1
|
Wakabayashi T, Takahashi M, Okazaki H, Okazaki S, Yokote K, Tada H, Ogura M, Ishigaki Y, Yamashita S, Harada-Shiba M. Current Diagnosis and Management of Familial Hypobetalipoproteinemia 1. J Atheroscler Thromb 2024; 31:1005-1023. [PMID: 38710625 PMCID: PMC11224688 DOI: 10.5551/jat.rv22018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Familial hypobetalipoproteinemia (FHBL) 1 is a rare genetic disorder with an autosomal codominant mode of inheritance and is caused by defects in the apolipoprotein (apo) B (APOB) gene that disable lipoprotein formation. ApoB proteins are required for the formation of very low-density lipoproteins (VLDLs), chylomicrons, and their metabolites. VLDLs transport cholesterol and triglycerides from the liver to the peripheral tissues, whereas chylomicrons transport absorbed lipids and fat-soluble vitamins from the intestine. Homozygous or compound heterozygotes of FHBL1 (HoFHBL1) are extremely rare, and defects in APOB impair VLDL and chylomicron secretion, which result in marked hypolipidemia with malabsorption of fat and fat-soluble vitamins, leading to various complications such as growth disorders, acanthocytosis, retinitis pigmentosa, and neuropathy. Heterozygotes of FHBL1 are relatively common and are generally asymptomatic, except for moderate hypolipidemia and possible hepatic steatosis. If left untreated, HoFHBL1 can cause severe complications and disabilities that are pathologically and phenotypically similar to abetalipoproteinemia (ABL) (an autosomal recessive disorder) caused by mutations in the microsomal triglyceride transfer protein (MTTP) gene. Although HoFHBL1 and ABL cannot be distinguished from the clinical manifestations and laboratory findings of the proband, moderate hypolipidemia in first-degree relatives may help diagnose HoFHBL1. There is currently no specific treatment for HoFHBL1. Palliative therapy including high-dose fat-soluble vitamin supplementation may prevent or delay complications. Registry research on HoFHBL1 is currently ongoing to better understand the disease burden and unmet needs of this life-threatening disease with few therapeutic options.
Collapse
Affiliation(s)
- Tetsuji Wakabayashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Hiroaki Okazaki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Sachiko Okazaki
- Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | | | - Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Masatsune Ogura
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Tokyo, Japan
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Shizuya Yamashita
- Department of Cardiology, Rinku General Medical Center, Osaka, Japan
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - on behalf of the Committee on Primary Dyslipidemia under the Research Program on Rare and Intractable Disease of the Ministry of Health, Labour and Welfare of Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
- Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
- Chiba University, Chiba, Japan
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Tokyo, Japan
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
- Department of Cardiology, Rinku General Medical Center, Osaka, Japan
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
2
|
Ogura M, Okazaki S, Okazaki H, Tada H, Dobashi K, Nakamura K, Matsunaga K, Miida T, Minamino T, Yokoyama S, Harada-Shiba M. Transitional Medicine of Intractable Primary Dyslipidemias in Japan. J Atheroscler Thromb 2024; 31:501-519. [PMID: 38538336 PMCID: PMC11079492 DOI: 10.5551/jat.rv22016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 05/03/2024] Open
Abstract
Transitional medicine refers to the seamless continuity of medical care for patients with childhood-onset diseases as they grow into adulthood. The transition of care must be seamless in medical treatment as the patients grow and in other medical aids such as subsidies for medical expenses in the health care system. Inappropriate transitional care, either medical or social, directly causes poorer prognosis for many early-onset diseases, including primary dyslipidemia caused by genetic abnormalities. Many primary dyslipidemias are designated as intractable diseases in the Japanese health care system for specific medical aids, as having no curative treatment and requiring enormous treatment costs for lipid management and prevention of complications. However, there are problems in transitional medicine for primary dyslipidemia in Japan. As for the medical treatment system, the diagnosis rate remains low due to the shortage of specialists, their insufficient link with generalists and other field specialists, and poor linkage between pediatricians and physicians for adults. In the medical care system, there is a mismatch of diagnostic criteria of primary dyslipidemias between children and adults for medical care expense subsidization, as between The Program for the Specific Pediatric Chronic Diseases and the Program for Designated Adult Intractable Diseases. This could lead some patients subsidized in their childhood to no longer be under the coverage of the aids after transition. This review intends to describe these issues in transitional medicine of primary dyslipidemia in Japan as a part of the efforts to resolve the problems by the Committee on Primary Dyslipidemia under the Research Program on Rare and Intractable Disease of the Ministry of Health, Labour and Welfare of Japan.
Collapse
Affiliation(s)
- Masatsune Ogura
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Sachiko Okazaki
- Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Okazaki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kazushige Dobashi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keiji Matsunaga
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shinji Yokoyama
- Food and Nutritional Sciences, Chubu University, Aichi, Japan
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
3
|
Ayoub C, Azar Y, Abou-Khalil Y, Ghaleb Y, Elbitar S, Halaby G, Jambart S, Gannagé-Yared MH, Yaghi C, Saade Riachy C, El Khoury R, Rabès JP, Varret M, Boileau C, El Khoury P, Abifadel M. Identification of a Variant in APOB Gene as a Major Cause of Hypobetalipoproteinemia in Lebanese Families. Metabolites 2021; 11:564. [PMID: 34564380 PMCID: PMC8469161 DOI: 10.3390/metabo11090564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/03/2022] Open
Abstract
Familial hypobetalipoproteinemia (FHBL) is a codominant genetic disorder characterized by reduced plasma levels of low-density lipoprotein cholesterol and apolipoprotein B. To our knowledge, no study on FHBL in Lebanon and the Middle East region has been reported. Therefore, we conducted genetic studies in unrelated families and probands of Lebanese origin presenting with FHBL, in order to identify the causes of this disease. We found that 71% of the recruited probands and their affected relatives were heterozygous for the p.(Arg490Trp) variant in the APOB gene. Haplotype analysis showed that these patients presented the same mutant haplotype. Moreover, there was a decrease in plasma levels of PCSK9 in affected individuals compared to the non-affected and a significant positive correlation between circulating PCSK9 and ApoB levels in all studied probands and their family members. Some of the p.(Arg490Trp) carriers suffered from diabetes, hepatic steatosis or neurological problems. In conclusion, the p.(Arg490Trp) pathogenic variant seems a cause of FHBL in patients from Lebanese origin, accounting for approximately 70% of the probands with FHBL presumably as a result of a founder mutation in Lebanon. This study is crucial to guide the early diagnosis, management and prevention of the associated complications of this disease.
Collapse
Affiliation(s)
- Carine Ayoub
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University of Beirut, Beirut 17-5208, Lebanon
| | - Yara Azar
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University of Beirut, Beirut 17-5208, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Bichat Hospital, F-75018 Paris, France
- Centre Hospitalo-Universitaire Xavier Bichat, Université de Paris, F-75018 Paris, France
| | - Yara Abou-Khalil
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University of Beirut, Beirut 17-5208, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Bichat Hospital, F-75018 Paris, France
- Centre Hospitalo-Universitaire Xavier Bichat, Université de Paris, F-75018 Paris, France
| | - Youmna Ghaleb
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University of Beirut, Beirut 17-5208, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Bichat Hospital, F-75018 Paris, France
| | - Sandy Elbitar
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University of Beirut, Beirut 17-5208, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Bichat Hospital, F-75018 Paris, France
| | - Georges Halaby
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut 17-5208, Lebanon
| | - Selim Jambart
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut 17-5208, Lebanon
| | - Marie-Hélène Gannagé-Yared
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut 17-5208, Lebanon
- Hotel Dieu de France of Beirut University Hospital, Beirut 166830, Lebanon
| | - Cesar Yaghi
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut 17-5208, Lebanon
- Hotel Dieu de France of Beirut University Hospital, Beirut 166830, Lebanon
| | - Carole Saade Riachy
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut 17-5208, Lebanon
| | - Ralph El Khoury
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut 17-5208, Lebanon
| | - Jean-Pierre Rabès
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Bichat Hospital, F-75018 Paris, France
- Biochemistry and Molecular Genetics Laboratory, AP-HP, Université Paris-Saclay, Ambroise Paré Hospital, Boulogne Billancourt, UVSQ, UFR Simone Veil-Santé, F-78180 Montigny-Le-Bretonneux, France
| | - Mathilde Varret
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Bichat Hospital, F-75018 Paris, France
- Centre Hospitalo-Universitaire Xavier Bichat, Université de Paris, F-75018 Paris, France
| | - Catherine Boileau
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Bichat Hospital, F-75018 Paris, France
- Centre Hospitalo-Universitaire Xavier Bichat, Université de Paris, F-75018 Paris, France
- Genetics Department, AP-HP, Bichat Hospital, F-75018 Paris, France
| | - Petra El Khoury
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University of Beirut, Beirut 17-5208, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Bichat Hospital, F-75018 Paris, France
| | - Marianne Abifadel
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University of Beirut, Beirut 17-5208, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Bichat Hospital, F-75018 Paris, France
| |
Collapse
|
4
|
Takahashi M, Okazaki H, Ohashi K, Ogura M, Ishibashi S, Okazaki S, Hirayama S, Hori M, Matsuki K, Yokoyama S, Harada-Shiba M. Current Diagnosis and Management of Abetalipoproteinemia. J Atheroscler Thromb 2021; 28:1009-1019. [PMID: 33994405 PMCID: PMC8560840 DOI: 10.5551/jat.rv17056] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abetalipoproteinemia (ABL) is a rare autosomal recessive disorder caused by biallelic pathogenic mutations in the
MTTP
gene. Deficiency of microsomal triglyceride transfer protein (MTTP) abrogates the assembly of apolipoprotein (apo) B-containing lipoprotein in the intestine and liver, resulting in malabsorption of fat and fat-soluble vitamins and severe hypolipidemia. Patients with ABL typically manifest steatorrhea, vomiting, and failure to thrive in infancy. The deficiency of fat-soluble vitamins progressively develops into a variety of symptoms later in life, including hematological (acanthocytosis, anemia, bleeding tendency, etc.), neuromuscular (spinocerebellar ataxia, peripheral neuropathy, myopathy, etc.), and ophthalmological symptoms (e.g., retinitis pigmentosa). If left untreated, the disease can be debilitating and even lethal by the third decade of life due to the development of severe complications, such as blindness, neuromyopathy, and respiratory failure. High dose vitamin supplementation is the mainstay for treatment and may prevent, delay, or alleviate the complications and improve the prognosis, enabling some patients to live to the eighth decade of life. However, it cannot fully prevent or restore impaired function. Novel therapeutic modalities that improve quality of life and prognosis are awaited. The aim of this review is to 1) summarize the pathogenesis, clinical signs and symptoms, diagnosis, and management of ABL, and 2) propose diagnostic criteria that define eligibility to receive financial support from the Japanese government for patients with ABL as a rare and intractable disease. In addition, our diagnostic criteria and the entry criterion of low-density lipoprotein cholesterol (LDL-C) <15 mg/dL and apoB <15 mg/dL can be useful in universal or opportunistic screening for the disease. Registry research on ABL is currently ongoing to better understand the disease burden and unmet needs of this life-threatening disease with few therapeutic options.
Collapse
Affiliation(s)
- Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University
| | - Hiroaki Okazaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Ken Ohashi
- Department of General Internal Medicine, National Cancer Center Hospital
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University
| | - Sachiko Okazaki
- Division for Health Service Promotion, The University of Tokyo
| | - Satoshi Hirayama
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | - Mika Hori
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University
| | - Kota Matsuki
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine
| | | | - Mariko Harada-Shiba
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | | |
Collapse
|
5
|
Zhou H, Gong Y, Wu Q, Ye X, Yu B, Lu C, Jiang W, Ye J, Fu Z. Rare Diseases Related with Lipoprotein Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:171-188. [PMID: 32705600 DOI: 10.1007/978-981-15-6082-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rare diseases are gathering increasing attention in last few years, not only for its effects on innovation scientific research, but also for its propounding influence on common diseases. One of the most famous milestones made by Michael Brown and Joseph Goldstein in metabolism field is the discovery of the defective gene in familial hypercholesterolemia, a rare human genetic disease manifested with extreme high level of serum cholesterol (Goldstein JL, Brown MS, Proc Natl Acad Sci USA 70:2804-2808, 1973; Brown MS, Dana SE, Goldstein JL, J Biol Chem 249:789-796, 1974). Follow-up work including decoding the gene function, mapping-related pathways, and screening therapeutic targets are all based on the primary finding (Goldstein JL, Brown MS Arterioscler Thromb Vasc Biol 29:431-438, 2009). A series of succession win the two brilliant scientists the 1985 Nobel Prize, and bring about statins widely used for lipid management and decreasing cardiovascular disease risks. Translating the clinical extreme phenotypes into laboratory bench work has turned out to be the first important step in the paradigm conducting translational and precise medical research. Here we review the main categories of rare disorders related with lipoprotein metabolism, aiming to strengthen the notion that human rare inheritable genetic diseases would be the window to know ourselves better, to treat someone more efficiently, and to lead a healthy life longer. Few rare diseases related with lipoprotein metabolism were clustered into six sections based on changes in lipid profile, namely, hyper- or hypocholesterolemia, hypo- or hyperalphalipoproteinemia, abetalipoproteinemia, hypobetalipoproteinemia, and sphingolipid metabolism diseases. Each section consists of a brief introduction, followed by a summary of well-known disease-causing genes in one table, and supplemented with one or two diseases as example for detailed description. Here we aimed to raise more attention on rare lipoprotein metabolism diseases, calling for more work from basic research and clinical trials.
Collapse
Affiliation(s)
- Hongwen Zhou
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yingyun Gong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinyi Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Baowen Yu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenyan Lu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanzi Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingya Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Fu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Lima Pessoa E, Costa Vilella Dos Reis M, Sayuri Yamamoto T, Ribeiro Neto M, Ferraro O, Alves MJ, Guedes Coelho Lopes R. Familial heterozygous hypobetalipoproteinemia and breast cancer risk: A systematic review and suggestions for further research. Breast J 2019; 25:763-765. [PMID: 31111608 DOI: 10.1111/tbj.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Eduardo Lima Pessoa
- Department of Radiation Oncology, Hospital do Servidor Público Estadual de São Paulo- Iamspe, São Paulo, Brazil
| | | | - Tatiana Sayuri Yamamoto
- Department of Radiation Oncology, Hospital do Servidor Público Estadual de São Paulo- Iamspe, São Paulo, Brazil
| | - Mario Ribeiro Neto
- Department of Radiation Oncology, Hospital do Servidor Público Estadual de São Paulo- Iamspe, São Paulo, Brazil
| | - Odair Ferraro
- Department of Gynecology and Obstetrics, Hospital do Servidor Público Estadual de São Paulo- Iamspe, São Paulo, Brazil
| | - Maria José Alves
- Department of Radiation Oncology, Hospital do Servidor Público Estadual de São Paulo- Iamspe, São Paulo, Brazil
| | - Reginaldo Guedes Coelho Lopes
- Department of Gynecology and Obstetrics, Hospital do Servidor Público Estadual de São Paulo- Iamspe, São Paulo, Brazil
| |
Collapse
|
7
|
Carr SS, Hooper AJ, Sullivan DR, Burnett JR. Non-HDL-cholesterol and apolipoprotein B compared with LDL-cholesterol in atherosclerotic cardiovascular disease risk assessment. Pathology 2018; 51:148-154. [PMID: 30595507 DOI: 10.1016/j.pathol.2018.11.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/25/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022]
Abstract
Low density lipoprotein (LDL) is the predominant atherogenic lipoprotein particle in the circulation. Conventionally, a fasting lipid profile has been used for atherosclerotic cardiovascular disease (ASCVD) risk assessment. A non-fasting sample is now regarded as a suitable alternative to a fasting sample. In routine clinical practice, the Friedewald equation is used to estimate LDL-cholesterol, but it has limitations. Commercially available direct measures of LDL-cholesterol are not standardised. LDL-cholesterol is a well-established risk factor for ASCVD, being the primary therapeutic target in both primary and secondary prevention. Non-high-density lipoprotein (HDL)-cholesterol is a measure of the cholesterol content in the atherogenic lipoproteins, but it does not reflect the particle number. Non-HDL-cholesterol has the advantage over LDL-cholesterol of including remnant cholesterol and being independent of triglyceride variability, but it is compromised by the non-specificity bias of direct HDL-cholesterol methods used in the calculation. Apolipoprotein (apo) B, the major structural protein in very low-density lipoprotein, intermediate density lipoprotein, LDL and lipoprotein (a), is a measure of the number of atherogenic lipoproteins. ApoB methods are standardised, but the assay comes at an additional, albeit relatively low cost. Non-HDL-cholesterol and apoB are more accurate measures than LDL-cholesterol in hypertriglyceridaemic individuals, non-fasting samples, and in those with very-low LDL-cholesterol concentrations. Accumulating evidence suggests that non-HDL-cholesterol and apoB are superior to LDL-cholesterol in predicting ASCVD risk, and both have been designated as secondary targets in some treatment guidelines. We review the measurement, potential role, utility and current status of non-HDL-cholesterol and apoB when compared with LDL-cholesterol in ASCVD risk assessment.
Collapse
Affiliation(s)
- Stuart S Carr
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Amanda J Hooper
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia; Department of Clinical Biochemistry, Royal Perth Hospital and Fiona Stanley Hospital Network, PathWest Laboratory Medicine, Perth, WA, Australia
| | - David R Sullivan
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - John R Burnett
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia; Department of Clinical Biochemistry, Royal Perth Hospital and Fiona Stanley Hospital Network, PathWest Laboratory Medicine, Perth, WA, Australia.
| |
Collapse
|
8
|
Cariou B, Challet-Bouju G, Bernard C, Marrec M, Hardouin JB, Authier C, Bach-Ngohou K, Leux C, Pichelin M, Grall-Bronnec M. Prevalence of hypobetalipoproteinemia and related psychiatric characteristics in a psychiatric population: results from the retrospective HYPOPSY Study. Lipids Health Dis 2018; 17:249. [PMID: 30400945 PMCID: PMC6220563 DOI: 10.1186/s12944-018-0892-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hypobetalipoproteinemia (HBL) is defined by plasma concentrations of LDL-cholesterol (LDL-C) lower than the fifth percentile for age and sex. Several psychiatric symptoms have been reported in association with HBL. The objective was to assess the prevalence of primary HBL in patients hospitalized in a psychiatric population and to better characterize the related psychiatric disorders. METHODS HYPOPSY is a retrospective study including 839 adults hospitalized in the Psychiatry department of Nantes University Hospital during the year 2014, except patients with eating disorders. The prevalence of primary HBL was defined by a plasma LDL-C concentration ≤ 50 mg/dL. Secondary causes of HBL were excluded after a review of medical records (n=2). Related-psychiatric disorders in patients with and without HBL were recorded using the ICD-10 classification. RESULTS Twenty cases of primary HBL (mean [SD] LDL-C: 42 [7] mg/dL) were diagnosed, leading to a prevalence of 2.39%. In comparison, the prevalence of HBL in a healthy control population was 0.57%. Psychiatric patients with HBL were characterized by a higher frequency of schizophrenia (p=0.044), hetero-aggression (p=0.015) and pervasive and specific developmental disorders (including autism) (p=0.011). CONCLUSIONS The prevalence of HBL is 4-fold higher in psychiatric than in general population. More specifically, some statistically significant associations were found between low LDL-C concentrations and schizophrenia, autism and hetero-aggression. These data reinforce the hypothesis for a link between genetically low LDL-C levels and psychiatric disorders.
Collapse
Affiliation(s)
- Bertrand Cariou
- CHU Nantes, l'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, F-44000, Nantes, France. .,CHU de Nantes, CIC Endocrino-Nutrition INSERM UMR 1413, l'nstitut du thorax, F-44000, Nantes, France. .,Clinique d'Endocrinologie, Maladies Métaboliques et Nutrition, Hôpital Guillaume & René Laennec, Boulevard Jacques Monod, Saint-Herblain, 44093, Nantes Cedex 1, France.
| | - Gaëlle Challet-Bouju
- CHU Nantes, Service d'Addictologie et de Psychiatrie, F-44000, Nantes, France.,Université de Nantes, Université de Tours, Inserm UMR 1246-SPHERE, F-44000, Nantes, France
| | - Céline Bernard
- Clinique d'Endocrinologie, Maladies Métaboliques et Nutrition, Hôpital Guillaume & René Laennec, Boulevard Jacques Monod, Saint-Herblain, 44093, Nantes Cedex 1, France.,Present address: CHU Sud Reunion, Site Saint-Pierre, Avenue président F Mitterrand, BP 350, 97448 ST, Pierre Cedex, La Reunion, France
| | - Marie Marrec
- CHU de Nantes, CIC Endocrino-Nutrition INSERM UMR 1413, l'nstitut du thorax, F-44000, Nantes, France
| | - Jean-Benoit Hardouin
- Université de Nantes, Université de Tours, Inserm UMR 1246-SPHERE, F-44000, Nantes, France.,CHU Nantes, DRCi, Plateforme de Méthodologie et de Biostatistique, F-44000, Nantes, France
| | - Charlotte Authier
- Centre d'examens de santé de la Caisse Primaire d'Assurance Maladie de Loire-Atlantique, St Nazaire, F-44600, Saint-Nazaire, France
| | - Kalyane Bach-Ngohou
- CHU Nantes, Service de Biochimie, F-44000, Nantes, France.,INSERM1235, Université de Nantes, Institut des Maladies de l'Appareil Digestif, F-44000, Nantes, France
| | - Christophe Leux
- CHU Nantes, Service d'Information Médicale, F-44000, Nantes, France
| | - Matthieu Pichelin
- CHU Nantes, l'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, F-44000, Nantes, France.,CHU de Nantes, CIC Endocrino-Nutrition INSERM UMR 1413, l'nstitut du thorax, F-44000, Nantes, France.,Clinique d'Endocrinologie, Maladies Métaboliques et Nutrition, Hôpital Guillaume & René Laennec, Boulevard Jacques Monod, Saint-Herblain, 44093, Nantes Cedex 1, France
| | - Marie Grall-Bronnec
- CHU Nantes, Service d'Addictologie et de Psychiatrie, F-44000, Nantes, France. .,Université de Nantes, Université de Tours, Inserm UMR 1246-SPHERE, F-44000, Nantes, France.
| |
Collapse
|
9
|
Kawashiri MA, Tada H, Hashimoto M, Taniyama M, Nakano T, Nakajima K, Inoue T, Mori M, Nakanishi C, Konno T, Hayashi K, Nohara A, Inazu A, Koizumi J, Ishihara H, Kobayashi J, Hirano T, Mabuchi H, Yamagishi M. Extreme Contrast of Postprandial Remnant-Like Particles Formed in Abetalipoproteinemia and Homozygous Familial Hypobetalipoproteinemia. JIMD Rep 2015; 22:85-94. [PMID: 25763510 DOI: 10.1007/8904_2015_415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Familial hypobetalipoproteinemia (FHBL) and abetalipoproteinemia (ABL) are rare inherited forms of hypolipidemia. Their differential diagnosis is important for predicting of the prognosis and selecting appropriate therapy. MATERIALS AND METHODS Genetic analysis was performed in two patients with primary hypocholesterolemia born from consanguineous parents. The oral fat tolerance test (OFTT) was performed in one patient with FHBL (apoB-87.77) and one with ABL as well as in four normal control subjects. After overnight fasting, blood samples were drawn. Serum lipoprotein and remnant-like particle (RLP) fractions were determined by HPLC analysis. RESULTS Both patients with homozygous FHBL were asymptomatic probably because of preserved levels of fat-soluble vitamins, especially vitamin E. The patients with FHBL were homozygous because of novel apoB-83.52 and apoB-87.77 mutations, and although one of them (apoB-87.77) had fatty liver disease, microscopic findings suggesting nonalcoholic steatohepatitis were absent. Fasting apoB-48 and RLP-triglyceride levels in the patient with homozygous FHBL, which were similar to those in normal control subjects, increased after OFTT both in normal control subjects and the patient with FHBL but not in the patient with ABL, suggesting that the fat load administered was absorbed only in the patient with FHBL. CONCLUSION Although lipid levels in the patients with homozygous FHBL and ABL were comparable, fasting, postoral fat loading of apoB-48, as well as RLP-triglyceride levels, may help in the differential diagnosis of FHBL and ABL and provide a prompt diagnosis using genetic analysis in the future.
Collapse
Affiliation(s)
- Masa-Aki Kawashiri
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, 920-8641, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|