1
|
Smith CS, Riddell M, Badalato L, Au PYB. Adults with paternal UPD14 causing Kagami-Ogata syndrome: Case report and review of the literature. Am J Med Genet A 2024; 194:e63625. [PMID: 38741340 DOI: 10.1002/ajmg.a.63625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 05/16/2024]
Abstract
Kagami-Ogata syndrome (KOS) is a clinically recognizable syndrome in the neonatal period. It is characterized by specific skeletal anomalies and facial dysmorphisms. It is typically caused by paternal uniparental disomy of chromosome 14, while epimutations and microdeletions are less commonly reported causes. In the pediatric setting, KOS is a well delineated syndrome. However, there is a dearth of literature describing the natural history of the condition in adults. Herein, we describe a 35-year-old man, the first adult with KOS reported due to paternal uniparental disomy 14, and review reports of KOS in other affected adults. This highlights the variability in neurocognitive phenotypes, the presence of connective tissue abnormalities, and the uncertainties around long-term cancer risk.
Collapse
Affiliation(s)
- Christopher S Smith
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Madison Riddell
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lauren Badalato
- Department of Pediatrics, Queen's University, Kingston, Ontario, Canada
| | - Ping Yee Billie Au
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Yang X, Li M, Qi Q, Zhou X, Hao N, Lü Y, Jiang Y. Prenatal diagnosis of recurrent Kagami-Ogata syndrome inherited from a mother affected by Temple syndrome: a case report and literature review. BMC Med Genomics 2024; 17:222. [PMID: 39210340 PMCID: PMC11360317 DOI: 10.1186/s12920-024-01987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Kagami-Ogata syndrome (KOS) and Temple syndrome (TS) are two imprinting disorders characterized by the absence or reduced expression of maternal or paternal genes in the chromosome 14q32 region, respectively. We present a rare prenatally diagnosed case of recurrent KOS inherited from a mother affected by TS. CASE PRESENTATION The woman's two affected pregnancies exhibited recurrent manifestations of prenatal overgrowth, polyhydramnios, and omphalocele, as well as a small bell-shaped thorax with coat-hanger ribs postnatally. Prenatal genetic testing using a single-nucleotide polymorphism array detected a 268.2-kb deletion in the chromosome 14q32 imprinted region inherited from the mother, leading to the diagnosis of KOS. Additionally, the woman carried a de novo deletion in the paternal chromosome 14q32 imprinted region and presented with short stature and small hands and feet, indicating a diagnosis of TS. CONCLUSIONS Given the rarity of KOS as an imprinting disorder, accurate prenatal diagnosis of this rare imprinting disorder depends on two factors: (1) increasing clinician recognition of the clinical phenotype and related genetic mechanism, and (2) emphasizing the importance of imprinted regions in the CMA workflow for laboratory analysis.
Collapse
Affiliation(s)
- Xueting Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Mengmeng Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Qingwei Qi
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiya Zhou
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Na Hao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yan Lü
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| | - Yulin Jiang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Farhadova S, Ghousein A, Charon F, Surcis C, Gomez-Velazques M, Roidor C, Di Michele F, Borensztein M, De Sario A, Esnault C, Noordermeer D, Moindrot B, Feil R. The long non-coding RNA Meg3 mediates imprinted gene expression during stem cell differentiation. Nucleic Acids Res 2024; 52:6183-6200. [PMID: 38613389 PMCID: PMC11194098 DOI: 10.1093/nar/gkae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The imprinted Dlk1-Dio3 domain comprises the developmental genes Dlk1 and Rtl1, which are silenced on the maternal chromosome in different cell types. On this parental chromosome, the domain's imprinting control region activates a polycistron that produces the lncRNA Meg3 and many miRNAs (Mirg) and C/D-box snoRNAs (Rian). Although Meg3 lncRNA is nuclear and associates with the maternal chromosome, it is unknown whether it controls gene repression in cis. We created mouse embryonic stem cells (mESCs) that carry an ectopic poly(A) signal, reducing RNA levels along the polycistron, and generated Rian-/- mESCs as well. Upon ESC differentiation, we found that Meg3 lncRNA (but not Rian) is required for Dlk1 repression on the maternal chromosome. Biallelic Meg3 expression acquired through CRISPR-mediated demethylation of the paternal Meg3 promoter led to biallelic Dlk1 repression, and to loss of Rtl1 expression. lncRNA expression also correlated with DNA hypomethylation and CTCF binding at the 5'-side of Meg3. Using Capture Hi-C, we found that this creates a Topologically Associating Domain (TAD) organization that brings Meg3 close to Dlk1 on the maternal chromosome. The requirement of Meg3 for gene repression and TAD structure may explain how aberrant MEG3 expression at the human DLK1-DIO3 locus associates with imprinting disorders.
Collapse
Affiliation(s)
- Sabina Farhadova
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
- Genetic Resources Research Institute, Azerbaijan National Academy of Sciences (ANAS), AZ1106 Baku, Azerbaijan
| | - Amani Ghousein
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - François Charon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Caroline Surcis
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
| | - Melisa Gomez-Velazques
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Clara Roidor
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Flavio Di Michele
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Maud Borensztein
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Albertina De Sario
- University of Montpellier, 34090 Montpellier, France
- PhyMedExp, Institut National de la Santé et de la Recherche Médicale (INSERM), CNRS, 34295 Montpellier, France
| | - Cyril Esnault
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Benoit Moindrot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
4
|
Gawade K, Raczynska KD. Imprinted small nucleolar RNAs: Missing link in development and disease? WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1818. [PMID: 37722601 DOI: 10.1002/wrna.1818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
The 14q32.2 (DLK1-DIO3) and 15q11-q13 (SNURF-SNRPN) imprinted gene loci harbor the largest known small nucleolar RNA clusters expressed from the respective maternal and paternal alleles. Recent studies have demonstrated significant roles for the 15q11-q13 located SNORD115-SNORD116 C/D box snoRNAs in Prader-Willi syndrome (PWS), a neurodevelopmental disorder. Even though the effect of SNORD116 deletion is apparent in the PWS phenotype, similar effects of a SNORD113-SNORD114 cluster deletion from the 14q32.2 locus in Kagami-Ogata syndrome (KOS14) and upregulation in Temple syndrome (TS14) remain to be explored. Moreover, apart from their probable involvement in neurodevelopmental disorders, snoRNAs from the SNORD113-SNORD114 cluster have been implicated in multiple biological processes, including pluripotency, development, cancers, and RNA modifications. Here we summarize the current understanding of the system to explore the possibility of a link between developmental disorders and C/D box snoRNA expression from the imprinted 14q32.2 locus. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development RNA Processing > Processing of Small RNAs.
Collapse
Affiliation(s)
- Kishor Gawade
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Katarzyna D Raczynska
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Poznan, Poland
| |
Collapse
|
5
|
Di Michele F, Chillón I, Feil R. Imprinted Long Non-Coding RNAs in Mammalian Development and Disease. Int J Mol Sci 2023; 24:13647. [PMID: 37686455 PMCID: PMC10487962 DOI: 10.3390/ijms241713647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Imprinted genes play diverse roles in mammalian development, homeostasis, and disease. Most imprinted chromosomal domains express one or more long non-coding RNAs (lncRNAs). Several of these lncRNAs are strictly nuclear and their mono-allelic expression controls in cis the expression of protein-coding genes, often developmentally regulated. Some imprinted lncRNAs act in trans as well, controlling target gene expression elsewhere in the genome. The regulation of imprinted gene expression-including that of imprinted lncRNAs-is susceptible to stochastic and environmentally triggered epigenetic changes in the early embryo. These aberrant changes persist during subsequent development and have long-term phenotypic consequences. This review focuses on the expression and the cis- and trans-regulatory roles of imprinted lncRNAs and describes human disease syndromes associated with their perturbed expression.
Collapse
Affiliation(s)
- Flavio Di Michele
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Isabel Chillón
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
6
|
Hu J, Zhang Y, Yang Y, Wang L, Sun Y, Dong M. Case report: Prenatal diagnosis of Kagami–Ogata syndrome in a Chinese family. Front Genet 2022; 13:959666. [PMID: 36035167 PMCID: PMC9410364 DOI: 10.3389/fgene.2022.959666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this work was to explore the genetic cause of the proband (Ⅲ2) presenting with polyhydramnios and gastroschisis. Copy number variation sequencing (CNV-seq), methylation-specific multiplex PCR (MS-PCR), and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) were used to characterize the genetic etiology. CNV-seq revealed a deletion of 732.26 kb at 14q32.2q32.31 in the proband (Ⅲ2) and its mother (Ⅱ2). MS-PCR showed the maternal allele was missing in the proband, while paternal allele was missing in its mother. MS-MLPA showed deletion of the DLK1, MEG3, MIR380, and RTL1 genes of both the proband and its mother. MEG3 imprinting gene methylation increased in the proband, while decreased in its mother. It was indicated that a maternally transmitted deletion was responsible for Kagami–Ogata syndrome in the proband (Ⅲ2), and the de novo paternal deletion resulted in Temple syndrome in the mother (Ⅱ2). Prenatal diagnosis was provided at 17+3 weeks of pregnancy on the mother’s fourth pregnancy (Ⅲ4). Fortunately, the karyotype and single-nucleotide polymorphism array (SNP array) results were normal. The current investigation provided the detection methods for imprinted gene diseases, expanded the phenotype spectrum of the disease, and obtained the insight into the diagnosis, prenatal diagnosis, and genetic counseling of the disease.
Collapse
Affiliation(s)
- Junjie Hu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Zhang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanmei Yang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liya Wang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yixi Sun
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Minyue Dong
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- *Correspondence: Minyue Dong,
| |
Collapse
|
7
|
Higashiyama H, Ohsone Y, Takatani R, Futatani T, Kosaki R, Kagami M. Two infants with mild, atypical clinical features of Kagami-Ogata syndrome caused by epimutation. Eur J Med Genet 2022; 65:104580. [PMID: 35953028 DOI: 10.1016/j.ejmg.2022.104580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/04/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022]
Abstract
Kagami-Ogata syndrome (KOS) is an imprinting disorder characterized by polyhydramnios, bell-shaped thorax with coat-hanger appearance (curved ribs), respiratory distress, abdominal wall defects, and distinct facial features, together with intellectual developmental delay with special needs. Abnormal expression of the imprinted genes on chromosome 14q32.2 causes KOS. Epimutation with aberrant hypermethylation of the MEG3/DLK1: intergenic differentially methylated region (MEG3/DLK1:IG-DMR) and the MEG3:TSS-DMR is one of the etiologies of KOS. We report two infants with KOS caused by epimutation presenting with some characteristic clinical features, mild clinical course, and almost normal motor and intellectual development. Methylation analysis for ten DMRs related to major imprinting disorders using pyrosequencing with genomic DNA (gDNA) extracted from leukocytes showed abnormally increased methylation levels of the MEG3/DLK1:IG-DMR and MEG3:TSS-DMR in both patients, but lower than those in patients with paternal uniparental disomy chromosome 14 (upd(14)pat). The methylation levels in the DMRs other than both DMRs were within normal range. We also conducted methylation analysis for the MEG3/DLK1:IG-DMR and MEG3:TSS-DMR with gDNA extracted from nails and buccal cells of both patients. Methylation levels in the MEG3:TSS-DMR, particularly in buccal cells, were closer to normal range compared to those in leukocytes. Microsatellite analysis for chromosome 14 and array comparative hybridization analysis showed no upd(14)pat or microdeletion involving the 14q32.2 imprinted region in either patient. A differential mosaic ratio of cells with aberrant methylation of DMRs at the 14q32.2 imprinted region among tissues (connective tissue, lung, and brain) might have led to their atypical clinical features. Further studies of patients with epimutation should further expand the phenotypic spectrum of KOS.
Collapse
Affiliation(s)
| | - Yoshiteru Ohsone
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Japan
| | - Rieko Takatani
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Japan
| | - Takeshi Futatani
- Department of Pediatrics, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Rika Kosaki
- Division of Medical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
8
|
Zaletaev DV, Nemtsova MV, Strelnikov VV. Epigenetic Regulation Disturbances on Gene Expression in Imprinting Diseases. Mol Biol 2022. [DOI: 10.1134/s0026893321050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Wang T, Li J, Yang L, Wu M, Ma Q. The Role of Long Non-coding RNAs in Human Imprinting Disorders: Prospective Therapeutic Targets. Front Cell Dev Biol 2021; 9:730014. [PMID: 34760887 PMCID: PMC8573313 DOI: 10.3389/fcell.2021.730014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
Genomic imprinting is a term used for an intergenerational epigenetic inheritance and involves a subset of genes expressed in a parent-of-origin-dependent way. Imprinted genes are expressed preferentially from either the paternally or maternally inherited allele. Long non-coding RNAs play essential roles in regulating this allele-specific expression. In several well-studied imprinting clusters, long non-coding RNAs have been found to be essential in regulating temporal- and spatial-specific establishment and maintenance of imprinting patterns. Furthermore, recent insights into the epigenetic pathological mechanisms underlying human genomic imprinting disorders suggest that allele-specific expressed imprinted long non-coding RNAs serve as an upstream regulator of the expression of other protein-coding or non-coding imprinted genes in the same cluster. Aberrantly expressed long non-coding RNAs result in bi-allelic expression or silencing of neighboring imprinted genes. Here, we review the emerging roles of long non-coding RNAs in regulating the expression of imprinted genes, especially in human imprinting disorders, and discuss three strategies targeting the central long non-coding RNA UBE3A-ATS for the purpose of developing therapies for the imprinting disorders Prader-Willi syndrome and Angelman syndrome. In summary, a better understanding of long non-coding RNA-related mechanisms is key to the development of potential therapeutic targets for human imprinting disorders.
Collapse
Affiliation(s)
- Tingxuan Wang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianjian Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liuyi Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Manyin Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
10
|
Prasasya R, Grotheer KV, Siracusa LD, Bartolomei MS. Temple syndrome and Kagami-Ogata syndrome: clinical presentations, genotypes, models and mechanisms. Hum Mol Genet 2021; 29:R107-R116. [PMID: 32592473 DOI: 10.1093/hmg/ddaa133] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Temple syndrome (TS) and Kagami-Ogata syndrome (KOS) are imprinting disorders caused by absence or overexpression of genes within a single imprinted cluster on human chromosome 14q32. TS most frequently arises from maternal UPD14 or epimutations/deletions on the paternal chromosome, whereas KOS most frequently arises from paternal UPD14 or epimutations/deletions on the maternal chromosome. In this review, we describe the clinical symptoms and genetic/epigenetic features of this imprinted region. The locus encompasses paternally expressed protein-coding genes (DLK1, RTL1 and DIO3) and maternally expressed lncRNAs (MEG3/GTL2, RTL1as and MEG8), as well as numerous miRNAs and snoRNAs. Control of expression is complex, with three differentially methylated regions regulating germline, placental and tissue-specific transcription. The strong conserved synteny between mouse chromosome 12aF1 and human chromosome 14q32 has enabled the use of mouse models to elucidate imprinting mechanisms and decipher the contribution of genes to the symptoms of TS and KOS. In this review, we describe relevant mouse models and highlight their value to better inform treatment options for long-term management of TS and KOS patients.
Collapse
Affiliation(s)
- Rexxi Prasasya
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen V Grotheer
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, 340 Kingsland Street, Building 123, Nutley, NJ 07110, USA
| | - Linda D Siracusa
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, 340 Kingsland Street, Building 123, Nutley, NJ 07110, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Sakaria RP, Mostafavi R, Miller S, Ward JC, Pivnick EK, Talati AJ. Kagami-Ogata Syndrome: Case Series and Review of Literature. AJP Rep 2021; 11:e65-e75. [PMID: 34055463 PMCID: PMC8159623 DOI: 10.1055/s-0041-1727287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Kagami-Ogata syndrome (KOS) (OMIM #608149) is a genetic imprinting disorder affecting chromosome 14 that results in a characteristic phenotype consisting of typical facial features, skeletal abnormalities including rib abnormalities described as "coat hanger ribs," respiratory distress, abdominal wall defects, polyhydramnios, and developmental delay. First identified by Wang et al in 1991, over 80 cases of KOS have been reported in the literature. KOS, however, continues to remain a rare and potentially underdiagnosed disorder. In this report, we describe two unrelated male infants with differing initial presentations who were both found to have the characteristic "coat hanger" rib appearance on chest X-ray, raising suspicion for KOS. Molecular testing confirmed KOS in each case. In addition to these new cases, we reviewed the existing cases reported in literature. Presence of polyhydramnios, small thorax, curved ribs, and abdominal wall defects must alert the perinatologist toward the possibility of KOS to facilitate appropriate molecular testing. The overall prognosis of KOS remains poor. Early diagnosis allows for counseling by a multidisciplinary team and enables parents to make informed decisions regarding both pregnancy management and postnatal care.
Collapse
Affiliation(s)
- Rishika P Sakaria
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Roya Mostafavi
- Department of Oncology, Division of Cancer Predisposition, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen Miller
- Department of Radiology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Pediatrics, Division of Medical Genetics, University of Tennessee Health Sciences Center, Memphis, Tennessee
| | - Jewell C Ward
- Department of Pediatrics, Division of Medical Genetics, University of Tennessee Health Sciences Center, Memphis, Tennessee
| | - Eniko K Pivnick
- Department of Pediatrics, Division of Medical Genetics, University of Tennessee Health Sciences Center, Memphis, Tennessee.,Department of Ophthalmology, University of Tennessee Health Sciences Center, Memphis, Tennessee
| | - Ajay J Talati
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
12
|
Li F, Liu S, Jia B, Wu R, Chang Q. Prenatal Diagnosis of a Mosaic Paternal Uniparental Disomy for Chromosome 14: A Case Report of Kagami-Ogata Syndrome. Front Pediatr 2021; 9:691761. [PMID: 34746047 PMCID: PMC8566877 DOI: 10.3389/fped.2021.691761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/17/2021] [Indexed: 11/14/2022] Open
Abstract
The Kagami-Ogata syndrome (KOS) is a rare imprinting disorder with a distinct clinical phenotype. In KOS, polyhydramnios is associated with a small bell-shaped thorax and coat-hanger ribs. The genetic etiology of KOS includes paternal uniparental disomy 14 [upd(14)pat], epimutations, and microdeletions affecting the maternally derived imprinted region of chromosome 14q32.2. More than 77 cases of KOS have been reported; however, only one mosaic upd(14)pat case has been reported. Here we report a second mosaic upd(14)pat case. The prognosis of upd(14)pat patients is poor because of severe respiratory insufficiency. We summarized prenatal ultrasound findings of KOS to raise awareness of this condition for possible diagnosis of KOS prenatally when polyhydramnios combination with a small bell-shaped thorax and other related features are first observed. Prenatal diagnosis using methylation-specific multiplex ligation-dependent probe amplification (MLPA) or a single-nucleotide polymorphism-based microarray analysis is recommended.
Collapse
Affiliation(s)
- Fenxia Li
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siping Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bei Jia
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruifeng Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingxian Chang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Abstract
Abstract
Imprinting disorders are a group of rare diseases with a broad phenotypic spectrum caused by a wide variety of genetic and epigenetic disturbances of imprinted genes or gene clusters. The molecular genetic causes and their respective frequencies vary between the different imprinting disorders so that each has its unique requirements for the diagnostic workflow, making it challenging. To add even more complexity to this field, new molecular genetic causes have been identified over time and new technologies have enhanced the detectability e. g. of mosaic disturbances.
The precise identification of the underlying molecular genetic cause is of utmost importance in regard to recurrence risk in the families, tumour risk, clinical management and conventional and in the future therapeutic managements.
Here we give an overview of the imprinting disorders, their specific requirements for the diagnostic workup and the most common techniques used and point out possible pitfalls.
Collapse
Affiliation(s)
- Jasmin Beygo
- Institute of Human Genetics, University Hospital Essen , University of Duisburg-Essen , Essen , Germany
| | - Deniz Kanber
- Institute of Human Genetics, University Hospital Essen , University of Duisburg-Essen , Essen , Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty , RWTH Aachen University , Aachen , Germany
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty , RWTH Aachen University , Aachen , Germany
| |
Collapse
|
14
|
Kingsmore SF, Henderson A, Owen MJ, Clark MM, Hansen C, Dimmock D, Chambers CD, Jeliffe-Pawlowski LL, Hobbs C. Measurement of genetic diseases as a cause of mortality in infants receiving whole genome sequencing. NPJ Genom Med 2020; 5:49. [PMID: 33154820 PMCID: PMC7608690 DOI: 10.1038/s41525-020-00155-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022] Open
Abstract
Understanding causes of infant mortality shapes public health policy and prioritizes diseases for investments in surveillance, intervention and medical research. Rapid genomic sequencing has created a novel opportunity to decrease infant mortality associated with treatable genetic diseases. Herein, we sought to measure the contribution of genetic diseases to mortality among infants by secondary analysis of babies enrolled in two clinical studies and a systematic literature review. Among 312 infants who had been admitted to an ICU at Rady Children's Hospital between November 2015 and September 2018 and received rapid genomic sequencing, 30 (10%) died in infancy. Ten (33%) of the infants who died were diagnosed with 11 genetic diseases. The San Diego Study of Outcomes in Mothers and Infants platform identified differences between in-hospital and out-of-hospital causes of infant death. Similarly, in six published studies, 195 (21%) of 918 infant deaths were associated with genetic diseases by genomic sequencing. In 195 infant deaths associated with genetic diseases, locus heterogeneity was 70%. Treatment guidelines existed for 70% of the genetic diseases diagnosed, suggesting that rapid genomic sequencing has substantial potential to decrease infant mortality among infants in ICUs. Further studies are needed in larger, comprehensive, unbiased patient sets to determine the generalizability of these findings.
Collapse
Affiliation(s)
| | - Audrey Henderson
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA
| | - Mallory J. Owen
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA
| | - Michelle M. Clark
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA
| | - Christian Hansen
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA
| | - David Dimmock
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA
| | | | - Laura L. Jeliffe-Pawlowski
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA USA
| | - Charlotte Hobbs
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA
| |
Collapse
|
15
|
Altmann J, Horn D, Korinth D, Eggermann T, Henrich W, Verlohren S. Kagami-Ogata syndrome: an important differential diagnosis to Beckwith-Wiedemann syndrome. JOURNAL OF CLINICAL ULTRASOUND : JCU 2020; 48:240-243. [PMID: 31994200 DOI: 10.1002/jcu.22815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
We report the case of a fetus with sonographic characteristics of Beckwith-Wiedemann syndrome (BWS). A 30-year-old gravida 2 para 1 was referred to our fetal medicine unit with an omphalocele. Fetal macrosomia, organomegaly, and polyhydramnios but no macroglossia were detected and BWS was suspected. Genetic testing for BWS did not confirm the suspected diagnosis as the karyotype was normal. Symptomatic polyhydramnios led to repeated amnioreductions. At 35 + 5 weeks of gestation, a female neonate of 3660 g was delivered with APGAR scores of 6/7/8, after 1/5/10 min, respectively. The abnormal shape of the thorax, facial dysmorphism, need for ventilation, and generalized muscular hypotonia led to the suspicion of Kagami-Ogata syndrome (KOS), which was confirmed by genetic testing. KOS in our patient was caused by a large deletion in the MEG3-region on chromosome 14q32 affecting the maternal allele. In this report, we highlight the notion that when sonographic signs suggestive of BWS such as macrosomia, polyhydramnios, and omphalocele are present and genetic testing does not confirm the suspected diagnosis, KOS should be tested for.
Collapse
Affiliation(s)
- Judith Altmann
- Klinik für Geburtsmedizin, Charité - Universitätsmedizin, Berlin, Germany
| | - Denise Horn
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin, Berlin, Germany
| | | | - Thomas Eggermann
- Institut für Humangenetik, Universitätsklinikum Aachen, Aachen, Germany
| | - Wolfgang Henrich
- Klinik für Geburtsmedizin, Charité - Universitätsmedizin, Berlin, Germany
| | - Stefan Verlohren
- Klinik für Geburtsmedizin, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
16
|
DNA Methylation in the Diagnosis of Monogenic Diseases. Genes (Basel) 2020; 11:genes11040355. [PMID: 32224912 PMCID: PMC7231024 DOI: 10.3390/genes11040355] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
DNA methylation in the human genome is largely programmed and shaped by transcription factor binding and interaction between DNA methyltransferases and histone marks during gamete and embryo development. Normal methylation profiles can be modified at single or multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some cases stochastically or through interaction with environmental factors. For many developmental disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use of high-throughput assays investigating the whole genome has largely increased the number of diseases for which DNA methylation analysis provides information for their diagnosis. Here, we review the methylation abnormalities that have been associated with mono/oligogenic diseases, their relationship with genotype and phenotype and relevance for diagnosis, as well as the limitations in their use and interpretation of results.
Collapse
|
17
|
Abstract
Imprinting disorders are a group of congenital diseases caused by dysregulation of genomic imprinting, affecting prenatal and postnatal growth, neurocognitive development, metabolism and cancer predisposition. Aberrant expression of imprinted genes can be achieved through different mechanisms, classified into epigenetic - if not involving DNA sequence change - or genetic in the case of altered genomic sequence. Despite the underlying mechanism, the phenotype depends on the parental allele affected and opposite phenotypes may result depending on the involvement of the maternal or the paternal chromosome. Imprinting disorders are largely underdiagnosed because of the broad range of clinical signs, the overlap of presentation among different disorders, the presence of mild phenotypes, the mitigation of the phenotype with age and the limited availability of molecular techniques employed for diagnosis. This review briefly illustrates the currently known human imprinting disorders, highlighting endocrinological aspects of pediatric interest.
Collapse
Affiliation(s)
- Diana Carli
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy
| | - Evelise Riberi
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy
| | | | - Alessandro Mussa
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy,* Address for Correspondence: University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy Phone: +39-011-313-1985 E-mail:
| |
Collapse
|
18
|
Wang X, Pang H, Shah BA, Gu H, Zhang L, Wang H. A Male Case of Kagami-Ogata Syndrome Caused by Paternal Unipaternal Disomy 14 as a Result of a Robertsonian Translocation. Front Pediatr 2020; 8:88. [PMID: 32211354 PMCID: PMC7076151 DOI: 10.3389/fped.2020.00088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Kagami-Ogata syndrome (KOS) is a rare imprinting disorder characterized by skeletal abnormalities, dysmorphic facial features, growth retardation and developmental delay. The genetic etiology of KOS includes paternal uniparental disomy 14 [upd(14)pat], epimutations and microdeletions affecting the maternally derived imprinted region of chromosome 14q32.2. More than seventy KOS cases have been reported thus far; however, only 10, including two familial, are associated with upd(14)pat harboring Robertsonian translocation (ROB). Here, we reported a male infant with clinical manifestations of facial dysmorphism, bell-shaped small thorax, and omphalocele. Karyotype analyses identify a balanced ROB involving the long arms of chromosomes 13 and 14 both in the patient and his father. We further confirm the pattern of upd(14)pat utilizing DNA polymorphic markers. In conclusion, our case report provides a new male KOS case caused by upd(14)pat with paternally inherited Robertsonian translocation, which represents the second male case officially reported. Notably, a KOS case due to upd(14)pat and ROB is rare. An accurate diagnosis requires not only the identification of the characteristic clinical features but also systemic cytogenetic and molecular studies.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Hui Pang
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Birju A Shah
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Hongcang Gu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lijun Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
19
|
Llères D, Moindrot B, Pathak R, Piras V, Matelot M, Pignard B, Marchand A, Poncelet M, Perrin A, Tellier V, Feil R, Noordermeer D. CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains. Genome Biol 2019; 20:272. [PMID: 31831055 PMCID: PMC6909504 DOI: 10.1186/s13059-019-1896-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Genomic imprinting is essential for mammalian development and provides a unique paradigm to explore intra-cellular differences in chromatin configuration. So far, the detailed allele-specific chromatin organization of imprinted gene domains has mostly been lacking. Here, we explored the chromatin structure of the two conserved imprinted domains controlled by paternal DNA methylation imprints-the Igf2-H19 and Dlk1-Dio3 domains-and assessed the involvement of the insulator protein CTCF in mouse cells. RESULTS Both imprinted domains are located within overarching topologically associating domains (TADs) that are similar on both parental chromosomes. At each domain, a single differentially methylated region is bound by CTCF on the maternal chromosome only, in addition to multiple instances of bi-allelic CTCF binding. Combinations of allelic 4C-seq and DNA-FISH revealed that bi-allelic CTCF binding alone, on the paternal chromosome, correlates with a first level of sub-TAD structure. On the maternal chromosome, additional CTCF binding at the differentially methylated region adds a further layer of sub-TAD organization, which essentially hijacks the existing paternal-specific sub-TAD organization. Perturbation of maternal-specific CTCF binding site at the Dlk1-Dio3 locus, using genome editing, results in perturbed sub-TAD organization and bi-allelic Dlk1 activation during differentiation. CONCLUSIONS Maternal allele-specific CTCF binding at the imprinted Igf2-H19 and the Dlk1-Dio3 domains adds an additional layer of sub-TAD organization, on top of an existing three-dimensional configuration and prior to imprinted activation of protein-coding genes. We speculate that this allele-specific sub-TAD organization provides an instructive or permissive context for imprinted gene activation during development.
Collapse
Affiliation(s)
- David Llères
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Benoît Moindrot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Rakesh Pathak
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Vincent Piras
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Mélody Matelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Benoît Pignard
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Alice Marchand
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Mallory Poncelet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélien Perrin
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Virgile Tellier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France.
| | - Daan Noordermeer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
20
|
Daum H, Meiner V, Hacohen N, Zvi N, Eilat A, Drai-Hasid R, Yagel S, Zenvirt S, Frumkin A. Single-nucleotide polymorphism-based chromosomal microarray analysis provides clues and insights into disease mechanisms. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2019; 54:655-660. [PMID: 30693591 DOI: 10.1002/uog.20230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/13/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Chromosomal microarray analysis (CMA) is the modality of choice for prenatal diagnosis in pregnancy with fetal malformation, as it has a high diagnostic yield for microdeletion/duplication syndromes. The aim of this study was to demonstrate the additional utility of single-nucleotide polymorphism (SNP)-based CMA in diagnosing monogenic diseases, imprinting disorders and uniparental disomy (UPD). METHODS CMA was performed using Affymetrix CytoScan array, for all indications in 6995 pregnancies, at a tertiary referral hospital from November 2013 to June 2018. We describe four cases that had a CMA result that provided a more comprehensive understanding of the complex genetic mechanisms underlying the clinical presentation. RESULTS In the first fetus, CMA was performed due to intrauterine growth restriction and revealed a 75 kbp maternally inherited microdeletion encompassing the Bloom syndrome gene (BLM). A diagnosis of Bloom syndrome was made upon identifying a paternally inherited common Ashkenazi founder mutation. In the second case, CMA was performed due to severely abnormal maternal serum analytes and revealed a deletion in 14q32.2q32.31 on the maternally inherited copy, leading to a diagnosis of Kagami-Ogata syndrome, which is an imprinting disorder. In the third case, amniocentesis was performed because of late-onset fetal macrosomia and mild polyhydramnios. CMA detected a deletion encompassing the locus of Prader-Willi/Angelman syndrome. In the fourth case, amniocentesis was performed due to maternal cytomegalovirus seroconversion. Maternal UPD of the entire long arm of chromosome 11 was detected. CONCLUSION Prenatal CMA, based on oligo and SNP platforms, increases the diagnostic yield and enables a wider spectrum of disorders to be detected through the identification of complex genetic etiologies beyond only copy number variants. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- H Daum
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - V Meiner
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - N Hacohen
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - N Zvi
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Eilat
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - R Drai-Hasid
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Yagel
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Zenvirt
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Frumkin
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
21
|
Sanli I, Lalevée S, Cammisa M, Perrin A, Rage F, Llères D, Riccio A, Bertrand E, Feil R. Meg3 Non-coding RNA Expression Controls Imprinting by Preventing Transcriptional Upregulation in cis. Cell Rep 2019; 23:337-348. [PMID: 29641995 DOI: 10.1016/j.celrep.2018.03.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/01/2017] [Accepted: 03/10/2018] [Indexed: 01/17/2023] Open
Abstract
Although many long non-coding RNAs (lncRNAs) are imprinted, their roles often remain unknown. The Dlk1-Dio3 domain expresses the lncRNA Meg3 and multiple microRNAs and small nucleolar RNAs (snoRNAs) on the maternal chromosome and constitutes an epigenetic model for development. The domain's Dlk1 (Delta-like-1) gene encodes a ligand that inhibits Notch1 signaling and regulates diverse developmental processes. Using a hybrid embryonic stem cell (ESC) system, we find that Dlk1 becomes imprinted during neural differentiation and that this involves transcriptional upregulation on the paternal chromosome. The maternal Dlk1 gene remains poised. Its protection against activation is controlled in cis by Meg3 expression and also requires the H3-Lys-27 methyltransferase Ezh2. Maternal Meg3 expression additionally protects against de novo DNA methylation at its promoter. We find that Meg3 lncRNA is partially retained in cis and overlaps the maternal Dlk1 in embryonic cells. Combined, our data evoke an imprinting model in which allelic lncRNA expression prevents gene activation in cis.
Collapse
Affiliation(s)
- Ildem Sanli
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - Sébastien Lalevée
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - Marco Cammisa
- Institute of Genetics and Biophysics "A. Buzzati-Traverso" (IGB), CNR, 80131 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università della Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Aurélien Perrin
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - Florence Rage
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - David Llères
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - Andrea Riccio
- Institute of Genetics and Biophysics "A. Buzzati-Traverso" (IGB), CNR, 80131 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università della Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Edouard Bertrand
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - Robert Feil
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France.
| |
Collapse
|
22
|
Maternally inherited 133kb deletion of 14q32 causing Kagami–Ogata syndrome. J Hum Genet 2018; 63:1231-1239. [DOI: 10.1038/s10038-018-0506-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 11/09/2022]
|
23
|
Enterina JR, Enfield KSS, Anderson C, Marshall EA, Ng KW, Lam WL. DLK1-DIO3 imprinted locus deregulation in development, respiratory disease, and cancer. Expert Rev Respir Med 2017; 11:749-761. [PMID: 28715922 DOI: 10.1080/17476348.2017.1355241] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION The imprinted DLK1-DIO3 locus at 14q32.1-32.31 holds biological significance in fetal development, whereby imprinting errors are causal to developmental disorders. Emerging evidence has implicated this locus in other diseases including cancer, highlighting the biological parallels between fetal organ and tumour development. Areas covered: Controlled regulation of gene expression from the imprinted DLK1-DIO3 locus at 14q32.1-32.31 is crucial for proper fetal development. Deregulation of locus gene expression due to imprinting errors has been mechanistically linked to the developmental disorders Kagami-Ogata Syndrome and Temple Syndrome. In adult tissues, deregulation of locus genes has been associated with multiple malignancies although the causal genetic mechanisms remain largely uncharacterised. Here, we summarize the genetic mechanisms underlying the developmental disorders that arise as a result of improper locus imprinting and the resulting developmental phenotypes, emphasizing both the coding and noncoding components of the locus. We further highlight biological parallels common to both fetal development and disease, with a specific focus on lung development, respiratory disease, and lung cancer. Expert commentary: Many commonalities between respiratory and developmental defects have emerged with respect to the 14q32 locus, emphasizing the importance of studying the effects of imprinting on gene regulation patterns at this locus in both biological settings.
Collapse
Affiliation(s)
- Jhon R Enterina
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| | | | | | - Erin A Marshall
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| | - Kevin W Ng
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| | - Wan L Lam
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| |
Collapse
|
24
|
Beygo J, Küchler A, Gillessen-Kaesbach G, Albrecht B, Eckle J, Eggermann T, Gellhaus A, Kanber D, Kordaß U, Lüdecke HJ, Purmann S, Rossier E, van de Nes J, van der Werf IM, Wenzel M, Wieczorek D, Horsthemke B, Buiting K. New insights into the imprinted MEG8-DMR in 14q32 and clinical and molecular description of novel patients with Temple syndrome. Eur J Hum Genet 2017. [PMID: 28635951 DOI: 10.1038/ejhg.2017.91] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The chromosomal region 14q32 contains several imprinted genes, which are expressed either from the paternal (DLK1 and RTL1) or the maternal (MEG3, RTL1as and MEG8) allele only. Imprinted expression of these genes is regulated by two differentially methylated regions (DMRs), the germline DLK1/MEG3 intergenic (IG)-DMR (MEG3/DLK1:IG-DMR) and the somatic MEG3-DMR (MEG3:TSS-DMR), which are methylated on the paternal and unmethylated on the maternal allele. Disruption of imprinting in the 14q32 region results in two clinically distinct imprinting disorders, Temple syndrome (TS14) and Kagami-Ogata syndrome (KOS14). Another DMR with a yet unknown function is located in intron 2 of MEG8 (MEG8-DMR, MEG8:Int2-DMR). In contrast to the IG-DMR and the MEG3-DMR, this somatic DMR is methylated on the maternal chromosome and unmethylated on the paternal chromosome. We have performed extensive methylation analyses by deep bisulfite sequencing of the IG-DMR, MEG3-DMR and MEG8-DMR in different prenatal tissues including amniotic fluid cells and chorionic villi. In addition, we have studied the methylation pattern of the MEG8-DMR in different postnatal tissues. We show that the MEG8-DMR is hypermethylated in each of 13 non-deletion TS14 patients (seven newly identified and six previously published patients), irrespective of the underlying molecular cause, and is always hypomethylated in the four patients with KOS14, who have different deletions not encompassing the MEG8-DMR itself. The size and the extent of the deletions and the resulting methylation pattern suggest that transcription starting from the MEG3 promoter may be necessary to establish the methylation imprint at the MEG8-DMR.
Collapse
Affiliation(s)
- Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Alma Küchler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | | | - Beate Albrecht
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Jonas Eckle
- Sozialpädiatrisches Zentrum, St. Elisabeth-Stiftung, Ravensburg, Germany
| | | | - Alexandra Gellhaus
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Essen, Essen, Germany
| | - Deniz Kanber
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ulrike Kordaß
- MVZ für Humangenetik und Molekularpathologie Rostock, Zweigstelle Greifswald, Greifswald, Germany
| | - Hermann-Josef Lüdecke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.,Institut für Humangenetik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Sabine Purmann
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - Eva Rossier
- Institut für Medizinische Genetik und angewandte Genomik, Universiät Tübingen, Tübingen, Germany.,Genetikum Stuttgart, Stuttgart, Germany
| | - Johannes van de Nes
- Institute of Neuropathology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.,Institute of Pathology, University of Bochum, Bochum, Germany
| | | | | | - Dagmar Wieczorek
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.,Institut für Humangenetik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|