1
|
Do TT, Martyn M, McClaren B, McEwen A, Gaff C. Becoming agents for genomic change: genetic counsellors' views of patient care and implementation influences when genomics is mainstreamed. Eur J Hum Genet 2024:10.1038/s41431-024-01686-9. [PMID: 39210048 DOI: 10.1038/s41431-024-01686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/16/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Genetic counsellors (GCs) across the world are increasingly transitioning beyond clinical genetics services to meet the growing demands for genomic healthcare. This presents a unique opportunity for GCs to be 'genomic change agents' as they work in alternative models of care. Through various innovative models of mainstream care funded through a change program, we explored the views of GCs regarding their position as 'genomic change agents' and what may hinder or drive the success of their evolving roles. Guided by the Diffusion of Innovation Theory, we conducted qualitative interviews with all twelve GCs employed by the change program in different models of providing genomics across five specialties in Australia. Audio-recordings of all interviews were transcribed verbatim and analysed using inductive content analysis. Findings show that early in these new roles, participants held varied descriptions of 'genomics mainstreaming': some envisioned it as an end state exclusive to medical specialists practicing genomics while others saw the involvement of GCs as crucial. Participants believed they were uniquely positioned to expedite patient access to genomic testing and counselling and enhance medical specialists' capability to use genomics. Challenges included hesitancy of some medical specialists regarding the value of genomics in healthcare and potential tension arising from distinct perspectives and practice between genetic and non-genetic professionals. Participants anticipated a decline in the standard of care when non-genetic colleagues managed consent discussion and result disclosure. Our study underscores leadership support and peer connection with those in similar roles as essential elements for GCs' success in mainstream settings.
Collapse
Affiliation(s)
- Trang Thu Do
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Melbourne Genomics Health Alliance, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Melissa Martyn
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Melbourne Genomics Health Alliance, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Belinda McClaren
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Melbourne Genomics Health Alliance, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Alison McEwen
- Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Clara Gaff
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.
- Melbourne Genomics Health Alliance, Melbourne, VIC, Australia.
- University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Ma A, Newing TP, O'Shea R, Gokoolparsadh A, Murdoch E, Hayward J, Shannon G, Kevin L, Bennetts B, Ho G, Smith J, Shah M, Jones KJ, Josephi-Taylor S, Sandaradura SA, Adès L, Jamieson R, Rankin NM. Genomic multidisciplinary teams: A model for navigating genetic mainstreaming and precision medicine. J Paediatr Child Health 2024; 60:118-124. [PMID: 38605555 DOI: 10.1111/jpc.16547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
AIM Recent rapid advances in genomics are revolutionising patient diagnosis and management of genetic conditions. However, this has led to many challenges in service provision, education and upskilling requirements for non-genetics health-care professionals and remuneration for genomic testing. In Australia, Medicare funding with a Paediatric genomic testing item for patients with intellectual disability or syndromic features has attempted to address this latter issue. The Sydney Children's Hospitals Network - Westmead (SCHN-W) Clinical Genetics Department established Paediatric and Neurology genomic multidisciplinary team (MDT) meetings to address the Medicare-specified requirement for discussion with clinical genetics, and increasing genomic testing advice requests. METHODS This SCHN-W genomic MDT was evaluated with two implementation science frameworks - the RE-AIM (Reach, Effectiveness, Adoption, Implementation, Maintenance) and GMIR - Genomic Medicine Integrative Research frameworks. Data from June 2020 to July 2022 were synthesised and evaluated, as well as process mapping of the MDT service. RESULTS A total of 205 patients were discussed in 34 MDT meetings, facilitating 148 genomic tests, of which 73 were Medicare eligible. This was equivalent to 26% of SCHN-W genetics outpatient activity, and 13% of all Medicare-funded paediatric genomic testing in NSW. 39% of patients received a genetic diagnosis. CONCLUSION The genomic MDT facilitated increased genomic testing at a tertiary paediatric centre and is an effective model for mainstreaming and facilitating precision medicine. However, significant implementation issues were identified including cost and sustainability, as well as the high level of resourcing that will be required to scale up this approach to other areas of medicine.
Collapse
Affiliation(s)
- Alan Ma
- Department of Clinical Genetics, Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Specialty of Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Timothy P Newing
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Rosie O'Shea
- Specialty of Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Akira Gokoolparsadh
- Department of Clinical Genetics, Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
| | - Emma Murdoch
- Department of Clinical Genetics, Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
| | - Janette Hayward
- Department of Clinical Genetics, Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
| | - Gillian Shannon
- Western NSW Local Health District, Dubbo, New South Wales, Australia
| | - Lucy Kevin
- Department of Clinical Genetics, Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
| | - Bruce Bennetts
- Specialty of Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
- Department of Molecular Genetics, Sydney Genome Diagnostics, Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
| | - Gladys Ho
- Specialty of Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
- Department of Molecular Genetics, Sydney Genome Diagnostics, Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
| | - Janine Smith
- Department of Clinical Genetics, Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Specialty of Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Margit Shah
- Department of Clinical Genetics, Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Specialty of Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Kristi J Jones
- Department of Clinical Genetics, Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Specialty of Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Josephi-Taylor
- Department of Clinical Genetics, Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Specialty of Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Sarah A Sandaradura
- Department of Clinical Genetics, Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Specialty of Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Lesley Adès
- Department of Clinical Genetics, Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Specialty of Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Robyn Jamieson
- Department of Clinical Genetics, Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Specialty of Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, Sydney, New South Wales, Australia
| | - Nicole M Rankin
- Evaluation and Implementation Science Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Ma A, O'Shea R, Wedd L, Wong C, Jamieson RV, Rankin N. What is the power of a genomic multidisciplinary team approach? A systematic review of implementation and sustainability. Eur J Hum Genet 2024; 32:381-391. [PMID: 38378794 PMCID: PMC10999446 DOI: 10.1038/s41431-024-01555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/07/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Due to the increasing complexity of genomic data interpretation, and need for close collaboration with clinical, laboratory, and research expertise, genomics often requires a multidisciplinary team (MDT) approach. This systematic review aims to establish the evidence for effectiveness of the genomic multidisciplinary team, and the implementation components of this model that can inform precision care. MEDLINE, Embase and PsycINFO databases were searched in 2022 and 2023. We included qualitative and quantitative studies of the genomic MDT, including observational and cohort studies, for diagnosis and management, and implementation outcomes of effectiveness, adoption, efficiency, safety, and acceptability. A narrative synthesis was mapped against the Genomic Medicine Integrative Research framework. 1530 studies were screened, and 17 papers met selection criteria. All studies pointed towards the effectiveness of the genomic MDT approach, with 10-78% diagnostic yield depending on clinical context, and an increased yield of 6-25% attributed to the MDT. The genomic MDT was found to be highly efficient in interpretation of variants of uncertain significance, timeliness for a rapid result, made a significant impact on management, and was acceptable for adoption by a wide variety of subspecialists. Only one study utilized an implementation science based approach. The genomic MDT approach appears to be highly effective and efficient, facilitating higher diagnostic rates and improved patient management. However, key gaps remain in health systems readiness for this collaborative model, and there is a lack of implementation science based research especially addressing the cost, sustainability, scale up, and equity of access.
Collapse
Affiliation(s)
- Alan Ma
- Specialty of Genomic Medicine, University of Sydney, Sydney, NSW, Australia.
- Department of Clinical Genetics, Children's Hospital at Westmead, The Sydney Children's Hospitals Network, Sydney, NSW, Australia.
- Eye Genetics Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia.
| | - Rosie O'Shea
- Specialty of Genomic Medicine, University of Sydney, Sydney, NSW, Australia
| | - Laura Wedd
- Department of Clinical Genetics, Children's Hospital at Westmead, The Sydney Children's Hospitals Network, Sydney, NSW, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia
| | - Claire Wong
- Specialty of Genomic Medicine, University of Sydney, Sydney, NSW, Australia
- Department of Clinical Genetics, Children's Hospital at Westmead, The Sydney Children's Hospitals Network, Sydney, NSW, Australia
| | - Robyn V Jamieson
- Specialty of Genomic Medicine, University of Sydney, Sydney, NSW, Australia
- Department of Clinical Genetics, Children's Hospital at Westmead, The Sydney Children's Hospitals Network, Sydney, NSW, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia
| | - Nicole Rankin
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Chelban V, Houlden H. White matter disorders with cerebral calcification in adulthood. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:111-131. [PMID: 39322374 DOI: 10.1016/b978-0-323-99209-1.00024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This chapter provides a comprehensive overview of adult-onset leukoencephalopathies with cerebral calcification (CC), emphasizing the importance of age at presentation, systemic clinical features, and neuroimaging patterns for accurate diagnosis. CC is a multifaceted phenomenon associated with various neurologic, developmental, metabolic, and genetic conditions, as well as normal aging. Here, we explore the distinction between primary familial brain calcification (PFBC) and secondary forms, including metabolic and mitochondrial causes. We discuss genetic causes, e.g., SLC20A2, XPR1, PDGFB, PDGFRB, MYORG, NAA60 and JAM2, in the context of autosomal dominant and recessive PFBC and other inherited conditions. The chapter delineates the diagnostic approach involving family history, clinical assessments, and detailed investigations of calcium-phosphate metabolism. Neuroimaging modalities, including computed tomography and magnetic resonance imaging, are crucial for assessing calcification patterns and localizations. Genetic testing, especially next-generation sequencing, plays a pivotal role in providing a final molecular diagnosis. The management of patients with CC encompasses symptomatic treatment and cause-specific approaches, requiring a multidisciplinary care approach. In conclusion, this chapter highlights the complexity of leukoencephalopathies with CC, emphasizing the need for integrated and evolving management to optimize patient care.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Neurobiology and Medical Genetics Laboratory, "Nicolae Testemitanu" State University of Medicine and Pharmacy, Chisinau, Republic of Moldova
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
5
|
Pagnamenta AT, Camps C, Giacopuzzi E, Taylor JM, Hashim M, Calpena E, Kaisaki PJ, Hashimoto A, Yu J, Sanders E, Schwessinger R, Hughes JR, Lunter G, Dreau H, Ferla M, Lange L, Kesim Y, Ragoussis V, Vavoulis DV, Allroggen H, Ansorge O, Babbs C, Banka S, Baños-Piñero B, Beeson D, Ben-Ami T, Bennett DL, Bento C, Blair E, Brasch-Andersen C, Bull KR, Cario H, Cilliers D, Conti V, Davies EG, Dhalla F, Dacal BD, Dong Y, Dunford JE, Guerrini R, Harris AL, Hartley J, Hollander G, Javaid K, Kane M, Kelly D, Kelly D, Knight SJL, Kreins AY, Kvikstad EM, Langman CB, Lester T, Lines KE, Lord SR, Lu X, Mansour S, Manzur A, Maroofian R, Marsden B, Mason J, McGowan SJ, Mei D, Mlcochova H, Murakami Y, Németh AH, Okoli S, Ormondroyd E, Ousager LB, Palace J, Patel SY, Pentony MM, Pugh C, Rad A, Ramesh A, Riva SG, Roberts I, Roy N, Salminen O, Schilling KD, Scott C, Sen A, Smith C, Stevenson M, Thakker RV, Twigg SRF, Uhlig HH, van Wijk R, Vona B, Wall S, Wang J, Watkins H, Zak J, Schuh AH, Kini U, Wilkie AOM, Popitsch N, Taylor JC. Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases. Genome Med 2023; 15:94. [PMID: 37946251 PMCID: PMC10636885 DOI: 10.1186/s13073-023-01240-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Whole genome sequencing is increasingly being used for the diagnosis of patients with rare diseases. However, the diagnostic yields of many studies, particularly those conducted in a healthcare setting, are often disappointingly low, at 25-30%. This is in part because although entire genomes are sequenced, analysis is often confined to in silico gene panels or coding regions of the genome. METHODS We undertook WGS on a cohort of 122 unrelated rare disease patients and their relatives (300 genomes) who had been pre-screened by gene panels or arrays. Patients were recruited from a broad spectrum of clinical specialties. We applied a bioinformatics pipeline that would allow comprehensive analysis of all variant types. We combined established bioinformatics tools for phenotypic and genomic analysis with our novel algorithms (SVRare, ALTSPLICE and GREEN-DB) to detect and annotate structural, splice site and non-coding variants. RESULTS Our diagnostic yield was 43/122 cases (35%), although 47/122 cases (39%) were considered solved when considering novel candidate genes with supporting functional data into account. Structural, splice site and deep intronic variants contributed to 20/47 (43%) of our solved cases. Five genes that are novel, or were novel at the time of discovery, were identified, whilst a further three genes are putative novel disease genes with evidence of causality. We identified variants of uncertain significance in a further fourteen candidate genes. The phenotypic spectrum associated with RMND1 was expanded to include polymicrogyria. Two patients with secondary findings in FBN1 and KCNQ1 were confirmed to have previously unidentified Marfan and long QT syndromes, respectively, and were referred for further clinical interventions. Clinical diagnoses were changed in six patients and treatment adjustments made for eight individuals, which for five patients was considered life-saving. CONCLUSIONS Genome sequencing is increasingly being considered as a first-line genetic test in routine clinical settings and can make a substantial contribution to rapidly identifying a causal aetiology for many patients, shortening their diagnostic odyssey. We have demonstrated that structural, splice site and intronic variants make a significant contribution to diagnostic yield and that comprehensive analysis of the entire genome is essential to maximise the value of clinical genome sequencing.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Carme Camps
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Edoardo Giacopuzzi
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Human Technopole, Viale Rita Levi Montalcini 1, 20157, Milan, Italy
| | - John M Taylor
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Mona Hashim
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Eduardo Calpena
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Pamela J Kaisaki
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Akiko Hashimoto
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Jing Yu
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Edward Sanders
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Ron Schwessinger
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Jim R Hughes
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Gerton Lunter
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- University Medical Center Groningen, Groningen University, PO Box 72, 9700 AB, Groningen, The Netherlands
| | - Helene Dreau
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Matteo Ferla
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Lukas Lange
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Yesim Kesim
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Vassilis Ragoussis
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Dimitrios V Vavoulis
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Holger Allroggen
- Neurosciences Department, UHCW NHS Trust, Clifford Bridge Road, Coventry, CV2 2DX, UK
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Benito Baños-Piñero
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - David Beeson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Tal Ben-Ami
- Pediatric Hematology-Oncology Unit, Kaplan Medical Center, Rehovot, Israel
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Celeste Bento
- Hematology Department, Hospitais da Universidade de Coimbra, Coimbra, Portugal
| | - Edward Blair
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Charlotte Brasch-Andersen
- Department of Clinical Genetics, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Katherine R Bull
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Holger Cario
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Eythstrasse 24, 89075, Ulm, Germany
| | - Deirdre Cilliers
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Valerio Conti
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
| | - E Graham Davies
- Department of Immunology, Great Ormond Street Hospital for Children NHS Trust and UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 2Nd Floor, 20C Guilford Street, London, WC1N 1DZ, UK
| | - Fatima Dhalla
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7TY, UK
| | - Beatriz Diez Dacal
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Yin Dong
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - James E Dunford
- Oxford NIHR Musculoskeletal BRC and Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Old Road, Oxford, OX3 7HE, UK
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Jane Hartley
- Liver Unit, Birmingham Women's & Children's Hospital and University of Birmingham, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Georg Hollander
- Department of Paediatrics, University of Oxford, Level 2, Children's Hospital, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Kassim Javaid
- Oxford NIHR Musculoskeletal BRC and Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Old Road, Oxford, OX3 7HE, UK
| | - Maureen Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Pharmacy Hall North, Room 731, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Deirdre Kelly
- Liver Unit, Birmingham Women's & Children's Hospital and University of Birmingham, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Dominic Kelly
- Children's Hospital, OUH NHS Foundation Trust, NIHR Oxford BRC, Headley Way, Oxford, OX3 9DU, UK
| | - Samantha J L Knight
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Alexandra Y Kreins
- Department of Immunology, Great Ormond Street Hospital for Children NHS Trust and UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 2Nd Floor, 20C Guilford Street, London, WC1N 1DZ, UK
| | - Erika M Kvikstad
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Craig B Langman
- Feinberg School of Medicine, Northwestern University, 211 E Chicago Avenue, Chicago, IL, MS37, USA
| | - Tracy Lester
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Kate E Lines
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- University of Oxford, Academic Endocrine Unit, OCDEM, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Simon R Lord
- Early Phase Clinical Trials Unit, Department of Oncology, University of Oxford, Cancer and Haematology Centre, Level 2 Administration Area, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Xin Lu
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Sahar Mansour
- St George's University Hospitals NHS Foundation Trust, Blackshore Road, Tooting, London, SW17 0QT, UK
| | - Adnan Manzur
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Brian Marsden
- Nuffield Department of Medicine, Kennedy Institute, University of Oxford, Oxford, OX3 7BN, UK
| | - Joanne Mason
- Yourgene Health Headquarters, Skelton House, Lloyd Street North, Manchester Science Park, Manchester, M15 6SH, UK
| | - Simon J McGowan
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
| | - Hana Mlcochova
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Steven Okoli
- Imperial College NHS Trust, Department of Haematology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Elizabeth Ormondroyd
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- University of Oxford, Level 6 West Wing, Oxford, OX3 9DU, JR, UK
| | - Lilian Bomme Ousager
- Department of Clinical Genetics, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Smita Y Patel
- Clinical Immunology, John Radcliffe Hospital, Level 4A, Oxford, OX3 9DU, UK
| | - Melissa M Pentony
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Chris Pugh
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Aboulfazl Rad
- Department of Otolaryngology-Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Archana Ramesh
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Simone G Riva
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Irene Roberts
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Department of Paediatrics, University of Oxford, Level 2, Children's Hospital, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Noémi Roy
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Level 4, Haematology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Outi Salminen
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Kyleen D Schilling
- Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Caroline Scott
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Arjune Sen
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Conrad Smith
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Mark Stevenson
- University of Oxford, Academic Endocrine Unit, OCDEM, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Rajesh V Thakker
- University of Oxford, Academic Endocrine Unit, OCDEM, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Stephen R F Twigg
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Holm H Uhlig
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Paediatrics, University of Oxford, Level 2, Children's Hospital, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Richard van Wijk
- UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Barbara Vona
- Department of Otolaryngology-Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Steven Wall
- Oxford Craniofacial Unit, John Radcliffe Hospital, Level LG1, West Wing, Oxford, OX3 9DU, UK
| | - Jing Wang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Hugh Watkins
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- University of Oxford, Level 6 West Wing, Oxford, OX3 9DU, JR, UK
| | - Jaroslav Zak
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Anna H Schuh
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Usha Kini
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Andrew O M Wilkie
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Niko Popitsch
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter(VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Jenny C Taylor
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK.
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK.
| |
Collapse
|
6
|
A Multi-Disciplinary Team Approach to Genomic Testing for Drug-Resistant Epilepsy Patients—The GENIE Study. J Clin Med 2022; 11:jcm11144238. [PMID: 35888005 PMCID: PMC9319736 DOI: 10.3390/jcm11144238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Background. The genomic era has led to enormous progress in clinical care and a multi-disciplinary team (MDT) approach is imperative for integration of genomics into epilepsy patient care. Methods. The MDT approach involved patient selection, genomic testing choice, variant discussions and return of results. Genomics analysis included cytogenomic testing and whole exome sequencing (WES). Neurologist surveys were undertaken at baseline and after genomic testing to determine if genomic diagnoses would alter their management, and if there was a change in confidence in genomic testing and neurologist perceptions of the MDT approach. Results. The total diagnostic yield from all genomic testing was 17% (11/66), with four diagnoses from cytogenomic analyses. All chromosomal microarray (CMA) diagnoses were in patients seen by adult neurologists. Diagnostic yield for WES was 11% (7/62). The most common gene with pathogenic variants was DCX, reported in three patients, of which two were mosaic. The genomic diagnosis impacted management in 82% (9/11). There was increased confidence with integrating genomics into clinical care (Pearson chi square = 83, p = 0.004) and qualitative comments were highly supportive of the MDT approach. Conclusions. We demonstrated diagnostic yield from genomic testing, and the impact on management in a cohort with drug-resistant epilepsy. The MDT approach increased confidence in genomic testing and neurologists valued the input from this approach. The utility of CMA was demonstrated in epilepsy patients seen by adult neurologists as was the importance of considering mosaicism for previously undiagnosed patients.
Collapse
|
7
|
Costa A, Franková V, Robert G, Macek M, Patch C, Alexander E, Arellanesova A, Clayton-Smith J, Hunter A, Havlovicová M, Pourová R, Pritchard M, Roberts L, Zoubková V, Metcalfe A. Co-designing models for the communication of genomic results for rare diseases: a comparative study in the Czech Republic and the United Kingdom. J Community Genet 2022; 13:313-327. [PMID: 35523996 PMCID: PMC9075921 DOI: 10.1007/s12687-022-00589-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
The communication of genomic results to patients and families with rare diseases raise distinctive challenges. However, there is little evidence about optimal methods to communicate results to this group of service users. To address this gap, we worked with rare disease families and health professionals from two genetic/genomic services, one in the United Kingdom and one in the Czech Republic, to co-design that best meet their needs. Using the participatory methodology of Experience-Based Co-Design (EBCD), we conducted observations of clinical appointments (n=49) and interviews with family participants (n=23) and health professionals (n=22) to gather their experience of sharing/receiving results. The findings informed a facilitated co-design process, comprising 3 feedback events at each site and a series of meetings and remote consultations. Participants identified a total of four areas of current service models in need of improvement, and co-designed six prototypes of quality improvement interventions. The main finding was the identification of post-test care as the shared priority for improvement for both health professionals and families at the two sites. Our findings indicate the need to strengthen the link between diagnostics (whether or not a pathogenic variant is found) and post-test care, including psychosocial and community support. This raises implications for the reconfigurations of genomic service models, the redefinition of professional roles and responsibilities and the involvement of rare disease patients and families in health care research.
Collapse
Affiliation(s)
- Alessia Costa
- Engagement and Society, Wellcome Connecting Science, Hinxton, CB10 1SA, Cambridgeshire, UK. .,Faculty of Nursing, Midwifery and Palliative Care, King's College London, London, SE1 8WA, UK.
| | - Věra Franková
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic. .,Institute for Medical Humanities, Charles University, First Faculty of Medicine, Prague, Czech Republic.
| | - Glenn Robert
- Faculty of Nursing, Midwifery and Palliative Care, King's College London, London, SE1 8WA, UK
| | - Milan Macek
- Department of Biology and Medical Genetics, Charles University, Second Faculty of Medicine, and University Hospital Motol, Prague, Czech Republic
| | - Christine Patch
- Engagement and Society, Wellcome Connecting Science, Hinxton, CB10 1SA, Cambridgeshire, UK.,Genomics England, London, EC1M 6BQ, UK
| | - Elizabeth Alexander
- Manchester Centre For Genomic Medicine, University of Manchester, St Mary's Hospital, Manchester, M13 9WL, UK
| | - Anna Arellanesova
- Česká asociace pro vzácná onemocnění (ČAVO), Rare Diseases Czech Republic, Bělohorská 19, Praha 6, 169 00, Czech Republic
| | - Jill Clayton-Smith
- Manchester Centre For Genomic Medicine, University of Manchester, St Mary's Hospital, Manchester, M13 9WL, UK.,Division of Evolution and Genomic Sciences School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Amy Hunter
- Genetic Alliance UK, London, EC2A 4NE, UK
| | - Markéta Havlovicová
- Department of Biology and Medical Genetics, Charles University, Second Faculty of Medicine, and University Hospital Motol, Prague, Czech Republic
| | - Radka Pourová
- Department of Biology and Medical Genetics, Charles University, Second Faculty of Medicine, and University Hospital Motol, Prague, Czech Republic
| | | | - Lauren Roberts
- Genetic Alliance UK, London, EC2A 4NE, UK.,Syndromes Without A Name (SWAN UK), London, EC2A 4NE, UK
| | - Veronika Zoubková
- Department of Biology and Medical Genetics, Charles University, Second Faculty of Medicine, and University Hospital Motol, Prague, Czech Republic
| | | |
Collapse
|
8
|
Walsh M, West K, Taylor JA, Thompson BA, Hopkins A, Sexton A, Ragunathan A, Verma KP, Panetta J, Matotek E, Fahey MC, Christie M, Winship IM, Trainer AH, James PA. Real world outcomes and implementation pathways of exome sequencing in an adult genetic department. Genet Med 2022; 24:1536-1544. [PMID: 35416776 DOI: 10.1016/j.gim.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE This study aimed to correlate the indications and diagnostic yield of exome sequencing (ES) in adult patients across various clinical settings. The secondary aim was to examine the clinical utility of ES in adult patients. METHODS Data on demographics, clinical indications, results, management changes, and cascade testing were collected for 250 consecutive patients who underwent ES through an adult genetics department between 2016 and 2021. Data were analyzed using descriptive and inferential statistics. Testing in which traditional gene panels were in standard use, such as in heritable cancers, was excluded. RESULTS The average age at testing was 43 years (range = 17-80 years). A molecular diagnosis was identified in 29% of patients. Older age at symptom onset did not pre-exclude a substantial diagnostic yield. Patients with syndromic intellectual disability and multiple system disorders had the highest yield. In >50% of patients with an exome diagnosis, the results changed management. Cascade testing occured in at least one family member for 30% of patients with a diagnosis. Diagnostic results had reproductive implications for 26% of patients and 31% of patients' relatives. CONCLUSION ES has a robust diagnostic yield and clear clinical utility in adult patients across a range of ages and phenotypes.
Collapse
Affiliation(s)
- Maie Walsh
- Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine at Royal Melbourne Hospital, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Kirsty West
- Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Jessica A Taylor
- Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Bryony A Thompson
- Department of Pathology, The Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Adelaide Hopkins
- Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Adrienne Sexton
- Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine at Royal Melbourne Hospital, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Abiramy Ragunathan
- Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Kunal P Verma
- Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Julie Panetta
- Metabolic Diseases Unit (MDU), The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ebony Matotek
- Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Michael C Fahey
- Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Michael Christie
- Department of Medicine at Royal Melbourne Hospital, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia; Department of Pathology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ingrid M Winship
- Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine at Royal Melbourne Hospital, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Alison H Trainer
- Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine at Royal Melbourne Hospital, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul A James
- Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine at Royal Melbourne Hospital, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Álvaro-Sánchez S, Abreu-Rodríguez I, Abulí A, Serra-Juhe C, Garrido-Navas MDC. Current Status of Genetic Counselling for Rare Diseases in Spain. Diagnostics (Basel) 2021; 11:2320. [PMID: 34943558 PMCID: PMC8700506 DOI: 10.3390/diagnostics11122320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Genetic Counselling is essential for providing personalised information and support to patients with Rare Diseases (RD). Unlike most other developed countries, Spain does not recognize geneticists or genetic counsellors as healthcare professionals Thus, patients with RD face not only challenges associated with their own disease but also deal with lack of knowledge, uncertainty, and other psychosocial issues arising as a consequence of diagnostic delay. In this review, we highlight the importance of genetic counsellors in the field of RD as well as evaluate the current situation in which rare disease patients receive genetic services in Spain. We describe the main units and strategies at the national level assisting patients with RD and we conclude with a series of future perspectives and unmet needs that Spain should overcome to improve the management of patients with RD.
Collapse
Affiliation(s)
| | - Irene Abreu-Rodríguez
- Genetics Service, Hospital del Mar Research Institute, IMIM, 08003 Barcelona, Spain;
| | - Anna Abulí
- Department of Clinical and Molecular Genetics, Hospital Vall d’Hebron, 08035 Barcelona, Spain;
- Medicine Genetics Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Clara Serra-Juhe
- U705 CIBERER, Genetics Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Maria del Carmen Garrido-Navas
- CONGEN, Genetic Counselling Services, C/Albahaca 4, 18006 Granada, Spain;
- Genetics Department, Faculty of Sciences, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
10
|
Baxley RM, Leung W, Schmit MM, Matson JP, Yin L, Oram MK, Wang L, Taylor J, Hedberg J, Rogers CB, Harvey AJ, Basu D, Taylor JC, Pagnamenta AT, Dreau H, Craft J, Ormondroyd E, Watkins H, Hendrickson EA, Mace EM, Orange JS, Aihara H, Stewart GS, Blair E, Cook JG, Bielinsky AK. Bi-allelic MCM10 variants associated with immune dysfunction and cardiomyopathy cause telomere shortening. Nat Commun 2021; 12:1626. [PMID: 33712616 PMCID: PMC7955084 DOI: 10.1038/s41467-021-21878-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Minichromosome maintenance protein 10 (MCM10) is essential for eukaryotic DNA replication. Here, we describe compound heterozygous MCM10 variants in patients with distinctive, but overlapping, clinical phenotypes: natural killer (NK) cell deficiency (NKD) and restrictive cardiomyopathy (RCM) with hypoplasia of the spleen and thymus. To understand the mechanism of MCM10-associated disease, we modeled these variants in human cell lines. MCM10 deficiency causes chronic replication stress that reduces cell viability due to increased genomic instability and telomere erosion. Our data suggest that loss of MCM10 function constrains telomerase activity by accumulating abnormal replication fork structures enriched with single-stranded DNA. Terminally-arrested replication forks in MCM10-deficient cells require endonucleolytic processing by MUS81, as MCM10:MUS81 double mutants display decreased viability and accelerated telomere shortening. We propose that these bi-allelic variants in MCM10 predispose specific cardiac and immune cell lineages to prematurely arrest during differentiation, causing the clinical phenotypes observed in both NKD and RCM patients.
Collapse
Affiliation(s)
- Ryan M Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wendy Leung
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Megan M Schmit
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jacob Peter Matson
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lulu Yin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marissa K Oram
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John Taylor
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jack Hedberg
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Colette B Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Adam J Harvey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Debashree Basu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jenny C Taylor
- Wellcome Centre Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - Alistair T Pagnamenta
- Wellcome Centre Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - Helene Dreau
- Department of Haematology, University of Oxford, Oxford, OX3 7BN, UK
| | - Jude Craft
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Emily M Mace
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jordan S Orange
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Edward Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
Rexach J, Lee H, Martinez-Agosto JA, Németh AH, Fogel BL. Clinical application of next-generation sequencing to the practice of neurology. Lancet Neurol 2020; 18:492-503. [PMID: 30981321 DOI: 10.1016/s1474-4422(19)30033-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 01/05/2023]
Abstract
Next-generation sequencing technologies allow for rapid and inexpensive large-scale genomic analysis, creating unprecedented opportunities to integrate genomic data into the clinical diagnosis and management of neurological disorders. However, the scale and complexity of these data make them difficult to interpret and require the use of sophisticated bioinformatics applied to extensive datasets, including whole exome and genome sequences. Detailed analysis of genetic data has shown that accurate phenotype information is essential for correct interpretation of genetic variants and might necessitate re-evaluation of the patient in some cases. A multidisciplinary approach that incorporates bioinformatics, clinical evaluation, and human genetics can help to address these challenges. However, despite numerous studies that show the efficacy of next-generation sequencing in establishing molecular diagnoses, pathogenic mutations are generally identified in fewer than half of all patients with genetic neurological disorders, exposing considerable gaps in the understanding of the human genome and providing opportunities to focus research on improving the usefulness of genomics in clinical practice. Looking forward, the emergence of precision health in neurological care will increasingly apply genomic data analysis to pharmacogenetics, preventive medicine, and patient-targeted therapies.
Collapse
Affiliation(s)
- Jessica Rexach
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford Centre for Genomic Medicine, Oxford University Hospitals National Health Service Foundation Trust, Oxford, UK
| | - Brent L Fogel
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Clinical Neurogenomics Research Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Abstract
The Canadian Genomics Partnership for Rare Diseases, spearheaded by Genome Canada, will integrate genome-wide sequencing to rare disease clinical care in Canada. Centralized and tiered models of data stewardship are proposed to ensure that the data generated can be shared for secondary clinical, research, and quality assurance purposes in compliance with ethics and law. The principal ethico-legal obligations of clinicians, researchers, and institutions are synthesized. Governance infrastructures such as registered access platforms, data access compliance offices, and Beacon systems are proposed as potential organizational and technical foundations of responsible rare disease data sharing. The appropriate delegation of responsibilities, the transparent communication of rights and duties, and the integration of data privacy safeguards into infrastructure design are proposed as the cornerstones of rare disease data stewardship.
Collapse
Affiliation(s)
- Alexander Bernier
- Centre of Genomics and Policy, Faculty of Medicine, McGill University, Montreal, QC H3A 0G1, Canada
| |
Collapse
|
13
|
Taylor J, Craft J, Blair E, Wordsworth S, Beeson D, Chandratre S, Cossins J, Lester T, Németh AH, Ormondroyd E, Patel SY, Pagnamenta AT, Taylor JC, Thomson KL, Watkins H, Wilkie AOM, Knight JC. Implementation of a genomic medicine multi-disciplinary team approach for rare disease in the clinical setting: a prospective exome sequencing case series. Genome Med 2019; 11:46. [PMID: 31345272 PMCID: PMC6659244 DOI: 10.1186/s13073-019-0651-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A multi-disciplinary approach to promote engagement, inform decision-making and support clinicians and patients is increasingly advocated to realise the potential of genome-scale sequencing in the clinic for patient benefit. Here we describe the results of establishing a genomic medicine multi-disciplinary team (GM-MDT) for case selection, processing, interpretation and return of results. METHODS We report a consecutive case series of 132 patients (involving 10 medical specialties with 43.2% cases having a neurological disorder) undergoing exome sequencing over a 10-month period following the establishment of the GM-MDT in a UK NHS tertiary referral hospital. The costs of running the MDT are also reported. RESULTS In total 76 cases underwent exome sequencing following triage by the GM-MDT with a clinically reportable molecular diagnosis in 24 (31.6%). GM-MDT composition, operation and rationale for whether to proceed to sequencing are described, together with the health economics (cost per case for the GM-MDT was £399.61), the utility and informativeness of exome sequencing for molecular diagnosis in a range of traits, the impact of choice of sequencing strategy on molecular diagnostic rates and challenge of defining pathogenic variants. In 5 cases (6.6%), an alternative clinical diagnosis was indicated by sequencing results. Examples were also found where findings from initial genetic testing were reconsidered in the light of exome sequencing including TP63 and PRKAG2 (detection of a partial exon deletion and a mosaic missense pathogenic variant respectively); together with tissue-specific mosaicism involving a cytogenetic abnormality following a normal prenatal array comparative genomic hybridization. CONCLUSIONS This consecutive case series describes the results and experience of a multidisciplinary team format that was found to promote engagement across specialties and facilitate return of results to the responsible clinicians.
Collapse
Affiliation(s)
- John Taylor
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jude Craft
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Edward Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sarah Wordsworth
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - David Beeson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Saleel Chandratre
- Children’s Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Judith Cossins
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tracy Lester
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrea H. Németh
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Smita Y. Patel
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Department of Clinical Immunology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alistair T. Pagnamenta
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jenny C. Taylor
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kate L. Thomson
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Andrew O. M. Wilkie
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Julian C. Knight
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Vamathevan J, Apweiler R, Birney E. Biomolecular Data Resources: Bioinformatics Infrastructure for Biomedical Data Science. Annu Rev Biomed Data Sci 2019. [DOI: 10.1146/annurev-biodatasci-072018-021321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Technological advances have continuously driven the generation of bio-molecular data and the development of bioinformatics infrastructure, which enables data reuse for scientific discovery. Several types of data management resources have arisen, such as data deposition databases, added-value databases or knowledgebases, and biology-driven portals. In this review, we provide a unique overview of the gradual evolution of these resources and discuss the goals and features that must be considered in their development. With the increasing application of genomics in the health care context and with 60 to 500 million whole genomes estimated to be sequenced by 2022, biomedical research infrastructure is transforming, too. Systems for federated access, portable tools, provision of reference data, and interpretation tools will enable researchers to derive maximal benefits from these data. Collaboration, coordination, and sustainability of data resources are key to ensure that biomedical knowledge management can scale with technology shifts and growing data volumes.
Collapse
Affiliation(s)
- Jessica Vamathevan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Rolf Apweiler
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| |
Collapse
|
15
|
Delivering genomic medicine in the United Kingdom National Health Service: a systematic review and narrative synthesis. Genet Med 2019; 21:2667-2675. [PMID: 31186523 DOI: 10.1038/s41436-019-0579-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/30/2019] [Indexed: 01/28/2023] Open
Abstract
PURPOSE We sought to assess the readiness of the United Kingdom (UK) National Health Service to implement a Genomic Medicine Service. We conducted a systematic literature review to identify what is known about factors related to the implementation of genomic medicine in routine health care and to draw out the implications for the UK and other settings. METHODS Relevant studies were identified in Web of Science and PubMed from their date of inception to April 2018. The review included primary research studies using quantitative, qualitative, or mixed methods, and systematic reviews. A narrative synthesis was conducted. RESULTS Fifty-five studies met our inclusion criteria. The majority of studies reviewed were conducted in the United States. We identified four domains: (1) systems, (2) training and workforce needs, (3) professional attitudes and values, and (4) the role of patients and the public. CONCLUSION Mainstreaming genomic medicine into routine clinical practice requires actions at each level of the health-care system. Our synthesis emphasized the organizational, social, and cultural implications of reforming practice, highlighting that demonstration of clinical utility and cost-effectiveness, attending to the compatibility of genomic medicine with clinical principles, and involving and engaging patients are key to successful implementation.
Collapse
|
16
|
Mackley M, McGuire K, Taylor J, Watkins H, Ormondroyd E. From Genotype to Phenotype. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e002316. [PMID: 30354302 PMCID: PMC6217934 DOI: 10.1161/circgen.118.002316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genomic variants associated with inherited cardiac conditions yet detected incidentally (‘secondary findings’) are likely to arise with increasing frequency as genome sequencing transitions into clinical practice. Since genotyping has until recently been directed by clinical diagnosis, assessment and management of individuals found to harbour such a variant as a secondary finding is unclear. Here we illustrate some diagnostic and psychosocial complexities of inherited cardiac condition secondary findings, exemplified by disclosure of a pathogenic variant in KCNQ1 , associated with long QT syndrome, to a healthy male enrolled in diagnostic genome sequencing as an unaffected relative. This early case represents a shift from ‘phenotype-to-genotype’ to ‘genotype-to-phenotype’; we describe clinical evaluation, family history and a qualitative research interview with the secondary finding recipient, discuss the role of specialist services in variant interpretation, genetic counselling and clinical assessment, and some challenges of realising improved health outcomes following disclosure of a secondary finding.
Collapse
Affiliation(s)
- Michael Mackley
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford
| | - Karen McGuire
- Oxford University Hospitals NHS Foundation Trust (OUHFT)
| | - Jenny Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford
- National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Oxford, United Kingdom
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford
- Wellcome Trust Centre for Human Genetics, University of Oxford
- National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Oxford, United Kingdom
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford
- National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
17
|
Horn R, Parker M. Health professionals' and researchers' perspectives on prenatal whole genome and exome sequencing: 'We can't shut the door now, the genie's out, we need to refine it'. PLoS One 2018; 13:e0204158. [PMID: 30240445 PMCID: PMC6150486 DOI: 10.1371/journal.pone.0204158] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
The Prenatal Assessment of Genome and Exomes (PAGE) project is a UK-wide study aiming to gain a better understanding of genetic variants causing developmental problems during pregnancy. A further aim of the study is to provide an evidence-base for the introduction of prenatal whole genome and exome sequencing (PWGES) into prenatal diagnostics provided by the NHS, which is expected in 2018. This paper presents the findings of a qualitative interview study undertaken with 20 health professionals and researchers involved in the PAGE project, and explores their implications for understandings of 'good practice' in the uses of prenatal genomics clinically. A number of critical issues are identified that will need to be addressed in the development of a model of good ethical practice for prenatal genomics: consent, management of expectations, return of results, and professional duties in the context of PWGES. The analysis presented identifies and illustrates a great deal of complexity and qualitative richness in these issues as they arise in the day-to-day work of genomics professionals. Inclusive, critical discussion of these findings, together with the findings from other empirical studies, normative analysis and scientific discoveries resulting from PAGE, will be required to inform the development of appropriate guidelines of good ethical practice that address the needs and concerns to be encountered in daily clinical practice.
Collapse
Affiliation(s)
- Ruth Horn
- Department of Population Health, The Ethox Centre and Wellcome Trust Centre for Ethics and Humanities, University of Oxford, Headington, Oxford, United Kingdom
| | - Michael Parker
- Department of Population Health, The Ethox Centre and Wellcome Trust Centre for Ethics and Humanities, University of Oxford, Headington, Oxford, United Kingdom
| |
Collapse
|
18
|
Abstract
BACKGROUND Genomic technology can now deliver cost effective, targeted diagnosis and treatment for patients. Genetic counselling is a communication process empowering patients and families to make autonomous decisions and effectively use new genetic information. The skills of genetic counselling and expertise of genetic counsellors are integral to the effective implementation of genomic medicine. SOURCES OF DATA Original papers, reviews, guidelines, policy papers and web-resources. AREAS OF AGREEMENT An international consensus on the definition of genetic counselling. Genetic counselling is necessary for implementation of genomic medicine. AREAS OF CONTROVERSY Models of genetic counselling. GROWING POINTS Genomic medicine is a growing and strategic priority for many health care systems. Genetic counselling is part of this. AREAS TIMELY FOR DEVELOPING RESEARCH An evidence base is necessary, incorporating implementation and outcome research, to enable health care systems, practitioners, patients and families to maximize the utility (medically and psychologically) of the new genomic possibilities.
Collapse
Affiliation(s)
- Christine Patch
- Florence Nightingale Faculty of Nursing, Midwifery and Palliative Care, King’s College London, 57 Waterloo Road, London
- Genetic Counselling, Genomics England, Queen Mary University of London, Dawson Hall, London
- Correspondence address. Florence Nightingale Faculty of Nursing, Midwifery & Palliative Care, King's College London, 57 Waterloo Road, London SE1 8WA. E-mail:
| | - Anna Middleton
- Society and Ethics Research, Connecting Science, Wellcome Genome Campus, Hinxton, UK
- Faculty of Education, University of Cambridge, 184 Hills Road, Cambridge, UK
| |
Collapse
|
19
|
Elliott AM, du Souich C, Adam S, Dragojlovic N, van Karnebeek C, Nelson TN, Lehman A, Lynd LD, Friedman JM. The Genomic Consultation Service: A clinical service designed to improve patient selection for genome-wide sequencing in British Columbia. Mol Genet Genomic Med 2018; 6:592-600. [PMID: 29851296 PMCID: PMC6081221 DOI: 10.1002/mgg3.410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/01/2018] [Accepted: 04/06/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Access to clinical diagnostic genome-wide sequencing (GWS; exome or whole genome sequencing) is limited in British Columbia. The establishment of a translational research initiative (CAUSES) to provide diagnostic genome-wide sequencing for 500 children necessitated the development of a genomic consultation service, a clinical service established to provide consultation for physicians considering GWS for their pediatric patients throughout British Columbia. The Genomic Consultation Service provides patient-specific genomic advice that may include: GWS, multi-gene panel, single gene test, referral to medical genetics for clinical evaluation, or no genetic testing. Here, we describe and evaluate this service. METHODS We analyzed referral patterns, patient demographics, clinical indications, and genomic advice provided during the first year of this service. Comparison of outcomes from the first 6 months versus the last 6 months was performed. RESULTS A total of 407 referrals (238 males and 169 females [p = .0006]) were processed in the first year. Only children were eligible for referral and average patient age was 8 years. Medical genetics was the most frequent referring discipline, followed by biochemical disease and pediatric neurology, respectively. Most patients (68%) had syndromic intellectual disability. There was a significant difference in the frequency of referrals not appropriate for GWS in the first versus the second 6 months of the service (75/220 vs. 42/187; p = .01) suggesting increasing awareness of testing criteria by referring physicians. CONCLUSION This triage service is utilized throughout the province and appears to be an important factor in the high diagnostic rate (>40%) achieved in our GWS program.
Collapse
Affiliation(s)
- Alison M. Elliott
- Department of Medical GeneticsFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Christèle du Souich
- Department of Medical GeneticsFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Shelin Adam
- Department of Medical GeneticsFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Nick Dragojlovic
- Collaboration for Outcomes Research and Evaluation (CORE)Department of Pharmaceutical SciencesUniversity of British ColumbiaVancouverBCCanada
| | - Clara van Karnebeek
- Department of PediatricsCentre for Molecular Medicine and TherapeuticsVancouverBCCanada
- Department of PediatricsDepartment of Clinical GeneticsAcademic Medical CentreAmsterdamThe Netherlands
| | - Tanya N. Nelson
- BC Children's Hospital Research InstituteVancouverBCCanada
- Department of Pathology and Laboratory MedicineFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Pathology and Laboratory MedicineBC Children's HospitalVancouverBCCanada
| | - Anna Lehman
- Department of Medical GeneticsFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | | | - Larry D. Lynd
- Collaboration for Outcomes Research and Evaluation (CORE)Department of Pharmaceutical SciencesUniversity of British ColumbiaVancouverBCCanada
- CHEOS – Centre for Health Evaluation and Outcomes SciencesProvidence Health Research InstituteVancouverBCCanada
| | - Jan M. Friedman
- Department of Medical GeneticsFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| |
Collapse
|
20
|
Mackley MP, Blair E, Parker M, Taylor JC, Watkins H, Ormondroyd E. Views of rare disease participants in a UK whole-genome sequencing study towards secondary findings: a qualitative study. Eur J Hum Genet 2018; 26:652-659. [PMID: 29440777 PMCID: PMC5945590 DOI: 10.1038/s41431-018-0106-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/06/2017] [Accepted: 01/11/2018] [Indexed: 01/06/2023] Open
Abstract
With large-scale genome sequencing initiatives underway, vast amounts of genomic data are being generated. Results-including secondary findings (SF)-are being returned, although policies around generation and management remain inconsistent. In order to inform relevant policy, it is essential that the views of stakeholders be considered-including participants who have made decisions about SF since the wider debate began. We conducted semi-structured interviews with sixteen rare disease patients and parents enroled in genome sequencing to explore views towards SF. Informed by extensive contact with the healthcare system, interviewees demonstrated high levels of understanding of genetic testing and held pragmatic views: many are content not knowing SF. Interviewees expressed trust in the system and healthcare providers, as well as an appreciation of limited resources; acknowledging existing disease burden, many preferred to focus on their primary condition. Many demonstrated an expectation for recontact and assumed the possibility of later access to initially declined SF. In the absence of such an infrastructure, it is important that responsibilities for recontact are delineated, expectations are addressed, and the long-term impact of decisions is made clear during consent. In addition, some interviewees demonstrated fluid views towards SF, and suggestions were made that perceptions may be influenced by family history. Further research into the changing desirability of SF and behavioural impact of disclosure are needed, and the development and introduction of mechanisms to respond to changes in patient views should be considered.
Collapse
Affiliation(s)
- Michael P Mackley
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Edward Blair
- Department of Clinical Genetics, Oxford University Hospitals NHS Foundations Trust, Oxford, UK
| | - Michael Parker
- Ethox Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jenny C Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Oxford, UK
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
21
|
Abstract
The majority of rare diseases affect children, most of whom have an underlying genetic cause for their condition. However, making a molecular diagnosis with current technologies and knowledge is often still a challenge. Paediatric genomics is an immature but rapidly evolving field that tackles this issue by incorporating next-generation sequencing technologies, especially whole-exome sequencing and whole-genome sequencing, into research and clinical workflows. This complex multidisciplinary approach, coupled with the increasing availability of population genetic variation data, has already resulted in an increased discovery rate of causative genes and in improved diagnosis of rare paediatric disease. Importantly, for affected families, a better understanding of the genetic basis of rare disease translates to more accurate prognosis, management, surveillance and genetic advice; stimulates research into new therapies; and enables provision of better support.
Collapse
|
22
|
Ormondroyd E, Mackley MP, Blair E, Craft J, Knight JC, Taylor JC, Taylor J, Watkins H. "Not pathogenic until proven otherwise": perspectives of UK clinical genomics professionals toward secondary findings in context of a Genomic Medicine Multidisciplinary Team and the 100,000 Genomes Project. Genet Med 2017; 20:320-328. [PMID: 29261176 PMCID: PMC5880578 DOI: 10.1038/gim.2017.157] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
Purpose Approaches to secondary findings in genome sequencing (GS) are unresolved. In the United Kingdom, GS is now routinely available through the 100,000 Genomes Project, which offers participants feedback of limited secondary findings. Methods In Oxford, a Genomic Medicine Multidisciplinary Team (GM-MDT) governs local access to GS, and reviews findings. Semistructured interviews were conducted with 19 GM-MDT members to explore perspectives on secondary findings. Results While enthusiastic about GS for diagnosing rare disease, members question the rationale for genome screening largely because of lack of evidence for clinical utility and limited justification for use of resources. Members’ views are drawn from diverse experiences; they feel a strong sense of responsibility to act in participants’ best interests. The capacity to return limited secondary findings should be enabled, but members favor a cautious approach that is responsive to accumulating evidence. Informed participant choice is considered critical, yet challenging. Discrimination of variants is considered essential, and requiring of specialist input and consensus. Multiple areas requiring enhanced engagement and education are identified, i.e., for patients, the public, and health-care professionals; at present, mainstreaming of genomics may be premature. Conclusion UK experts believe that evidence to inform policy toward secondary findings is lacking, arguing for caution. Supplementary information The online version of this article (doi:10.1038/gim.2017.157) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Michael P Mackley
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Edward Blair
- Department of Clinical Genetics, Oxford University Hospitals NHS Foundations Trust, Oxford, UK
| | - Judith Craft
- Department of Clinical Genetics, Oxford University Hospitals NHS Foundations Trust, Oxford, UK
| | - Julian C Knight
- National Institute for Health Research Biomedical Research Centre, Oxford, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jenny C Taylor
- National Institute for Health Research Biomedical Research Centre, Oxford, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - John Taylor
- Oxford NHS Regional Molecular Genetics Laboratory, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,National Institute for Health Research Biomedical Research Centre, Oxford, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
A clinically driven variant prioritization framework outperforms purely computational approaches for the diagnostic analysis of singleton WES data. Eur J Hum Genet 2017; 25:1268-1272. [PMID: 28832562 DOI: 10.1038/ejhg.2017.123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/27/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022] Open
Abstract
Rapid identification of clinically significant variants is key to the successful application of next generation sequencing technologies in clinical practice. The Melbourne Genomics Health Alliance (MGHA) variant prioritization framework employs a gene prioritization index based on clinician-generated a priori gene lists, and a variant prioritization index (VPI) based on rarity, conservation and protein effect. We used data from 80 patients who underwent singleton whole exome sequencing (WES) to test the ability of the framework to rank causative variants highly, and compared it against the performance of other gene and variant prioritization tools. Causative variants were identified in 59 of the patients. Using the MGHA prioritization framework the average rank of the causative variant was 2.24, with 76% ranked as the top priority variant, and 90% ranked within the top five. Using clinician-generated gene lists resulted in ranking causative variants an average of 8.2 positions higher than prioritization based on variant properties alone. This clinically driven prioritization approach significantly outperformed purely computational tools, placing a greater proportion of causative variants top or in the top 5 (permutation P-value=0.001). Clinicians included 40 of the 49 WES diagnoses in their a priori list of differential diagnoses (81%). The lists generated by PhenoTips and Phenomizer contained 14 (29%) and 18 (37%) of these diagnoses respectively. These results highlight the benefits of clinically led variant prioritization in increasing the efficiency of singleton WES data analysis and have important implications for developing models for the funding and delivery of genomic services.
Collapse
|