1
|
Aldè M, Cantarella G, Zanetti D, Pignataro L, La Mantia I, Maiolino L, Ferlito S, Di Mauro P, Cocuzza S, Lechien JR, Iannella G, Simon F, Maniaci A. Autosomal Dominant Non-Syndromic Hearing Loss (DFNA): A Comprehensive Narrative Review. Biomedicines 2023; 11:1616. [PMID: 37371710 DOI: 10.3390/biomedicines11061616] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Autosomal dominant non-syndromic hearing loss (HL) typically occurs when only one dominant allele within the disease gene is sufficient to express the phenotype. Therefore, most patients diagnosed with autosomal dominant non-syndromic HL have a hearing-impaired parent, although de novo mutations should be considered in all cases of negative family history. To date, more than 50 genes and 80 loci have been identified for autosomal dominant non-syndromic HL. DFNA22 (MYO6 gene), DFNA8/12 (TECTA gene), DFNA20/26 (ACTG1 gene), DFNA6/14/38 (WFS1 gene), DFNA15 (POU4F3 gene), DFNA2A (KCNQ4 gene), and DFNA10 (EYA4 gene) are some of the most common forms of autosomal dominant non-syndromic HL. The characteristics of autosomal dominant non-syndromic HL are heterogenous. However, in most cases, HL tends to be bilateral, post-lingual in onset (childhood to early adulthood), high-frequency (sloping audiometric configuration), progressive, and variable in severity (mild to profound degree). DFNA1 (DIAPH1 gene) and DFNA6/14/38 (WFS1 gene) are the most common forms of autosomal dominant non-syndromic HL affecting low frequencies, while DFNA16 (unknown gene) is characterized by fluctuating HL. A long audiological follow-up is of paramount importance to identify hearing threshold deteriorations early and ensure prompt treatment with hearing aids or cochlear implants.
Collapse
Affiliation(s)
- Mirko Aldè
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giovanna Cantarella
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Diego Zanetti
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Lorenzo Pignataro
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Ignazio La Mantia
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Luigi Maiolino
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Paola Di Mauro
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Cocuzza
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Jérôme René Lechien
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giannicola Iannella
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Francois Simon
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Antonino Maniaci
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| |
Collapse
|
2
|
Progression of KCNQ4 related genetic hearing loss: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
3
|
Novel KCNQ4 variants in different functional domains confer genotype- and mechanism-based therapeutics in patients with nonsyndromic hearing loss. Exp Mol Med 2021; 53:1192-1204. [PMID: 34316018 PMCID: PMC8333092 DOI: 10.1038/s12276-021-00653-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/13/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Loss-of-function variant in the gene encoding the KCNQ4 potassium channel causes autosomal dominant nonsyndromic hearing loss (DFNA2), and no effective pharmacotherapeutics have been developed to reverse channel activity impairment. Phosphatidylinositol 4,5-bisphosphate (PIP2), an obligatory phospholipid for maintaining KCNQ channel activity, confers differential pharmacological sensitivity of channels to KCNQ openers. Through whole-exome sequencing of DFNA2 families, we identified three novel KCNQ4 variants related to diverse auditory phenotypes in the proximal C-terminus (p.Arg331Gln), the C-terminus of the S6 segment (p.Gly319Asp), and the pore region (p.Ala271_Asp272del). Potassium currents in HEK293T cells expressing each KCNQ4 variant were recorded by patch-clamp, and functional recovery by PIP2 expression or KCNQ openers was examined. In the homomeric expression setting, the three novel KCNQ4 mutant proteins lost conductance and were unresponsive to KCNQ openers or PIP2 expression. Loss of p.Arg331Gln conductance was slightly restored by a tandem concatemer channel (WT-p.R331Q), and increased PIP2 expression further increased the concatemer current to the level of the WT channel. Strikingly, an impaired homomeric p.Gly319Asp channel exhibited hyperactivity when a concatemer (WT-p.G319D), with a negative shift in the voltage dependence of activation. Correspondingly, a KCNQ inhibitor and chelation of PIP2 effectively downregulated the hyperactive WT-p.G319D concatemer channel. Conversely, the pore-region variant (p.Ala271_Asp272del) was nonrescuable under any condition. Collectively, these novel KCNQ4 variants may constitute therapeutic targets that can be manipulated by the PIP2 level and KCNQ-regulating drugs under the physiological context of heterozygous expression. Our research contributes to the establishment of a genotype/mechanism-based therapeutic portfolio for DFNA2.
Collapse
|
4
|
Rashid MH. Molecular simulation of the Kv7.4[ΔS269] mutant channel reveals that ion conduction in the cavity is perturbed due to hydrophobic gating. Biochem Biophys Rep 2020; 25:100879. [PMID: 33367117 PMCID: PMC7749434 DOI: 10.1016/j.bbrep.2020.100879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 11/19/2020] [Accepted: 12/09/2020] [Indexed: 12/05/2022] Open
Abstract
Mutations in the voltage-gated potassium channel Kv7.4 (encoded as KCNQ4) lead to the early onset of non-syndromic hearing loss, which is significant during language acquisition. The deletion of the S269 pore residue (genetic Δ mutation) in Kv7.4 has been reported to be associated with hearing loss. So far, there is no mechanistic understanding of how this mutation modulates channel function. To understand the role of S269 in ion conduction, we performed molecular dynamics simulations for both wild type and ΔS269 mutant channels. Simulations indicate that the ΔS269 mutation suppresses the fluctuations in the neighboring Y269 residue and thereby consolidates the ring formed by I307 and F310 residues in the adjacent S6 helixes in the cavity region. We show that the long side chains of I307 near the entrance to the cavity form a hydrophobic gate. Comparison of the free energy profiles of a cavity ion in Kv7.4 and Kv7.4[ΔS269] channels reveals a sizable energy barrier in the latter case, which suppresses ion conduction. Thus the simulation studies reveal that the hydrophobic gate resulting from the ΔS269 mutation appears to be responsible for sensorineural hearing loss. DeltaS269 mutation in the Kv7.4 channel is associated with hearing loss (SNHL). The mutation effects on channel function are studied via MD simulations. DeltaS269 mutation imposes a constriction at the cavity to suppress K+ conductance. Understanding the mutation effects on channel function will help to treat SNHL.
Collapse
Affiliation(s)
- Md Harunur Rashid
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
- Department of Mathematics and Physics, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| |
Collapse
|
5
|
Dawson LM, Smith KN, Werdyani S, Ndikumana R, Penney C, Wiede LL, Smith KL, Pater JA, MacMillan A, Green J, Drover S, Young T, O’Rielly DD. A dominant RAD51C pathogenic splicing variant predisposes to breast and ovarian cancer in the Newfoundland population due to founder effect. Mol Genet Genomic Med 2020; 8:e1070. [PMID: 31782267 PMCID: PMC7005661 DOI: 10.1002/mgg3.1070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND RAD51C is important in DNA repair and individuals with pathogenic RAD51C variants have increased risk of hereditary breast and ovarian cancer syndrome (HBOC), an autosomal dominant genetic predisposition to early onset breast and/or ovarian cancer. METHODS Five female HBOC probands sequenced negative for moderate- and high-risk genes but shared a recurrent variant of uncertain significance in RAD51C (NM_058216.3: c.571 + 4A > G). Participant recruitment was followed by haplotype and case/control analyses, RNA splicing analysis, gene and protein expression assays, and Sanger sequencing of tumors. RESULTS The RAD51C c.571 + 4A > G variant segregates with HBOC, with heterozygotes sharing a 5.07 Mbp haplotype. RAD51C c.571 + 4A > G is increased ~52-fold in the Newfoundland population compared with the general Caucasian population and positive population controls share disease-associated alleles, providing evidence of a founder effect. Splicing analysis confirmed in silico predictions that RAD51C c.571 + 4A > G causes exon 3 skipping, creating an immediate premature termination codon. Gene and protein expression were significantly reduced in a RAD51C c.571 + 4G > A heterozygote compared with a wild-type relative. Sanger sequencing of tumors from two probands indicates loss-of-heterozygosity, suggesting loss of function. CONCLUSION The RAD51C c.571 + 4A > G variant affects mRNA splicing and should be re-classified as pathogenic according to American College of Medical Genetics and Genomics guidelines.
Collapse
Affiliation(s)
- Lesa M. Dawson
- Faculty of MedicineMemorial University of NewfoundlandSt. John’sNLCanada
- Eastern Health AuthoritySt. John’sNLCanada
| | - Kerri N. Smith
- Faculty of MedicineMemorial University of NewfoundlandSt. John’sNLCanada
| | - Salem Werdyani
- Faculty of MedicineMemorial University of NewfoundlandSt. John’sNLCanada
| | - Robyn Ndikumana
- Faculty of MedicineMemorial University of NewfoundlandSt. John’sNLCanada
| | - Cindy Penney
- Faculty of MedicineMemorial University of NewfoundlandSt. John’sNLCanada
| | - Louisa L. Wiede
- Faculty of MedicineMemorial University of NewfoundlandSt. John’sNLCanada
| | - Kendra L. Smith
- Faculty of MedicineMemorial University of NewfoundlandSt. John’sNLCanada
| | - Justin A. Pater
- Faculty of MedicineMemorial University of NewfoundlandSt. John’sNLCanada
| | | | - Jane Green
- Faculty of MedicineMemorial University of NewfoundlandSt. John’sNLCanada
| | - Sheila Drover
- Faculty of MedicineMemorial University of NewfoundlandSt. John’sNLCanada
| | - Terry‐Lynn Young
- Faculty of MedicineMemorial University of NewfoundlandSt. John’sNLCanada
- Eastern Health AuthoritySt. John’sNLCanada
- Centre for Translational GenomicsSt. John’sNLCanada
| | - Darren D. O’Rielly
- Faculty of MedicineMemorial University of NewfoundlandSt. John’sNLCanada
- Eastern Health AuthoritySt. John’sNLCanada
- Centre for Translational GenomicsSt. John’sNLCanada
| |
Collapse
|
6
|
Molecular basis and restoration of function deficiencies of Kv7.4 variants associated with inherited hearing loss. Hear Res 2020; 388:107884. [PMID: 31995783 DOI: 10.1016/j.heares.2020.107884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/12/2019] [Accepted: 12/31/2019] [Indexed: 11/20/2022]
Abstract
Deafness non-syndromic autosomal dominant 2 (DFNA2) is characterized by symmetric, predominantly high-frequency sensorineural hearing loss that is progressive across all frequencies. The disease is associated with variants of a potassium voltage-gated channel subfamily Q member 4 gene, KCNQ4 (Kv7.4). Here, we studied nine recently identified Kv7.4 variants in DFNA2 pedigrees, including V230E, E260K, D262V, Y270H, W275R, G287R, P291L, P291S and S680F. We proved that the variant S680F did not alter the channel function while the other eight variants resulted in function deficiencies. We further proved that the two variants E260K and P291S showed reduced cell membrane expressions while the other seven variants showed moderate cell surface expressions. Thus, trafficking deficiency is not a common mechanism underlying channel dysfunction. Next, we studied two variants, V230E and G287R, using molecular dynamics simulation. We showed that V230E stabilized Kv7.4 channel in the closed state by forming an additional hydrogen bond with a basic residue K325, while G287R distorted the selectivity filter and blocked the pore region of Kv7.4 channel. Moreover, by co-expressing wild-type (WT) and variant proteins in vitro, we demonstrated that the heterogeneous Kv7.4 channel currents were reduced compared to the WT channel currents and the reduction could be rescued by a Kv7.4 opener retigabine. Our study provided the underlying mechanisms and suggested a potential alternative therapeutic approach for DFNA2.
Collapse
|
7
|
Vilariño-Güell C, Zimprich A, Martinelli-Boneschi F, Herculano B, Wang Z, Matesanz F, Urcelay E, Vandenbroeck K, Leyva L, Gris D, Massaad C, Quandt JA, Traboulsee AL, Encarnacion M, Bernales CQ, Follett J, Yee IM, Criscuoli MG, Deutschländer A, Reinthaler EM, Zrzavy T, Mascia E, Zauli A, Esposito F, Alcina A, Izquierdo G, Espino-Paisán L, Mena J, Antigüedad A, Urbaneja-Romero P, Ortega-Pinazo J, Song W, Sadovnick AD. Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease. PLoS Genet 2019; 15:e1008180. [PMID: 31170158 PMCID: PMC6553700 DOI: 10.1371/journal.pgen.1008180] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system characterized by myelin loss and neuronal dysfunction. Although the majority of patients do not present familial aggregation, Mendelian forms have been described. We performed whole-exome sequencing analysis in 132 patients from 34 multi-incident families, which nominated likely pathogenic variants for MS in 12 genes of the innate immune system that regulate the transcription and activation of inflammatory mediators. Rare missense or nonsense variants were identified in genes of the fibrinolysis and complement pathways (PLAU, MASP1, C2), inflammasome assembly (NLRP12), Wnt signaling (UBR2, CTNNA3, NFATC2, RNF213), nuclear receptor complexes (NCOA3), and cation channels and exchangers (KCNG4, SLC24A6, SLC8B1). These genes suggest a disruption of interconnected immunological and pro-inflammatory pathways as the initial event in the pathophysiology of familial MS, and provide the molecular and biological rationale for the chronic inflammation, demyelination and neurodegeneration observed in MS patients.
Collapse
Affiliation(s)
| | | | - Filippo Martinelli-Boneschi
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- MS Unit and Department of Neurology, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Bruno Herculano
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Zhe Wang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of the Capital Medical University, Beijing, China
| | - Fuencisla Matesanz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Elena Urcelay
- Immunology Dept, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
| | - Koen Vandenbroeck
- Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU), Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Laura Leyva
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Denis Gris
- Division of Immunology, Department of Pediatrics, CR-CHUS, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Charbel Massaad
- Toxicology, Pharmacology and Cell Signalisation—UMR-S 1124 Université Paris Descartes, Paris, France
| | - Jacqueline A. Quandt
- Department of Pathology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Anthony L. Traboulsee
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Mary Encarnacion
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Cecily Q. Bernales
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Jordan Follett
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Irene M. Yee
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Maria G. Criscuoli
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Angela Deutschländer
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, United States of America
- Department of Clinical Genomics, Mayo Clinic Florida, Jacksonville, FL, United States of America
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, United States of America
| | - Eva M. Reinthaler
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Zauli
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Alcina
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | | | - Laura Espino-Paisán
- Immunology Dept, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
| | - Jorge Mena
- Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Alfredo Antigüedad
- Neurology Department, Hospital Universitario de Cruces, S/N, Baracaldo, Spain
| | - Patricia Urbaneja-Romero
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jesús Ortega-Pinazo
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - A. Dessa Sadovnick
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Vilariño-Güell C, Encarnacion M, Bernales CQ, Sadovnick AD. Analysis of Canadian multiple sclerosis patients does not support a role for FKBP6 in disease. Mult Scler 2018; 25:1011-1013. [PMID: 30298791 DOI: 10.1177/1352458518803789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Carles Vilariño-Güell
- 1 Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Mary Encarnacion
- 1 Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Cecily Q Bernales
- 1 Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - A Dessa Sadovnick
- 1 Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,2 Division of Neurology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Evans DR, Venkitachalam S, Revoredo L, Dohey AT, Clarke E, Pennell JJ, Powell AE, Quinn E, Ravi L, Gerken TA, Green JS, Woods MO, Guda K. Evidence for GALNT12 as a moderate penetrance gene for colorectal cancer. Hum Mutat 2018; 39:1092-1101. [PMID: 29749045 DOI: 10.1002/humu.23549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 12/29/2022]
Abstract
Characterizing moderate penetrance susceptibility genes is an emerging frontier in colorectal cancer (CRC) research. GALNT12 is a strong candidate CRC-susceptibility gene given previous linkage and association studies, and inactivating somatic and germline alleles in CRC patients. Previously, we found rare segregating germline GALNT12 variants in a clinic-based cohort (N = 118) with predisposition for CRC. Here, we screened a new population-based cohort of incident CRC cases (N = 479) for rare (MAF ≤1%) deleterious germline GALNT12 variants. GALNT12 screening revealed eight rare variants. Two variants were previously described (p.Asp303Asn, p.Arg297Trp), and additionally, we found six other rare variants: five missense (p.His101Gln, p.Ile142Thr, p.Glu239Gln, p.Thr286Met, p.Val290Phe) and one putative splice-altering variant (c.732-8 G>T). Sequencing of population-matched controls (N = 400) revealed higher burden of these variants in CRC cases compared with healthy controls (P = 0.0381). We then functionally characterized the impact of substitutions on GALNT12 enzyme activity using in vitro-derived peptide substrates. Three of the newly identified GALNT12 missense variants (p.His101Gln, p.Ile142Thr, p.Val290Phe) demonstrated a marked loss (>2-fold reduction) of enzymatic activity compared with wild-type (P ≤ 0.05), whereas p.Glu239Gln exhibited a ∼2-fold reduction in activity (P = 0.077). These findings provide strong, independent evidence for the association of GALNT12 defects with CRC-susceptibility; underscoring implications for glycosylation pathway defects in CRC.
Collapse
Affiliation(s)
- Daniel R Evans
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Srividya Venkitachalam
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Leslie Revoredo
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Amanda T Dohey
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Erica Clarke
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Julia J Pennell
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Amy E Powell
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Erina Quinn
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Lakshmeswari Ravi
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Thomas A Gerken
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio.,Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jane S Green
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Michael O Woods
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Kishore Guda
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
10
|
Huang B, Liu Y, Gao X, Xu J, Dai P, Zhu Q, Yuan Y. A novel pore-region mutation, c.887G > A (p.G296D) in KCNQ4, causing hearing loss in a Chinese family with autosomal dominant non-syndromic deafness 2. BMC MEDICAL GENETICS 2017; 18:36. [PMID: 28340560 PMCID: PMC5366164 DOI: 10.1186/s12881-017-0396-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/08/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hereditary non-syndromic hearing loss is the most common inherited sensory defect in humans. The KCNQ4 channel belongs to a family of potassium ion channels that play crucial roles in physiology and disease. Mutations in KCNQ4 underlie deafness non-syndromic autosomal dominant 2, a subtype of autosomal dominant, progressive, high-frequency hearing loss. METHODS A six-generation Chinese family from Hebei Province with autosomal dominantly inherited, sensorineural, postlingual, progressive hearing loss was enrolled in this study. Mutation screening of 129 genes associated with hearing loss was performed in five family members by next-generation sequencing (NGS). We also carried out variant analysis on DNA from 531 Chinese individuals with normal hearing as controls. RESULTS This family exhibits postlingual, progressive, symmetrical, bilateral, non-syndromic sensorineural hearing loss. NGS, bioinformatic analysis, and Sanger sequencing confirmed the co-segregation of a novel mutation [c.887G > A (p.G296D)] in KCNQ4 with the disease phenotype in this family. This mutation leads to a glycine-to-aspartic acid substitution at position 296 in the pore region of the KCNQ4 channel. This mutation affects a highly conserved glutamic acid. NGS is a highly efficient tool for identifying gene mutations causing heritable disease. CONCLUSIONS Progressive hearing loss is common in individuals with KCNQ4 mutations. NGS together with Sanger sequencing confirmed that the five affected members of this Chinese family inherited a missense mutation, c.887G > A (p.G296D), in exon 6 of KCNQ4. Our results increase the number of identified KCNQ4 mutations.
Collapse
Affiliation(s)
- Bangqing Huang
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, 572013, China
| | - Yanping Liu
- Department of Otorhinolaryngology, General Hospital of the Rocket Force, Beijing, 100088, China
| | - Xue Gao
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Otorhinolaryngology, General Hospital of the Rocket Force, Beijing, 100088, China
| | - Jincao Xu
- Department of Otorhinolaryngology, General Hospital of the Rocket Force, Beijing, 100088, China
| | - Pu Dai
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qingwen Zhu
- Department of Otolaryngology, The Second Hospital Of Hebei Medical University, Shijiazhuang, 050018, China.
| | - Yongyi Yuan
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
11
|
Pater JA, Benteau T, Griffin A, Penney C, Stanton SG, Predham S, Kielley B, Squires J, Zhou J, Li Q, Abdelfatah N, O'Rielly DD, Young TL. A common variant in CLDN14 causes precipitous, prelingual sensorineural hearing loss in multiple families due to founder effect. Hum Genet 2016; 136:107-118. [PMID: 27838790 PMCID: PMC5215284 DOI: 10.1007/s00439-016-1746-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022]
Abstract
Genetic isolates provide unprecedented opportunities to identify pathogenic mutations and explore the full natural history of clinically heterogeneous phenotypes such as hearing loss. We noticed a unique audioprofile, characterized by prelingual and rapid deterioration of hearing thresholds at frequencies >0.5 kHz in several adults from unrelated families from the island population of Newfoundland. Targeted serial Sanger sequencing of probands for deafness alleles (n = 23) that we previously identified in this founder population was negative. Whole exome sequencing in four members of the largest family (R2010) identified a CLDN14 (DFNB29) variant [c.488C>T; p. (Ala163Val)], likely pathogenic, sensorineural hearing loss, autosomal recessive. Although not associated with deafness or disease, CLDN14 p.(Ala163Val) has been previously reported as a variant of uncertain significance (VUS). Targeted sequencing of 169 deafness probands identified one homozygote and one heterozygous carrier. Genealogical studies, cascade sequencing and haplotype analysis across four unrelated families showed all subjects with the unique audioprofile (n = 12) were also homozygous for p.(Ala163Val) and shared a 1.4 Mb DFNB29-associated haplotype on chromosome 21. Most significantly, sequencing 175 population controls revealed 1% of the population are heterozygous for CLDN14 p.(Ala163Val), consistent with a major founder effect in Newfoundland. The youngest CLDN14 [c.488C>T; p.(Ala163Val)] homozygote passed newborn screening and had normal hearing thresholds up to 3 years of age, which then deteriorated to a precipitous loss >1 kHz during the first decade. Our study suggests that genetic testing may be necessary to identify at-risk children in time to prevent speech, language and developmental delay.
Collapse
Affiliation(s)
- Justin A Pater
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Tammy Benteau
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Anne Griffin
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Cindy Penney
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Susan G Stanton
- Communication Sciences and Disorders, Western University, Elborn College, 1201 Western Road, London, ON, N6G 1H1, Canada
| | - Sarah Predham
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Bernadine Kielley
- Department of Education and Early Childhood Development, Government of Newfoundland and Labrador, St. John's, NL, A1B 4J6, Canada
| | - Jessica Squires
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Jiayi Zhou
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Quan Li
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Nelly Abdelfatah
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Darren D O'Rielly
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada.,Molecular Diagnostic Laboratory, Eastern Health, Craig L. Dobbin Genetics Research Centre, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Terry-Lynn Young
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada. .,Communication Sciences and Disorders, Western University, Elborn College, 1201 Western Road, London, ON, N6G 1H1, Canada. .,Molecular Diagnostic Laboratory, Eastern Health, Craig L. Dobbin Genetics Research Centre, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
12
|
Cheng J, Zhou X, Lu Y, Chen J, Han B, Zhu Y, Liu L, Choy KW, Han D, Sham PC, Zhang MQ, Zhang X, Yuan H. Exome sequencing identifies a novel frameshift mutation of MYO6 as the cause of autosomal dominant nonsyndromic hearing loss in a Chinese family. Ann Hum Genet 2014; 78:410-23. [PMID: 25227905 DOI: 10.1111/ahg.12084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/28/2014] [Indexed: 12/30/2022]
Abstract
Autosomal dominant types of nonsyndromic hearing loss (ADNSHL) are typically postlingual in onset and progressive. High genetic heterogeneity, late onset age, and possible confounding due to nongenetic factors hinder the timely molecular diagnoses for most patients. In this study, exome sequencing was applied to investigate a large Chinese family segregating ADNSHL in which we initially failed to find strong evidence of linkage to any locus by whole-genome linkage analysis. Two affected family members were selected for sequencing. We identified two novel mutations disrupting known ADNSHL genes and shared by the sequenced samples: c.328C>A in COCH (DFNA9) resulting in a p.Q110K substitution and a deletion c. 2814_2815delAA in MYO6 (DFNA22) causing a frameshift alteration p.R939Tfs*2. The pathogenicity of novel coding variants in ADNSHL genes was carefully evaluated by analysis of co-segregation with phenotype in the pedigree and in light of established genotype-phenotype correlations. The frameshift deletion in MYO6 was confirmed as the causative variant for this pedigree, whereas the missense mutation in COCH had no clinical significance. The results allowed us to retrospectively identify the phenocopy in one patient that contributed to the negative finding in the linkage scan. Our clinical data also supported the emerging genotype-phenotype correlation for DFNA22.
Collapse
Affiliation(s)
- Jing Cheng
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Xueya Zhou
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, TNLIST/Department of Automation, Tsinghua University, Beijing, China.,Department of Psychiatry and Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Lu
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Jing Chen
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Bing Han
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Yuhua Zhu
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Liyang Liu
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, TNLIST/Department of Automation, Tsinghua University, Beijing, China
| | - Kwong-Wai Choy
- Li Ka Shing Institute of Health Sciences, Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Dongyi Han
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Pak C Sham
- Department of Psychiatry and Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, TNLIST/Department of Automation, Tsinghua University, Beijing, China.,MCB, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, USA
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, TNLIST/Department of Automation, Tsinghua University, Beijing, China
| | - Huijun Yuan
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|