1
|
Bosart K, Petreaca RC, Bouley RA. In silico analysis of several frequent SLX4 mutations appearing in human cancers. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001216. [PMID: 38828439 PMCID: PMC11143449 DOI: 10.17912/micropub.biology.001216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
SLX4 is an interactor and activator of structure-specific exonuclease that helps resolve tangled recombination intermediates arising at stalled replication forks. It is one of the many factors that assist with homologous recombination, the major mechanism for restarting replication. SLX4 mutations have been reported in many cancers but a pan cancer map of all the mutations has not been undertaken. Here, using data from the Catalogue of Somatic Mutations in Cancers (COSMIC), we show that mutations occur in almost every cancer and many of them truncate the protein which should severely alter the function of the enzyme. We identified a frequent R1779W point mutation that occurs in the SLX4 domain required for heterodimerization with its partner, SLX1. In silico protein structure analysis of this mutation shows that it significantly alters the protein structure and is likely to destabilize the interaction with SLX1. Although this brief communication is limited to only in silico analysis, it identifies certain high frequency SLX4 mutations in human cancers that would warrant further in vivo studies. Additionally, these mutations may be potentially actionable for drug therapies.
Collapse
Affiliation(s)
- Korey Bosart
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Ruben C Petreaca
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
- Molecular Genetics, The Ohio State University at Marion, Marion, Ohio, United States
| | - Renee A Bouley
- Chemistry and Biochemistry, The Ohio State University at Marion, Marion, Ohio, United States
| |
Collapse
|
2
|
Shi X, Du Y, Li S, Wu H. The Role of SUMO E3 Ligases in Signaling Pathway of Cancer Cells. Int J Mol Sci 2022; 23:3639. [PMID: 35408996 PMCID: PMC8998487 DOI: 10.3390/ijms23073639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)ylation is a reversible post-translational modification that plays a crucial role in numerous aspects of cell physiology, including cell cycle regulation, DNA damage repair, and protein trafficking and turnover, which are of importance for cell homeostasis. Mechanistically, SUMOylation is a sequential multi-enzymatic process where SUMO E3 ligases recruit substrates and accelerate the transfer of SUMO onto targets, modulating their interactions, localization, activity, or stability. Accumulating evidence highlights the critical role of dysregulated SUMO E3 ligases in processes associated with the occurrence and development of cancers. In the present review, we summarize the SUMO E3 ligases, in particular, the novel ones recently identified, and discuss their regulatory roles in cancer pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Huijian Wu
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian 116024, China; (X.S.); (Y.D.); (S.L.)
| |
Collapse
|
3
|
Gianni P, Matenoglou E, Geropoulos G, Agrawal N, Adnani H, Zafeiropoulos S, Miyara SJ, Guevara S, Mumford JM, Molmenti EP, Giannis D. The Fanconi anemia pathway and Breast Cancer: A comprehensive review of clinical data. Clin Breast Cancer 2021; 22:10-25. [PMID: 34489172 DOI: 10.1016/j.clbc.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
The development of breast cancer depends on several risk factors, including environmental, lifestyle and genetic factors. Despite the evolution of DNA sequencing techniques and biomarker detection, the epidemiology and mechanisms of various breast cancer susceptibility genes have not been elucidated yet. Dysregulation of the DNA damage response causes genomic instability and increases the rate of mutagenesis and the risk of carcinogenesis. The Fanconi Anemia (FA) pathway is an important component of the DNA damage response and plays a critical role in the repair of DNA interstrand crosslinks and genomic stability. The FA pathway involves 22 recognized genes and specific mutations have been identified as the underlying defect in the majority of FA patients. A thorough understanding of the function and epidemiology of these genes in breast cancer is critical for the development and implementation of individualized therapies that target unique tumor profiles. Targeted therapies (PARP inhibitors) exploiting the FA pathway gene defects have been developed and have shown promising results. This narrative review summarizes the current literature on the involvement of FA genes in sporadic and familial breast cancer with a focus on clinical data derived from large cohorts.
Collapse
Affiliation(s)
- Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Germany
| | - Evangelia Matenoglou
- Medical School, Aristotle University of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Geropoulos
- Thoracic Surgery Department, University College London Hospitals NHS Foundation Trust, London
| | - Nirav Agrawal
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Harsha Adnani
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Stefanos Zafeiropoulos
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Santiago J Miyara
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Sara Guevara
- Department of Surgery, North Shore University Hospital, Manhasset, New York, NY
| | - James M Mumford
- Department of Family Medicine, Glen Cove Hospital, Glen Cove, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Ernesto P Molmenti
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Department of Surgery, North Shore University Hospital, Manhasset, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Dimitrios Giannis
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY.
| |
Collapse
|
4
|
Exploring the Role of Mutations in Fanconi Anemia Genes in Hereditary Cancer Patients. Cancers (Basel) 2020; 12:cancers12040829. [PMID: 32235514 PMCID: PMC7226125 DOI: 10.3390/cancers12040829] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Fanconi anemia (FA) is caused by biallelic mutations in FA genes. Monoallelic mutations in five of these genes (BRCA1, BRCA2, PALB2, BRIP1 and RAD51C) increase the susceptibility to breast/ovarian cancer and are used in clinical diagnostics as bona-fide hereditary cancer genes. Increasing evidence suggests that monoallelic mutations in other FA genes could predispose to tumor development, especially breast cancer. The objective of this study is to assess the mutational spectrum of 14 additional FA genes (FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FANCP, FANCQ, FANCR and FANCU) in a cohort of hereditary cancer patients, to compare with local cancer-free controls as well as GnomAD. A total of 1021 hereditary cancer patients and 194 controls were analyzed using our next generation custom sequencing panel. We identified 35 pathogenic variants in eight genes. A significant association with the risk of breast cancer/breast and ovarian cancer was found for carriers of FANCA mutations (odds ratio (OR) = 3.14 95% confidence interval (CI) 1.4–6.17, p = 0.003). Two patients with early-onset cancer showed a pathogenic FA variant in addition to another germline mutation, suggesting a modifier role for FA variants. Our results encourage a comprehensive analysis of FA genes in larger studies to better assess their role in cancer risk.
Collapse
|
5
|
Abstract
The SLX4/FANCP tumor suppressor has emerged as a key player in the maintenance of genome stability, making pivotal contributions to the repair of interstrand cross-links, homologous recombination, and in response to replication stress genome-wide as well as at specific loci such as common fragile sites and telomeres. SLX4 does so in part by acting as a scaffold that controls and coordinates the XPF-ERCC1, MUS81-EME1, and SLX1 structure-specific endonucleases in different DNA repair and recombination mechanisms. It also interacts with other important DNA repair and cell cycle control factors including MSH2, PLK1, TRF2, and TOPBP1 as well as with ubiquitin and SUMO. This review aims at providing an up-to-date and comprehensive view on the key functions that SLX4 fulfills to maintain genome stability as well as to highlight and discuss areas of uncertainty and emerging concepts.
Collapse
Affiliation(s)
- Jean-Hugues Guervilly
- a CRCM, CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes , Marseille , France
| | - Pierre Henri Gaillard
- a CRCM, CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes , Marseille , France
| |
Collapse
|
6
|
Siraj AK, Masoodi T, Bu R, Parvathareddy SK, Al-Badawi IA, Al-Sanea N, Ashari LH, Abduljabbar A, Alhomoud S, Al-Sobhi SS, Tulbah A, Ajarim D, Alzoman K, Aljuboury M, Yousef HB, Al-Dawish M, Al-Dayel F, Alkuraya FS, Al-Kuraya KS. Expanding the spectrum of germline variants in cancer. Hum Genet 2017; 136:1431-1444. [DOI: 10.1007/s00439-017-1845-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/24/2017] [Indexed: 02/07/2023]
|
7
|
Dong H, Nebert DW, Bruford EA, Thompson DC, Joenje H, Vasiliou V. Update of the human and mouse Fanconi anemia genes. Hum Genomics 2015; 9:32. [PMID: 26596371 PMCID: PMC4657327 DOI: 10.1186/s40246-015-0054-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 11/10/2015] [Indexed: 12/24/2022] Open
Abstract
Fanconi anemia (FA) is a recessively inherited disease manifesting developmental abnormalities, bone marrow failure, and increased risk of malignancies. Whereas FA has been studied for nearly 90 years, only in the last 20 years have increasing numbers of genes been implicated in the pathogenesis associated with this genetic disease. To date, 19 genes have been identified that encode Fanconi anemia complementation group proteins, all of which are named or aliased, using the root symbol “FANC.” Fanconi anemia subtype (FANC) proteins function in a common DNA repair pathway called “the FA pathway,” which is essential for maintaining genomic integrity. The various FANC mutant proteins contribute to distinct steps associated with FA pathogenesis. Herein, we provide a review update of the 19 human FANC and their mouse orthologs, an evolutionary perspective on the FANC genes, and the functional significance of the FA DNA repair pathway in association with clinical disorders. This is an example of a set of genes––known to exist in vertebrates, invertebrates, plants, and yeast––that are grouped together on the basis of shared biochemical and physiological functions, rather than evolutionary phylogeny, and have been named on this basis by the HUGO Gene Nomenclature Committee (HGNC).
Collapse
Affiliation(s)
- Hongbin Dong
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06250, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee (HGNC), European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, CB10 1SD, UK
| | - David C Thompson
- Department of Clinical Practice, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Hans Joenje
- Department of Clinical Genetics and the Cancer Center Amsterdam/VUmc Institute for Cancer and Immunology, VU University Medical Center, NL-1081 BT, Amsterdam, The Netherlands
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06250, USA.
| |
Collapse
|
8
|
Hashimoto K, Wada K, Matsumoto K, Moriya M. Physical interaction between SLX4 (FANCP) and XPF (FANCQ) proteins and biological consequences of interaction-defective missense mutations. DNA Repair (Amst) 2015; 35:48-54. [PMID: 26453996 DOI: 10.1016/j.dnarep.2015.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
Abstract
SLX4 (FANCP) and XPF (FANCQ) proteins interact with each other and play a vital role in the Fanconi anemia (FA) DNA repair pathway. We have identified a SLX4 region and several amino acid residues that are responsible for this interaction. The study has revealed that the global minor allele, SLX4(Y546C), is defective in this interaction and cannot complement Fancp knockout mouse cells in mitomycin C-induced cytotoxicity or chromosomal aberrations. These results highly suggest this allele, as well as SLX4(L530Q), to be pathogenic. The interacting partner XPF is involved in various DNA repair pathways, and certain XPF mutations cause progeria, Cockayne syndrome (CS), and/or FA phenotypes. Because several atypical xeroderma pigmentosum (XP) phenotype-causing XPF missense mutations are located in the SLX4-interacting region, we suspected the disruption of the interaction with SLX4 in these XPF mutants, thereby causing severer phenotypes. The immunoprecipitation assay of cell extracts revealed that those XPF mutations, except XPF(C236R), located in the SLX4-interacting region cause instability of XPF protein, which could be the reason for the FA, progeria and/or CS phenotypes.
Collapse
Affiliation(s)
- Keiji Hashimoto
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, State University of New York, Stony Brook, NY 11794, USA
| | - Kunio Wada
- Division of Toxicology, Institute of Environmental Toxicology, Ibaraki 303-0043, Japan
| | - Kyomu Matsumoto
- Division of Toxicology, Institute of Environmental Toxicology, Ibaraki 303-0043, Japan
| | - Masaaki Moriya
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, State University of New York, Stony Brook, NY 11794, USA.
| |
Collapse
|
9
|
Bogliolo M, Surrallés J. Fanconi anemia: a model disease for studies on human genetics and advanced therapeutics. Curr Opin Genet Dev 2015; 33:32-40. [PMID: 26254775 DOI: 10.1016/j.gde.2015.07.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/19/2015] [Accepted: 07/21/2015] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is characterized by bone marrow failure, malformations, and chromosome fragility. We review the recent discovery of FA genes and efforts to develop genetic therapies for FA in the last five years. Because current data exclude FANCM as an FA gene, 15 genes remain bona fide FA genes and three (FANCO, FANCR and FANCS) cause an FA like syndrome. Monoallelic mutations in 6 FA associated genes (FANCD1, FANCJ, FANCM, FANCN, FANCO and FANCS) predispose to breast and ovarian cancer. The products of all these genes are involved in the repair of stalled DNA replication forks by unhooking DNA interstrand cross-links and promoting homologous recombination. The genetic characterization of patients with FA is essential for developing therapies, including hematopoietic stem cell transplantation from a savior sibling donor after embryo selection, gene therapy, or genome editing using genetic recombination or engineered nucleases. Newly acquired knowledge about FA promises to provide therapeutic strategies in the near future.
Collapse
Affiliation(s)
- Massimo Bogliolo
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Jordi Surrallés
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain.
| |
Collapse
|
10
|
Peterlongo P, Catucci I, Colombo M, Caleca L, Mucaki E, Bogliolo M, Marin M, Damiola F, Bernard L, Pensotti V, Volorio S, Dall'Olio V, Meindl A, Bartram C, Sutter C, Surowy H, Sornin V, Dondon MG, Eon-Marchais S, Stoppa-Lyonnet D, Andrieu N, Sinilnikova OM, Mitchell G, James PA, Thompson E, Marchetti M, Verzeroli C, Tartari C, Capone GL, Putignano AL, Genuardi M, Medici V, Marchi I, Federico M, Tognazzo S, Matricardi L, Agata S, Dolcetti R, Della Puppa L, Cini G, Gismondi V, Viassolo V, Perfumo C, Mencarelli MA, Baldassarri M, Peissel B, Roversi G, Silvestri V, Rizzolo P, Spina F, Vivanet C, Tibiletti MG, Caligo MA, Gambino G, Tommasi S, Pilato B, Tondini C, Corna C, Bonanni B, Barile M, Osorio A, Benitez J, Balestrino L, Ottini L, Manoukian S, Pierotti MA, Renieri A, Varesco L, Couch FJ, Wang X, Devilee P, Hilbers FS, van Asperen CJ, Viel A, Montagna M, Cortesi L, Diez O, Balmaña J, Hauke J, Schmutzler RK, Papi L, Pujana MA, Lázaro C, Falanga A, Offit K, Vijai J, Campbell I, Burwinkel B, Kvist A, Ehrencrona H, Mazoyer S, Pizzamiglio S, Verderio P, Surralles J, Rogan PK, Radice P. FANCM c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor. Hum Mol Genet 2015; 24:5345-55. [PMID: 26130695 DOI: 10.1093/hmg/ddv251] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 06/25/2015] [Indexed: 11/15/2022] Open
Abstract
Numerous genetic factors that influence breast cancer risk are known. However, approximately two-thirds of the overall familial risk remain unexplained. To determine whether some of the missing heritability is due to rare variants conferring high to moderate risk, we tested for an association between the c.5791C>T nonsense mutation (p.Arg1931*; rs144567652) in exon 22 of FANCM gene and breast cancer. An analysis of genotyping data from 8635 familial breast cancer cases and 6625 controls from different countries yielded an association between the c.5791C>T mutation and breast cancer risk [odds ratio (OR) = 3.93 (95% confidence interval (CI) = 1.28-12.11; P = 0.017)]. Moreover, we performed two meta-analyses of studies from countries with carriers in both cases and controls and of all available data. These analyses showed breast cancer associations with OR = 3.67 (95% CI = 1.04-12.87; P = 0.043) and OR = 3.33 (95% CI = 1.09-13.62; P = 0.032), respectively. Based on information theory-based prediction, we established that the mutation caused an out-of-frame deletion of exon 22, due to the creation of a binding site for the pre-mRNA processing protein hnRNP A1. Furthermore, genetic complementation analyses showed that the mutation influenced the DNA repair activity of the FANCM protein. In summary, we provide evidence for the first time showing that the common p.Arg1931* loss-of-function variant in FANCM is a risk factor for familial breast cancer.
Collapse
Affiliation(s)
- Paolo Peterlongo
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine,
| | - Irene Catucci
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine
| | - Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine
| | - Laura Caleca
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine
| | - Eliseos Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Massimo Bogliolo
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona and Center for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Maria Marin
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona and Center for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Francesca Damiola
- Cancer Research Centre of Lyon, CNRS UMR5286, INSERM U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Loris Bernard
- Department of Experimental Oncology and Cogentech, Cancer Genetic Test Laboratory, Milan, Italy
| | - Valeria Pensotti
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Cogentech, Cancer Genetic Test Laboratory, Milan, Italy
| | - Sara Volorio
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Cogentech, Cancer Genetic Test Laboratory, Milan, Italy
| | - Valentina Dall'Olio
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Cogentech, Cancer Genetic Test Laboratory, Milan, Italy
| | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Technische Universität München, Munich, Germany
| | - Claus Bartram
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Christian Sutter
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Harald Surowy
- Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University Hospital Heidelberg, Heidelberg, Germany, Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Valérie Sornin
- Cancer Research Centre of Lyon, CNRS UMR5286, INSERM U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Marie-Gabrielle Dondon
- INSERM, U900, Paris, France, Institut Curie, Paris, France, Mines ParisTech, Fontainebleau, France
| | - Séverine Eon-Marchais
- INSERM, U900, Paris, France, Institut Curie, Paris, France, Mines ParisTech, Fontainebleau, France
| | - Dominique Stoppa-Lyonnet
- Service de Génétique Oncologique, Institut Curie, Paris, France, INSERM, U830, Paris, France, Université Paris-Descartes, Paris, France
| | - Nadine Andrieu
- INSERM, U900, Paris, France, Institut Curie, Paris, France, Mines ParisTech, Fontainebleau, France
| | - Olga M Sinilnikova
- Cancer Research Centre of Lyon, CNRS UMR5286, INSERM U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France, Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Centre Hospitalier Universitaire de Lyon/Centre Léon Bérard, Lyon, France
| | | | - Gillian Mitchell
- Familial Cancer Centre, Sir Peter MacCallum Department of Oncology and
| | - Paul A James
- Familial Cancer Centre, Sir Peter MacCallum Department of Oncology and
| | - Ella Thompson
- Cancer Genetics Laboratory and Sir Peter MacCallum Department of Oncology and
| | | | | | | | - Cristina Verzeroli
- Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer (kConFab), Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Carmen Tartari
- Department of Immunohematology and Transfusion Medicine and
| | - Gabriele Lorenzo Capone
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Firenze, Italy, FiorGen Foundation for Pharmacogenomics, Sesto Fiorentino, Italy
| | - Anna Laura Putignano
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Firenze, Italy, FiorGen Foundation for Pharmacogenomics, Sesto Fiorentino, Italy
| | - Maurizio Genuardi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Firenze, Italy, FiorGen Foundation for Pharmacogenomics, Sesto Fiorentino, Italy, Institute of Medical Genetics, 'A. Gemelli' School of Medicine, Catholic University, Rome, Italy
| | - Veronica Medici
- Dipartimento di Oncologia, Ematologia e Malattie dell'Apparato Respiratorio, Università di Modena e Reggio Emilia, Modena, Italy
| | - Isabella Marchi
- Dipartimento di Oncologia, Ematologia e Malattie dell'Apparato Respiratorio, Università di Modena e Reggio Emilia, Modena, Italy
| | - Massimo Federico
- Dipartimento di Oncologia, Ematologia e Malattie dell'Apparato Respiratorio, Università di Modena e Reggio Emilia, Modena, Italy
| | - Silvia Tognazzo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | - Laura Matricardi
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | - Simona Agata
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | | | - Lara Della Puppa
- Unit of Experimental Oncology 1, CRO Aviano National Cancer Institute, Aviano (PN), Italy
| | - Giulia Cini
- Unit of Experimental Oncology 1, CRO Aviano National Cancer Institute, Aviano (PN), Italy
| | - Viviana Gismondi
- Unit of Hereditary Cancers, IRCCS AOU San Martino - IST, Genoa, Italy
| | - Valeria Viassolo
- Unit of Hereditary Cancers, IRCCS AOU San Martino - IST, Genoa, Italy
| | - Chiara Perfumo
- Unit of Hereditary Cancers, IRCCS AOU San Martino - IST, Genoa, Italy
| | - Maria Antonietta Mencarelli
- Medical Genetics, University of Siena, Siena, Italy, Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy, Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine
| | - Gaia Roversi
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine
| | | | - Piera Rizzolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | - Maria Adelaide Caligo
- Section of Genetic Oncology, University Hospital and University of Pisa, Pisa, Italy
| | - Gaetana Gambino
- Section of Genetic Oncology, University Hospital and University of Pisa, Pisa, Italy
| | - Stefania Tommasi
- IRCCS Istituto Tumori 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari, Italy
| | - Brunella Pilato
- IRCCS Istituto Tumori 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari, Italy
| | - Carlo Tondini
- Unit of Medical Oncology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Corna
- Unit of Medical Oncology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Monica Barile
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Ana Osorio
- Human Cancer Genetics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain, Spanish Genotyping Centre (CEGEN), Madrid, Spain
| | - Javier Benitez
- Human Cancer Genetics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain, Spanish Genotyping Centre (CEGEN), Madrid, Spain
| | | | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy, Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Liliana Varesco
- Unit of Hereditary Cancers, IRCCS AOU San Martino - IST, Genoa, Italy
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Xianshu Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Peter Devilee
- Department of Human Genetics, Department of Pathology and
| | | | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alessandra Viel
- Unit of Experimental Oncology 1, CRO Aviano National Cancer Institute, Aviano (PN), Italy
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | - Laura Cortesi
- Dipartimento di Oncologia, Ematologia e Malattie dell'Apparato Respiratorio, Università di Modena e Reggio Emilia, Modena, Italy
| | - Orland Diez
- Oncogenetics Group, Hospital Universitari de la Vall d'Hebron, Barcelona, Spain, Vall d́Hebron Institute of Oncology (VHIO), Barcelona, Spain, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Balmaña
- Vall d́Hebron Institute of Oncology (VHIO), Barcelona, Spain, Department of Medical Oncology, Hospital Universitari de la Vall d́Hebron, Barcelona, Spain
| | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Laura Papi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Firenze, Italy
| | | | - Conxi Lázaro
- Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| | - Anna Falanga
- Department of Immunohematology and Transfusion Medicine and
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine and Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph Vijai
- Clinical Genetics Service, Department of Medicine and Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ian Campbell
- Cancer Genetics Laboratory and Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Barbara Burwinkel
- Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University Hospital Heidelberg, Heidelberg, Germany, Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anders Kvist
- Division of Oncology, Department of Clinical Sciences
| | - Hans Ehrencrona
- Department of Clinical Genetics, Laboratory Medicine, Office for Medical Services and Department of Clinical Genetics, Lund University, Lund, Sweden
| | - Sylvie Mazoyer
- Cancer Research Centre of Lyon, CNRS UMR5286, INSERM U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Sara Pizzamiglio
- Unit of Medical Statistics, Biometry and Bioinformatics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Verderio
- Unit of Medical Statistics, Biometry and Bioinformatics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Jordi Surralles
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona and Center for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Paolo Radice
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy, Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine
| |
Collapse
|
11
|
Sousa FG, Matuo R, Tang SW, Rajapakse VN, Luna A, Sander C, Varma S, Simon PHG, Doroshow JH, Reinhold WC, Pommier Y. Alterations of DNA repair genes in the NCI-60 cell lines and their predictive value for anticancer drug activity. DNA Repair (Amst) 2015; 28:107-15. [PMID: 25758781 DOI: 10.1016/j.dnarep.2015.01.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/26/2022]
Abstract
Loss of function of DNA repair (DNAR) genes is associated with genomic instability and cancer predisposition; it also makes cancer cells reliant on a reduced set of DNAR pathways to resist DNA-targeted therapy, which remains the core of the anticancer armamentarium. Because the landscape of DNAR defects across numerous types of cancers and its relation with drug activity have not been systematically examined, we took advantage of the unique drug and genomic databases of the US National Cancer Institute cancer cell lines (the NCI-60) to characterize 260 DNAR genes with respect to deleterious mutations and expression down-regulation; 169 genes exhibited a total of 549 function-affecting alterations, with 39 of them scoring as putative knockouts across 31 cell lines. Those mutations were compared to tumor samples from 12 studies of The Cancer Genome Atlas (TCGA) and The Cancer Cell Line Encyclopedia (CCLE). Based on this compendium of alterations, we determined which DNAR genomic alterations predicted drug response for 20,195 compounds present in the NCI-60 drug database. Among 242 DNA damaging agents, 202 showed associations with at least one DNAR genomic signature. In addition to SLFN11, the Fanconi anemia-scaffolding gene SLX4 (FANCP/BTBD12) stood out among the genes most significantly related with DNA synthesis and topoisomerase inhibitors. Depletion and complementation experiments validated the causal relationship between SLX4 defects and sensitivity to raltitrexed and cytarabine in addition to camptothecin. Therefore, we propose new rational uses for existing anticancer drugs based on a comprehensive analysis of DNAR genomic parameters.
Collapse
Affiliation(s)
- Fabricio G Sousa
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Programa de Pós-Graduação em Farmácia, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Renata Matuo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Programa de Pós-Graduação em Farmácia, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Sai-Wen Tang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Augustin Luna
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Computational Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Chris Sander
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; HiThru Analytics LLC, Laurel, MD 20707, USA
| | - Paul H G Simon
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - James H Doroshow
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - William C Reinhold
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Genetic Counseling for Fanconi Anemia: Crosslinking Disciplines. J Genet Couns 2014; 23:910-21. [DOI: 10.1007/s10897-014-9754-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/31/2014] [Indexed: 12/22/2022]
|
13
|
Catucci I, Peterlongo P, Ciceri S, Colombo M, Pasquini G, Barile M, Bonanni B, Verderio P, Pizzamiglio S, Foglia C, Falanga A, Marchetti M, Galastri L, Bianchi T, Corna C, Ravagnani F, Bernard L, Fortuzzi S, Sardella D, Scuvera G, Peissel B, Manoukian S, Tondini C, Radice P. PALB2 sequencing in Italian familial breast cancer cases reveals a high-risk mutation recurrent in the province of Bergamo. Genet Med 2014; 16:688-94. [PMID: 24556926 DOI: 10.1038/gim.2014.13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/22/2014] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Monoallelic germ-line deleterious mutations of PALB2 (partner and localizer of BRCA2) are associated with breast cancer risk and have been found in several populations, with carrier frequencies of ~1-2%. Initially, these mutations were considered to have moderate penetrance, but accumulating evidence now indicates that they are associated with much higher risk. METHODS In this study, we sequenced the PALB2 coding regions unlinked to BRCA (breast cancer) genes in 575 probands from Italian breast cancer families recruited in Milan. RESULTS We found 12 carriers (2.1%) of deleterious mutations, and none of the mutations was found in 784 controls collected in Milan. One of these mutations, the c.1027C>T (p.Gln343X), was found to be recurrent in the province of Bergamo in northern Italy, being detected in 6/113 (5.3%) familial breast cancer cases and 2/477 (0.4%) controls recruited in this area (Fisher's exact test: P < 0.01). CONCLUSIONS Our data provide confirmatory findings that, in the Italian population also, deleterious mutations of PALB2 are relatively frequent predisposing factors for breast cancer and may be associated with high risk of the disease.
Collapse
Affiliation(s)
- Irene Catucci
- 1] IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy [2] Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Peterlongo
- 1] IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy [2] Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Ciceri
- 1] IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy [2] Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Graziella Pasquini
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Barile
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Paolo Verderio
- Unit of Medical Statistics, Biometry and Bioinformatics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Pizzamiglio
- Unit of Medical Statistics, Biometry and Bioinformatics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Foglia
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Anna Falanga
- Department of Immunohematology and Transfusion Medicine, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Marina Marchetti
- Department of Immunohematology and Transfusion Medicine, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Galastri
- Associazione Italiana Volontari Sangue Comunale Milano, Milan, Italy
| | - Tiziana Bianchi
- Associazione Italiana Volontari Sangue Comunale Milano, Milan, Italy
| | - Chiara Corna
- Unit of Medical Oncology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Fernando Ravagnani
- Immunohematology and Transfusion Medicine Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loris Bernard
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Cogentech, Milan, Italy
| | - Stefano Fortuzzi
- IFOM Cogentech, Consortium for Genomic Technologies, Milan, Italy
| | | | - Giulietta Scuvera
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carlo Tondini
- Unit of Medical Oncology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
14
|
de Garibay GR, Acedo A, García-Casado Z, Gutiérrez-Enríquez S, Tosar A, Romero A, Garre P, Llort G, Thomassen M, Díez O, Pérez-Segura P, Díaz-Rubio E, Velasco EA, Caldés T, de la Hoya M. Capillary electrophoresis analysis of conventional splicing assays: IARC analytical and clinical classification of 31 BRCA2 genetic variants. Hum Mutat 2013; 35:53-7. [PMID: 24123850 DOI: 10.1002/humu.22456] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/23/2013] [Indexed: 11/07/2022]
Abstract
Rare sequence variants in "high-risk" disease genes, often referred as unclassified variants (UVs), pose a serious challenge to genetic testing. However, UVs resulting in splicing alterations can be readily assessed by in vitro assays. Unfortunately, analytical and clinical interpretation of these assays is often challenging. Here, we explore this issue by conducting splicing assays in 31 BRCA2 genetic variants. All variants were assessed by RT-PCR followed by capillary electrophoresis and direct sequencing. If assays did not produce clear-cut outputs (Class-2 or Class-5 according to analytical International Agency for Research on Cancer guidelines), we performed qPCR and/or minigene assays. The latter were performed with a new splicing vector (pSAD) developed by authors of the present manuscript (patent #P201231427 CSIC). We have identified three clinically relevant Class-5 variants (c.682-2A>G, c.7617+1G>A, and c.8954-5A>G), and 27 analytical Class-2 variants (not inducing splicing alterations). In addition, we demonstrate that rs9534262 (c.7806-14T>C) is a BRCA2 splicing quantitative trait locus.
Collapse
Affiliation(s)
- Gorka Ruiz de Garibay
- Laboratorio de Oncología Molecular, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bogdanova N, Helbig S, Dörk T. Hereditary breast cancer: ever more pieces to the polygenic puzzle. Hered Cancer Clin Pract 2013; 11:12. [PMID: 24025454 PMCID: PMC3851033 DOI: 10.1186/1897-4287-11-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/02/2013] [Indexed: 12/21/2022] Open
Abstract
Several susceptibility genes differentially impact on the lifetime risk for breast cancer. Technological advances over the past years have enabled the detection of genetic risk factors through high-throughput screening of large breast cancer case-control series. High- to intermediate penetrance alleles have now been identified in more than 20 genes involved in DNA damage signalling and repair, and more than 70 low-penetrance loci have been discovered through recent genome-wide association studies. In addition to classical germ-line mutation and single-nucleotide polymorphism, copy number variation and somatic mosaicism have been proposed as potential predisposing mechanisms. Many of the identified loci also appear to influence breast tumour characteristics such as estrogen receptor status. In this review, we briefly summarize present knowledge about breast cancer susceptibility genes and discuss their implications for risk prediction and clinical practice.
Collapse
Affiliation(s)
- Natalia Bogdanova
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
- Clinics of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - Sonja Helbig
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Thilo Dörk
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Abstract
Background SLX4 encodes a DNA repair protein that regulates three structure-specific endonucleases and is necessary for resistance to DNA crosslinking agents, topoisomerase I and poly (ADP-ribose) polymerase (PARP) inhibitors. Recent studies have reported mutations in SLX4 in a new subtype of Fanconi anemia (FA), FA-P. Monoallelic defects in several FA genes are known to confer susceptibility to breast and ovarian cancers. Methods and Results To determine if SLX4 is involved in breast cancer susceptibility, we sequenced the entire SLX4 coding region in 738 (270 Jewish and 468 non-Jewish) breast cancer patients with 2 or more family members affected by breast cancer and no known BRCA1 or BRCA2 mutations. We found a novel nonsense (c.2469G>A, p.W823*) mutation in one patient. In addition, we also found 51 missense variants [13 novel, 23 rare (MAF<0.1%), and 15 common (MAF>1%)], of which 22 (5 novel and 17 rare) were predicted to be damaging by Polyphen2 (score = 0.65–1). We performed functional complementation studies using p.W823* and 5 SLX4 variants (4 novel and 1 rare) cDNAs in a human SLX4-null fibroblast cell line, RA3331. While wild type SLX4 and all the other variants fully rescued the sensitivity to mitomycin C (MMC), campthothecin (CPT), and PARP inhibitor (Olaparib) the p.W823* SLX4 mutant failed to do so. Conclusion Loss-of-function mutations in SLX4 may contribute to the development of breast cancer in very rare cases.
Collapse
|