1
|
Peng S, Cai X, Chen J, Sun J, Lai B, Chang M, Xing L. The role of CELF family in neurodevelopment and neurodevelopmental disorders. Neurobiol Dis 2024; 197:106525. [PMID: 38729272 DOI: 10.1016/j.nbd.2024.106525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
RNA-binding proteins (RBPs) bind to RNAs and are crucial for regulating RNA splicing, stability, translation, and transport. Among these proteins, the CUGBP Elav-like family (CELF) is a highly conserved group crucial for posttranscriptional regulation by binding to CUG repeats. Comprising CELF1-6, this family exhibits diverse expression patterns and functions. Dysregulation of CELF has been implicated in various neural disorders, encompassing both neurodegenerative and neurodevelopmental conditions, such as Alzheimer's disease and autism. This article aims to provide a comprehensive summary of the CELF family's role in neurodevelopment and neurodevelopmental disorders. Understanding CELF's mechanisms may offer clues for potential therapeutic strategies by regulating their targets in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Siwan Peng
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Xinyi Cai
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Junpeng Chen
- School of Nursing and Rehabilitation, Nantong University, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Biqin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Min Chang
- School of Education Science, Nantong University, Nantong 226019, China.
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China.
| |
Collapse
|
2
|
de Amorim JL, Leung SW, Haji-Seyed-Javadi R, Hou Y, Yu DS, Ghalei H, Khoshnevis S, Yao B, Corbett AH. The putative RNA helicase DDX1 associates with the nuclear RNA exosome and modulates RNA/DNA hybrids (R-loops). J Biol Chem 2024; 300:105646. [PMID: 38219817 PMCID: PMC10875230 DOI: 10.1016/j.jbc.2024.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024] Open
Abstract
The RNA exosome is a ribonuclease complex that mediates both RNA processing and degradation. This complex is evolutionarily conserved, ubiquitously expressed, and required for fundamental cellular functions, including rRNA processing. The RNA exosome plays roles in regulating gene expression and protecting the genome, including modulating the accumulation of RNA-DNA hybrids (R-loops). The function of the RNA exosome is facilitated by cofactors, such as the RNA helicase MTR4, which binds/remodels RNAs. Recently, missense mutations in RNA exosome subunit genes have been linked to neurological diseases. One possibility to explain why missense mutations in genes encoding RNA exosome subunits lead to neurological diseases is that the complex may interact with cell- or tissue-specific cofactors that are impacted by these changes. To begin addressing this question, we performed immunoprecipitation of the RNA exosome subunit, EXOSC3, in a neuronal cell line (N2A), followed by proteomic analyses to identify novel interactors. We identified the putative RNA helicase, DDX1, as an interactor. DDX1 plays roles in double-strand break repair, rRNA processing, and R-loop modulation. To explore the functional connections between EXOSC3 and DDX1, we examined the interaction following double-strand breaks and analyzed changes in R-loops in N2A cells depleted for EXOSC3 or DDX1 by DNA/RNA immunoprecipitation followed by sequencing. We find that EXOSC3 interaction with DDX1 is decreased in the presence of DNA damage and that loss of EXOSC3 or DDX1 alters R-loops. These results suggest EXOSC3 and DDX1 interact during events of cellular homeostasis and potentially suppress unscrupulous expression of genes promoting neuronal projection.
Collapse
Affiliation(s)
- Julia L de Amorim
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell, and Development Biology, Emory University, Atlanta, Georgia, USA
| | - Sara W Leung
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA
| | - Ramona Haji-Seyed-Javadi
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Yingzi Hou
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David S Yu
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sohail Khoshnevis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anita H Corbett
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA.
| |
Collapse
|
3
|
Grlickova-Duzevik E, Reimonn TM, Michael M, Tian T, Owyoung J, McGrath-Conwell A, Neufeld P, Mueth M, Molliver DC, Ward PJ, Harrison BJ. Members of the CUGBP Elav-like family of RNA-binding proteins are expressed in distinct populations of primary sensory neurons. J Comp Neurol 2023; 531:1425-1442. [PMID: 37537886 DOI: 10.1002/cne.25520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 06/10/2023] [Indexed: 08/05/2023]
Abstract
Primary sensory dorsal root ganglia (DRG) neurons are diverse, with distinct populations that respond to specific stimuli. Previously, we observed that functionally distinct populations of DRG neurons express mRNA transcript variants with different 3' untranslated regions (3'UTRs). 3'UTRs harbor binding sites for interaction with RNA-binding proteins (RBPs) for transporting mRNAs to subcellular domains, modulating transcript stability, and regulating the rate of translation. In the current study, analysis of publicly available single-cell RNA-sequencing data generated from adult mice revealed that 17 3'UTR-binding RBPs were enriched in specific populations of DRG neurons. This included four members of the CUG triplet repeat (CUGBP) Elav-like family (CELF): CELF2 and CELF4 were enriched in peptidergic, CELF6 in both peptidergic and nonpeptidergic, and CELF3 in tyrosine hydroxylase-expressing neurons. Immunofluorescence studies confirmed that 60% of CELF4+ neurons are small-diameter C fibers and 33% medium-diameter myelinated (likely Aδ) fibers and showed that CELF4 is distributed to peripheral termini. Coexpression analyses using transcriptomic data and immunofluorescence revealed that CELF4 is enriched in nociceptive neurons that express GFRA3, CGRP, and the capsaicin receptor TRPV1. Reanalysis of published transcriptomic data from macaque DRG revealed a highly similar distribution of CELF members, and reanalysis of single-nucleus RNA-sequencing data derived from mouse and rat DRG after sciatic injury revealed differential expression of CELFs in specific populations of sensory neurons. We propose that CELF RBPs may regulate the fate of mRNAs in populations of nociceptors, and may play a role in pain and/or neuronal regeneration following nerve injury.
Collapse
Affiliation(s)
- Eliza Grlickova-Duzevik
- Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
| | - Thomas M Reimonn
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Merilla Michael
- Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
| | - Tina Tian
- Medical Scientist Training Program, Emory University, Atlanta, Georgia, USA
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jordan Owyoung
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Aidan McGrath-Conwell
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
- College of Arts and Sciences, University of New England, Biddeford, Maine, USA
| | - Peter Neufeld
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
- College of Arts and Sciences, University of New England, Biddeford, Maine, USA
| | - Madison Mueth
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, USA
| | - Derek C Molliver
- Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
| | - Patricia Jillian Ward
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Benjamin J Harrison
- Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
| |
Collapse
|
4
|
Fujimura K, Guise AJ, Nakayama T, Schlaffner CN, Meziani A, Kumar M, Cheng L, Vaughan DJ, Kodani A, Van Haren S, Parker K, Levy O, Durbin AF, Bosch I, Gehrke L, Steen H, Mochida GH, Steen JA. Integrative systems biology characterizes immune-mediated neurodevelopmental changes in murine Zika virus microcephaly. iScience 2023; 26:106909. [PMID: 37332674 PMCID: PMC10275723 DOI: 10.1016/j.isci.2023.106909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/12/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Characterizing perturbation of molecular pathways in congenital Zika virus (ZIKV) infection is critical for improved therapeutic approaches. Leveraging integrative systems biology, proteomics, and RNA-seq, we analyzed embryonic brain tissues from an immunocompetent, wild-type congenital ZIKV infection mouse model. ZIKV induced a robust immune response accompanied by the downregulation of critical neurodevelopmental gene programs. We identified a negative correlation between ZIKV polyprotein abundance and host cell cycle-inducing proteins. We further captured the downregulation of genes/proteins, many of which are known to be causative for human microcephaly, including Eomesodermin/T-box Brain Protein 2 (EOMES/TBR2) and Neuronal Differentiation 2 (NEUROD2). Disturbances of distinct molecular pathways in neural progenitors and post-mitotic neurons may contribute to complex brain phenotype of congenital ZIKV infection. Overall, this report on protein- and transcript-level dynamics enhances understanding of the ZIKV immunopathological landscape through characterization of fetal immune response in the developing brain.
Collapse
Affiliation(s)
- Kimino Fujimura
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Department of Pediatrics, Shin-Yurigaoka General Hospital, Kanagawa, Japan
| | - Amanda J. Guise
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tojo Nakayama
- Division of Genetics and Genomics and The Manton Center for Orphan Disease, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christoph N. Schlaffner
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Anais Meziani
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mukesh Kumar
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Long Cheng
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dylan J. Vaughan
- Division of Genetics and Genomics and The Manton Center for Orphan Disease, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Andrew Kodani
- Center for Pediatric Neurological Disease Research and Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Simon Van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Ann F. Durbin
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Irene Bosch
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lee Gehrke
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hanno Steen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ganeshwaran H. Mochida
- Division of Genetics and Genomics and The Manton Center for Orphan Disease, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Pediatric Neurology Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Judith A. Steen
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Yi Y, Zhong C, Wei-wei H. The long-term neurodevelopmental outcomes of febrile seizures and underlying mechanisms. Front Cell Dev Biol 2023; 11:1186050. [PMID: 37305674 PMCID: PMC10248510 DOI: 10.3389/fcell.2023.1186050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Febrile seizures (FSs) are convulsions caused by a sudden increase in body temperature during a fever. FSs are one of the commonest presentations in young children, occurring in up to 4% of children between the ages of about 6 months and 5 years old. FSs not only endanger children's health, cause panic and anxiety to families, but also have many adverse consequences. Both clinical and animal studies show that FSs have detrimental effects on neurodevelopment, that cause attention deficit hyperactivity disorder (ADHD), increased susceptibility to epilepsy, hippocampal sclerosis and cognitive decline during adulthood. However, the mechanisms of FSs in developmental abnormalities and disease occurrence during adulthood have not been determined. This article provides an overview of the association of FSs with neurodevelopmental outcomes, outlining both the underlying mechanisms and the possible appropriate clinical biomarkers, from histological changes to cellular molecular mechanisms. The hippocampus is the brain region most significantly altered after FSs, but the motor cortex and subcortical white matter may also be involved in the development disorders induced by FSs. The occurrence of multiple diseases after FSs may share common mechanisms, and the long-term role of inflammation and γ-aminobutyric acid (GABA) system are currently well studied.
Collapse
Affiliation(s)
- You Yi
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhong
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hu Wei-wei
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
de Amorim JL, Leung SW, Haji-Seyed-Javadi R, Hou Y, Yu DS, Ghalei H, Khoshnevis S, Yao B, Corbett AH. The RNA helicase DDX1 associates with the nuclear RNA exosome and modulates R-loops. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537228. [PMID: 37131662 PMCID: PMC10153151 DOI: 10.1101/2023.04.17.537228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The RNA exosome is a ribonuclease complex that mediates both RNA processing and degradation. This complex is evolutionarily conserved, ubiquitously expressed, and required for fundamental cellular functions, including rRNA processing. The RNA exosome plays roles in regulating gene expression and protecting the genome, including modulating the accumulation of RNA-DNA hybrids (R-loops). The function of the RNA exosome is facilitated by cofactors, such as the RNA helicase MTR4, which binds/remodels RNAs. Recently, missense mutations in RNA exosome subunit genes have been linked to neurological diseases. One possibility to explain why missense mutations in genes encoding RNA exosome subunits lead to neurological diseases is that the complex may interact with cell- or tissue-specific cofactors that are impacted by these changes. To begin addressing this question, we performed immunoprecipitation of the RNA exosome subunit, EXOSC3, in a neuronal cell line (N2A) followed by proteomic analyses to identify novel interactors. We identified the putative RNA helicase, DDX1, as an interactor. DDX1 plays roles in double-strand break repair, rRNA processing, and R-loop modulation. To explore the functional connections between EXOSC3 and DDX1, we examined the interaction following double-strand breaks, and analyzed changes in R-loops in N2A cells depleted for EXOSC3 or DDX1 by DNA/RNA immunoprecipitation followed by sequencing (DRIP-Seq). We find that EXOSC3 interaction with DDX1 is decreased in the presence of DNA damage and that loss of EXOSC3 or DDX1 alters R-loops. These results suggest EXOSC3 and DDX1 interact during events of cellular homeostasis and potentially suppress unscrupulous expression of genes promoting neuronal projection.
Collapse
|
7
|
Shen Y, Zhang C, Xiao K, Liu D, Xie G. CELF4 regulates spine formation and depression-like behaviors of mice. Biochem Biophys Res Commun 2022; 605:39-44. [DOI: 10.1016/j.bbrc.2022.03.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 01/12/2023]
|
8
|
Yin B, Wang X, Huang T, Jia J. Shared Genetics and Causality Between Decaffeinated Coffee Consumption and Neuropsychiatric Diseases: A Large-Scale Genome-Wide Cross-Trait Analysis and Mendelian Randomization Analysis. Front Psychiatry 2022; 13:910432. [PMID: 35898629 PMCID: PMC9309364 DOI: 10.3389/fpsyt.2022.910432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Coffee or caffeine consumption has been associated with neuropsychiatric disorders, implying a shared etiology. However, whether these associations reflect causality remains largely unknown. To understand the genetic structure of the association between decaffeinated coffee consumption (DCC) and neuropsychiatric traits, we examined the genetic correlation, causality, and shared genetic structure between DCC and neuropsychiatric traits using linkage disequilibrium score regression, bidirectional Mendelian randomization (MR), and genome-wide cross-trait meta-analysis in large GWAS Consortia for coffee consumption (N = 329,671) and 13 neuropsychiatric traits (sample size ranges from 36,052 to 500,199). We found strong positive genetic correlations between DCC and lifetime cannabis use (LCU; Rg = 0.48, P = 8.40 × 10-19), alcohol use disorder identification test (AUDIT) total score (AUDIT_T; Rg = 0.40, P = 4.63 × 10-13), AUDIT_C score (alcohol consumption component of the AUDIT; Rg = 0.40, P = 5.26 × 10-11), AUDIT_P score (dependence and hazardous-use component of the AUDIT; Rg = 0.28, P = 1.36 × 10-05), and strong negative genetic correlations between DCC and neuroticism (Rg = -0.15, P = 7.27 × 10-05), major depressed diseases (MDD; Rg = -0.15, P = 0.0010), and insomnia (Rg= -0.15, P = 0.0007). In the cross-trait meta-analysis, we identified 6, 5, 1, 1, 2, 31, and 27 shared loci between DCC and Insomnia, LCU, AUDIT_T, AUDIT_C, AUDIT_P, neuroticism, and MDD, respectively, which were mainly enriched in bone marrow, lymph node, cervix, uterine, lung, and thyroid gland tissues, T cell receptor signaling pathway, antigen receptor-mediated signaling pathway, and epigenetic pathways. A large of TWAS-significant associations were identified in tissues that are part of the nervous system, digestive system, and exo-/endocrine system. Our findings further indicated a causal influence of liability to DCC on LCU and low risk of MDD (odds ratio: 0.90, P = 9.06 × 10-5 and 1.27, P = 7.63 × 10-4 respectively). We also observed that AUDIT_T and AUDIT_C were causally related to DCC (odds ratio: 1.83 per 1-SD increase in AUDIT_T, P = 1.67 × 10-05, 1.80 per 1-SD increase in AUDIT_C, P = 5.09 × 10-04). Meanwhile, insomnia and MDD had a causal negative influence on DCC (OR: 0.91, 95% CI: 0.86-0.95, P = 1.51 × 10-04 for Insomnia; OR: 0.93, 95% CI: 0.89-0.99, P = 6.02 × 10-04 for MDD). These findings provided evidence for the shared genetic basis and causality between DCC and neuropsychiatric diseases, and advance our understanding of the shared genetic mechanisms underlying their associations, as well as assisting with making recommendations for clinical works or health education.
Collapse
Affiliation(s)
- Bian Yin
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xinpei Wang
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China.,Center for Intelligent Public Health, Academy for Artificial Intelligence, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China.,Center for Statistical Science, Peking University, Beijing, China
| |
Collapse
|
9
|
Agarwala S, Veerappa AM, Ramachandra NB. Identification of primary copy number variations reveal enrichment of Calcium, and MAPK pathways sensitizing secondary sites for autism. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autism is a neurodevelopmental condition with genetic heterogeneity. It is characterized by difficulties in reciprocal social interactions with strong repetitive behaviors and stereotyped interests. Copy number variations (CNVs) are genomic structural variations altering the genomic structure either by duplication or deletion. De novo or inherited CNVs are found in 5–10% of autistic subjects with a size range of few kilobases to several megabases. CNVs predispose humans to various diseases by altering gene regulation, generation of chimeric genes, and disruption of the coding region or through position effect. Although, CNVs are not the initiating event in pathogenesis; additional preceding mutations might be essential for disease manifestation. The present study is aimed to identify the primary CNVs responsible for autism susceptibility in healthy cohorts to sensitize secondary-hits. In the current investigation, primary-hit autism gene CNVs are characterized in 1715 healthy cohorts of varying ethnicities across 12 populations using Affymetrix high-resolution array study. Thirty-eight individuals from twelve families residing in Karnataka, India, with the age group of 13–73 years are included for the comparative CNV analysis. The findings are validated against global 179 autism whole-exome sequence datasets derived from Simons Simplex Collection. These datasets are deposited at the Simons Foundation Autism Research Initiative (SFARI) database.
Results
The study revealed that 34.8% of the subjects carried 2% primary-hit CNV burden with 73 singleton-autism genes in different clusters. Of these, three conserved CNV breakpoints were identified with ARHGAP11B, DUSP22, and CHRNA7 as the target genes across 12 populations. Enrichment analysis of the population-specific autism genes revealed two signaling pathways—calcium and mitogen-activated protein kinases (MAPK) in the CNV identified regions. These impaired pathways affected the downstream cascades of neuronal function and physiology, leading to autism behavior. The pathway analysis of enriched genes unravelled complex protein interaction networks, which sensitized secondary sites for autism. Further, the identification of miRNA targets associated with autism gene CNVs added severity to the condition.
Conclusion
These findings contribute to an atlas of primary-hit genes to detect autism susceptibility in healthy cohorts, indicating their impact on secondary sites for manifestation.
Collapse
|
10
|
Itai T, Hamanaka K, Sasaki K, Wagner M, Kotzaeridou U, Brösse I, Ries M, Kobayashi Y, Tohyama J, Kato M, Ong WP, Chew HB, Rethanavelu K, Ranza E, Blanc X, Uchiyama Y, Tsuchida N, Fujita A, Azuma Y, Koshimizu E, Mizuguchi T, Takata A, Miyake N, Takahashi H, Miyagi E, Tsurusaki Y, Doi H, Taguri M, Antonarakis SE, Nakashima M, Saitsu H, Miyatake S, Matsumoto N. De novo variants in CELF2 that disrupt the nuclear localization signal cause developmental and epileptic encephalopathy. Hum Mutat 2020; 42:66-76. [PMID: 33131106 DOI: 10.1002/humu.24130] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/16/2020] [Accepted: 10/17/2020] [Indexed: 12/20/2022]
Abstract
We report heterozygous CELF2 (NM_006561.3) variants in five unrelated individuals: Individuals 1-4 exhibited developmental and epileptic encephalopathy (DEE) and Individual 5 had intellectual disability and autistic features. CELF2 encodes a nucleocytoplasmic shuttling RNA-binding protein that has multiple roles in RNA processing and is involved in the embryonic development of the central nervous system and heart. Whole-exome sequencing identified the following CELF2 variants: two missense variants [c.1558C>T:p.(Pro520Ser) in unrelated Individuals 1 and 2, and c.1516C>G:p.(Arg506Gly) in Individual 3], one frameshift variant in Individual 4 that removed the last amino acid of CELF2 c.1562dup:p.(Tyr521Ter), possibly resulting in escape from nonsense-mediated mRNA decay (NMD), and one canonical splice site variant, c.272-1G>C in Individual 5, also probably leading to NMD. The identified variants in Individuals 1, 2, 4, and 5 were de novo, while the variant in Individual 3 was inherited from her mosaic mother. Notably, all identified variants, except for c.272-1G>C, were clustered within 20 amino acid residues of the C-terminus, which might be a nuclear localization signal. We demonstrated the extranuclear mislocalization of mutant CELF2 protein in cells transfected with mutant CELF2 complementary DNA plasmids. Our findings indicate that CELF2 variants that disrupt its nuclear localization are associated with DEE.
Collapse
Affiliation(s)
- Toshiyuki Itai
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kazunori Sasaki
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Urania Kotzaeridou
- Department of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ines Brösse
- Department of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Ries
- Department of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Yu Kobayashi
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Niigata, Japan
| | - Jun Tohyama
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Niigata, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Winnie P Ong
- Department of Genetics, Kuala Lumpur Hospital, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Hui B Chew
- Department of Genetics, Kuala Lumpur Hospital, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Kavitha Rethanavelu
- Department of Genetics, Kuala Lumpur Hospital, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Emmanuelle Ranza
- Swiss Institute of Genomic Medicine, Medigenome, Geneva, Switzerland
| | - Xavier Blanc
- Swiss Institute of Genomic Medicine, Medigenome, Geneva, Switzerland
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Rare Disease Genomics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Rare Disease Genomics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yoshiteru Azuma
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yoshinori Tsurusaki
- Faculty of Nutritional Science, Sagami Women's University, Sagamihara, Kanagawa, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Masataka Taguri
- Department of Data Science, Yokohama City University School of Data Science, Yokohama, Kanagawa, Japan
| | - Stylianos E Antonarakis
- Swiss Institute of Genomic Medicine, Medigenome, Geneva, Switzerland.,Department of Genetic Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
11
|
Cody JD. The Consequences of Abnormal Gene Dosage: Lessons from Chromosome 18. Trends Genet 2020; 36:764-776. [PMID: 32660784 DOI: 10.1016/j.tig.2020.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022]
Abstract
Accurate interpretation of genomic copy number variation (CNV) remains a challenge and has important consequences for both congenital and late-onset disease. Hemizygosity dosage characterization of the genes on chromosome 18 reveals a spectrum of outcomes ranging from no clinical effect, to risk factors for disease, to both low- and high-penetrance disease. These data are important for accurate and predictive clinical management. Additionally, the potential mechanisms of reduced penetrance due to dosage compensation are discussed as a key to understanding avenues for potential treatment. This review describes the chromosome 18 findings, and discusses the molecular mechanisms that allow haploinsufficiency, reduced penetrance, and dosage compensation.
Collapse
Affiliation(s)
- Jannine DeMars Cody
- Department of Pediatrics, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Chromosome 18 Registry and Research Society, San Antonio, TX 78229, USA.
| |
Collapse
|
12
|
Fjorder AS, Rasmussen MB, Mehrjouy MM, Nazaryan-Petersen L, Hansen C, Bak M, Grarup N, Nørremølle A, Larsen LA, Vestergaard H, Hansen T, Tommerup N, Bache I. Haploinsufficiency of ARHGAP42 is associated with hypertension. Eur J Hum Genet 2019; 27:1296-1303. [PMID: 30903111 PMCID: PMC6777610 DOI: 10.1038/s41431-019-0382-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/18/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022] Open
Abstract
Family studies have established that the heritability of blood pressure is significant and genome-wide association studies (GWAS) have identified numerous susceptibility loci, including one within the non-coding part of Rho GTPase-activating protein 42 gene (ARHGAP42) on chromosome 11q22.1. Arhgap42-deficient mice have significantly elevated blood pressure, but the phenotypic effects of human variants in the coding part of the gene are unknown. In a Danish cohort of carriers with apparently balanced chromosomal rearrangements, we identified a family where a reciprocal translocation t(11;18)(q22.1;q12.2) segregated with hypertension and obesity. Clinical re-examination revealed that four carriers (age 50-77 years) have had hypertension for several years along with an increased body mass index (34-43 kg/m2). A younger carrier (age 23 years) had normal blood pressure and body mass index. Mapping of the chromosomal breakpoints with mate-pair and Sanger sequencing revealed truncation of ARHGAP42. A decreased expression level of ARHGAP42 mRNA in the blood was found in the translocation carriers relative to controls and allele-specific expression analysis showed monoallelic expression in the translocation carriers, confirming that the truncated allele of ARHGAP42 was not expressed. These findings support that haploinsufficiency of ARHGAP42 leads to an age-dependent hypertension. The other breakpoint truncated a regulatory domain of the CUGBP Elav-like family member 4 (CELF4) gene on chromosome 18q12.2 that harbours several GWAS signals for obesity. We thereby provide additional support for an obesity locus in the CELF4 domain.
Collapse
Affiliation(s)
- Amanda S Fjorder
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Malene B Rasmussen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen O, 2100, Denmark
| | - Mana M Mehrjouy
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Lusine Nazaryan-Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Claus Hansen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Mads Bak
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen O, 2100, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Iben Bache
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark.
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen O, 2100, Denmark.
| |
Collapse
|
13
|
Lin J, Zhang Y, Frankel WN, Ouyang Z. PRAS: Predicting functional targets of RNA binding proteins based on CLIP-seq peaks. PLoS Comput Biol 2019; 15:e1007227. [PMID: 31425505 PMCID: PMC6716675 DOI: 10.1371/journal.pcbi.1007227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/30/2019] [Accepted: 06/28/2019] [Indexed: 11/19/2022] Open
Abstract
RNA-protein interaction plays important roles in post-transcriptional regulation. Recent advancements in cross-linking and immunoprecipitation followed by sequencing (CLIP-seq) technologies make it possible to detect the binding peaks of a given RNA binding protein (RBP) at transcriptome scale. However, it is still challenging to predict the functional consequences of RBP binding peaks. In this study, we propose the Protein-RNA Association Strength (PRAS), which integrates the intensities and positions of the binding peaks of RBPs for functional mRNA targets prediction. We illustrate the superiority of PRAS over existing approaches on predicting the functional targets of two related but divergent CELF (CUGBP, ELAV-like factor) RBPs in mouse brain and muscle. We also demonstrate the potential of PRAS for wide adoption by applying it to the enhanced CLIP-seq (eCLIP) datasets of 37 RNA decay related RBPs in two human cell lines. PRAS can be utilized to investigate any RBPs with available CLIP-seq peaks. PRAS is freely available at http://ouyanglab.jax.org/pras/.
Collapse
Affiliation(s)
- Jianan Lin
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Yuping Zhang
- Department of Statistics, University of Connecticut, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
- Center for Quantitative Medicine, University of Connecticut, Farmington, Connecticut, United States of America
| | - Wayne N. Frankel
- Department of Genetics and Development and Institute for Genomic Medicine, Columbia University Medical Center, New York City, New York, United States of America
| | - Zhengqing Ouyang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| |
Collapse
|
14
|
Prüss H, Gessner G, Heinemann SH, Rüschendorf F, Ruppert AK, Schulz H, Sander T, Rimpau W. Linkage Evidence for a Two-Locus Inheritance of LQT-Associated Seizures in a Multigenerational LQT Family With a Novel KCNQ1 Loss-of-Function Mutation. Front Neurol 2019; 10:648. [PMID: 31293497 PMCID: PMC6603176 DOI: 10.3389/fneur.2019.00648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Mutations in several genes encoding ion channels can cause the long-QT (LQT) syndrome with cardiac arrhythmias, syncope and sudden death. Recently, mutations in some of these genes were also identified to cause epileptic seizures in these patients, and the sudden unexplained death in epilepsy (SUDEP) was considered to be the pathologic overlap between the two clinical conditions. For LQT-associated KCNQ1 mutations, only few investigations reported the coincidence of cardiac dysfunction and epileptic seizures. Clinical, electrophysiological and genetic characterization of a large pedigree (n = 241 family members) with LQT syndrome caused by a 12-base-pair duplication in exon 8 of the KCNQ1 gene duplicating four amino acids in the carboxyterminal KCNQ1 domain (KCNQ1dup12; p.R360_Q361dupQKQR, NM_000218.2, hg19). Electrophysiological recordings revealed no substantial KCNQ1-like currents. The mutation did not exhibit a dominant negative effect on wild-type KCNQ1 channel function. Most likely, the mutant protein was not functionally expressed and thus not incorporated into a heteromeric channel tetramer. Many LQT family members suffered from syncopes or developed sudden death, often after physical activity. Of 26 family members with LQT, seizures were present in 14 (LQTplus seizure trait). Molecular genetic analyses confirmed a causative role of the novel KCNQ1dup12 mutation for the LQT trait and revealed a strong link also with the LQTplus seizure trait. Genome-wide parametric multipoint linkage analyses identified a second strong genetic modifier locus for the LQTplus seizure trait in the chromosomal region 10p14. The linkage results suggest a two-locus inheritance model for the LQTplus seizure trait in which both the KCNQ1dup12 mutation and the 10p14 risk haplotype are necessary for the occurrence of LQT-associated seizures. The data strongly support emerging concepts that KCNQ1 mutations may increase the risk of epilepsy, but additional genetic modifiers are necessary for the clinical manifestation of epileptic seizures.
Collapse
Affiliation(s)
- Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Bonn, Germany
| | - Guido Gessner
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena & Jena University Hospital, Jena, Germany
| | - Stefan H Heinemann
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena & Jena University Hospital, Jena, Germany
| | | | | | - Herbert Schulz
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Thomas Sander
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Wilhelm Rimpau
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
15
|
Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, Coleman JRI, Hagenaars SP, Ward J, Wigmore EM, Alloza C, Shen X, Barbu MC, Xu EY, Whalley HC, Marioni RE, Porteous DJ, Davies G, Deary IJ, Hemani G, Berger K, Teismann H, Rawal R, Arolt V, Baune BT, Dannlowski U, Domschke K, Tian C, Hinds DA, Trzaskowski M, Byrne EM, Ripke S, Smith DJ, Sullivan PF, Wray NR, Breen G, Lewis CM, McIntosh AM. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci 2019; 22:343-352. [PMID: 30718901 PMCID: PMC6522363 DOI: 10.1038/s41593-018-0326-7] [Citation(s) in RCA: 1426] [Impact Index Per Article: 237.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
Major depression is a debilitating psychiatric illness that is typically associated with low mood and anhedonia. Depression has a heritable component that has remained difficult to elucidate with current sample sizes due to the polygenic nature of the disorder. To maximize sample size, we meta-analyzed data on 807,553 individuals (246,363 cases and 561,190 controls) from the three largest genome-wide association studies of depression. We identified 102 independent variants, 269 genes, and 15 genesets associated with depression, including both genes and gene pathways associated with synaptic structure and neurotransmission. An enrichment analysis provided further evidence of the importance of prefrontal brain regions. In an independent replication sample of 1,306,354 individuals (414,055 cases and 892,299 controls), 87 of the 102 associated variants were significant after multiple testing correction. These findings advance our understanding of the complex genetic architecture of depression and provide several future avenues for understanding etiology and developing new treatment approaches.
Collapse
Affiliation(s)
- David M Howard
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK.
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Jonathan D Hafferty
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Jude Gibson
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Masoud Shirali
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Jonathan R I Coleman
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Trust, London, UK
| | - Saskia P Hagenaars
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Trust, London, UK
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Eleanor M Wigmore
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Clara Alloza
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Miruna C Barbu
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Eileen Y Xu
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Gibran Hemani
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health, Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Klaus Berger
- Institute of Epidemiology & Social Medicine, University of Münster, Münster, Germany
| | - Henning Teismann
- Institute of Epidemiology & Social Medicine, University of Münster, Münster, Germany
| | - Rajesh Rawal
- Institute of Epidemiology & Social Medicine, University of Münster, Münster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Melbourne, Victoria, Australia
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Chao Tian
- 23andMe, Inc, Mountain View, CA, USA
| | | | - Maciej Trzaskowski
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Enda M Byrne
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Stephan Ripke
- Department of Psychiatry, Charite Universitatsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel J Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Naomi R Wray
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Gerome Breen
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Trust, London, UK
| | - Cathryn M Lewis
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Trust, London, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Nazaryan-Petersen L, Eisfeldt J, Pettersson M, Lundin J, Nilsson D, Wincent J, Lieden A, Lovmar L, Ottosson J, Gacic J, Mäkitie O, Nordgren A, Vezzi F, Wirta V, Käller M, Hjortshøj TD, Jespersgaard C, Houssari R, Pignata L, Bak M, Tommerup N, Lundberg ES, Tümer Z, Lindstrand A. Replicative and non-replicative mechanisms in the formation of clustered CNVs are indicated by whole genome characterization. PLoS Genet 2018; 14:e1007780. [PMID: 30419018 PMCID: PMC6258378 DOI: 10.1371/journal.pgen.1007780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/26/2018] [Accepted: 10/23/2018] [Indexed: 01/25/2023] Open
Abstract
Clustered copy number variants (CNVs) as detected by chromosomal microarray analysis (CMA) are often reported as germline chromothripsis. However, such cases might need further investigations by massive parallel whole genome sequencing (WGS) in order to accurately define the underlying complex rearrangement, predict the occurrence mechanisms and identify additional complexities. Here, we utilized WGS to delineate the rearrangement structure of 21 clustered CNV carriers first investigated by CMA and identified a total of 83 breakpoint junctions (BPJs). The rearrangements were further sub-classified depending on the patterns observed: I) Cases with only deletions (n = 8) often had additional structural rearrangements, such as insertions and inversions typical to chromothripsis; II) cases with only duplications (n = 7) or III) combinations of deletions and duplications (n = 6) demonstrated mostly interspersed duplications and BPJs enriched with microhomology. In two cases the rearrangement mutational signatures indicated both a breakage-fusion-bridge cycle process and haltered formation of a ring chromosome. Finally, we observed two cases with Alu- and LINE-mediated rearrangements as well as two unrelated individuals with seemingly identical clustered CNVs on 2p25.3, possibly a rare European founder rearrangement. In conclusion, through detailed characterization of the derivative chromosomes we show that multiple mechanisms are likely involved in the formation of clustered CNVs and add further evidence for chromoanagenesis mechanisms in both “simple” and highly complex chromosomal rearrangements. Finally, WGS characterization adds positional information, important for a correct clinical interpretation and deciphering mechanisms involved in the formation of these rearrangements. Clustered copy number variants (CNVs) as detected by chromosomal microarray are often reported as germline chromoanagenesis. However, such cases might need further investigation by whole genome sequencing (WGS) to accurately resolve the complexity of the structural rearrangement and predict underlying mutational mechanisms. Here, we used WGS to characterize 83 breakpoint-junctions (BPJs) from 21 clustered CNVs, and outlined the rearrangement connectivity pictures. Cases with only deletions often had additional structural rearrangements, such as insertions and inversions, which could be a result of multiple double-strand DNA breaks followed by non-homologous repair, typical to chromothripsis. In contrast, cases with only duplications or combinations of deletions and duplications, demonstrated mostly interspersed duplications and BPJs enriched with microhomology, consistent with serial template switching during DNA replication (chromoanasynthesis). Only two rearrangements were repeat mediated. In aggregate, our results suggest that multiple CNVs clustered on a single chromosome may arise through either chromothripsis or chromoanasynthesis.
Collapse
Affiliation(s)
- Lusine Nazaryan-Petersen
- Wilhelm Johannsen Center for Functional Genome Research, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Johanna Lundin
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Josephine Wincent
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Agne Lieden
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jesper Ottosson
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jelena Gacic
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Francesco Vezzi
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Valtteri Wirta
- SciLifeLab, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- SciLifeLab, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Max Käller
- SciLifeLab, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- SciLifeLab, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Tina Duelund Hjortshøj
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Cathrine Jespersgaard
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Rayan Houssari
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Laura Pignata
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Mads Bak
- Wilhelm Johannsen Center for Functional Genome Research, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Tommerup
- Wilhelm Johannsen Center for Functional Genome Research, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Syk Lundberg
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- * E-mail: (AL); (ZT)
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- * E-mail: (AL); (ZT)
| |
Collapse
|
17
|
Halgren C, Nielsen NM, Nazaryan-Petersen L, Silahtaroglu A, Collins RL, Lowther C, Kjaergaard S, Frisch M, Kirchhoff M, Brøndum-Nielsen K, Lind-Thomsen A, Mang Y, El-Schich Z, Boring CA, Mehrjouy MM, Jensen PK, Fagerberg C, Krogh LN, Hansen J, Bryndorf T, Hansen C, Talkowski ME, Bak M, Tommerup N, Bache I. Risks and Recommendations in Prenatally Detected De Novo Balanced Chromosomal Rearrangements from Assessment of Long-Term Outcomes. Am J Hum Genet 2018; 102:1090-1103. [PMID: 29805044 DOI: 10.1016/j.ajhg.2018.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
The 6%-9% risk of an untoward outcome previously established by Warburton for prenatally detected de novo balanced chromosomal rearrangements (BCRs) does not account for long-term morbidity. We performed long-term follow-up (mean 17 years) of a registry-based nationwide cohort of 41 individuals carrying a prenatally detected de novo BCR with normal first trimester screening/ultrasound scan. We observed a significantly higher frequency of neurodevelopmental and/or neuropsychiatric disorders than in a matched control group (19.5% versus 8.3%, p = 0.04), which was increased to 26.8% upon clinical follow-up. Chromosomal microarray of 32 carriers revealed no pathogenic imbalances, illustrating a low prognostic value when fetal ultrasound scan is normal. In contrast, mate-pair sequencing revealed disrupted genes (ARID1B, NPAS3, CELF4), regulatory domains of known developmental genes (ZEB2, HOXC), and complex BCRs associated with adverse outcomes. Seven unmappable autosomal-autosomal BCRs with breakpoints involving pericentromeric/heterochromatic regions may represent a low-risk group. We performed independent phenotype-aware and blinded interpretation, which accurately predicted benign outcomes (specificity = 100%) but demonstrated relatively low sensitivity for prediction of the clinical outcome in affected carriers (sensitivity = 45%-55%). This sensitivity emphasizes the challenges associated with prenatal risk prediction for long-term morbidity in the absence of phenotypic data given the still immature annotation of the morbidity genome and poorly understood long-range regulatory mechanisms. In conclusion, we upwardly revise the previous estimates of Warburton to a morbidity risk of 27% and recommend sequencing of the chromosomal breakpoints as the first-tier diagnostic test in pregnancies with a de novo BCR.
Collapse
|
18
|
D’Angelo CS, Varela MC, de Castro CIE, Otto PA, Perez ABA, Lourenço CM, Kim CA, Bertola DR, Kok F, Garcia-Alonso L, Koiffmann CP. Chromosomal microarray analysis in the genetic evaluation of 279 patients with syndromic obesity. Mol Cytogenet 2018; 11:14. [PMID: 29441128 PMCID: PMC5800070 DOI: 10.1186/s13039-018-0363-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/22/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Syndromic obesity is an umbrella term used to describe cases where obesity occurs with additional phenotypes. It often arises as part of a distinct genetic syndrome with Prader-Willi syndrome being a classical example. These rare forms of obesity provide a unique source for identifying obesity-related genetic changes. Chromosomal microarray analysis (CMA) has allowed the characterization of new genetic forms of syndromic obesity, which are due to copy number variants (CNVs); however, CMA in large cohorts requires more study. The aim of this study was to characterize the CNVs detected by CMA in 279 patients with a syndromic obesity phenotype. RESULTS Pathogenic CNVs were detected in 61 patients (22%) and, among them, 35 had overlapping/recurrent CNVs. Genomic imbalance disorders known to cause syndromic obesity were found in 8.2% of cases, most commonly deletions of 1p36, 2q37 and 17p11.2 (5.4%), and we also detected deletions at 1p21.3, 2p25.3, 6q16, 9q34, 16p11.2 distal and proximal, as well as an unbalanced translocation resulting in duplication of the GNB3 gene responsible for a syndromic for of childhood obesity. Deletions of 9p terminal and 22q11.2 proximal/distal were found in 1% and 3% of cases, respectively. They thus emerge as being new putative obesity-susceptibility loci. We found additional CNVs in our study that overlapped with CNVs previously reported in cases of syndromic obesity, including a new case of 13q34 deletion (CHAMP1), bringing to 7 the number of patients in whom such defects have been described in association with obesity. Our findings implicate many genes previously associated with obesity (e.g. PTBP2, TMEM18, MYT1L, POU3F2, SIM1, SH2B1), and also identified other potentially relevant candidates including TAS1R3, ALOX5AP, and GAS6. CONCLUSION Understanding the genetics of obesity has proven difficult, and considerable insight has been obtained from the study of genomic disorders with obesity associated as part of the phenotype. In our study, CNVs known to be causal for syndromic obesity were detected in 8.2% of patients, but we provide evidence for a genetic basis of obesity in as many as 14% of cases. Overall, our results underscore the genetic heterogeneity in syndromic forms of obesity, which imposes a substantial challenge for diagnosis.
Collapse
Affiliation(s)
- Carla Sustek D’Angelo
- Human Genome and Stem Cell Research Center (HUG-CELL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Rua do Matao no 277, Cidade Universitaria-Butanta, Sao Paulo, SP 05508-090 Brazil
| | - Monica Castro Varela
- Human Genome and Stem Cell Research Center (HUG-CELL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Rua do Matao no 277, Cidade Universitaria-Butanta, Sao Paulo, SP 05508-090 Brazil
| | - Claudia Irene Emílio de Castro
- Human Genome and Stem Cell Research Center (HUG-CELL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Rua do Matao no 277, Cidade Universitaria-Butanta, Sao Paulo, SP 05508-090 Brazil
| | - Paulo Alberto Otto
- Human Genome and Stem Cell Research Center (HUG-CELL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Rua do Matao no 277, Cidade Universitaria-Butanta, Sao Paulo, SP 05508-090 Brazil
| | - Ana Beatriz Alvarez Perez
- Department of Morphology and Genetics, Paulista School of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP Brazil
| | - Charles Marques Lourenço
- Neurogenetics Unit, Clinics Hospital of Ribeirao Preto, Faculty of Medicine, University of Sao Paulo, FMRP-USP, Ribeirao Preto, SP Brazil
| | - Chong Ae Kim
- Genetic Unit, Children’s Institute, Faculty of Medicine, University of Sao Paulo, FMUSP, Sao Paulo, SP Brazil
| | - Debora Romeo Bertola
- Genetic Unit, Children’s Institute, Faculty of Medicine, University of Sao Paulo, FMUSP, Sao Paulo, SP Brazil
| | - Fernando Kok
- Department of Neurology, Faculty of Medicine, University of Sao Paulo, FMUSP, Sao Paulo, SP Brazil
| | - Luis Garcia-Alonso
- Department of Morphology and Genetics, Paulista School of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP Brazil
| | - Celia Priszkulnik Koiffmann
- Human Genome and Stem Cell Research Center (HUG-CELL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Rua do Matao no 277, Cidade Universitaria-Butanta, Sao Paulo, SP 05508-090 Brazil
| |
Collapse
|
19
|
Chen CP, Hsieh CH, Chern SR, Wu PS, Chen SW, Lai ST, Chuang TY, Yang CW, Lee CC, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of an interstitial deletion of 18q12.1-q12.3 encompassing DTNA, CELF4 and SETBP1. Taiwan J Obstet Gynecol 2017; 56:847-851. [PMID: 29241933 DOI: 10.1016/j.tjog.2017.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE We present prenatal diagnosis and molecular cytogenetic characterization of an interstitial deletion of 18q12.1-q12.3. CASE REPORT A 35-year-old woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 46,XX,del(18)(q12.1q12.3). The fetal ultrasound was unremarkable. The woman underwent repeat amniocentesis at 20 weeks of gestation. Array comparative genomic hybridization (aCGH) using uncultured amniocytes revealed a 10.76-Mb interstitial deletion 18q12.1-q12.3 or arr 18q12.1q12.3 (31,944,347-42,704,784) × 1.0 encompassing 19 Online Mendelian Inheritance of in Man (OMIM) genes including DTNA, CELF4 and SETBP1. Metaphase fluorescence in situ hybridization analysis on cultured amniocytes confirmed an 18q proximal interstitial deletion. The parental karyotypes were normal. Polymorphic DNA marker analysis determined a paternal origin of the deletion. The pregnancy was subsequently terminated at 24 weeks of gestation, and a 650-g fetus was delivered with characteristic facial dysmorphism. CONCLUSION aCGH analysis and polymorphic DNA marker analysis at amniocentesis are useful for determination of the deleted genes and the parental origin of the de novo deletion, and the acquired information is helpful for genetic counseling.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chih-Heng Hsieh
- Department of Obstetrics and Gynecology, BIN KUN Women's & Children's Hospital, Taoyuan, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ting Lai
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Yun Chuang
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chien-Wen Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Chi Lee
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
20
|
Barone R, Fichera M, De Grandi M, Battaglia M, Lo Faro V, Mattina T, Rizzo R. Familial 18q12.2 deletion supports the role of RNA-binding protein CELF4 in autism spectrum disorders. Am J Med Genet A 2017; 173:1649-1655. [DOI: 10.1002/ajmg.a.38205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 12/15/2016] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Rita Barone
- Department of Clinical and Experimental Medicine, Child Neurology and Psychiatry; University of Catania; Catania Italy
| | - Marco Fichera
- Department of Biomedical and Biotechnological Sciences, Medical Genetics; University of Catania; Catania Italy
- Laboratory of Medical Genetics; I.R.C.C.S. Associazione Oasi Maria Santissima; Troina Italy
| | - Mariaclara De Grandi
- Department of Clinical and Experimental Medicine, Child Neurology and Psychiatry; University of Catania; Catania Italy
| | - Marta Battaglia
- Department of Clinical and Experimental Medicine, Child Neurology and Psychiatry; University of Catania; Catania Italy
| | - Valeria Lo Faro
- Department of Biomedical and Biotechnological Sciences, Medical Genetics; University of Catania; Catania Italy
| | - Teresa Mattina
- Department of Biomedical and Biotechnological Sciences, Medical Genetics; University of Catania; Catania Italy
| | - Renata Rizzo
- Department of Clinical and Experimental Medicine, Child Neurology and Psychiatry; University of Catania; Catania Italy
| |
Collapse
|
21
|
Dalal JS, Yang C, Sapkota D, Lake AM, O'Brien DR, Dougherty JD. Quantitative Nucleotide Level Analysis of Regulation of Translation in Response to Depolarization of Cultured Neural Cells. Front Mol Neurosci 2017; 10:9. [PMID: 28190998 PMCID: PMC5269599 DOI: 10.3389/fnmol.2017.00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/06/2017] [Indexed: 01/12/2023] Open
Abstract
Studies on regulation of gene expression have contributed substantially to understanding mechanisms for the long-term activity-dependent alterations in neural connectivity that are thought to mediate learning and memory. Most of these studies, however, have focused on the regulation of mRNA transcription. Here, we utilized high-throughput sequencing coupled with ribosome footprinting to globally characterize the regulation of translation in primary mixed neuronal-glial cultures in response to sustained depolarization. We identified substantial and complex regulation of translation, with many transcripts demonstrating changes in ribosomal occupancy independent of transcriptional changes. We also examined sequence-based mechanisms that might regulate changes in translation in response to depolarization. We found that these are partially mediated by features in the mRNA sequence—notably upstream open reading frames and secondary structure in the 5′ untranslated region—both of which predict downregulation in response to depolarization. Translationally regulated transcripts are also more likely to be targets of FMRP and include genes implicated in autism in humans. Our findings support the idea that control of mRNA translation plays an important role in response to neural activity across the genome.
Collapse
Affiliation(s)
- Jasbir S Dalal
- Department of Genetics, Washington University School of MedicineSt. Louis, MO, USA; Department of Psychiatry, Washington University School of MedicineSt. Louis, MO, USA
| | - Chengran Yang
- Department of Genetics, Washington University School of MedicineSt. Louis, MO, USA; Department of Psychiatry, Washington University School of MedicineSt. Louis, MO, USA
| | - Darshan Sapkota
- Department of Genetics, Washington University School of MedicineSt. Louis, MO, USA; Department of Psychiatry, Washington University School of MedicineSt. Louis, MO, USA
| | - Allison M Lake
- Department of Genetics, Washington University School of MedicineSt. Louis, MO, USA; Department of Psychiatry, Washington University School of MedicineSt. Louis, MO, USA
| | - David R O'Brien
- Department of Genetics, Washington University School of MedicineSt. Louis, MO, USA; Department of Psychiatry, Washington University School of MedicineSt. Louis, MO, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of MedicineSt. Louis, MO, USA; Department of Psychiatry, Washington University School of MedicineSt. Louis, MO, USA
| |
Collapse
|
22
|
Bryant CD, Yazdani N. RNA-binding proteins, neural development and the addictions. GENES BRAIN AND BEHAVIOR 2016; 15:169-86. [PMID: 26643147 DOI: 10.1111/gbb.12273] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022]
Abstract
Transcriptional and post-transcriptional regulation of gene expression defines the neurobiological mechanisms that bridge genetic and environmental risk factors with neurobehavioral dysfunction underlying the addictions. More than 1000 genes in the eukaryotic genome code for multifunctional RNA-binding proteins (RBPs) that can regulate all levels of RNA biogenesis. More than 50% of these RBPs are expressed in the brain where they regulate alternative splicing, transport, localization, stability and translation of RNAs during development and adulthood. Dysfunction of RBPs can exert global effects on their targetomes that underlie neurodegenerative disorders such as Alzheimer's and Parkinson's diseases as well as neurodevelopmental disorders, including autism and schizophrenia. Here, we consider the evidence that RBPs influence key molecular targets, neurodevelopment, synaptic plasticity and neurobehavioral dysfunction underlying the addictions. Increasingly well-powered genome-wide association studies in humans and mammalian model organisms combined with ever more precise transcriptomic and proteomic approaches will continue to uncover novel and possibly selective roles for RBPs in the addictions. Key challenges include identifying the biological functions of the dynamic RBP targetomes from specific cell types throughout subcellular space (e.g. the nuclear spliceome vs. the synaptic translatome) and time and manipulating RBP programs through post-transcriptional modifications to prevent or reverse aberrant neurodevelopment and plasticity underlying the addictions.
Collapse
Affiliation(s)
- C D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - N Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
23
|
Chen CP, Huang MC, Chen YY, Chern SR, Wu PS, Chen YT, Su JW, Wang W. Prenatal diagnosis of de novo interstitial deletions involving 5q23.1-q23.3 and 18q12.1-q12.3 by array CGH using uncultured amniocytes in a pregnancy with fetal interrupted aortic arch and atrial septal defect. Gene 2013; 531:496-501. [PMID: 24036431 DOI: 10.1016/j.gene.2013.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
We present prenatal diagnosis of de novo interstitial deletions involving 5q23.1-q23.3 and 18q12.1-q12.3 by aCGH using uncultured amniocytes in pregnancy with interrupted aortic arch and atrial septal defect in a fetus. The fetus postnatally manifested facial dysmorphisms and long slender fingers. We discuss the genotype-phenotype correlation and the consequence of haploinsufficiency of FBN2, DTNA and CELF4 in this case.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Karunakaran DKP, Congdon S, Guerrette T, Banday AR, Lemoine C, Chhaya N, Kanadia R. The expression analysis of Sfrs10 and Celf4 during mouse retinal development. Gene Expr Patterns 2013; 13:425-36. [PMID: 23932931 DOI: 10.1016/j.gep.2013.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
Processing of mRNAs including, alternative splicing (AS), mRNA transport and translation regulation are crucial to eukaryotic gene expression. For example, >90% of the genes in the human genome are known to undergo alternative splicing thereby expanding the proteome production capacity of a limited number of genes. Similarly, mRNA export and translation regulation plays a vital role in regulating protein production. Thus, it is important to understand how these RNA binding proteins including alternative splicing factors (ASFs) and mRNA transport and translation factors regulate these processes. Here we report the expression of an ASF, serine-arginine rich splicing factor 10 (Sfrs10) and a mRNA translation regulation factor, CUGBP, elav like family member 4 (Celf4) in the developing mouse retina. Sfrs10 was expressed throughout postnatal (P) retinal development and was observed progressively in newly differentiating neurons. Immunofluorescence (IF) showed Sfrs10 in retinal ganglion cells (RGCs) at P0, followed by amacrine and bipolar cells, and at P8 it was enriched in red/green cone photoreceptor cells. By P22, Sfrs10 was observed in rod photoreceptors in a peri-nuclear pattern. Like Sfrs10, Celf4 expression was also observed in the developing retina, but with two distinct retinal isoforms. In situ hybridization (ISH) showed progressive expression of Celf4 in differentiating neurons, which was confirmed by IF that showed a dynamic shift in Celf4 localization. Early in development Celf4 expression was restricted to the nuclei of newly differentiating RGCs and later (E16 onwards) it was observed in the initial segments of RGC axons. Later, during postnatal development, Celf4 was observed in amacrine and bipolar cells, but here it was predominantly cytoplasmic and enriched in the two synaptic layers. Specifically, at P14, Celf4 was observed in the synaptic boutons of rod bipolar cells marked by Pkc-α. Thus, Celf4 might be regulating AS early in development besides its known role of regulating mRNA localization/translation. In all, our data suggests an important role for AS and mRNA localization/translation in retinal neuron differentiation.
Collapse
|
25
|
Vlasova-St Louis I, Dickson AM, Bohjanen PR, Wilusz CJ. CELFish ways to modulate mRNA decay. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:695-707. [PMID: 23328451 DOI: 10.1016/j.bbagrm.2013.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 12/14/2022]
Abstract
The CELF family of RNA-binding proteins regulates many steps of mRNA metabolism. Although their best characterized function is in pre-mRNA splice site choice, CELF family members are also powerful modulators of mRNA decay. In this review we focus on the different modes of regulation that CELF proteins employ to mediate mRNA decay by binding to GU-rich elements. After starting with an overview of the importance of CELF proteins during development and disease pathogenesis, we then review the mRNA networks and cellular pathways these proteins regulate and the mechanisms by which they influence mRNA decay. Finally, we discuss how CELF protein activity is modulated during development and in response to cellular signals. We conclude by highlighting the priorities for new experiments in this field. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
26
|
Ladd AN. CUG-BP, Elav-like family (CELF)-mediated alternative splicing regulation in the brain during health and disease. Mol Cell Neurosci 2012; 56:456-64. [PMID: 23247071 DOI: 10.1016/j.mcn.2012.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/01/2012] [Accepted: 12/06/2012] [Indexed: 11/27/2022] Open
Abstract
Alternative splicing is an important mechanism for generating transcript and protein diversity. In the brain, alternative splicing is particularly prevalent, and alternative splicing factors are highly enriched. These include the six members of the CUG-BP, Elav-like family (CELF). This review summarizes what is known about the expression of different CELF proteins in the nervous system and the evidence that they are important in neural development and function. The involvement of CELF proteins in the pathogenesis of a number of neurodegenerative disorders, including myotonic dystrophy, spinocerebellar ataxia, fragile X syndrome, spinal muscular atrophy, and spinal and bulbar muscular atrophy is discussed. Finally, the known targets of CELF-mediated alternative splicing regulation in the nervous system and the functional consequences of these splicing events are reviewed. This article is part of a Special Issue entitled "RNA and splicing regulation in neurodegeneration."
Collapse
Affiliation(s)
- Andrea N Ladd
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
27
|
Wagnon JL, Briese M, Sun W, Mahaffey CL, Curk T, Rot G, Ule J, Frankel WN. CELF4 regulates translation and local abundance of a vast set of mRNAs, including genes associated with regulation of synaptic function. PLoS Genet 2012; 8:e1003067. [PMID: 23209433 PMCID: PMC3510034 DOI: 10.1371/journal.pgen.1003067] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/20/2012] [Indexed: 11/25/2022] Open
Abstract
RNA–binding proteins have emerged as causal agents of complex neurological diseases. Mice deficient for neuronal RNA–binding protein CELF4 have a complex neurological disorder with epilepsy as a prominent feature. Human CELF4 has recently been associated with clinical features similar to those seen in mutant mice. CELF4 is expressed primarily in excitatory neurons, including large pyramidal cells of the cerebral cortex and hippocampus, and it regulates excitatory but not inhibitory neurotransmission. We examined mechanisms underlying neuronal hyperexcitability in Celf4 mutants by identifying CELF4 target mRNAs and assessing their fate in the absence of CELF4 in view of their known functions. CELF4 binds to at least 15%–20% of the transcriptome, with striking specificity for the mRNA 3′ untranslated region. CELF4 mRNA targets encode a variety of proteins, many of which are well established in neuron development and function. While the overall abundance of these mRNA targets is often dysregulated in Celf4 deficient mice, the actual expression changes are modest at the steady-state level. In contrast, by examining the transcriptome of polysome fractions and the mRNA distribution along the neuronal cell body-neuropil axis, we found that CELF4 is critical for maintaining mRNA stability and availability for translation. Among biological processes associated with CELF4 targets that accumulate in neuropil of mutants, regulation of synaptic plasticity and transmission are the most prominent. Together with a related study of the impact of CELF4 loss on sodium channel Nav1.6 function, we suggest that CELF4 deficiency leads to abnormal neuronal function by combining a specific effect on neuronal excitation with a general impairment of synaptic transmission. These results also expand our understanding of the vital roles RNA–binding proteins play in regulating and shaping the activity of neural circuits. Epilepsy is a devastating brain disorder whereby a loss of regulation of electrochemical signals between neurons causes too much excitation and ultimately results in an “electrical storm” known as a seizure. Epilepsy can be heritable, but it is usually genetically complex, resulting from a collaboration of many genes. It is also a frequent feature of other common brain diseases, such as autism spectrum disorder and intellectual disability, likely because these diseases have a similar dysregulation of neuronal communication. To understand more about how the brain regulates electrical activity, we focused on an RNA–binding protein called CELF4, because a) mice that lack CELF4 have a complex form of epilepsy that includes features of other neurological diseases and b) this kind of protein has the potential to be a master regulator. We show that CELF4 binds to a vast array of mRNAs, and without CELF4 these mRNAs accumulate in the wrong places and can produce the wrong amount of protein. Moreover, many of these mRNAs encode key players in electrochemical signaling between neurons. Although the defects in individual mRNAs are modest, like a genetically complex disease, together these alterations collude to cause neurological symptoms including recurrent seizures.
Collapse
Affiliation(s)
- Jacy L. Wagnon
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Michael Briese
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Wenzhi Sun
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Tomaž Curk
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Rot
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Ule
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Wayne N. Frankel
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
28
|
Sun W, Wagnon JL, Mahaffey CL, Briese M, Ule J, Frankel WN. Aberrant sodium channel activity in the complex seizure disorder of Celf4 mutant mice. J Physiol 2012; 591:241-55. [PMID: 23090952 DOI: 10.1113/jphysiol.2012.240168] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mice deficient for CELF4, a neuronal RNA-binding protein, have a complex seizure disorder that includes both convulsive and non-convulsive seizures, and is dependent upon Celf4 gene dosage and mouse strain background. It was previously shown that Celf4 is expressed predominantly in excitatory neurons, and that deficiency results in abnormal excitatory synaptic neurotransmission. To examine the physiological and molecular basis of this, we studied Celf4-deficient neurons in brain slices. Assessment of intrinsic properties of layer V cortical pyramidal neurons showed that neurons from mutant heterozygotes and homozygotes have a lower action potential (AP) initiation threshold and a larger AP gain when compared with wild-type neurons. Celf4 mutant neurons also demonstrate an increase in persistent sodium current (I(NaP)) and a hyperpolarizing shift in the voltage dependence of activation. As part of a related study, we find that CELF4 directly binds Scn8a mRNA, encoding sodium channel Na(v)1.6, the primary instigator of AP at the axon initial segment (AIS) and the main carrier of I(NaP). In the present study we find that CELF4 deficiency results in a dramatic elevation in the expression of Na(v)1.6 protein at the AIS in both null and heterozygous neurons. Together these results suggest that activation of Na(v)1.6 plays a crucial role in seizure generation in this complex model of neurological disease.
Collapse
Affiliation(s)
- Wenzhi Sun
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500, USA
| | | | | | | | | | | |
Collapse
|