic isolates and human outbred populations incite investigation into whether such differences result from particular trait architectures or specific population structures. We analyse simulated datasets, characteristic of genetic isolates and of unrelated individuals, before analysing the isolate of Cilento for various commonly studied traits. We show the strengths of using genetic relationship matrices for variance decomposition over identity-by-descent based methods in a population isolate and that heritability estimates in isolates will avoid the downward biases that may occur in studies of samples of unrelated individuals; irrespective of the simulated distribution of causal variants. Yet, we also show that precise estimates of dominance in isolates are demonstrably problematic in the presence of shared environmental effects and such effects should be accounted for. Nevertheless, we demonstrate how studying isolates can help determine the existence or non-existence of dominance for complex traits, and we find strong indications of non-zero dominance for low-density lipoprotein level in Cilento. Finally, we recommend future study designs to analyse trait variance decomposition from ensemble data across multiple population isolates.
Collapse
Affiliation(s)
- Anthony F Herzig
- Inserm, U946, Genetic variation and Human diseases, Paris, France. .,Université Paris-Diderot, Sorbonne Paris Cité, U946, Paris, France.
| | - Teresa Nutile
- Institute of Genetics and Biophysics A. Buzzati-Traverso - CNR, Naples, Italy
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics A. Buzzati-Traverso - CNR, Naples, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Marina Ciullo
- Institute of Genetics and Biophysics A. Buzzati-Traverso - CNR, Naples, Italy. .,IRCCS Neuromed, Pozzilli, Isernia, Italy.
| | - Hervé Perdry
- Université Paris-Saclay, University. Paris-Sud, Inserm, CESP, Villejuif, France
| | - Anne-Louise Leutenegger
- Inserm, U946, Genetic variation and Human diseases, Paris, France.,Université Paris-Diderot, Sorbonne Paris Cité, U946, Paris, France
| |
Collapse
|
9
|
Marchi N, Mennecier P, Georges M, Lafosse S, Hegay T, Dorzhu C, Chichlo B, Ségurel L, Heyer E. Close inbreeding and low genetic diversity in Inner Asian human populations despite geographical exogamy. Sci Rep 2018; 8:9397. [PMID: 29925873 PMCID: PMC6010435 DOI: 10.1038/s41598-018-27047-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/13/2018] [Indexed: 01/12/2023] Open
Abstract
When closely related individuals mate, they produce inbred offspring, which often have lower fitness than outbred ones. Geographical exogamy, by favouring matings between distant individuals, is thought to be an inbreeding avoidance mechanism; however, no data has clearly tested this prediction. Here, we took advantage of the diversity of matrimonial systems in humans to explore the impact of geographical exogamy on genetic diversity and inbreeding. We collected ethno-demographic data for 1,344 individuals in 16 populations from two Inner Asian cultural groups with contrasting dispersal behaviours (Turko-Mongols and Indo-Iranians) and genotyped genome-wide single nucleotide polymorphisms in 503 individuals. We estimated the population exogamy rate and confirmed the expected dispersal differences: Turko-Mongols are geographically more exogamous than Indo-Iranians. Unexpectedly, across populations, exogamy patterns correlated neither with the proportion of inbred individuals nor with their genetic diversity. Even more surprisingly, among Turko-Mongols, descendants from exogamous couples were significantly more inbred than descendants from endogamous couples, except for large distances (>40 km). Overall, 37% of the descendants from exogamous couples were closely inbred. This suggests that in Inner Asia, geographical exogamy is neither efficient in increasing genetic diversity nor in avoiding inbreeding, which might be due to kinship endogamy despite the occurrence of dispersal.
Collapse
Affiliation(s)
- Nina Marchi
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, 75016, Paris, France.
| | - Philippe Mennecier
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, 75016, Paris, France
| | - Myriam Georges
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, 75016, Paris, France.,LM2E-UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Plouzane, 29280, France
| | - Sophie Lafosse
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, 75016, Paris, France
| | - Tatyana Hegay
- Republican Scientific Center of Immunology, Ministry of Public Health, Tashkent, 100060, Uzbekistan
| | - Choduraa Dorzhu
- Department of biology and ecology, Tuvan State University, Kyzyl, 667000, Russia
| | - Boris Chichlo
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, 75016, Paris, France
| | - Laure Ségurel
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, 75016, Paris, France
| | - Evelyne Heyer
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, 75016, Paris, France.
| |
Collapse
|
10
|
Stathopoulou MG, Xie T, Ruggiero D, Chatelin J, Rancier M, Weryha G, Kurth MJ, Aldasoro Arguinano AA, Gorenjak V, Petrelis AM, Dagher G, Dedoussis G, Deloukas P, Lamont J, Marc J, Simmaco M, Schaik RHNV, Innocenti F, Merlin JL, Schneider J, Alizadeh BZ, Ciullo M, Seshadri S, Visvikis-Siest S. A transnational collaborative network dedicated to the study and applications of the vascular endothelial growth factor-A in medical practice: the VEGF Consortium. Clin Chem Lab Med 2018; 56:83-86. [PMID: 29087954 DOI: 10.1515/cclm-2017-0838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 11/15/2022]
Affiliation(s)
- Maria G Stathopoulou
- UMR INSERM U1122; IGE-PCV "Gene-Environment Interactions in Cardio-Vascular Physiopathology", University of Lorraine, Nancy, France
| | - Ting Xie
- UMR INSERM U1122; IGE-PCV "Gene-Environment Interactions in Cardio-Vascular Physiopathology", University of Lorraine, Nancy, France
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics, National Research Council of Italy, Naples, Italy
| | - Jerome Chatelin
- UMR INSERM U1122; IGE-PCV "Gene-Environment Interactions in Cardio-Vascular Physiopathology", University of Lorraine, Nancy, France
| | - Marc Rancier
- UMR INSERM U1122; IGE-PCV "Gene-Environment Interactions in Cardio-Vascular Physiopathology", University of Lorraine, Nancy, France
| | - George Weryha
- UMR INSERM U1122; IGE-PCV "Gene-Environment Interactions in Cardio-Vascular Physiopathology", University of Lorraine, Nancy, France
| | | | - Alex-Ander Aldasoro Arguinano
- UMR INSERM U1122; IGE-PCV "Gene-Environment Interactions in Cardio-Vascular Physiopathology", University of Lorraine, Nancy, France
| | - Vesna Gorenjak
- UMR INSERM U1122; IGE-PCV "Gene-Environment Interactions in Cardio-Vascular Physiopathology", University of Lorraine, Nancy, France
| | - Alexandros M Petrelis
- UMR INSERM U1122; IGE-PCV "Gene-Environment Interactions in Cardio-Vascular Physiopathology", University of Lorraine, Nancy, France
| | - Georges Dagher
- Biobanking and Biomolecular Resources Research Infrastructure (BBMRI)/INSERM US 13, BIOBANQUES, Paris, France
| | - George Dedoussis
- Department of Nutrition Dietetics, Harokopio University of Athens, Athens, Greece
| | | | | | - Janja Marc
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Ron H N van Schaik
- European Society of Pharmacogenomics and Personalised Therapy (ESPT), Nancy, France
| | | | - Jean-Louis Merlin
- Institut de Cancérologie de Lorraine et Université de Lorraine, Vandoeuvre les Nancy, France
| | | | - Behrooz Ziad Alizadeh
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina Ciullo
- Institute of Genetics and Biophysics, National Research Council of Italy, Naples, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Sophie Visvikis-Siest
- UMR INSERM U1122; IGE-PCV "Gene-Environment Interactions in Cardio-Vascular Physiopathology", University of Lorraine, Nancy, France
| | | |
Collapse
|
11
|
Tremblay M, Rouleau G. Deep genealogical analysis of a large cohort of participants in the CARTaGENE project (Quebec, Canada). Ann Hum Biol 2017; 44:357-365. [PMID: 28325067 DOI: 10.1080/03014460.2017.1300326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Genealogical analysis helps to better understand the genetic structure of populations. The population of Quebec (Canada) often serves as a model for this type of analysis, having one of the world's most complete genealogical databases. AIM The main objective of this study was to reconstruct, analyse and compare the ascending genealogies of participants to CARTaGENE, a project that aims at building a database on various aspects of public health. SUBJECTS AND METHODS In total, 5110 genealogies from four Quebec regions were reconstructed. Distribution of ancestors, completeness and depth of the genealogies, characteristics of immigrant ancestors and kinship and inbreeding coefficients were analysed. RESULTS Most genealogies go back to the 17th century, with a mean genealogical depth of 10 generations. Origins of immigrant ancestors are more diverse in the Montreal region, resulting in lower inbreeding and kinship among the participants from this region. Inbreeding and kinship values are mainly explained by remote genealogical links (from 6 to 11 generations). CONCLUSION Deep genealogies allowed for a precise measurement of the geographic origins of the participants' immigrant ancestors, as well as inbreeding and kinship ties in the population, which may be crucial for studies aiming to identify genetic variations associated with Mendelian or complex diseases.
Collapse
Affiliation(s)
- Marc Tremblay
- a Département des Sciences Humaines et Sociales , Université du Québec à Chicoutimi , Chicoutimi , Québec , Canada
| | - Gabrielle Rouleau
- a Département des Sciences Humaines et Sociales , Université du Québec à Chicoutimi , Chicoutimi , Québec , Canada
| |
Collapse
|
12
|
Ruggiero D, Nappo S, Nutile T, Sorice R, Talotta F, Giorgio E, Bellenguez C, Leutenegger AL, Liguori GL, Ciullo M. Genetic variants modulating CRIPTO serum levels identified by genome-wide association study in Cilento isolates. PLoS Genet 2015; 11:e1004976. [PMID: 25629528 PMCID: PMC4309561 DOI: 10.1371/journal.pgen.1004976] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023] Open
Abstract
Cripto, the founding member of the EGF-CFC genes, plays an essential role in embryo development and is involved in cancer progression. Cripto is a GPI-anchored protein that can interact with various components of multiple signaling pathways, such as TGF-β, Wnt and MAPK, driving different processes, among them epithelial-mesenchymal transition, cell proliferation, and stem cell renewal. Cripto protein can also be cleaved and released outside the cell in a soluble and still active form. Cripto is not significantly expressed in adult somatic tissues and its re-expression has been observed associated to pathological conditions, mainly cancer. Accordingly, CRIPTO has been detected at very low levels in the plasma of healthy volunteers, whereas its levels are significantly higher in patients with breast, colon or glioblastoma tumors. These data suggest that CRIPTO levels in human plasma or serum may have clinical significance. However, very little is known about the variability of serum levels of CRIPTO at a population level and the genetic contribution underlying this variability remains unknown. Here, we report the first genome-wide association study of CRIPTO serum levels in isolated populations (n = 1,054) from Cilento area in South Italy. The most associated SNPs (p-value<5*10-8) were all located on chromosome 3p22.1-3p21.3, in the CRIPTO gene region. Overall six CRIPTO associated loci were replicated in an independent sample (n = 535). Pathway analysis identified a main network including two other genes, besides CRIPTO, in the associated regions, involved in cell movement and proliferation. The replicated loci explain more than 87% of the CRIPTO variance, with 85% explained by the most associated SNP. Moreover, the functional analysis of the main associated locus identified a causal variant in the 5’UTR of CRIPTO gene which is able to strongly modulate CRIPTO expression through an AP-1-mediate transcriptional regulation. Cripto gene has a fundamental role in embryo development and is also involved in cancer. The protein is bound to the cell membrane through an anchor, that can be cleaved, causing the secretion of the protein, in a still active form. In the adult, CRIPTO is detected at very low levels in normal tissues and in the blood, while its increase in both tissues and blood is associated to pathological conditions, mainly cancer. As other GPI linked proteins such as the carcinoembryonic antigen (CEA), one of the most used tumor markers, CRIPTO is able to reach the bloodstream. Therefore, CRIPTO represents a new promising biomarker and potential therapeutic target, and blood CRIPTO levels might be associated to clinical features. Here we examined the variability of blood CRIPTO levels at a population level (population isolates from the Cilento region in South Italy) and we investigated the genetic architecture underlying this variability. We reported the association of common genetic variants with the levels of CRIPTO protein in the blood and we identified a main locus on chromosome 3 and additional five associated loci. Moreover, through functional analyses, we were able to uncover the mechanism responsible for the variation in CRIPTO levels, which is a regulation mediated by the transcriptional factor AP-1.
Collapse
Affiliation(s)
- Daniela Ruggiero
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Stefania Nappo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Teresa Nutile
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Rossella Sorice
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Francesco Talotta
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Emilia Giorgio
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Celine Bellenguez
- Institut Pasteur de Lille, Lille, France
- Inserm, U744, Lille, France
- Université Lille-Nord de France, Lille, France
| | - Anne-Louise Leutenegger
- Inserm, U946, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, UMR-S 946, Paris, France
| | - Giovanna L. Liguori
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Marina Ciullo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
- * E-mail:
| |
Collapse
|
13
|
Putman AI, Carbone I. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol 2014; 4:4399-428. [PMID: 25540699 PMCID: PMC4267876 DOI: 10.1002/ece3.1305] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 12/14/2022] Open
Abstract
Advancing technologies have facilitated the ever-widening application of genetic markers such as microsatellites into new systems and research questions in biology. In light of the data and experience accumulated from several years of using microsatellites, we present here a literature review that synthesizes the limitations of microsatellites in population genetic studies. With a focus on population structure, we review the widely used fixation (F ST) statistics and Bayesian clustering algorithms and find that the former can be confusing and problematic for microsatellites and that the latter may be confounded by complex population models and lack power in certain cases. Clustering, multivariate analyses, and diversity-based statistics are increasingly being applied to infer population structure, but in some instances these methods lack formalization with microsatellites. Migration-specific methods perform well only under narrow constraints. We also examine the use of microsatellites for inferring effective population size, changes in population size, and deeper demographic history, and find that these methods are untested and/or highly context-dependent. Overall, each method possesses important weaknesses for use with microsatellites, and there are significant constraints on inferences commonly made using microsatellite markers in the areas of population structure, admixture, and effective population size. To ameliorate and better understand these constraints, researchers are encouraged to analyze simulated datasets both prior to and following data collection and analysis, the latter of which is formalized within the approximate Bayesian computation framework. We also examine trends in the literature and show that microsatellites continue to be widely used, especially in non-human subject areas. This review assists with study design and molecular marker selection, facilitates sound interpretation of microsatellite data while fostering respect for their practical limitations, and identifies lessons that could be applied toward emerging markers and high-throughput technologies in population genetics.
Collapse
Affiliation(s)
- Alexander I Putman
- Department of Plant Pathology, North Carolina State University Raleigh, North Carolina, 27695-7616
| | - Ignazio Carbone
- Department of Plant Pathology, North Carolina State University Raleigh, North Carolina, 27695-7616
| |
Collapse
|
14
|
|
15
|
Fine-scale human genetic structure in Western France. Eur J Hum Genet 2014; 23:831-6. [PMID: 25182131 DOI: 10.1038/ejhg.2014.175] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 07/21/2014] [Accepted: 07/30/2014] [Indexed: 11/08/2022] Open
Abstract
The difficulties arising from association analysis with rare variants underline the importance of suitable reference population cohorts, which integrate detailed spatial information. We analyzed a sample of 1684 individuals from Western France, who were genotyped at genome-wide level, from two cohorts D.E.S.I.R and CavsGen. We found that fine-scale population structure occurs at the scale of Western France, with distinct admixture proportions for individuals originating from the Brittany Region and the Vendée Department. Genetic differentiation increases with distance at a high rate in these two parts of Northwestern France and linkage disequilibrium is higher in Brittany suggesting a lower effective population size. When looking for genomic regions informative about Breton origin, we found two prominent associated regions that include the lactase region and the HLA complex. For both the lactase and the HLA regions, there is a low differentiation between Bretons and Irish, and this is also found at the genome-wide level. At a more refined scale, and within the Pays de la Loire Region, we also found evidence of fine-scale population structure, although principal component analysis showed that individuals from different departments cannot be confidently discriminated. Because of the evidence for fine-scale genetic structure in Western France, we anticipate that rare and geographically localized variants will be identified in future full-sequence analyses.
Collapse
|
16
|
Larmuseau MHD, Van Geystelen A, van Oven M, Decorte R. Genetic genealogy comes of age: perspectives on the use of deep-rooted pedigrees in human population genetics. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 150:505-11. [PMID: 23440589 DOI: 10.1002/ajpa.22233] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/21/2012] [Accepted: 01/03/2013] [Indexed: 11/06/2022]
Abstract
In this article, we promote the implementation of extensive genealogical data in population genetic studies. Genealogical records can provide valuable information on the origin of DNA donors in a population genetic study, going beyond the commonly collected data such as residence, birthplace, language, and self-reported ethnicity. Recent studies demonstrated that extended genealogical data added to surname analysis can be crucial to detect signals of (past) population stratification and to interpret the population structure in a more objective manner. Moreover, when in-depth pedigree data are combined with haploid markers, it is even possible to disentangle signals of temporal differentiation within a population genetic structure during the last centuries. Obtaining genealogical data for all DNA donors in a population genetic study is a labor-intensive task but the vastly growing (genetic) genealogical databases, due to the broad interest of the public, are making this job more time-efficient if there is a guarantee for sufficient data quality. At the end, we discuss the advantages and pitfalls of using genealogy within sampling campaigns and we provide guidelines for future population genetic studies.
Collapse
Affiliation(s)
- M H D Larmuseau
- UZ Leuven, Laboratory of Forensic Genetics and Molecular Archaeology, Leuven, Belgium.
| | | | | | | |
Collapse
|
17
|
Biino G, Santimone I, Minelli C, Sorice R, Frongia B, Traglia M, Ulivi S, Di Castelnuovo A, Gögele M, Nutile T, Francavilla M, Sala C, Pirastu N, Cerletti C, Iacoviello L, Gasparini P, Toniolo D, Ciullo M, Pramstaller P, Pirastu M, de Gaetano G, Balduini CL. Age- and sex-related variations in platelet count in Italy: a proposal of reference ranges based on 40987 subjects' data. PLoS One 2013; 8:e54289. [PMID: 23382888 PMCID: PMC3561305 DOI: 10.1371/journal.pone.0054289] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/10/2012] [Indexed: 02/06/2023] Open
Abstract
Background and Objectives Although several studies demonstrated that platelet count is higher in women, decreases with age, and is influenced by genetic background, most clinical laboratories still use the reference interval 150–400×109 platelets/L for all subjects. The present study was to identify age- and sex-specific reference intervals for platelet count. Methods We analysed electronic records of subjects enrolled in three population-based studies that investigated inhabitants of seven Italian areas including six geographic isolates. After exclusion of patients with malignancies, liver diseases, or inherited thrombocytopenias, which could affect platelet count, reference intervals were estimated from 40,987 subjects with the non parametric method computing the 2.5° and 97.5° percentiles. Results Platelet count was similar in men and women until the age of 14, but subsequently women had steadily more platelets than men. The number of platelets decreases quickly in childhood, stabilizes in adulthood, and further decreases in oldness. The final result of this phenomenon is that platelet count in old age was reduced by 35% in men and by 25% in women compared with early infancy. Based on these findings, we estimated reference intervals for platelet count ×109/L in children (176–452), adult men (141–362), adult women (156–405), old men (122–350) and, old women (140–379). Moreover, we calculated an “extended” reference interval that takes into account the differences in platelet count observed in different geographic areas. Conclusions The age-, sex-, and origin-related variability of platelet count is very wide, and the patient-adapted reference intervals we propose change the thresholds for diagnosing both thrombocytopenia and thrombocytosis in Italy.
Collapse
Affiliation(s)
- Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sorice R, Ruggiero D, Nutile T, Aversano M, Husemoen L, Linneberg A, Bourgain C, Leutenegger AL, Ciullo M. Genetic and environmental factors influencing the Placental Growth Factor (PGF) variation in two populations. PLoS One 2012; 7:e42537. [PMID: 22916133 PMCID: PMC3423400 DOI: 10.1371/journal.pone.0042537] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/09/2012] [Indexed: 12/13/2022] Open
Abstract
Placental Growth Factor (PGF) is a key molecule in angiogenesis. Several studies have revealed an important role of PGF primarily in pathological conditions (e.g.: ischaemia, tumour formation, cardiovascular diseases and inflammatory processes) suggesting its use as a potential therapeutic agent. However, to date, no information is available regarding the genetics of PGF variability. Furthermore, even though the effect of environmental factors (e.g.: cigarette smoking) on angiogenesis has been explored, no data on the influence of these factors on PGF levels have been reported so far. Here we have first investigated PGF variability in two cohorts focusing on non-genetic risk factors: a study sample from two isolated villages in the Cilento region, South Italy (N=871) and a replication sample from the general Danish population (N=1,812). A significant difference in PGF mean levels was found between the two cohorts. However, in both samples, we observed a strong correlation of PGF levels with ageing and sex, men displaying PGF levels significantly higher than women. Interestingly, smoking was also found to influence the trait in the two populations, although differently. We have then focused on genetic risk factors. The association between five single nucleotide polymorphisms (SNPs) located in the PGF gene and the plasma levels of the protein was investigated. Two polymorphisms (rs11850328 and rs2268614) were associated with the PGF plasma levels in the Cilento sample and these associations were strongly replicated in the Danish sample. These results, for the first time, support the hypothesis of the presence of genetic and environmental factors influencing PGF plasma variability.
Collapse
Affiliation(s)
- Rossella Sorice
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Teresa Nutile
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Mario Aversano
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Lotte Husemoen
- Research Centre for Prevention and Health, Glostrup, Denmark
| | - Allan Linneberg
- Research Centre for Prevention and Health, Glostrup, Denmark
| | | | | | - Marina Ciullo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
- * E-mail:
| |
Collapse
|
19
|
Small effective population size and genetic homogeneity in the Val Borbera isolate. Eur J Hum Genet 2012; 21:89-94. [PMID: 22713810 DOI: 10.1038/ejhg.2012.113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Population isolates are a valuable resource for medical genetics because of their reduced genetic, phenotypic and environmental heterogeneity. Further, extended linkage disequilibrium (LD) allows accurate haplotyping and imputation. In this study, we use nuclear and mitochondrial DNA data to determine to what extent the geographically isolated population of the Val Borbera valley also presents features of genetic isolation. We performed a comparative analysis of population structure and estimated effective population size exploiting LD data. We also evaluated haplotype sharing through the analysis of segments of autozygosity. Our findings reveal that the valley has features characteristic of a genetic isolate, including reduced genetic heterogeneity and reduced effective population size. We show that this population has been subject to prolonged genetic drift and thus we expect many variants that are rare in the general population to reach significant frequency values in the valley, making this population suitable for the identification of rare variants underlying complex traits.
Collapse
|
20
|
Ruggiero D, Dalmasso C, Nutile T, Sorice R, Dionisi L, Aversano M, Bröet P, Leutenegger AL, Bourgain C, Ciullo M. Genetics of VEGF serum variation in human isolated populations of cilento: importance of VEGF polymorphisms. PLoS One 2011; 6:e16982. [PMID: 21347390 PMCID: PMC3036731 DOI: 10.1371/journal.pone.0016982] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/19/2011] [Indexed: 11/18/2022] Open
Abstract
Vascular Endothelial Growth Factor (VEGF) is the main player in angiogenesis. Because of its crucial role in this process, the study of the genetic factors controlling VEGF variability may be of particular interest for many angiogenesis-associated diseases. Although some polymorphisms in the VEGF gene have been associated with a susceptibility to several disorders, no genome-wide search on VEGF serum levels has been reported so far. We carried out a genome-wide linkage analysis in three isolated populations and we detected a strong linkage between VEGF serum levels and the 6p21.1 VEGF region in all samples. A new locus on chromosome 3p26.3 significantly linked to VEGF serum levels was also detected in a combined population sample. A sequencing of the gene followed by an association study identified three common single nucleotide polymorphisms (SNPs) influencing VEGF serum levels in one population (Campora), two already reported in the literature (rs3025039, rs25648) and one new signal (rs3025020). A fourth SNP (rs41282644) was found to affect VEGF serum levels in another population (Cardile). All the identified SNPs contribute to the related population linkages (35% of the linkage explained in Campora and 15% in Cardile). Interestingly, none of the SNPs influencing VEGF serum levels in one population was found to be associated in the two other populations. These results allow us to exclude the hypothesis that the common variants located in the exons, intron-exon junctions, promoter and regulative regions of the VEGF gene may have a causal effect on the VEGF variation. The data support the alternative hypothesis of a multiple rare variant model, possibly consisting in distinct variants in different populations, influencing VEGF serum levels.
Collapse
Affiliation(s)
- Daniela Ruggiero
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | | | - Teresa Nutile
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Rossella Sorice
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Laura Dionisi
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Mario Aversano
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | | | | | | | - Marina Ciullo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| |
Collapse
|
21
|
Genomic and genealogical investigation of the French Canadian founder population structure. Hum Genet 2011; 129:521-31. [PMID: 21234765 DOI: 10.1007/s00439-010-0945-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 12/30/2010] [Indexed: 10/18/2022]
Abstract
Characterizing the genetic structure of worldwide populations is important for understanding human history and is essential to the design and analysis of genetic epidemiological studies. In this study, we examined genetic structure and distant relatedness and their effect on the extent of linkage disequilibrium (LD) and homozygosity in the founder population of Quebec (Canada). In the French Canadian founder population, such analysis can be performed using both genomic and genealogical data. We investigated genetic differences, extent of LD, and homozygosity in 140 individuals from seven sub-populations of Quebec characterized by different demographic histories reflecting complex founder events. Genetic findings from genome-wide single nucleotide polymorphism data were correlated with genealogical information on each of these sub-populations. Our genomic data showed significant population structure and relatedness present in the contemporary Quebec population, also reflected in LD and homozygosity levels. Our extended genealogical data corroborated these findings and indicated that this structure is consistent with the settlement patterns involving several founder events. This provides an independent and complementary validation of genomic-based studies of population structure. Combined genomic and genealogical data in the Quebec founder population provide insights into the effects of the interplay of two important sources of bias in genetic epidemiological studies, unrecognized genetic structure and cryptic relatedness.
Collapse
|
22
|
Siervo M, Ruggiero D, Sorice R, Nutile T, Aversano M, Stephan BCM, Ciullo M. Angiogenesis and biomarkers of cardiovascular risk in adults with metabolic syndrome. J Intern Med 2010; 268:338-47. [PMID: 20649935 DOI: 10.1111/j.1365-2796.2010.02255.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Metabolic syndrome (MetSyn) is associated with an increased risk of atherosclerosis and fatal cardiovascular events. Angiogenesis is thought to contribute to this risk as it might be involved in the progression of atherosclerotic plaques. We investigated the levels of circulating biomarkers of angiogenesis and cardiovascular risk in adults with MetSyn and assessed their association with established metabolic risk factors. DESIGN The Genetic Park project is a highly inclusive cross-sectional survey (about 80% of residents) conducted in three isolated populations in Southern Italy. A total of 1000 men and women (age range: 18-98 years) were included in the analysis. Anthropometric and blood pressure measurements were recorded. Metabolic and cardiovascular biomarkers included glucose, triglycerides, total cholesterol, HDL, vascular endothelial growth factor, placental growth factor (PlGF), soluble fms-like tyrosine kinase-1, high-sensitivity C-reactive protein, high-sensitivity troponin T (hs-TnT) and N-terminal pro-brain natriuretic peptide (NT-proBNP). RESULT Subjects with MetSyn had higher levels of PlGF and NT-proBNP after adjustment for age, smoking and body mass index. Circulating levels of PlGF, hs-TnT and NT-proBNP were directly related to the number of criteria of MetSyn, and this association interacted with gender. There was a strong correlation between ageing and cardiovascular risk. CONCLUSIONS The increase in circulating levels of biomarkers of angiogenesis and cardiac function in subjects with MetSyn mirrors the pathophysiological changes occurring in the cardiovascular system. Over time, these changes might accelerate the formation and progression of atherosclerotic plaques and contribute significantly to cardiovascular morbidity and mortality risk.
Collapse
Affiliation(s)
- M Siervo
- Human Nutrition and Physiology, Department of Neuroscience, University Federico II, Faculty of Medicine, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Bertorelle G, Benazzo A, Mona S. ABC as a flexible framework to estimate demography over space and time: some cons, many pros. Mol Ecol 2010; 19:2609-25. [PMID: 20561199 DOI: 10.1111/j.1365-294x.2010.04690.x] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The analysis of genetic variation to estimate demographic and historical parameters and to quantitatively compare alternative scenarios recently gained a powerful and flexible approach: the Approximate Bayesian Computation (ABC). The likelihood functions does not need to be theoretically specified, but posterior distributions can be approximated by simulation even assuming very complex population models including both natural and human-induced processes. Prior information can be easily incorporated and the quality of the results can be analysed with rather limited additional effort. ABC is not a statistical analysis per se, but rather a statistical framework and any specific application is a sort of hybrid between a simulation and a data-analysis study. Complete software packages performing the necessary steps under a set of models and for specific genetic markers are already available, but the flexibility of the method is better exploited combining different programs. Many questions relevant in ecology can be addressed using ABC, but adequate amount of time should be dedicated to decide among alternative options and to evaluate the results. In this paper we will describe and critically comment on the different steps of an ABC analysis, analyse some of the published applications of ABC and provide user guidelines.
Collapse
Affiliation(s)
- G Bertorelle
- Department of Biology and Evolution, University of Ferrara, Via Borsari 46, 44100 Ferrara, Italy.
| | | | | |
Collapse
|