1
|
Medina Escobar A, Pringsheim T, Gautreau S, Rivera-Duarte JD, Amorelli G, Cornejo-Olivas M, Rossi M. Epidemiology of Huntington's Disease in Latin America: A Systematic Review and Meta-Analysis. Mov Disord 2024. [PMID: 39044616 DOI: 10.1002/mds.29929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Latin America has played a crucial role in advancing our understanding of Huntington's disease (HD). However, previous global reviews include limited data from Latin America. It is possible that English-based medical search engines may not capture all the relevant studies. METHODS We searched databases in Spanish, Portuguese, and English. The names of every country in Latin America in English-based search engines were used to ensure we found any study that had molecular ascertainment and provided general epidemiological information or subpopulation data. Additionally, we contacted experts across the region. RESULTS The search strategy yielded 791 citations; 24 studies met inclusion criteria, representing 12 of 36 countries. The overall pooled prevalence was 0.64 per 100,000 (prediction interval, 0.06-7.22); for cluster regions, it was 54 per 100,000 (95% CI, 34.79-84.92); for juvenile HD, it was 8.7% (prediction interval, 5.12-14.35), and 5.9% (prediction interval, 2.72-13.42) for late-onset HD. The prevalence was higher for Mexico, Peru, and Brazil. However, there were no significant differences between Central America and the Caribbean versus South America. CONCLUSION The prevalence of HD appears to be similar across Latin America. However, we infer that our findings are underestimates, in part because of limited research and underdiagnosis of HD because of limited access to molecular testing and the availability of neurologists and movement disorders specialists. Future research should focus on identifying pathways to improve access to molecular testing and education and understanding differences among different ancestral groups in Latin America. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alex Medina Escobar
- Moncton Interdisciplinary Neurodegenerative Diseases Clinic, Horizon Health Network, Moncton, New Brunswick, Canada
| | - Tamara Pringsheim
- Department of Clinical Neurosciences, Psychiatry, Pediatrics and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, Alberta, Canada
| | - Sylvia Gautreau
- Moncton Interdisciplinary Neurodegenerative Diseases Clinic, Horizon Health Network, Moncton, New Brunswick, Canada
| | - Jose D Rivera-Duarte
- Laboratorio de Hidrobiología, Departamento de Ecología y Recursos Naturales, Escuela de Biología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Ciudad Universitaria, Tegucigalpa, Honduras
| | - Gabriel Amorelli
- The Ottawa Health Research Institute, Ottawa University, Ottawa, Ontario, Canada
| | - Mario Cornejo-Olivas
- Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | - Malco Rossi
- Servicio de Movimientos Anormales, Departamento de Neurología, FLENI, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Cheng Y, Zhang S, Shang H. Latest advances on new promising molecular-based therapeutic approaches for Huntington's disease. J Transl Int Med 2024; 12:134-147. [PMID: 38779119 PMCID: PMC11107186 DOI: 10.2478/jtim-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Huntington's disease (HD) is a devastating, autosomal-dominant inherited, neurodegenerative disorder characterized by progressive motor deficits, cognitive impairments, and neuropsychiatric symptoms. It is caused by excessive cytosine-adenine-guanine (CAG) trinucleotide repeats within the huntingtin gene (HTT). Presently, therapeutic interventions capable of altering the trajectory of HD are lacking, while medications for abnormal movement and psychiatric symptoms are limited. Numerous pre-clinical and clinical studies have been conducted and are currently underway to test the efficacy of therapeutic approaches targeting some of these mechanisms with varying degrees of success. In this review, we update the latest advances on new promising molecular-based therapeutic strategies for this disorder, including DNA-targeting techniques such as zinc-finger proteins, transcription activator-like effector nucleases, and CRISPR/Cas9; post-transcriptional huntingtin-lowering approaches such as RNAi, antisense oligonucleotides, and small-molecule splicing modulators; and novel methods to clear the mHTT protein, such as proteolysis-targeting chimeras. We mainly focus on the ongoing clinical trials and the latest pre-clinical studies to explore the progress of emerging potential HD therapeutics.
Collapse
Affiliation(s)
- Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| | - Sirui Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| |
Collapse
|
3
|
What the Gut Tells the Brain-Is There a Link between Microbiota and Huntington's Disease? Int J Mol Sci 2023; 24:ijms24054477. [PMID: 36901907 PMCID: PMC10003333 DOI: 10.3390/ijms24054477] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
The human intestinal microbiota is a diverse and dynamic microenvironment that forms a complex, bi-directional relationship with the host. The microbiome takes part in the digestion of food and the generation of crucial nutrients such as short chain fatty acids (SCFA), but is also impacts the host's metabolism, immune system, and even brain functions. Due to its indispensable role, microbiota has been implicated in both the maintenance of health and the pathogenesis of many diseases. Dysbiosis in the gut microbiota has already been implicated in many neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). However, not much is known about the microbiome composition and its interactions in Huntington's disease (HD). This dominantly heritable, incurable neurodegenerative disease is caused by the expansion of CAG trinucleotide repeats in the huntingtin gene (HTT). As a result, toxic RNA and mutant protein (mHTT), rich in polyglutamine (polyQ), accumulate particularly in the brain, leading to its impaired functions. Interestingly, recent studies indicated that mHTT is also widely expressed in the intestines and could possibly interact with the microbiota, affecting the progression of HD. Several studies have aimed so far to screen the microbiota composition in mouse models of HD and find out whether observed microbiome dysbiosis could affect the functions of the HD brain. This review summarizes ongoing research in the HD field and highlights the essential role of the intestine-brain axis in HD pathogenesis and progression. The review also puts a strong emphasis on indicating microbiome composition as a future target in the urgently needed therapy for this still incurable disease.
Collapse
|
4
|
Shin JW, Hong EP, Park SS, Choi DE, Zeng S, Chen RZ, Lee JM. PAM-altering SNP-based allele-specific CRISPR-Cas9 therapeutic strategies for Huntington’s disease. Mol Ther Methods Clin Dev 2022; 26:547-561. [PMID: 36092363 PMCID: PMC9450073 DOI: 10.1016/j.omtm.2022.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jun Wan Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Eun Pyo Hong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Seri S. Park
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Doo Eun Choi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Sophia Zeng
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Jong-Min Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
- Corresponding author Jong-Min Lee, Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
5
|
Aslesh T, Yokota T. Development of Antisense Oligonucleotide Gapmers for the Treatment of Huntington's Disease. Methods Mol Biol 2021; 2176:57-67. [PMID: 32865782 DOI: 10.1007/978-1-0716-0771-8_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The field of neuromuscular and neurodegenerative diseases has been revolutionized by the advent of genetics and molecular biology to evaluate the pathogenicity, thereby providing considerable insight to develop suitable therapies. With the successful translation of antisense oligonucleotides (AOs) from in vitro into animal models and clinical practice, modifications are being continuously made to the AOs to improve the pharmacokinetics and pharmacodynamics. In order to activate RNase H-mediated cleavage of the target mRNA, as well as to increase the binding affinity and specificity, gapmer AOs are designed to have a phosphorothioate (PS) backbone flanked with the modified AOs on both sides. Antisense-mediated knockdown of mutated huntingtin is a promising therapeutic approach for Huntington's disease (HD), a devastating disorder affecting the motor and cognitive abilities. This chapter focuses on the modified gapmer AOs for the treatment of HD.
Collapse
Affiliation(s)
- Tejal Aslesh
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Apolinário TA, Rodrigues DC, Lemos MB, Antão Paiva CL, Agostinho LA. Distribution of the HTT Gene A1 and A2 Haplotypes Worldwide: A Systematic Review. Clin Med Res 2020; 18:145-152. [PMID: 32878904 PMCID: PMC7735449 DOI: 10.3121/cmr.2020.1523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/15/2020] [Accepted: 08/04/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Huntington's disease (HD)(MIM:143100) is an severe autosomal dominant neurodegenerative disease caused by the dynamic expansion of CAG trinucleotides (> 35) in the HTT gene [Genomic Coordinates- (GRCh38):4:3,074,680-3,243,959]. OBJECTIVES The aim of this systematic review was to investigate the reported associations between the frequencies of the A1 and A2 haplotypes in HD-affected and non-affected populations from different countries on different continents, in order to demonstrate the overall profile of these haplotypes worldwide, pointing towards the most frequent haplotypes that could be useful for HTT mutant-specific allele silencing in different populations. METHODS Publications in MEDLINE (PubMed) and Embase from the last 10 years (PROSPERO CRD42018115282) were assessed. RESULTS A total of 20 articles from 113 were selected for evaluation in their entirety, and eight were eligible for this study. CONCLUSION Regardless of the size of the CAG tract, the articles included in this review demonstrate that populations with high HD prevalence present higher frequencies of the A1 or A2 haplotypes than populations exhibiting low HD prevalence, even when similar average CAG numbers are noted. Based on the presented articles, we suggest that the haplotypic profile is more closely related to the ancestral origin than to the size of the CAG tract. The identification of populations presenting a higher frequency of high-risk genotypes can contribute to more accurate genetic counseling, in addition to providing knowledge on HD epidemiology. According to the continued progress in the development of specific genetic silencing therapies by different research groups and pharmaceutical companies, such as haplotype targeting strategies for allele-specific HTT suppression, we conclude that the definition of haplotypes in phase with CAG expansions will contribute to the design of gene-silencing drugs specific for different populations worldwide.
Collapse
Affiliation(s)
- Thays Andrade Apolinário
- Graduate Program in Neurology, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Dionatan Costa Rodrigues
- Graduate Program in Neurology, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Mayra Braga Lemos
- Department of Genetics and Molecular Biology, Instituto Bimédico, UNIRIO, RJ, Brazil
| | - Carmen Lúcia Antão Paiva
- Graduate Program in Neurology, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
- Department of Genetics and Molecular Biology, Instituto Bimédico, UNIRIO, RJ, Brazil
- Graduate Program in Molecular and Cell Biology, UNIRIO, RJ, Brazil
| | - Luciana Andrade Agostinho
- Graduate Program in Neurology, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
- University Center UNIFAMINAS - UNIFAMINAS, Muriaé, MG, Brazil
| |
Collapse
|
7
|
Caron NS, Southwell AL, Brouwers CC, Cengio LD, Xie Y, Black HF, Anderson LM, Ko S, Zhu X, van Deventer SJ, Evers MM, Konstantinova P, Hayden MR. Potent and sustained huntingtin lowering via AAV5 encoding miRNA preserves striatal volume and cognitive function in a humanized mouse model of Huntington disease. Nucleic Acids Res 2020; 48:36-54. [PMID: 31745548 PMCID: PMC7145682 DOI: 10.1093/nar/gkz976] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
Huntington disease (HD) is a fatal neurodegenerative disease caused by a pathogenic expansion of a CAG repeat in the huntingtin (HTT) gene. There are no disease-modifying therapies for HD. Artificial microRNAs targeting HTT transcripts for degradation have shown preclinical promise and will soon enter human clinical trials. Here, we examine the tolerability and efficacy of non-selective HTT lowering with an AAV5 encoded miRNA targeting human HTT (AAV5-miHTT) in the humanized Hu128/21 mouse model of HD. We show that intrastriatal administration of AAV5-miHTT results in potent and sustained HTT suppression for at least 7 months post-injection. Importantly, non-selective suppression of huntingtin was generally tolerated, however high dose AAV5-miHTT did induce astrogliosis. We observed an improvement of select behavioural and modest neuropathological HD-like phenotypes in Hu128/21 mice, suggesting a potential therapeutic benefit of miRNA-mediated non-selective HTT lowering. Finally, we also observed that potent reduction of wild type HTT (wtHTT) in Hu21 control mice was tolerated up to 7 months post-injection but may induce impairment of motor coordination and striatal atrophy. Taken together, our data suggests that in the context of HD, the therapeutic benefits of mHTT reduction may outweigh the potentially detrimental effects of wtHTT loss following non-selective HTT lowering.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Amber L Southwell
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Cynthia C Brouwers
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Louisa Dal Cengio
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Yuanyun Xie
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Lisa M Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Seunghyun Ko
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Xiang Zhu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Sander J van Deventer
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Melvin M Evers
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Pavlina Konstantinova
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Kay C, Collins JA, Caron NS, Agostinho LDA, Findlay-Black H, Casal L, Sumathipala D, Dissanayake VHW, Cornejo-Olivas M, Baine F, Krause A, Greenberg JL, Paiva CLA, Squitieri F, Hayden MR. A Comprehensive Haplotype-Targeting Strategy for Allele-Specific HTT Suppression in Huntington Disease. Am J Hum Genet 2019; 105:1112-1125. [PMID: 31708117 PMCID: PMC6904807 DOI: 10.1016/j.ajhg.2019.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/11/2019] [Indexed: 11/20/2022] Open
Abstract
Huntington disease (HD) is a fatal neurodegenerative disorder caused by a gain-of-function mutation in HTT. Suppression of mutant HTT has emerged as a leading therapeutic strategy for HD, with allele-selective approaches targeting HTT SNPs now in clinical trials. Haplotypes associated with the HD mutation (A1, A2, A3a) represent panels of allele-specific gene silencing targets for efficient treatment of individuals with HD of Northern European and indigenous South American ancestry. Here we extend comprehensive haplotype analysis of the HD mutation to key populations of Southern European, South Asian, Middle Eastern, and admixed African ancestry. In each of these populations, the HD mutation occurs predominantly on the A2 HTT haplotype. Analysis of HD haplotypes across all affected population groups enables rational selection of candidate target SNPs for development of allele-selective gene silencing therapeutics worldwide. Targeting SNPs on the A1 and A2 haplotypes in parallel is essential to achieve treatment of the most HD-affected subjects in populations where HD is most prevalent. Current allele-specific approaches will leave a majority of individuals with HD untreated in populations where the HD mutation occurs most frequently on the A2 haplotype. We further demonstrate preclinical development of potent and selective ASOs targeting SNPs on the A2 HTT haplotype, representing an allele-specific treatment strategy for these individuals. On the basis of comprehensive haplotype analysis, we show the maximum proportion of HD-affected subjects that may be treated with three or four allele targets in different populations worldwide, informing current allele-specific HTT silencing strategies.
Collapse
Affiliation(s)
- Chris Kay
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Jennifer A Collins
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Nicholas S Caron
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Luciana de Andrade Agostinho
- PPGNEURO, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ 20270-004, Brazil; Centro Universitário UNIFAMINAS, Muriaé, MG 36880-000, Brazil; Hospital do Câncer de Muriaé, Muriaé, MG 36880-000, Brazil
| | - Hailey Findlay-Black
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Lorenzo Casal
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | | | | | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima 15003, Peru; Center for Global Health, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Fiona Baine
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa; Division of Human Genetics, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa
| | - Jacquie L Greenberg
- Division of Human Genetics, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Carmen Lúcia Antão Paiva
- PPGNEURO, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ 20270-004, Brazil
| | - Ferdinando Squitieri
- Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy
| | - Michael R Hayden
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada.
| |
Collapse
|
9
|
Southwell AL, Kordasiewicz HB, Langbehn D, Skotte NH, Parsons MP, Villanueva EB, Caron NS, Østergaard ME, Anderson LM, Xie Y, Cengio LD, Findlay-Black H, Doty CN, Fitsimmons B, Swayze EE, Seth PP, Raymond LA, Frank Bennett C, Hayden MR. Huntingtin suppression restores cognitive function in a mouse model of Huntington's disease. Sci Transl Med 2019; 10:10/461/eaar3959. [PMID: 30282695 DOI: 10.1126/scitranslmed.aar3959] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/26/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin (HTT) protein, resulting in acquisition of toxic functions. Previous studies have shown that lowering mutant HTT has the potential to be broadly beneficial. We previously identified HTT single-nucleotide polymorphisms (SNPs) tightly linked to the HD mutation and developed antisense oligonucleotides (ASOs) targeting HD-SNPs that selectively suppress mutant HTT. We tested allele-specific ASOs in a mouse model of HD. Both early and late treatment reduced cognitive and behavioral impairments in mice. To determine the translational potential of the treatment, we examined the effect of ASO administration on HTT brain expression in nonhuman primates. The treatment induced robust HTT suppression throughout the cortex and limbic system, areas implicated in cognition and psychiatric function. The results suggest that ASOs specifically targeting mutated HTT might have therapeutic effects on HD-mediated cognitive impairments.
Collapse
Affiliation(s)
- Amber L Southwell
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | - Douglas Langbehn
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Niels H Skotte
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Matthew P Parsons
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Erika B Villanueva
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | - Lisa M Anderson
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Yuanyun Xie
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Louisa Dal Cengio
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Hailey Findlay-Black
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Crystal N Doty
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | | - Lynn A Raymond
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.
| |
Collapse
|
10
|
Guio H, Poterico JA, Levano KS, Cornejo‐Olivas M, Mazzetti P, Manassero‐Morales G, Ugarte‐Gil MF, Acevedo‐Vásquez E, Dueñas‐Roque M, Piscoya A, Fujita R, Sanchez C, Casavilca‐Zambrano S, Jaramillo‐Valverde L, Sullcahuaman‐Allende Y, Iglesias‐Pedraz JM, Abarca‐Barriga H. Genetics and genomics in Peru: Clinical and research perspective. Mol Genet Genomic Med 2018; 6:873-886. [PMID: 30584990 PMCID: PMC6305655 DOI: 10.1002/mgg3.533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
Peruvians currently preserve in their DNA the history of 2.5 million years of human evolution and 150,000 years of migration from Africa to Peru or the Americas. The development of Genetics and Genomics in the clinical and academic field is shown in this review.
Collapse
Affiliation(s)
- Heinner Guio
- Instituto Nacional de Salud del PerúLimaPerú
- Universidad Científica del SurLimaPerú
| | - Julio A. Poterico
- Instituto Nacional de Salud del PerúLimaPerú
- Servicio de GenéticaInstituto Nacional de Salud del Niño San Borja (INSN‐SB)LimaPeru
| | | | - Mario Cornejo‐Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias NeurológicasLimaPerú
| | - Pilar Mazzetti
- Neurogenetics Research Center, Instituto Nacional de Ciencias NeurológicasLimaPerú
- School of MedicineUniversidad Nacional Mayor de San MarcosLimaPerú
| | | | - Manuel F. Ugarte‐Gil
- Universidad Científica del SurLimaPerú
- Rheumatology Department. Hospital Guillermo Almenara Irigoyen. EsSaludLimaPerú
| | - Eduardo Acevedo‐Vásquez
- School of MedicineUniversidad Nacional Mayor de San MarcosLimaPerú
- Clínica San FelipeLimaPerú
| | - Milagros Dueñas‐Roque
- Servicio de GenéticaHospital Nacional Edgardo Rebagliati MartinsLimaPerú
- Sociedad de Genética Médica del PerúLimaPeru
| | - Alejandro Piscoya
- Universidad San Ignacio de LoyolaLimaPerú
- Hospital Guillermo Kaelin de la FuenteLimaPerú
| | - Ricardo Fujita
- Centro de Genética y Biología Molecular, Universidad de San Martín de PorresLimaPerú
| | | | - Sandro Casavilca‐Zambrano
- Banco de Tejidos Tumorales, Instituto Nacional de Enfermedades NeoplásicasBanco de Tejidos TumoralesLimaPerú
- Instituto Nacional de Enfermedades NeoplásicasLimaPerú
| | | | | | - Juan M. Iglesias‐Pedraz
- Universidad Científica del SurLimaPerú
- Laboratorio de Genética Molecular y Bioquímica, Departamento de Investigación, Desarrollo e InnovaciónUniversidad Científica del SurLimaPerú
| | - Hugo Abarca‐Barriga
- Servicio de Genética & EIMInstituto Nacional de Salud del Niño Breña (INSN)LimaPeru
- Facultad de EstomatologíaUniversidad Científica del SurLimaPerú
- Facultad de Medicina HumanaUniversidad Ricardo PalmaLimaPerú
| |
Collapse
|
11
|
Soares-Souza G, Borda V, Kehdy F, Tarazona-Santos E. Admixture, Genetics and Complex Diseases in Latin Americans and US Hispanics. CURRENT GENETIC MEDICINE REPORTS 2018. [DOI: 10.1007/s40142-018-0151-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Abstract
The 25 years since the identification of the gene responsible for Huntington disease (HD) have stood witness to profound discoveries about the nature of the disease and its pathogenesis. Despite this progress, however, the development of disease-modifying therapies has thus far been slow. Preclinical validation of the therapeutic potential of disrupted pathways in HD has led to the advancement of pharmacological agents, both novel and repurposed, for clinical evaluation. The most promising therapeutic approaches include huntingtin (HTT) lowering and modification as well as modulation of neuroinflammation and synaptic transmission. With clinical trials for many of these approaches imminent or currently ongoing, the coming years are promising not only for HD but also for more prevalent neurodegenerative disorders, such as Alzheimer and Parkinson disease, in which many of these pathways have been similarly implicated.
Collapse
|
13
|
Walker RH, Gatto EM, Bustamante ML, Bernal-Pacheco O, Cardoso F, Castilhos RM, Chana-Cuevas P, Cornejo-Olivas M, Estrada-Bellmann I, Jardim LB, López-Castellanos R, López-Contreras R, Maia DP, Mazzetti P, Miranda M, Rodríguez-Violante M, Teive H, Tumas V. Huntington's disease-like disorders in Latin America and the Caribbean. Parkinsonism Relat Disord 2018; 53:10-20. [PMID: 29853295 DOI: 10.1016/j.parkreldis.2018.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/24/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022]
Abstract
Diseases with a choreic phenotype can be due to a variety of genetic etiologies. As testing for Huntington's disease (HD) becomes more available in previously resource-limited regions, it is becoming apparent that there are patients in these areas with other rare genetic conditions which cause an HD-like phenotype. Documentation of the presence of these conditions is important in order to provide appropriate diagnostic and clinical care for these populations. Information for this article was gathered in two ways; the literature was surveyed for publications reporting a variety of genetic choreic disorders, and movement disorders specialists from countries in Latin America and the Caribbean were contacted regarding their experiences with chorea of genetic etiology. Here we discuss the availability of molecular diagnostics for HD and for other choreic disorders, along with a summary of the published reports of affected subjects, and authors' personal experiences from the regions. While rare, patients affected by non-HD genetic choreas are evidently present in Latin America and the Caribbean. HD-like 2 is particularly prevalent in countries where the population has African ancestry. The incidence of other conditions is likely determined by other variations in ethnic background and settlement patterns. As genetic resources and awareness of these disorders improve, more patients are likely to be identified, and have the potential to benefit from education, support, and ultimately molecular therapies.
Collapse
Affiliation(s)
- Ruth H Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Mount Sinai School of Medicine, New York, NY, USA.
| | - Emilia M Gatto
- Sanatorio Trinidad Mitre, INEBA, Buenos Aires, Argentina
| | - M Leonor Bustamante
- Human Genetics Program, Biomedical Sciences Institute, and Department of Psychiatry North Division, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | | | - Raphael M Castilhos
- Neurology Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| | - Pedro Chana-Cuevas
- Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
| | | | - Laura B Jardim
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Brazil
| | - Ricardo López-Castellanos
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Debora P Maia
- The Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Pilar Mazzetti
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
| | - Marcelo Miranda
- Department of Neurology, Clinica Las Condes, Santiago, Chile
| | | | - Helio Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Parana, Curitiba, Brazil
| | - Vitor Tumas
- Department of Neuroscience and Behavior Sciences, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
14
|
Kay C, Collins JA, Wright GEB, Baine F, Miedzybrodzka Z, Aminkeng F, Semaka AJ, McDonald C, Davidson M, Madore SJ, Gordon ES, Gerry NP, Cornejo-Olivas M, Squitieri F, Tishkoff S, Greenberg JL, Krause A, Hayden MR. The molecular epidemiology of Huntington disease is related to intermediate allele frequency and haplotype in the general population. Am J Med Genet B Neuropsychiatr Genet 2018; 177:346-357. [PMID: 29460498 DOI: 10.1002/ajmg.b.32618] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/21/2017] [Indexed: 01/31/2023]
Abstract
Huntington disease (HD) is the most common monogenic neurodegenerative disorder in populations of European ancestry, but occurs at lower prevalence in populations of East Asian or black African descent. New mutations for HD result from CAG repeat expansions of intermediate alleles (IAs), usually of paternal origin. The differing prevalence of HD may be related to the rate of new mutations in a population, but no comparative estimates of IA frequency or the HD new mutation rate are available. In this study, we characterize IA frequency and the CAG repeat distribution in fifteen populations of diverse ethnic origin. We estimate the HD new mutation rate in a series of populations using molecular IA expansion rates. The frequency of IAs was highest in Hispanic Americans and Northern Europeans, and lowest in black Africans and East Asians. The prevalence of HD correlated with the frequency of IAs by population and with the proportion of IAs found on the HD-associated A1 haplotype. The HD new mutation rate was estimated to be highest in populations with the highest frequency of IAs. In European ancestry populations, one in 5,372 individuals from the general population and 7.1% of individuals with an expanded CAG repeat in the HD range are estimated to have a molecular new mutation. Our data suggest that the new mutation rate for HD varies substantially between populations, and that IA frequency and haplotype are closely linked to observed epidemiological differences in the prevalence of HD across major ancestry groups in different countries.
Collapse
Affiliation(s)
- Chris Kay
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer A Collins
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Galen E B Wright
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Fiona Baine
- Division of Human Genetics, Department of Pathology, University of Cape Town, South Africa.,Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zosia Miedzybrodzka
- Medical Genetics Group, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Folefac Aminkeng
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada.,Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Alicia J Semaka
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Cassandra McDonald
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Mark Davidson
- Medical Genetics Group, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Steven J Madore
- Molecular Biology Group, Coriell Institute for Medical Research, Camden, New Jersey
| | - Erynn S Gordon
- Molecular Biology Group, Coriell Institute for Medical Research, Camden, New Jersey
| | - Norman P Gerry
- Molecular Biology Group, Coriell Institute for Medical Research, Camden, New Jersey
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | - Ferdinando Squitieri
- IRCCS Casa Sollievo della Sofferenza Hospital, Huntington and Rare Diseases Unit (CSS-Mendel Rome), San Giovanni Rotondo, Italy
| | - Sarah Tishkoff
- Department of Genetics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jacquie L Greenberg
- Division of Human Genetics, Department of Pathology, University of Cape Town, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michael R Hayden
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|