1
|
Fu D, Miao H, Wang Z, Yang C. Gynecomastia and its potential progression to male breast cancer: Mechanisms, genetic factors, and hormonal interactions. Crit Rev Oncol Hematol 2025; 208:104651. [PMID: 39909181 DOI: 10.1016/j.critrevonc.2025.104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025] Open
Abstract
Gynecomastia is the most common breast condition in men, while male breast cancer remains relatively rare. This review explores the potential relationship between gynecomastia and male breast cancer, with a focus on the roles of hormonal imbalances, genetic factors, and molecular mechanisms in the progression of these conditions. While it remains controversial whether gynecomastia is a precancerous lesion for male breast cancer, this review summarizes the roles of estrogen and androgen receptors, the regulation of aromatase expression, and mutations in key genes such as BRCA1/2. These insights point to possible pathways by which gynecomastia could transition into male breast cancer. Additionally, hormones such as prolactin, insulin-like growth factor-1, and leptin may play significant roles in this progression. We provide an overview of the current understanding and identify key areas for further research, emphasizing the need for large-scale prospective studies to determine the causal relationship between gynecomastia and male breast cancer.
Collapse
Affiliation(s)
- Dingyi Fu
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Nanjing Medical University, Nanjing 211166, China
| | - Haoquan Miao
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Nanjing Medical University, Nanjing 211166, China
| | - Zhonglin Wang
- Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang 222006, China
| | - Chuang Yang
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
2
|
Awasthi BP, Chaudhary P, Lim D, Yadav K, Lee IH, Banskota S, Chaudhary CL, Karmacharya U, Lee J, Im SM, Nam Y, Eun JW, Lee S, Lee JM, Kim ES, Ryou C, Kim TH, Park HD, Kim JA, Nam TG, Jeong BS. G Protein-Coupled Estrogen Receptor-Mediated Anti-Inflammatory and Mucosal Healing Activity of a Trimethylpyridinol Analogue in Inflammatory Bowel Disease. J Med Chem 2024; 67:10601-10621. [PMID: 38896548 DOI: 10.1021/acs.jmedchem.3c02458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by abnormal immune responses, including elevated proinflammatory cytokines, such as tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) in the gastrointestinal (GI) tract. This study presents the synthesis and anti-inflammatory evaluation of 2,4,5-trimethylpyridin-3-ol analogues, which exhibit dual inhibition of TNFα- and IL-6-induced inflammation. Analysis using in silico methods, including 3D shape-based target identification, modeling, and docking, identified G protein-coupled estrogen receptor 1 (GPER) as the molecular target for the most effective analogue, 6-26, which exhibits remarkable efficacy in ameliorating inflammation and restoring colonic mucosal integrity. This was further validated by surface plasmon resonance (SPR) assay results, which showed direct binding to GPER, and by the results showing that GPER knockdown abolished the inhibitory effects of 6-26 on TNFα and IL-6 actions. Notably, 6-26 displayed no cytotoxicity, unlike G1 and G15, a well-known GPER agonist and an antagonist, respectively, which induced necroptosis independently of GPER. These findings suggest that the GPER-selective compound 6-26 holds promise as a therapeutic candidate for IBD.
Collapse
Affiliation(s)
- Bhuwan Prasad Awasthi
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Prakash Chaudhary
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Dongchul Lim
- Innovo Therapeutics Inc., Daeduck Biz Center C-313, 17 Techno 4-ro, Yuseong-gu, Daejeon 34013, Republic of Korea
| | - Kiran Yadav
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Iyn-Hyang Lee
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Suhrid Banskota
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Chhabi Lal Chaudhary
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ujjwala Karmacharya
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jiwoo Lee
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - So Myoung Im
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - YeonJu Nam
- Bio Industry Department, Gyeonggido Business & Science Accelerator, Suwon 16229, Republic of Korea
| | - Ji Won Eun
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sungeun Lee
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Ji-Min Lee
- Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Eun Soo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Chongsuk Ryou
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Tae Hun Kim
- Innovo Therapeutics Inc., Daeduck Biz Center C-313, 17 Techno 4-ro, Yuseong-gu, Daejeon 34013, Republic of Korea
| | - Hee Dong Park
- Innovo Therapeutics Inc., Daeduck Biz Center C-313, 17 Techno 4-ro, Yuseong-gu, Daejeon 34013, Republic of Korea
| | - Jung-Ae Kim
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tae-Gyu Nam
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Byeong-Seon Jeong
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
He TT, Li X, Ma JZ, Yang Y, Zhu S, Zeng J, Luo L, Yin YL, Cao LY. Triclocarban and triclosan promote breast cancer progression in vitro and in vivo via activating G protein-coupled estrogen receptor signaling pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172782. [PMID: 38679099 DOI: 10.1016/j.scitotenv.2024.172782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Triclocarban (TCC) and triclosan (TCS) have been detected ubiquitously in human body and evoked increasing concerns. This study aimed to reveal the induction risks of TCC and TCS on triple negative breast cancer through non-genomic GPER-mediated signaling pathways. Molecular simulation indicated that TCC exhibited higher GPER binding affinity than TCS theoretically. Calcium mobilization assay displayed that TCC/TCS activated GPER signaling pathway with the lowest observed effective concentrations (LOEC) of 10 nM/100 nM. TCC and TCS also upregulated MMP-2/9, EGFR, MAPK3 but downregulated MAPK8 via GPER-mediated signaling pathway. Proliferation assay showed that TCC/TCS induced 4 T1 breast cancer cells proliferation with the LOEC of 100 nM/1000 nM. Wound-healing and transwell assays showed that TCC/TCS promoted 4 T1 cells migration in a concentration-dependent manner with the LOEC of 10 nM. The effects of TCC on breast cancer cells proliferation and migration were stronger than TCS and both were regulated by GPER. TCC/TCS induced migratory effects were more significantly than proliferative effect. Mechanism study showed that TCC/TCS downregulated the expression of epithelial marker (E-cadherin) but upregulated mesenchymal markers (snail and N-cadherin), which was reversed by GPER inhibitor G15. These biomarkers results indicated that TCC/TCS-induced 4 T1 cells migration was a classic epithelial to mesenchymal transition mechanism regulated by GPER signaling pathway. Orthotopic tumor model verified that TCC promoted breast cancer in-situ tumor growth and distal tissue metastasis via GPER-mediated signaling pathway at human-exposure level of 10 mg/kg/d. TCC-induced tissue metastasis of breast cancer was more significantly than in-situ tumor growth. Overall, we demonstrated for the first time that TCC/TCS could activate the GPER signaling pathways to induce breast cancer progression.
Collapse
Affiliation(s)
- Ting-Ting He
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xin Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Jie-Zhi Ma
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha 410013, China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Shiye Zhu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yu-Long Yin
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Lin-Ying Cao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
Talia M, Cirillo F, Scordamaglia D, Di Dio M, Zicarelli A, De Rosis S, Miglietta AM, Capalbo C, De Francesco EM, Belfiore A, Grande F, Rizzuti B, Occhiuzzi MA, Fortino G, Guzzo A, Greco G, Maggiolini M, Lappano R. The G Protein Estrogen Receptor (GPER) is involved in the resistance to the CDK4/6 inhibitor palbociclib in breast cancer. J Exp Clin Cancer Res 2024; 43:171. [PMID: 38886784 PMCID: PMC11184778 DOI: 10.1186/s13046-024-03096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The cyclin D1-cyclin dependent kinases (CDK)4/6 inhibitor palbociclib in combination with endocrine therapy shows remarkable efficacy in the management of estrogen receptor (ER)-positive and HER2-negative advanced breast cancer (BC). Nevertheless, resistance to palbociclib frequently arises, highlighting the need to identify new targets toward more comprehensive therapeutic strategies in BC patients. METHODS BC cell lines resistant to palbociclib were generated and used as a model system. Gene silencing techniques and overexpression experiments, real-time PCR, immunoblotting and chromatin immunoprecipitation studies as well as cell viability, colony and 3D spheroid formation assays served to evaluate the involvement of the G protein-coupled estrogen receptor (GPER) in the resistance to palbociclib in BC cells. Molecular docking simulations were also performed to investigate the potential interaction of palbociclib with GPER. Furthermore, BC cells co-cultured with cancer-associated fibroblasts (CAFs) isolated from mammary carcinoma, were used to investigate whether GPER signaling may contribute to functional cell interactions within the tumor microenvironment toward palbociclib resistance. Finally, by bioinformatics analyses and k-means clustering on clinical and expression data of large cohorts of BC patients, the clinical significance of novel mediators of palbociclib resistance was explored. RESULTS Dissecting the molecular events that characterize ER-positive BC cells resistant to palbociclib, the down-regulation of ERα along with the up-regulation of GPER were found. To evaluate the molecular events involved in the up-regulation of GPER, we determined that the epidermal growth factor receptor (EGFR) interacts with the promoter region of GPER and stimulates its expression toward BC cells resistance to palbociclib treatment. Adding further cues to these data, we ascertained that palbociclib does induce pro-inflammatory transcriptional events via GPER signaling in CAFs. Of note, by performing co-culture assays we demonstrated that GPER contributes to the reduced sensitivity to palbociclib also facilitating the functional interaction between BC cells and main components of the tumor microenvironment named CAFs. CONCLUSIONS Overall, our results provide novel insights on the molecular events through which GPER may contribute to palbociclib resistance in BC cells. Additional investigations are warranted in order to assess whether targeting the GPER-mediated interactions between BC cells and CAFs may be useful in more comprehensive therapeutic approaches of BC resistant to palbociclib.
Collapse
Affiliation(s)
- Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Marika Di Dio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Azzurra Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Salvatore De Rosis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Regional Hospital Cosenza, Cosenza, 87100, Italy
| | - Carlo Capalbo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
- Complex Operative Oncology Unit, Regional Hospital Cosenza, Cosenza, 87100, Italy
| | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, 95122, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Bruno Rizzuti
- Department of Physics, CNR-NANOTEC, SS Rende (CS), University of Calabria, Rende, CS, 87036, Italy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, Zaragoza, 50018, Spain
| | | | - Giancarlo Fortino
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende, 87036, Italy
| | - Antonella Guzzo
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende, 87036, Italy
| | - Gianluigi Greco
- Department of Mathematics and Computer Science, University of Calabria, Cosenza, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| |
Collapse
|
5
|
Focaccetti C, Nardozi D, Benvenuto M, Lucarini V, Angiolini V, Carrano R, Scimeca M, Servadei F, Mauriello A, Mancini P, Besharat ZM, Milella M, Migliaccio S, Ferretti E, Cifaldi L, Masuelli L, Palumbo C, Bei R. Bisphenol-A in Drinking Water Accelerates Mammary Cancerogenesis and Favors an Immunosuppressive Tumor Microenvironment in BALB- neuT Mice. Int J Mol Sci 2024; 25:6259. [PMID: 38892447 PMCID: PMC11172679 DOI: 10.3390/ijms25116259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Bisphenol-A (BPA), a synthetic compound ubiquitously present in the environment, can act as an endocrine disruptor by binding to both canonical and non-canonical estrogen receptors (ERs). Exposure to BPA has been linked to various cancers, in particular, those arising in hormone-targeted tissues such as the breast. In this study, we evaluated the effect of BPA intake through drinking water on ErbB2/neu-driven cancerogenesis in BALB-neuT mice, transgenic for a mutated ErbB2/neu receptor gene, which reproducibly develop carcinomas in all mammary glands. In this model, BPA accelerated mammary cancerogenesis with an increase in the number of tumors per mouse and a concurrent decrease in tumor-free and overall survival. As assessed by immunohistochemistry, BALB-neuT tumors were ER-negative but expressed high levels of the alternative estrogen receptor GPR30, regardless of BPA exposure. On the other hand, BPA exposure resulted in a marked upregulation of progesterone receptors in preinvasive tumors and of Ki67, CD31, and phosphorylated Akt in invasive tumors. Moreover, based on several infiltration markers of immune cells, BPA favored an immunosuppressive tumor microenvironment. Finally, in vitro cell survival studies performed on a cell line established from a BALB-neuT breast carcinoma confirmed that BPA's impact on cancer progression can be particularly relevant after chronic, low-dose exposure.
Collapse
MESH Headings
- Animals
- Benzhydryl Compounds
- Phenols
- Tumor Microenvironment/drug effects
- Female
- Mice
- Mice, Inbred BALB C
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/genetics
- Drinking Water
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/metabolism
- Mice, Transgenic
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, Progesterone/metabolism
- Receptors, Progesterone/genetics
- Carcinogenesis/chemically induced
- Carcinogenesis/drug effects
- Endocrine Disruptors/toxicity
Collapse
Affiliation(s)
- Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| | - Daniela Nardozi
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| | - Valeria Lucarini
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Valentina Angiolini
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| | - Manuel Scimeca
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (F.S.); (A.M.)
| | - Francesca Servadei
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (F.S.); (A.M.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (F.S.); (A.M.)
| | - Patrizia Mancini
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Zein Mersini Besharat
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Michele Milella
- Department of Oncology, University of Verona, 37134 Verona, Italy;
| | - Silvia Migliaccio
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| |
Collapse
|
6
|
Yan S, Ji J, Zhang Z, Imam M, Chen H, Zhang D, Wang J. Targeting the crosstalk between estrogen receptors and membrane growth factor receptors in breast cancer treatment: Advances and opportunities. Biomed Pharmacother 2024; 175:116615. [PMID: 38663101 DOI: 10.1016/j.biopha.2024.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Estrogens play a critical role in the initiation and progression of breast cancer. Estrogen receptor (ER)α, ERβ, and G protein-coupled estrogen receptor are the primary receptors for estrogen in breast cancer. These receptors are mainly activated by binding with estrogens. The crosstalk between ERs and membrane growth factor receptors creates additional pathways that amplify the effects of their ligands and promote tumor growth. This crosstalk may cause endocrine therapy resistance in ERα-positive breast cancer. Furthermore, this may explain the resistance to anti-human epidermal growth factor receptor-2 (HER2) treatment in ERα-/HER2-positive breast cancer and chemotherapy resistance in triple-negative breast cancer. Accordingly, it is necessary to understand the complex crosstalk between ERs and growth factor receptors. In this review, we delineate the crosstalk between ERs and membrane growth factor receptors in breast cancer. Moreover, this review highlights the current progress in clinical treatment and discusses how pharmaceuticals target the crosstalk. Lastly, we discuss the current challenges and propose potential solutions regarding the implications of targeting crosstalk via pharmacological inhibition. Overall, the present review provides a landscape of the crosstalk between ERs and membrane growth factor receptors in breast cancer, along with valuable insights for future studies and clinical treatments using a chemotherapy-sparing regimen to improve patient quality of life.
Collapse
Affiliation(s)
- Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Jiale Ji
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Zhijie Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Murshid Imam
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Hong Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Duo Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jinpeng Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| |
Collapse
|
7
|
Cirillo F, Spinelli A, Talia M, Scordamaglia D, Santolla MF, Grande F, Rizzuti B, Maggiolini M, Gérard C, Lappano R. Estetrol/GPER/SERPINB2 transduction signaling inhibits the motility of triple-negative breast cancer cells. J Transl Med 2024; 22:450. [PMID: 38741146 PMCID: PMC11089683 DOI: 10.1186/s12967-024-05269-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Estetrol (E4) is a natural estrogen produced by the fetal liver during pregnancy. Due to its favorable safety profile, E4 was recently approved as estrogenic component of a new combined oral contraceptive. E4 is a selective ligand of estrogen receptor (ER)α and ERβ, but its binding to the G Protein-Coupled Estrogen Receptor (GPER) has not been described to date. Therefore, we aimed to explore E4 action in GPER-positive Triple-Negative Breast Cancer (TNBC) cells. METHODS The potential interaction between E4 and GPER was investigated by molecular modeling and binding assays. The whole transcriptomic modulation triggered by E4 in TNBC cells via GPER was explored through high-throughput RNA sequencing analyses. Gene and protein expression evaluations as well as migration and invasion assays allowed us to explore the involvement of the GPER-mediated induction of the plasminogen activator inhibitor type 2 (SERPINB2) in the biological responses triggered by E4 in TNBC cells. Furthermore, bioinformatics analysis was aimed at recognizing the biological significance of SERPINB2 in ER-negative breast cancer patients. RESULTS After the molecular characterization of the E4 binding capacity to GPER, RNA-seq analysis revealed that the plasminogen activator inhibitor type 2 (SERPINB2) is one of the most up-regulated genes by E4 in a GPER-dependent manner. Worthy, we demonstrated that the GPER-mediated increase of SERPINB2 is engaged in the anti-migratory and anti-invasive effects elicited by E4 in TNBC cells. In accordance with these findings, a correlation between SERPINB2 levels and a good clinical outcome was found in ER-negative breast cancer patients. CONCLUSIONS Overall, our results provide new insights into the mechanisms through which E4 can halt migratory and invasive features of TNBC cells.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Asia Spinelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Maria Francesca Santolla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Bruno Rizzuti
- Department of Physics, CNR-NANOTEC, SS Rende (CS), University of Calabria, Rende, CS, 87036, Italy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, 50018, Spain
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Céline Gérard
- Mithra Pharmaceutical, Rue Saint-Georges 5, Liège, 4000, Belgium.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| |
Collapse
|
8
|
Liu Z, Li S, Chen S, Sheng J, Li Z, Lv T, Yu W, Fan Y, Wang J, Liu W, Hu S, Jin J. YAP-mediated GPER signaling impedes proliferation and survival of prostate epithelium in benign prostatic hyperplasia. iScience 2024; 27:109125. [PMID: 38420594 PMCID: PMC10901089 DOI: 10.1016/j.isci.2024.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) occurs when there is an imbalance between the proliferation and death of prostate cells, which is regulated tightly by estrogen signaling. However, the role of G protein-coupled estrogen receptor (GPER) in prostate cell survival remains ambiguous. In this study, we observed that prostates with epithelial hyperplasia showed increased yes-associated protein 1 (YAP) expression and decreased levels of estrogen and GPER. Blocking YAP through genetic or drug interventions led to reduced proliferation and increased apoptosis in the prostate epithelial cells. Interestingly, GPER agonists produced similar effects. GPER activation enhanced the phosphorylation and degradation of YAP, which was crucial for suppressing cell proliferation and survival. The Gαs/cAMP/PKA/LATS pathway, downstream of GPER, transmitted signals that facilitated YAP inhibition. This study investigated the interaction between GPER and YAP in the prostate epithelial cells and its contribution to BPH development. It lays the groundwork for future research on developing BPH treatments.
Collapse
Affiliation(s)
- Zhifu Liu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Senmao Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Shengbin Chen
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jindong Sheng
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Gynaecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zheng Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Tianjing Lv
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Yu Fan
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jinlong Wang
- Department of Urology, Tibet Autonomous Region People's Hospital, Lhasa 850000, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen 518036, China
- Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Shuai Hu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jie Jin
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| |
Collapse
|
9
|
Zhang D, Chen H, Wang J, Ji J, Imam M, Zhang Z, Yan S. Current progress and prospects for G protein-coupled estrogen receptor in triple-negative breast cancer. Front Cell Dev Biol 2024; 12:1338448. [PMID: 38476263 PMCID: PMC10928007 DOI: 10.3389/fcell.2024.1338448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a biologically and clinically heterogeneous disease. The G protein-coupled estrogen receptor (GPER) plays a crucial role in mediating the effect of estrogen and estrogen-like compounds in TNBC cells. Compared with other subtypes, GPER has a higher expression in TNBC. The GPER mechanisms have been thoroughly characterized and analyzed in estrogen receptor α (ERα) positive breast cancer, but not in TNBC. Our previous work revealed that a higher expression of GPER mRNA indicates a better prognosis for ERα-positive breast cancer; however, its effects in TNBC differ. Whether GPER could serve as a predictive prognostic marker or therapeutic target for TNBC remains unclear. In this review, we provide a detailed introduction to the subcellular localization of GPER, the different effects of various ligands, and the interactions between GPER and closely associated factors in TNBC. We focused on the internal molecular mechanisms specific to TNBC and thoroughly explored the role of GPER in promoting tumor development. We also discussed the interaction of GPER with specific cytokines and chemokines, and the relationship between GPER and immune evasion. Additionally, we discussed the feasibility of using GPER as a therapeutic target in the context of existing studies. This comprehensive review highlights the effects of GPER on TNBC, providing a framework and directions for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Pu Q, Gao H. The Role of the Tumor Microenvironment in Triple-Positive Breast Cancer Progression and Therapeutic Resistance. Cancers (Basel) 2023; 15:5493. [PMID: 38001753 PMCID: PMC10670777 DOI: 10.3390/cancers15225493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer (BRCA) is a highly heterogeneous systemic disease. It is ranked first globally in the incidence of new cancer cases and has emerged as the primary cause of cancer-related death among females. Among the distinct subtypes of BRCA, triple-positive breast cancer (TPBC) has been associated with increased metastasis and invasiveness, exhibiting greater resistance to endocrine therapy involving trastuzumab. It is now understood that invasion, metastasis, and treatment resistance associated with BRCA progression are not exclusively due to breast tumor cells but are from the intricate interplay between BRCA and its tumor microenvironment (TME). Accordingly, understanding the pathogenesis and evolution of the TPBC microenvironment demands a comprehensive approach. Moreover, addressing BRCA treatment necessitates a holistic consideration of the TME, bearing significant implications for identifying novel targets for anticancer interventions. This review expounds on the relationship between critical cellular components and factors in the TPBC microenvironment and the inception, advancement, and therapeutic resistance of breast cancer to provide perspectives on the latest research on TPBC.
Collapse
Affiliation(s)
- Qian Pu
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Haidong Gao
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| |
Collapse
|
11
|
Boscaro C, Ramaschi GE, Trevisi L, Cignarella A, Bolego C. MiR-206 inhibits estrogen signaling and ovarian cancer cell migration without affecting GPER. Life Sci 2023; 333:122135. [PMID: 37778413 DOI: 10.1016/j.lfs.2023.122135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
AIMS Estrogen-regulated pathways are involved in the etiology and progression of epithelial ovarian cancer (EOC), but the relative contribution of estrogen receptor isoforms is unclear. Only a subset of patients responds to antiestrogens including tamoxifen. Based on our previous evidence that miR-206 behaves as an oncosuppressor in EOC, we hypothesized that miR-206 would interfere with G protein-coupled estrogen receptor (GPER)-mediated signaling and cell motility. MAIN METHODS PFKFB3 and FAK proteins from OC cells challenged with selective estrogen receptor agonist and antagonist were measured by Western blotting. Cell proliferation and motility were analyzed by MTT and Boyden chamber, respectively. Estrogen-dependent cells were transfected with miR-206 mimic or control using Lipofectamine. KEY FINDINGS The migration of SKOV3 and OVCAR5 cells significantly increased following treatment with 17β-estradiol (E2) and the selective GPER agonist G1. However, tamoxifen failed to inhibit E2 effect and even promoted SKOV3 cell migration. Estrogen receptor ligands did not affect SKOV3 proliferation. The GPER antagonist G15 significantly prevented E2-mediated upregulation of PFKFB3 expression, while G1 concentration-dependently upregulated PFKFB3 levels. Consistent with the functional link between PFKFB3 and FAK activation, E2 and G1 increased FAK phosphorylation at Tyr397. Transfection with miR-206 abolished estrogen-induced EOC migration and down-regulated PFKFB3 protein levels. Notably, miR-206 transfection reduced ERα protein abundance, whereas GPER amount was unchanged. SIGNIFICANCE By blocking estrogen signaling and G1-induced EOC cell invasiveness with no direct interference with GPER levels, miR-206 mimics have the potential to act as pathway-selective antagonists and deserve further testing as RNA therapeutics in estrogen-dependent EOC.
Collapse
Affiliation(s)
| | | | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy.
| |
Collapse
|
12
|
Ahmadian Elmi M, Motamed N, Picard D. Proteomic Analyses of the G Protein-Coupled Estrogen Receptor GPER1 Reveal Constitutive Links to Endoplasmic Reticulum, Glycosylation, Trafficking, and Calcium Signaling. Cells 2023; 12:2571. [PMID: 37947649 PMCID: PMC10650109 DOI: 10.3390/cells12212571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The G protein-coupled estrogen receptor 1 (GPER1) has been proposed to mediate rapid responses to the steroid hormone estrogen. However, despite a strong interest in its potential role in cancer, whether it is indeed activated by estrogen and how this works remain controversial. To provide new tools to address these questions, we set out to determine the interactome of exogenously expressed GPER1. The combination of two orthogonal methods, namely APEX2-mediated proximity labeling and immunoprecipitation followed by mass spectrometry, gave us high-confidence results for 73 novel potential GPER1 interactors. We found that this GPER1 interactome is not affected by estrogen, a result that mirrors the constitutive activity of GPER1 in a functional assay with a Rac1 sensor. We specifically validated several hits highlighted by a gene ontology analysis. We demonstrate that CLPTM1 interacts with GPER1 and that PRKCSH and GANAB, the regulatory and catalytic subunits of α-glucosidase II, respectively, associate with CLPTM1 and potentially indirectly with GPER1. An imbalance in CLPTM1 levels induces nuclear association of GPER1, as does the overexpression of PRKCSH. Moreover, we show that the Ca2+ sensor STIM1 interacts with GPER1 and that upon STIM1 overexpression and depletion of Ca2+ stores, GPER1 becomes more nuclear. Thus, these new GPER1 interactors establish interesting connections with membrane protein maturation, trafficking, and calcium signaling.
Collapse
Affiliation(s)
- Maryam Ahmadian Elmi
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Genève, Switzerland
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Genève, Switzerland
| |
Collapse
|
13
|
Sommer B, González-Ávila G, Flores-Soto E, Montaño LM, Solís-Chagoyán H, Romero-Martínez BS. Phytoestrogen-Based Hormonal Replacement Therapy Could Benefit Women Suffering Late-Onset Asthma. Int J Mol Sci 2023; 24:15335. [PMID: 37895016 PMCID: PMC10607548 DOI: 10.3390/ijms242015335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
It has been observed that plasmatic concentrations of estrogens, progesterone, or both correlate with symptoms in asthmatic women. Fluctuations in female sex steroid concentrations during menstrual periods are closely related to asthma symptoms, while menopause induces severe physiological changes that might require hormonal replacement therapy (HRT), that could influence asthma symptoms in these women. Late-onset asthma (LOA) has been categorized as a specific asthmatic phenotype that includes menopausal women and novel research regarding therapeutic alternatives that might provide relief to asthmatic women suffering LOA warrants more thorough and comprehensive analysis. Therefore, the present review proposes phytoestrogens as a promising HRT that might provide these females with relief for both their menopause and asthma symptoms. Besides their well-recognized anti-inflammatory and antioxidant capacities, phytoestrogens activate estrogen receptors and promote mild hormone-like responses that benefit postmenopausal women, particularly asthmatics, constituting therefore a very attractive potential therapy largely due to their low toxicity and scarce side effects.
Collapse
Affiliation(s)
- Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias ‘Ismael Cosio Villegas’, Calzada de Tlalpan 4502, Colonia Sección XVI, Mexico City CP 14080, Mexico
| | - Georgina González-Ávila
- Laboratorio de Oncología Biomédica, Departamento de Enfermedades Crónico Degenerativas, Instituto Nacional de Enfermedades Respiratorias ‘Ismael Cosio Villegas’, Mexico City CP 14080, Mexico;
| | - Edgar Flores-Soto
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico; (E.F.-S.); (L.M.M.); (B.S.R.-M.)
| | - Luis M. Montaño
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico; (E.F.-S.); (L.M.M.); (B.S.R.-M.)
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca CP 62209, Morelos, Mexico;
| | - Bianca S. Romero-Martínez
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico; (E.F.-S.); (L.M.M.); (B.S.R.-M.)
| |
Collapse
|
14
|
Cirillo F, Talia M, Santolla MF, Pellegrino M, Scordamaglia D, Spinelli A, De Rosis S, Giordano F, Muglia L, Zicarelli A, Di Dio M, Rigiracciolo DC, Miglietta AM, Filippelli G, De Francesco EM, Belfiore A, Lappano R, Maggiolini M. GPER deletion triggers inhibitory effects in triple negative breast cancer (TNBC) cells through the JNK/c-Jun/p53/Noxa transduction pathway. Cell Death Discov 2023; 9:353. [PMID: 37749101 PMCID: PMC10520078 DOI: 10.1038/s41420-023-01654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/28/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
The G protein-coupled estrogen receptor (GPER) mediates estrogen action in different pathophysiological conditions, including cancer. GPER expression and signaling have been found to join in the progression of triple-negative breast cancer (TNBC), even though controversial data have been reported. In present study, we aimed at providing new mechanistic and biological discoveries knocking out (KO) GPER expression by CRISPR/Cas9 technology in MDA-MB-231 TNBC cells. GPER KO whole transcriptome respect to wild type (WT) MDA-MB-231 cells was determined through total RNA sequencing (RNA-Seq) and gene ontology (GO) enrichment analysis. We ascertained that anti-proliferative and pro-apoptotic gene signatures characterize GPER KO MDA-MB-231 cells. Thereafter, we determined that these cells exhibit a reduced proliferative, clonogenic and self-renewal potential along with an increased mitochondria-dependent apoptosis phenotype. In addition, we recognized that decreased cAMP levels trigger the JNK/c-Jun/p53/Noxa axis, which in turn orchestrates the pro-apoptotic effects observed in GPER KO cells. In accordance with these data, survival analyses in TNBC patients of the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset indicated that high Noxa expression correlates with improved outcomes in TNBC patients. Furthermore, we demonstrated that GPER KO in TNBC cells impairs the expression and secretion of the well-acknowledged GPER target gene named CTGF, thus resulting in the inhibition of migratory effects in cancer-associated fibroblasts (CAFs). Overall, the present study provides novel mechanistic and biological insights on GPER KO in TNBC cells suggesting that GPER may be considered as a valuable target in comprehensive therapeutic approaches halting TNBC progression.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Maria Francesca Santolla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Asia Spinelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Salvatore De Rosis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Azzurra Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Marika Di Dio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Damiano Cosimo Rigiracciolo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Regional Hospital Cosenza, 87100, Cosenza, Italy
| | | | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
15
|
Lam SSN, Shi Z, Ip CKM, Wong CKC, Wong AST. Environmental-relevant bisphenol A exposure promotes ovarian cancer stemness by regulating microRNA biogenesis. J Cell Mol Med 2023; 27:2792-2803. [PMID: 37610061 PMCID: PMC10494296 DOI: 10.1111/jcmm.17920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental xenobiotic impacting millions of people worldwide. BPA has long been proposed to promote ovarian carcinogenesis, but the detrimental mechanistic target remains unclear. Cancer stem cells (CSCs) are considered as the trigger of tumour initiation and progression. Here, we show for the first time that nanomolar (environmentally relevant) concentration of BPA can markedly increase the formation and expansion of ovarian CSCs concomitant. This effect is observed in both oestrogen receptor (ER)-positive and ER-defective ovarian cancer cells, suggesting that is independent of the classical ERs. Rather, the signal is mediated through alternative ER G-protein-coupled receptor 30 (GPR30), but not oestrogen-related receptor α and γ. Moreover, we report a novel role of BPA in the regulation of Exportin-5 that led to dysregulation of microRNA biogenesis through miR-21. The use of GPR30 siRNA or antagonist to inhibit GPR30 expression or activity, respectively, resulted in significant inhibition of ovarian CSCs. Similarly, the CSCs phenotype can be reversed by expression of Exportin-5 siRNA. These results identify for the first time non-classical ER and microRNA dysregulation as novel mediators of low, physiological levels of BPA function in CSCs that may underlie its significant tumour-promoting properties in ovarian cancer.
Collapse
Affiliation(s)
- Sophia S. N. Lam
- School of Biological SciencesUniversity of Hong KongHong KongChina
- Laboratory for Synthetic Chemistry and Chemical Biology LimitedHong Kong Science and Technology ParksHong KongChina
| | - Zeyu Shi
- School of Biological SciencesUniversity of Hong KongHong KongChina
- Laboratory for Synthetic Chemistry and Chemical Biology LimitedHong Kong Science and Technology ParksHong KongChina
| | - Carman K. M. Ip
- Cellular Screening CenterUniversity of ChicagoChicagoIllinoisUSA
| | | | - Alice S. T. Wong
- School of Biological SciencesUniversity of Hong KongHong KongChina
| |
Collapse
|
16
|
Mattiske D, Bernard P, Gradie PE, Behringer RR, Overbeek PA, O’Neill RJ, Phillips T, Tarulli G, Pask AJ. A long non-coding RNA Leat1 mediates the hormone responsiveness of EfnB2 during male urogenital development. RESEARCH SQUARE 2023:rs.3.rs-3098271. [PMID: 37461443 PMCID: PMC10350214 DOI: 10.21203/rs.3.rs-3098271/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The novel long non-coding RNA (lncRNA) Leat1 is extraordinarily conserved in both its location (syntenic with EfnB2, an essential gene in anogenital patterning) and sequence. Here we show that Leat1 is upregulated following the testosterone surge from the developing testis and directly interacts with EfnB2, positively regulating its expression. Leat1 expression is suppressed by estrogen, which in turn suppresses the expression of EfnB2. Moreover, the loss of Leat1 leads to reduced EfnB2, resulting in a severe hypospadias phenotype. The human LEAT1 gene is also co-expressed with EFNB2 in the developing human penis suggesting a conserved function for this gene in urethral closure. Together our data identify Leat1 as a novel molecular regulator of urethral closure and implicate it as a target of endocrine disruption in the etiology of hypospadias.
Collapse
Affiliation(s)
- Deidre Mattiske
- School of BioSciences, The University of Melbourne, Victoria. 3010. Australia
| | - Pascal Bernard
- School of BioSciences, The University of Melbourne, Victoria. 3010. Australia
| | - Paul E. Gradie
- School of BioSciences, The University of Melbourne, Victoria. 3010. Australia
| | - Richard R. Behringer
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, 77030. TX, USA
- Baylor College of Medicine. Houston, 77030. TX, USA
| | | | - Rachel J O’Neill
- Department of Molecular and Cell Biology and Institute for System Genomics. The University of Connecticut, Storrs, 06259 CT, USA
| | - Tiffany Phillips
- School of BioSciences, The University of Melbourne, Victoria. 3010. Australia
| | - Gerard Tarulli
- School of BioSciences, The University of Melbourne, Victoria. 3010. Australia
| | - Andrew J. Pask
- School of BioSciences, The University of Melbourne, Victoria. 3010. Australia
| |
Collapse
|
17
|
Pal U, Manjegowda MC, Singh N, Saikia S, Philip BS, Jyoti Kalita D, Kumar Rai A, Sarma A, Raphael V, Modi D, Chandra Kataki A, Mukund Limaye A. The G-protein-coupled estrogen receptor, a gene co-expressed with ERα in breast tumors, is regulated by estrogen-ERα signalling in ERα positive breast cancer cells. Gene 2023:147548. [PMID: 37279863 DOI: 10.1016/j.gene.2023.147548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/21/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
GPER is a seven transmembrane G-protein-coupled estrogen receptor that mediates rapid estrogen actions. Large volumes of data have revealed its association with clinicopathological variables in breast tumors, role in epidermal growth factor (EGF)-like effects of estrogen, potential as a therapeutic target or a prognostic marker, and involvement in endocrine resistance in the face of tamoxifen agonism. GPER cross-talks with estrogen receptor alpha (ERα) in cell culture models implicating its role the physiology of normal or transformed mammary epithelial cells. However, discrepancies in the literature have obfuscated the nature of their relationship, its significance, and the underlying mechanism. The purpose of this study was to assess the relationship between GPER, and ERα in breast tumors, to understand the mechanistic basis, and to gauge its clinical significance. We mined The Cancer Genome Atlas (TCGA)-BRCA data to examine the relationship between GPER and ERα expression. GPER mRNA, and protein expression were analyzed in ERα-positive or -negative breast tumors from two independent cohorts using immunohistochemistry, western blotting, or RT-qPCR. The Kaplan-Meier Plotter (KM) was employed for survival analysis. The influence of estrogen in vivo was studied by examining GPER expression levels in estrus or diestrus mouse mammary tissues, and the impact of 17β-estradiol (E2) administration in juvenile or adult mice. The effect of E2, or propylpyrazoletriol (PPT, an ERα agonist) stimulation on GPER expression was studied in MCF-7 and T47D cells, with or without tamoxifen or ERα knockdown. ERα-binding to the GPER locus was explored by analysing ChIP-seq data (ERP000380), in silico prediction of estrogen response elements, and chromatin immunoprecipitation (ChIP) assay. Clinical data revealed significant positive association between GPER and ERα expression in breast tumors. The median GPER expression in ERα-positive tumors was significantly higher than ERα-negative tumors. High GPER expression was significantly associated with longer overall survival (OS) of patients with ERα-positive tumors. In vivo experiments showed a positive effect of E2 on GPER expression. E2 induced GPER expression in MCF-7 and T47D cells; an effect mimicked by PPT. Tamoxifen or ERα-knockdown blocked the induction of GPER. Estrogen-mediated induction was associated with increased ERα occupancy in the upstream region of GPER. Furthermore, treatment with 17β-estradiol or PPT significantly reduced the IC50 of the GPER agonist (G1)-mediated loss of MCF-7 or T47D cell viability. In conclusion, GPER is positively associated with ERα in breast tumors, and induced by estrogen-ERα signalling axis. Estrogen-mediated induction of GPER makes the cells more responsive to GPER ligands. More in-depth studies are warranted to establish the significance of GPER-ERα co-expression, and their interplay in breast tumor development, progression, and treatment.
Collapse
Affiliation(s)
- Uttariya Pal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Mohan C Manjegowda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai 400012, India
| | - Snigdha Saikia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Betty S Philip
- Department of Pathology, North Eastern Indira Gandhi Regional Institute of Health & Medical Sciences, Shillong 793018, Meghalaya, India
| | - Deep Jyoti Kalita
- Department of Surgical Oncology, Dr. Bhubaneshwar Borooah Cancer Institute, Guwahati 781016, Assam, India
| | - Avdhesh Kumar Rai
- DBT Centre for Molecular Biology and Cancer Research, Dr. Bhubaneshwar Borooah Cancer Institute, Guwahati 781016, Assam, India
| | - Anupam Sarma
- Department of Oncopathology, Dr. Bhubaneshwar Borooah Cancer Institute, Guwahati 781016, Assam, India
| | - Vandana Raphael
- Department of Pathology, North Eastern Indira Gandhi Regional Institute of Health & Medical Sciences, Shillong 793018, Meghalaya, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai 400012, India
| | - Amal Chandra Kataki
- Department of Gynecologic Oncology, Dr. Bhubaneshwar Borooah Cancer Institute, Guwahati 781016, Assam, India
| | - Anil Mukund Limaye
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
18
|
Prossnitz ER, Barton M. The G protein-coupled oestrogen receptor GPER in health and disease: an update. Nat Rev Endocrinol 2023:10.1038/s41574-023-00822-7. [PMID: 37193881 DOI: 10.1038/s41574-023-00822-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 05/18/2023]
Abstract
Oestrogens and their receptors contribute broadly to physiology and diseases. In premenopausal women, endogenous oestrogens protect against cardiovascular, metabolic and neurological diseases and are involved in hormone-sensitive cancers such as breast cancer. Oestrogens and oestrogen mimetics mediate their effects via the cytosolic and nuclear receptors oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ) and membrane subpopulations as well as the 7-transmembrane G protein-coupled oestrogen receptor (GPER). GPER, which dates back more than 450 million years in evolution, mediates both rapid signalling and transcriptional regulation. Oestrogen mimetics (such as phytooestrogens and xenooestrogens including endocrine disruptors) and licensed drugs such as selective oestrogen receptor modulators (SERMs) and downregulators (SERDs) also modulate oestrogen receptor activity in both health and disease. Following up on our previous Review of 2011, we herein summarize the progress made in the field of GPER research over the past decade. We will review molecular, cellular and pharmacological aspects of GPER signalling and function, its contribution to physiology, health and disease, and the potential of GPER to serve as a therapeutic target and prognostic indicator of numerous diseases. We also discuss the first clinical trial evaluating a GPER-selective drug and the opportunity of repurposing licensed drugs for the targeting of GPER in clinical medicine.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
- Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
19
|
Huang S, Qi B, Yang L, Wang X, Huang J, Zhao Y, Hu Y, Xiao W. Phytoestrogens, novel dietary supplements for breast cancer. Biomed Pharmacother 2023; 160:114341. [PMID: 36753952 DOI: 10.1016/j.biopha.2023.114341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
While endocrine therapy is considered as an effective way to treat breast cancer, it still faces many challenges, such as drug resistance and individual discrepancy. Therefore, novel preventive and therapeutic modalities are still in great demand to decrease the incidence and mortality rate of breast cancer. Numerous studies suggested that G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor, is a potential target for breast cancer prevention and treatment. It was also shown that not only endogenous estrogens can activate GPERs, but many phytoestrogens can also function as selective estrogen receptor modulators (SERMs) to interact GPERs. In this review, we discussed the possible mechanisms of GPERs pathways and shed a light of developing novel phytoestrogens based dietary supplements against breast cancers.
Collapse
Affiliation(s)
- Shuo Huang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Baowen Qi
- South China Hospital of Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen, 518116, P. R. China; BioCangia Inc., 205 Torbay Road, Markham, ON L3R 3W4, Canada
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Xue Wang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ya Zhao
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Yonghe Hu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| |
Collapse
|
20
|
Promising Perspectives of the Antiproliferative GPER Inverse Agonist ERα17p in Breast Cancer. Cells 2023; 12:cells12040653. [PMID: 36831322 PMCID: PMC9954065 DOI: 10.3390/cells12040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The estrogen receptor α (ERα) corresponds to a large platform in charge of the recruitment of a panel of molecules, including steroids and related heterocyclic derivatives, oligonucleotides, peptides and proteins. Its 295-311 region is particularly targeted by post-translational modifications, suggesting that it could be crucial for the control of transcription. In addition to anionic phospholipids, the ERα 295-311 fragment interacts with Ca2+-calmodulin, the heat shock protein 70 (Hsp70), ERα and possibly importins. More recently, we have demonstrated that it is prone to interacting with the G-protein-coupled estrogen receptor (GPER). In light of these observations, the pharmacological profile of the corresponding peptide, namely ERα17p, has been explored in breast cancer cells. Remarkably, it exerts apoptosis through GPER and induces a significant decrease (more than 50%) of the size of triple-negative breast tumor xenografts in mice. Herein, we highlight not only the promising therapeutic perspectives in the use of the first peptidic GPER modulator ERα17p, but also the opportunity to modulate GPER for clinical purposes.
Collapse
|
21
|
Lappano R, Maggiolini M. Role of the G Protein-Coupled Receptors in Cancer and Stromal Cells: From Functions to Novel Therapeutic Perspectives. Cells 2023; 12:cells12040626. [PMID: 36831293 PMCID: PMC9954232 DOI: 10.3390/cells12040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are transmembrane signal transducers that regulate a plethora of physiological and pathological processes [...].
Collapse
|
22
|
Kubota S, Kawaki H, Perbal B, Takigawa M, Kawata K, Hattori T, Nishida T. Do not overwork: cellular communication network factor 3 for life in cartilage. J Cell Commun Signal 2023:10.1007/s12079-023-00723-4. [PMID: 36745317 DOI: 10.1007/s12079-023-00723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 02/07/2023] Open
Abstract
Cellular communication network factor (CCN) 3, which is one of the founding members of the CCN family, displays diverse functions. However, this protein generally represses the proliferation of a variety of cells. Along with skeletal development, CCN3 is produced in cartilaginous anlagen, growth plate cartilage and epiphysial cartilage. Interestingly, CCN3 is drastically induced in the growth plates of mice lacking CCN2, which promotes endochondral ossification. Notably, chondrocytes in these mutant mice with elevated CCN3 production also suffer from impaired glycolysis and energy metabolism, suggesting a critical role of CCN3 in cartilage metabolism. Recently, CCN3 was found to be strongly induced by impaired glycolysis, and in our study, we located an enhancer that mediated CCN3 regulation via starvation. Subsequent investigations specified regulatory factor binding to the X-box 1 (RFX1) as a transcription factor mediating this CCN3 regulation. Impaired glycolysis is a serious problem, resulting in an energy shortage in cartilage without vasculature. CCN3 produced under such starved conditions restricts energy consumption by repressing cell proliferation, leading chondrocytes to quiescence and survival. This CCN3 regulatory system is indicated to play an important role in articular cartilage maintenance, as well as in skeletal development. Furthermore, CCN3 continues to regulate cartilage metabolism even during the aging process, probably utilizing this regulatory system. Altogether, CCN3 seems to prevent "overwork" by chondrocytes to ensure their sustainable life in cartilage by sensing energy metabolism. Similar roles are suspected to exist in relation to systemic metabolism, since CCN3 is found in the bloodstream.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | | | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences/Dental School, Okayama, Japan
| | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences/Dental School, Okayama, Japan
| |
Collapse
|
23
|
Yang X, Jiang H, Ning J, Zhang S, Cai Y, Wang L, Yang J, Xu G, Chen W, Wang J. Inhibition of GPR30 sensitized gefitinib to NSCLC cells via regulation of epithelial-mesenchymal transition. Int J Immunopathol Pharmacol 2023; 37:3946320231210737. [PMID: 37890097 PMCID: PMC10612443 DOI: 10.1177/03946320231210737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Introduction: G-protein coupled receptor 30 (GPR30) is associated with cell metastasis and drug resistance in many different cancer cells. The present study aimed to reveal the sensitivity of GPR30 to gefitinib in non-small cell lung cancer (NSCLC) cells.Methods: Cell viability and proliferation were detected using cell counting kit 8 and 5-ethynyl-2'-deoxyuridine assays, respectively. Western blotting and quantitative real-time reverse transcription PCR were used to detect GPR30 or epithelial-mesenchyme transition (EMT)-related mRNA and protein expression.Results: The results showed that GPR30 expression is associated with gefitinib sensitivity. G15, as a GPR30 antagonist, reduced GPR30 expression. We chose the maximum concentration of G15 with minimal cytotoxicity to detect cell viability after combined treatment with gefitinib in NSCLC cells, which indicated that G15 could increase sensitivity to gefitinib. However, the effect of G15 on gefitinib sensitivity disappeared after treatment with a small interfering RNA targeting GPR30. Further research showed that G15 or GPR30 siRNA treatment could upregulate E-cadherin and downregulate vimentin levels.Conclusion: Taken together, these data suggested that G15 could enhance NSCLC sensitivity to gefitinib by inhibition of GPR30 and EMT.
Collapse
Affiliation(s)
- Xiaomin Yang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongyan Jiang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiang Ning
- Department of Pharmacy, Zi Yang Street Community Health Service Center, Hangzhou, Zhejiang, China
| | - Shufen Zhang
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Ying Cai
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Liang Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Jinsong Yang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guodong Xu
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jianfei Wang
- Department of Pharmacy, Tongxiang Third People's Hospital, Tongxiang, Zhejiang, China
| |
Collapse
|
24
|
Muhammad A, Forcados GE, Yusuf AP, Abubakar MB, Sadiq IZ, Elhussin I, Siddique MAT, Aminu S, Suleiman RB, Abubakar YS, Katsayal BS, Yates CC, Mahavadi S. Comparative G-Protein-Coupled Estrogen Receptor (GPER) Systems in Diabetic and Cancer Conditions: A Review. Molecules 2022; 27:molecules27248943. [PMID: 36558071 PMCID: PMC9786783 DOI: 10.3390/molecules27248943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
For many patients, diabetes Mellitus and Malignancy are frequently encountered comorbidities. Diabetes affects approximately 10.5% of the global population, while malignancy accounts for 29.4 million cases each year. These troubling statistics indicate that current treatment approaches for these diseases are insufficient. Alternative therapeutic strategies that consider unique signaling pathways in diabetic and malignancy patients could provide improved therapeutic outcomes. The G-protein-coupled estrogen receptor (GPER) is receiving attention for its role in disease pathogenesis and treatment outcomes. This review aims to critically examine GPER' s comparative role in diabetes mellitus and malignancy, identify research gaps that need to be filled, and highlight GPER's potential as a therapeutic target for diabetes and malignancy management. There is a scarcity of data on GPER expression patterns in diabetic models; however, for diabetes mellitus, altered expression of transport and signaling proteins has been linked to GPER signaling. In contrast, GPER expression in various malignancy types appears to be complex and debatable at the moment. Current data show inconclusive patterns of GPER expression in various malignancies, with some indicating upregulation and others demonstrating downregulation. Further research should be conducted to investigate GPER expression patterns and their relationship with signaling pathways in diabetes mellitus and various malignancies. We conclude that GPER has therapeutic potential for chronic diseases such as diabetes mellitus and malignancy.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | | | - Abdurrahman Pharmacy Yusuf
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Minna P.M.B. 65, Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
- Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
| | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Isra Elhussin
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Md Abu Talha Siddique
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Rabiatu Bako Suleiman
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Yakubu Saddeeq Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Babangida Sanusi Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Clayton C Yates
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sunila Mahavadi
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
25
|
Li X, He S, Xiao H, He TT, Zhang JD, Luo ZR, Ma JZ, Yin YL, Luo L, Cao LY. Neonicotinoid insecticides promote breast cancer progression via G protein-coupled estrogen receptor: In vivo, in vitro and in silico studies. ENVIRONMENT INTERNATIONAL 2022; 170:107568. [PMID: 36240625 DOI: 10.1016/j.envint.2022.107568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/02/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Neonicotinoid insecticides (NIs) have been widely detected in environmental media and human body with concentrations reaching hundreds of nanomolar to micromolar levels. However, the information about their human health toxicology and mechanism is deficient. Previous studies have implied that NIs might exert estrogenic disruption and promote breast cancer progression, but the molecular mechanism is unclear, especially the molecular initiating event. G protein-coupled estrogen receptor (GPER), as a candidate therapeutic target, plays vital roles in the development of breast cancer. This work aimed to reveal the potential mechanism through GPER pathway. Firstly, we screened the activities of seven most common NIs on GPER signal pathway by calcium mobilization assay. Clothianidin, acetamiprid (ACE), and dinotefuran activated GPER most potently and ACE displayed the highest agonistic activity with the lowest observed effective concentration (LOEC) of 1 μM. The molecular docking and dynamics simulation showed favored interaction trend between the NIs and GPER. The three NIs with GPER activity induced 4T1 breast cancer cells migration and ACE showed the highest potency with LOEC of 100 nM. ACE also induced 4T1 cells proliferation at high concentration of 50 μM and up-regulated GPER expression in a dose-dependent manner. We speculated that both the induction effects of ACE on 4T1 cells proliferation and migration might be owing to the activation and up-regulation of GPER. By using 4T1-Luc cells injected orthotopic tumor model, we found that ACE also promoted in-situ breast cancer growth and lung metastasis in normal mouse dependent on GPER. However, ACE only promoted in-situ breast cancer growth through GPER but not lung metastasis in ovariectomized mice, implying that the ACE-induced lung metastasis should be related to endogenous estrogen from ovary. Overall, we demonstrated that NIs promoted breast cancer progression via GPER pathway at human related exposure levels and their female health risks need urgent concerns.
Collapse
Affiliation(s)
- Xin Li
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Sen He
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Han Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ting-Ting He
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Jia-Da Zhang
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Zi-Rui Luo
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Jie-Zhi Ma
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha 410013, China
| | - Yu-Long Yin
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Lin-Ying Cao
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China.
| |
Collapse
|
26
|
Li S, Chen J, Chen X, Yu J, Guo Y, Li M, Pu X. Therapeutic and prognostic potential of GPCRs in prostate cancer from multi-omics landscape. Front Pharmacol 2022; 13:997664. [PMID: 36110544 PMCID: PMC9468875 DOI: 10.3389/fphar.2022.997664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer (PRAD) is a common and fatal malignancy. It is difficult to manage clinically due to drug resistance and poor prognosis, thus creating an urgent need for novel therapeutic targets and prognostic biomarkers. Although G protein-coupled receptors (GPCRs) have been most attractive for drug development, there have been lack of an exhaustive assessment on GPCRs in PRAD like their molecular features, prognostic and therapeutic values. To close this gap, we herein systematically investigate multi-omics profiling for GPCRs in the primary PRAD by analyzing somatic mutations, somatic copy-number alterations (SCNAs), DNA methylation and mRNA expression. GPCRs exhibit low expression levels and mutation frequencies while SCNAs are more prevalent. 46 and 255 disease-related GPCRs are identified by the mRNA expression and DNA methylation analysis, respectively, complementing information lack in the genome analysis. In addition, the genomic alterations do not exhibit an observable correlation with the GPCR expression, reflecting the complex regulatory processes from DNA to RNA. Conversely, a tight association is observed between the DNA methylation and mRNA expression. The virtual screening and molecular dynamics simulation further identify four potential drugs in repositioning to PRAD. The combination of 3 clinical characteristics and 26 GPCR molecular features revealed by the transcriptome and genome exhibit good performance in predicting progression-free survival in patients with the primary PRAD, providing candidates as new biomarkers. These observations from the multi-omics analysis on GPCRs provide new insights into the underlying mechanism of primary PRAD and potential of GPCRs in developing therapeutic strategies on PRAD.
Collapse
Affiliation(s)
- Shiqi Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu, China
| | - Xin Chen
- College of Chemistry, Sichuan University, Chengdu, China
| | - Jin Yu
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, United States
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, China
- *Correspondence: Xuemei Pu, ; Menglong Li,
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, China
- *Correspondence: Xuemei Pu, ; Menglong Li,
| |
Collapse
|
27
|
Xu T, Ma D, Chen S, Tang R, Yang J, Meng C, Feng Y, Liu L, Wang J, Luo H, Yu K. High GPER expression in triple-negative breast cancer is linked to pro-metastatic pathways and predicts poor patient outcomes. NPJ Breast Cancer 2022; 8:100. [PMID: 36042244 PMCID: PMC9427744 DOI: 10.1038/s41523-022-00472-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive and heterogeneous disease with few effective targeted therapies and precision therapeutic options over a long period. It is generally considered that TNBC is an estrogen-independent breast cancer, while a new estrogen receptor, namely G protein-coupled estrogen receptor (GPER), is demonstrated to mediate estrogenic actions in TNBC. Based on our transcriptomic analysis, expression of GPER was correlated with clinicopathological variables and survival of 360 TNBC patients. GPER expression at mRNA level was significantly correlated with immunohistochemistry scoring in 12 randomly chosen samples. According to the cutoff value, 26.4% (95/360) of patients showed high GPER expression and significant correlation with the mRNA subtype of TNBC (P = 0.001), total metastatic events (P = 0.019) and liver metastasis (P = 0.011). In quantitative comparison, GPER abundance is correlated with the high-risk subtype of TNBC. At a median follow-up interval of 67.1 months, a significant trend towards reduced distant metastasis-free survival (DMFS) (P = 0.014) was found by Kaplan–Meier analysis in patients with high GPER expression. Furthermore, univariate analysis confirmed that GPER was a significant prognostic factor for DMFS in TNBC patients. Besides, high GPER expression was significantly linked to the worse survival in patients with lymph node metastasis, TNM stage III as well as nuclear grade G3 tumors. Transcriptome-based bioinformatics analysis revealed that GPER was linked to pro-metastatic pathways in our cohort. These results may supply new insights into GPER-mediated estrogen carcinogenesis in TNBC, thus providing a potential strategy for endocrine therapy of TNBC.
Collapse
Affiliation(s)
- Ting Xu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400010, People's Republic of China
| | - Ding Ma
- Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Sheng Chen
- Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Rui Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jianling Yang
- Department of Thyroid and Breast Surgery, Weihai Municipal Hospital, 70 Heping Road, Huancui District, Weihai, Shandong, 264200, People's Republic of China
| | - Chunhui Meng
- Department of Thyroid and Breast Surgery, Heze Municipal Hospital, 2888 Caozhou West Road, Heze, Shandong, 274031, People's Republic of China
| | - Yang Feng
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400010, People's Republic of China
| | - Li Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400010, People's Republic of China
| | - Jiangfen Wang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030000, People's Republic of China
| | - Haojun Luo
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400010, People's Republic of China.
| | - Keda Yu
- Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
28
|
Min JY, Lee GH, Khanal T, Jin SW, Lee SY, Kim HG, Hyon JY, Chung YH, Ha SK, Han EH, Jeong HG. Upregulation of CYP1B1 by hypoxia is mediated by ERα activation in breast cancer cells. Am J Cancer Res 2022; 12:2798-2816. [PMID: 35812067 PMCID: PMC9251700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023] Open
Abstract
Endocrine therapy for breast cancer often leads to drug resistance and tumor recurrence; tumor hypoxia is also associated with mortality and tumor relapse. Cytochrome P450 1B1 (CYP1B1) regulates estrogen metabolism in breast cells and is known to be overexpressed in breast cancer tissue. Although the individual association of hypoxia-induced hypoxia-inducible factor-1-alpha (HIF-1α) and CYP1B1 with tumorigenesis is well known, the association between HIF-1α and CYP1B1 leading to tumorigenesis has not been investigated. Here, we investigated the correlation between hypoxia and CYP1B1 expression in breast cancer cells for tumorigenesis-related mechanisms. Hypoxia was induced in the human breast cancer cell lines MCF-7 (Er-positive) and MDA-MB-231 (triple-negative) and the normal breast epithelial cell line MCF10A; these cell lines were then subjected to immunoblotting, transient transfection, luciferase assays, gene silencing using small interfering RNA, polymerase chain reaction analysis, chromatin immunoprecipitation, co-immunoprecipitation, and mammalian two-hybrid assays. Furthermore, immunofluorescence analysis of the tumor microarrays was performed, and the pub2015 and the Cancer Genome Atlas patient datasets were analyzed. HIF-1α expression in response to hypoxia occurred in both normal and breast cancer cells, whereas CYP1B1 was induced only in estrogen receptor α (ERα)-positive breast cancer cells under hypoxia. HIF-1α activated ERα through direct binding and in a ligand-independent manner to promote CYP1B1 expression. Therefore, we suggested the mechanism by which hypoxia and ER-positivity orchestrate breast cancer relapse.
Collapse
Affiliation(s)
- Jin Young Min
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI)Cheongju 28119, South Korea
- Department of Toxicology, College of Pharmacy, Chungnam National UniversityDaejeon 34133, South Korea
| | - Gi Ho Lee
- Department of Toxicology, College of Pharmacy, Chungnam National UniversityDaejeon 34133, South Korea
| | - Tilak Khanal
- Department of Toxicology, College of Pharmacy, Chungnam National UniversityDaejeon 34133, South Korea
| | - Sun Woo Jin
- Department of Toxicology, College of Pharmacy, Chungnam National UniversityDaejeon 34133, South Korea
| | - Sang-Yeop Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI)Cheongju 28119, South Korea
| | - Hyung Gyun Kim
- Department of Research Planning Team, Mokpo Marine Food-industry Research CenterMokpo 58621, South Korea
| | - Ju-Yong Hyon
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI)Cheongju 28119, South Korea
| | - Young-Ho Chung
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI)Cheongju 28119, South Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National UniversityDaejeon 34134, South Korea
| | - Sang Keun Ha
- Research Division of Food Functionality, Korea Food Research Institute (KFRI)Jeollabuk-do 55365, South Korea
- Division of Food Biotechnology, University of Science and TechnologyDaejeon 34113, South Korea
| | - Eun Hee Han
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI)Cheongju 28119, South Korea
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National UniversityDaejeon 34133, South Korea
| |
Collapse
|
29
|
Kubota S, Kawata K, Hattori T, Nishida T. Molecular and Genetic Interactions between CCN2 and CCN3 behind Their Yin-Yang Collaboration. Int J Mol Sci 2022; 23:ijms23115887. [PMID: 35682564 PMCID: PMC9180607 DOI: 10.3390/ijms23115887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular communication network factor (CCN) 2 and 3 are the members of the CCN family that conduct the harmonized development of a variety of tissues and organs under interaction with multiple biomolecules in the microenvironment. Despite their striking structural similarities, these two members show contrastive molecular functions as well as temporospatial emergence in living tissues. Typically, CCN2 promotes cell growth, whereas CCN3 restrains it. Where CCN2 is produced, CCN3 disappears. Nevertheless, these two proteins collaborate together to execute their mission in a yin–yang fashion. The apparent functional counteractions of CCN2 and CCN3 can be ascribed to their direct molecular interaction and interference over the cofactors that are shared by the two. Recent studies have revealed the mutual negative regulation systems between CCN2 and CCN3. Moreover, the simultaneous and bidirectional regulatory system of CCN2 and CCN3 is also being clarified. It is of particular note that these regulations were found to be closely associated with glycolysis, a fundamental procedure of energy metabolism. Here, the molecular interplay and metabolic gene regulation that enable the yin–yang collaboration of CCN2 and CCN3 typically found in cartilage development/regeneration and fibrosis are described.
Collapse
|
30
|
Drouault M, Delalande C, Bouraïma-Lelong H, Seguin V, Garon D, Hanoux V. Deoxynivalenol enhances estrogen receptor alpha-induced signaling by ligand-independent transactivation. Food Chem Toxicol 2022; 165:113127. [DOI: 10.1016/j.fct.2022.113127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022]
|
31
|
Fu M, Peng D, Lan T, Wei Y, Wei X. Multifunctional regulatory protein connective tissue growth factor (CTGF): A potential therapeutic target for diverse diseases. Acta Pharm Sin B 2022; 12:1740-1760. [PMID: 35847511 PMCID: PMC9279711 DOI: 10.1016/j.apsb.2022.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Connective tissue growth factor (CTGF), a multifunctional protein of the CCN family, regulates cell proliferation, differentiation, adhesion, and a variety of other biological processes. It is involved in the disease-related pathways such as the Hippo pathway, p53 and nuclear factor kappa-B (NF-κB) pathways and thus contributes to the developments of inflammation, fibrosis, cancer and other diseases as a downstream effector. Therefore, CTGF might be a potential therapeutic target for treating various diseases. In recent years, the research on the potential of CTGF in the treatment of diseases has also been paid more attention. Several drugs targeting CTGF (monoclonal antibodies FG3149 and FG3019) are being assessed by clinical or preclinical trials and have shown promising outcomes. In this review, the cellular events regulated by CTGF, and the relationships between CTGF and pathogenesis of diseases are systematically summarized. In addition, we highlight the current researches, focusing on the preclinical and clinical trials concerned with CTGF as the therapeutic target.
Collapse
|
32
|
Shi D, Li H, Zhang Z, He Y, Chen M, Sun L, Zhao P. Cryptotanshinone inhibits proliferation and induces apoptosis of breast cancer MCF-7 cells via GPER mediated PI3K/AKT signaling pathway. PLoS One 2022; 17:e0262389. [PMID: 35061800 PMCID: PMC8782479 DOI: 10.1371/journal.pone.0262389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled estrogen receptor (GPER) was reported to be a potential target in the breast cancer therapy. This study aimed to illuminate the function of GPER and its mediated PI3K/AKT pathway in cryptotanshinone (CPT) inducing cell apoptosis and antiproliferation effect on GPER positive breast cancer MCF-7 cells. Cell proliferation was tested by MTT assay. Apoptosis rates were tested by Annexin V-FITC/PI double staining and the cell cycle was researched by flow cytometry. Autodock vina was applied to make molecular docking between CPT or estradiol and GPER. siRNA technique and GPER specific agonist G-1 or antagonist G-15 were applied to verify the mediated function of GPER. Apoptosis and cell cycle related proteins, as well as the key proteins on PI3K/AKT signaling pathway were detected by western blot. The results indicated that CPT could exert antiproliferation effects by arresting cell cycle in G2/M phase and downregulating the expression of cyclin D, cyclin B and cyclin A. Besides, apoptosis induced by CPT was observed. CPT might be a novel GPER binding compounds. Significantly, suppression of PI3K/AKT signal transduction by CPT was further increased by G-1 and decreased by G-15. The study revealed that the effect of antiproliferation and apoptosis treating with CPT on MCF-7 cells might be through the downregulation of PI3K/AKT pathway mediated by activated GPER.
Collapse
Affiliation(s)
- Danning Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hongbo Li
- Department of Gynecology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi, 712000, China
| | - Zeye Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yueshuang He
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liping Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Piwen Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
- * E-mail:
| |
Collapse
|
33
|
Lappano R, Todd LA, Stanic M, Cai Q, Maggiolini M, Marincola F, Pietrobon V. Multifaceted Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers (Basel) 2022; 14:539. [PMID: 35158804 PMCID: PMC8833523 DOI: 10.3390/cancers14030539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Lauren A. Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Mia Stanic
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA 90404, USA; (Q.C.); (F.M.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | | | | |
Collapse
|
34
|
Marcos X, Méndez-Luna D, Fragoso-Vázquez M, Rosales-Hernández M, Correa-Basurto J. Anti-breast cancer activity of novel compounds loaded in polymeric mixed micelles: Characterization and in vitro studies. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Balthazart J. Membrane-initiated actions of sex steroids and reproductive behavior: A historical account. Mol Cell Endocrinol 2021; 538:111463. [PMID: 34582978 DOI: 10.1016/j.mce.2021.111463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/25/2023]
Abstract
It was assumed for a long time that sex steroids are activating reproductive behaviors by the same mechanisms that produce their morphological and physiological effects in the periphery. However during the last few decades an increasing number of examples were identified where behavioral effects of steroids were just too fast to be mediated via changes in DNA transcription. This progressively forced behavioral neuroendocrinologists to recognize that part of the effects of steroids on behavior are mediated by membrane-initiated events. In this review we present a selection of these early data that changed the conceptual landscape and we provide a summary the different types of membrane-associated receptors (estrogens, androgens and progestagens receptors) that are playing the most important role in the control of reproductive behaviors. Then we finally describe in more detail three separate behavioral systems in which membrane-initiated events have clearly been established to contribute to behavior control.
Collapse
|
36
|
Ahmed KA, Hasib TA, Paul SK, Saddam M, Mimi A, Saikat ASM, Faruque HA, Rahman MA, Uddin MJ, Kim B. Potential Role of CCN Proteins in Breast Cancer: Therapeutic Advances and Perspectives. Curr Oncol 2021; 28:4972-4985. [PMID: 34940056 PMCID: PMC8700172 DOI: 10.3390/curroncol28060417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
CCNs are a specific type of matricellular protein, which are essential signaling molecules, and play multiple roles in multicellular eukaryotes. This family of proteins consists of six separate members, which exist only in vertebrates. The architecture of CCN proteins is multi-modular comprising four distinct modules. CCN Proteins achieve their primary functional activities by binding with several integrin7 receptors. The CCN family has been linked to cell adhesion, chemotaxis and migration, mitogenesis, cell survival, angiogenesis, differentiation, tumorigenesis, chondrogenesis, and wound healing, among other biological interactions. Breast cancer is the most commonly diagnosed cancer worldwide and CCN regulated breast cancer stands at the top. A favorable or unfavorable association between various CCNs has been reported in patients with breast carcinomas. The pro-tumorigenic CCN1, CCN2, CCN3, and CCN4 may lead to human breast cancer, although the anti-tumorigenic actions of CCN5 and CCN6 are also present. Several studies have been conducted on CCN proteins and cancer in recent years. CCN1 and CCN3 have been shown to exhibit a dual nature of tumor inhibition and tumor suppression to some extent in quiet recent time. Pharmacological advances in treating breast cancer by targeting CCN proteins are also reported. In our study, we intend to provide an overview of these research works while keeping breast cancer in focus. This information may facilitate early diagnosis, early prognosis and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Kazi Ahsan Ahmed
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
- Bio-Science Research Initiative, Gopalganj 8100, Bangladesh
| | - Tasnin Al Hasib
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
- Bio-Science Research Initiative, Gopalganj 8100, Bangladesh
| | - Shamrat Kumar Paul
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
- Bio-Science Research Initiative, Gopalganj 8100, Bangladesh
| | - Md. Saddam
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
- Bio-Science Research Initiative, Gopalganj 8100, Bangladesh
| | - Afsana Mimi
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
| | - Hasan Al Faruque
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Md. Ataur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (M.A.R.); (M.J.U.); (B.K.)
| | - Md. Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Women’s University, Seoul 03760, Korea
- Correspondence: (M.A.R.); (M.J.U.); (B.K.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (M.A.R.); (M.J.U.); (B.K.)
| |
Collapse
|
37
|
Hirao-Suzuki M, Nagase K, Suemori T, Tsutsumi K, Shigemori E, Tanaka M, Takiguchi M, Sugihara N, Yoshihara S, Takeda S. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) Targets Estrogen Receptor β, to Evoke the Resistance of Human Breast Cancer MCF-7 Cells to G-1, an Agonist for G Protein-Coupled Estrogen Receptor 1. Biol Pharm Bull 2021; 44:1524-1529. [PMID: 34602561 DOI: 10.1248/bpb.b21-00417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bisphenol A (BPA) has been shown to induce the activation of nuclear estrogen receptor α/β (ERα/β) in both in vitro and in vivo settings. We originally obtained a 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a possible active metabolite of BPA, strongly activating the ERs-mediated transcription in MCF-7 cells with an EC50 of 2.8 nM (i.e., BPA's EC50 = 519 nM). Environmental estrogens can also target G protein-coupled estrogen receptor 1 (GPER1), a membrane-type ER. However, the effects of BPA/MBP on GPER1, have not yet been fully resolved. In this study, we used MCF-7, a ERα/ERβ/GPER1-positive human breast cancer cell line, as a model to investigate the effects of the exposure to BPA or MBP. Our results revealed that at concentrations below 1 nM MBP, but not BPA, downregulates the expression of GPER1 mRNA via upregulated ERβ, and the MCF-7 cells pre-treated with MBP display resistance to GPER1 agonist G-1-mediated anti-proliferative effects. Because GPER1 can act as a tumor suppressor in several types of cancer including breast cancer, the importance of MBP-mediated decrease in GPER1 expression in breast cancer cells is discussed.
Collapse
Affiliation(s)
- Masayo Hirao-Suzuki
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Keita Nagase
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Tatsuya Suemori
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Kana Tsutsumi
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Egao Shigemori
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Michitaka Tanaka
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Masufumi Takiguchi
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Narumi Sugihara
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| | - Shin'ichi Yoshihara
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Shuso Takeda
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
38
|
Liu L, Liu S, Luo H, Chen C, Zhang X, He L, Tu G. GPR30-mediated HMGB1 upregulation in CAFs induces autophagy and tamoxifen resistance in ERα-positive breast cancer cells. Aging (Albany NY) 2021; 13:16178-16197. [PMID: 34182538 PMCID: PMC8266353 DOI: 10.18632/aging.203145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/17/2021] [Indexed: 01/30/2023]
Abstract
Tamoxifen (TAM) resistance constitutes a challenge in managing estrogen receptor (ER)α+ breast cancer patients. G-protein-coupled estrogen receptor (GPR30/GPER), which reportedly initiates TAM resistance in ERα+/ GPR30+ breast cancers, is detected in the breast cancer microenvironment, especially cancer associated fibroblasts (CAFs). Herein, considering that GPR30 mediates transcriptional regulation in different cell backgrounds, a microarray strategy was applied in immortalized CAFs derived from primary breast cancer samples, resulting in the identification of 165 GPR30 target genes, among which HMGB1 was confirmed to be upregulated by 17-β estradiol(E2)- and TAM-triggered GPR30 activation in CAFs. Activated GPR30 increased extracellular HMGB1 secretion by CAFs, which was reduced by blocking PI3K/AKT signaling using G15 or LY294002. GPR30-induced HMGB1 upregulation triggered MEK/ERK signaling, leading to increased autophagic behavior to protect cancer cells from TAM-induced apoptosis, mimicking the recombinant HMGB1-mediated increase in cancer cell resistance potential to TAM. MEK/ERK signaling blockage by U0126 decreased the autophagic behavior and resistance ability of cancer cells to TAM. CAF-expressed GPR30 induced TAM resistance via HMGB1 in vivo. Overall, TAM upregulated HMGB1 expression and secretion in CAFs via GPR30/PI3K/AKT signaling, and the secreted HMGB1 induced autophagy to enhance TAM resistance in MCF-7 cells in an ERK-dependent manner. Thus, targeting GPR30 and downstream cascades may be an effective strategy to attenuate the resistance of ERα-positive breast tumors to endocrine therapy.
Collapse
Affiliation(s)
- Li Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Yu-Zhong 400016, Chongqing, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Yu-Zhong 400016, Chongqing, China
| | - Haojun Luo
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chenxi Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Yu-Zhong 400016, Chongqing, China
| | - Xiaoling Zhang
- Maternal and Child Care Center Service of Kaizhou, Chongqing 405400, China
| | - Lin He
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Yu-Zhong 400016, Chongqing, China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Yu-Zhong 400016, Chongqing, China
| |
Collapse
|
39
|
Kim H, Son S, Ko Y, Lee JE, Kim S, Shin I. YAP, CTGF and Cyr61 are overexpressed in tamoxifen-resistant breast cancer and induce transcriptional repression of ERα. J Cell Sci 2021; 134:269035. [PMID: 34096606 DOI: 10.1242/jcs.256503] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/22/2021] [Indexed: 11/20/2022] Open
Abstract
About 70% of breast cancers overexpress estrogen receptor α (ERα, encoded by ESR1). Tamoxifen, a competitive inhibitor of estrogen that binds to ER, has been widely used as a treatment for ER-positive breast cancer. However, 20-30% of breast cancer is resistant to tamoxifen treatment. The mechanisms underlying tamoxifen resistance remain elusive. We found that Yes-associated protein (YAP; also known as YAP1), connective tissue growth factor (CTGF; also known as CCN2) and cysteine-rich angiogenic inducer 61 (Cyr61; also known as CCN1) are overexpressed, while ERα is downregulated in tamoxifen-resistant breast cancer. Inhibition of YAP, CTGF and Cyr61 restored ERα expression and increased sensitivity to tamoxifen. Overexpression of YAP, CTGF, and Cyr61 led to downregulation of ERα and conferred resistance to tamoxifen in ER-positive breast cancer cells. Mechanistically, CTGF and Cyr61 downregulated ERα expression at the transcriptional level by directly binding to the regulatory regions of the ERα-encoding gene, leading to increased tamoxifen resistance. Also, CTGF induced Glut3 (also known as SLC2A3) expression, leading to increased glycolysis, which enhanced cell proliferation and migration in tamoxifen-resistant cells. Together, these results demonstrate a novel role of YAP, CTGF and Cyr61 in tamoxifen resistance and provide a molecular basis for their function in tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- Hyungjoo Kim
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Seogho Son
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Yunhyo Ko
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Jeong Eon Lee
- Department of Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Sangmin Kim
- Department of Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul 04763, Korea.,Natural Science Institute, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
40
|
Zhao Y, Yang Z, Miao Y, Fan M, Zhao X, Wei Q, Ma B. G protein-coupled estrogen receptor 1 inhibits the epithelial-mesenchymal transition of goat mammary epithelial cells via NF-κB signalling pathway. Reprod Domest Anim 2021; 56:1137-1144. [PMID: 34021926 DOI: 10.1111/rda.13957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
Mastitis is one of the most frequent clinical diseases in dairy animals. Epithelial cells undergoing epithelial-mesenchymal transition (EMT) promote the process of mastitis. Oestrogen deficiency is disadvantaged of many tissue inflammation and regeneration, while exogenous oestrogen treatment can reverse these effects. G protein-coupled estrogen receptor 1 (GPER1) is a membrane estrogen receptor. However, the potential effects of oestrogen via GPER1 on EMT in goat mammary epithelial cells (GMECs) are still unclear. Here, this study discovered that the activation of GPER1 by oestrogen could inhibit the EMT in GMECs via NF-κB signalling pathway. The activation of GPER1 by oestrogen inhibited the EMT accompanied by upregulation of E-cadherin and downregulation of N-cadherin and vimentin. Meanwhile, mRNA expression of transcription factors including Snail1 and ZEB1 was decreased. Further, like to oestrogen, GPER1 agonist G1 repressed the EMT progression. Conversely, GPER1 antagonist G15 reversed all these features induced by oestrogen. What's more, GPER1 silencing with shRNA promoted GMECs undergoing EMT. Additionally, oestrogen increased the phosphorylation of Erk1/2, which then decreased the phosphorylation and nuclear translocation of NF-κB, inhibiting the NF-κB signalling pathway activity. Taken, GPER1 may act as a suppressor through the regulation of EMT to prevent the development of mastitis.
Collapse
Affiliation(s)
- Ying Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenshan Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuyang Miao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingzhen Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
41
|
van Barele M, Heemskerk-Gerritsen BAM, Louwers YV, Vastbinder MB, Martens JWM, Hooning MJ, Jager A. Estrogens and Progestogens in Triple Negative Breast Cancer: Do They Harm? Cancers (Basel) 2021; 13:2506. [PMID: 34063736 PMCID: PMC8196589 DOI: 10.3390/cancers13112506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancers (TNBC) occur more frequently in younger women and do not express estrogen receptor (ER) nor progesterone receptor (PR), and are therefore often considered hormone-insensitive. Treatment of premenopausal TNBC patients almost always includes chemotherapy, which may lead to premature ovarian insufficiency (POI) and can severely impact quality of life. Hormone replacement therapy (HRT) is contraindicated for patients with a history of hormone-sensitive breast cancer, but the data on safety for TNBC patients is inconclusive, with a few randomized trials showing increased risk-ratios with wide confidence intervals for recurrence after HRT. Here, we review the literature on alternative pathways from the classical ER/PR. We find that for both estrogens and progestogens, potential alternatives exist for exerting their effects on TNBC, ranging from receptor conversion, to alternative receptors capable of binding estrogens, as well as paracrine pathways, such as RANK/RANKL, which can cause progestogens to indirectly stimulate growth and metastasis of TNBC. Finally, HRT may also influence other hormones, such as androgens, and their effects on TNBCs expressing androgen receptors (AR). Concluding, the assumption that TNBC is completely hormone-insensitive is incorrect. However, the direction of the effects of the alternative pathways is not always clear, and will need to be investigated further.
Collapse
Affiliation(s)
- Mark van Barele
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| | - Bernadette A. M. Heemskerk-Gerritsen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| | - Yvonne V. Louwers
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Mijntje B. Vastbinder
- Department of Internal Medicine, Ijsselland Hospital, Prins Constantijnweg 2, 2906 ZC Capelle aan den IJssel, The Netherlands;
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| | - Maartje J. Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| |
Collapse
|
42
|
D’Arrigo G, Gianquinto E, Rossetti G, Cruciani G, Lorenzetti S, Spyrakis F. Binding of Androgen- and Estrogen-Like Flavonoids to Their Cognate (Non)Nuclear Receptors: A Comparison by Computational Prediction. Molecules 2021; 26:1613. [PMID: 33799482 PMCID: PMC8001607 DOI: 10.3390/molecules26061613] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Flavonoids are plant bioactives that are recognized as hormone-like polyphenols because of their similarity to the endogenous sex steroids 17β-estradiol and testosterone, and to their estrogen- and androgen-like activity. Most efforts to verify flavonoid binding to nuclear receptors (NRs) and explain their action have been focused on ERα, while less attention has been paid to other nuclear and non-nuclear membrane androgen and estrogen receptors. Here, we investigate six flavonoids (apigenin, genistein, luteolin, naringenin, quercetin, and resveratrol) that are widely present in fruits and vegetables, and often used as replacement therapy in menopause. We performed comparative computational docking simulations to predict their capability of binding nuclear receptors ERα, ERβ, ERRβ, ERRγ, androgen receptor (AR), and its variant ART877A and membrane receptors for androgens, i.e., ZIP9, GPRC6A, OXER1, TRPM8, and estrogens, i.e., G Protein-Coupled Estrogen Receptor (GPER). In agreement with data reported in literature, our results suggest that these flavonoids show a relevant degree of complementarity with both estrogen and androgen NR binding sites, likely triggering genomic-mediated effects. It is noteworthy that reliable protein-ligand complexes and estimated interaction energies were also obtained for some suggested estrogen and androgen membrane receptors, indicating that flavonoids could also exert non-genomic actions. Further investigations are needed to clarify flavonoid multiple genomic and non-genomic effects. Caution in their administration could be necessary, until the safe assumption of these natural molecules that are largely present in food is assured.
Collapse
Affiliation(s)
- Giulia D’Arrigo
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy; (G.D.); (E.G.)
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy; (G.D.); (E.G.)
| | - Giulia Rossetti
- Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5) “Computational Biomedicine”, Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Neurology, RWTH, Aachen University, 52074 Aachen, Germany;
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy;
| | - Stefano Lorenzetti
- Istituto Superiore di Sanità (ISS), Department of Food Safety, Nutrition and Veterinary Public Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy; (G.D.); (E.G.)
| |
Collapse
|
43
|
A novel transcript variant of human G-protein coupled estrogen receptor. Mol Biol Rep 2021; 48:2979-2983. [PMID: 33677756 DOI: 10.1007/s11033-021-06242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
The G-protein coupled estrogen receptor (GPER) mediates short-term non-genomic effects of estrogen in diverse cell types and tissues. According to the NCBI nucleotide database, three variants of GPER are known. They are NM_001505.2 (GPER-v2), NM_001039966.1 (GPER-v3), and NM_001098201.1 (GPER-v4). Investigations on GPER expression are key to understand its physiological and pathological roles. However, most studies on GPER mRNA expression have considered total GPER mRNA expression regardless of the individual variants. The present study is motivated by a novel transcript observed in the UCSC Genome Browser (uc010ksd.1), which is annotated as GPER. The novel variant is similar to the known transcript variants of GPER in terms of the protein-coding sequence and the 3'UTR. However, it has a unique 5'UTR, which distinguishes it from other GPER variants. Using primers specific for uc010ksd.1, we have performed RT-PCR to show that the novel GPER transcript (hereafter referred to as GPER-v5) is expressed in human cancer cell lines, such as MCF-7, SW-620, COLO-205, and HT-29. Preliminary evidences indicate that GPER-v5 is a novel GPER mRNA variant. The expression of GPER-v5 in primary cells and tissues should be investigated before probing into its role and relevance in physiological and pathological conditions.
Collapse
|
44
|
Zhang N, Sun P, Xu Y, Li H, Liu H, Wang L, Cao Y, Zhou K, TinghuaiWang. The GPER1/SPOP axis mediates ubiquitination-dependent degradation of ERα to inhibit the growth of breast cancer induced by oestrogen. Cancer Lett 2021; 498:54-69. [DOI: 10.1016/j.canlet.2020.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022]
|
45
|
GPER1 and microRNA: Two Players in Breast Cancer Progression. Int J Mol Sci 2020; 22:ijms22010098. [PMID: 33374170 PMCID: PMC7795792 DOI: 10.3390/ijms22010098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the main cause of morbidity and mortality in women worldwide. However, the molecular pathogenesis of breast cancer remains poorly defined due to its heterogeneity. Several studies have reported that G Protein-Coupled Estrogen Receptor 1 (GPER1) plays a crucial role in breast cancer progression, by binding to estrogens or synthetic agonists, like G-1, thus modulating genes involved in diverse biological events, such as cell proliferation, migration, apoptosis, and metastasis. In addition, it has been established that the dysregulation of short sequences of non-coding RNA, named microRNAs (miRNAs), is involved in various pathophysiological conditions, including breast cancer. Recent evidence has indicated that estrogens may regulate miRNA expression and therefore modulate the levels of their target genes, not only through the classical estrogen receptors (ERs), but also activating GPER1 signalling, hence suggesting an alternative molecular pathway involved in breast tumor progression. Here, the current knowledge about GPER1 and miRNA action in breast cancer is recapitulated, reporting recent evidence on the liaison of these two players in triggering breast tumorogenic effects. Elucidating the role of GPER1 and miRNAs in breast cancer might provide new tools for innovative approaches in anti-cancer therapy.
Collapse
|
46
|
Vella V, De Francesco EM, Lappano R, Muoio MG, Manzella L, Maggiolini M, Belfiore A. Microenvironmental Determinants of Breast Cancer Metastasis: Focus on the Crucial Interplay Between Estrogen and Insulin/Insulin-Like Growth Factor Signaling. Front Cell Dev Biol 2020; 8:608412. [PMID: 33364239 PMCID: PMC7753049 DOI: 10.3389/fcell.2020.608412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
The development and progression of the great majority of breast cancers (BCs) are mainly dependent on the biological action elicited by estrogens through the classical estrogen receptor (ER), as well as the alternate receptor named G-protein–coupled estrogen receptor (GPER). In addition to estrogens, other hormones and growth factors, including the insulin and insulin-like growth factor system (IIGFs), play a role in BC. IIGFs cooperates with estrogen signaling to generate a multilevel cross-communication that ultimately facilitates the transition toward aggressive and life-threatening BC phenotypes. In this regard, the majority of BC deaths are correlated with the formation of metastatic lesions at distant sites. A thorough scrutiny of the biological and biochemical events orchestrating metastasis formation and dissemination has shown that virtually all cell types within the tumor microenvironment work closely with BC cells to seed cancerous units at distant sites. By establishing an intricate scheme of paracrine interactions that lead to the expression of genes involved in metastasis initiation, progression, and virulence, the cross-talk between BC cells and the surrounding microenvironmental components does dictate tumor fate and patients’ prognosis. Following (i) a description of the main microenvironmental events prompting BC metastases and (ii) a concise overview of estrogen and the IIGFs signaling and their major regulatory functions in BC, here we provide a comprehensive analysis of the most recent findings on the role of these transduction pathways toward metastatic dissemination. In particular, we focused our attention on the main microenvironmental targets of the estrogen-IIGFs interplay, and we recapitulated relevant molecular nodes that orientate shared biological responses fostering the metastatic program. On the basis of available studies, we propose that a functional cross-talk between estrogens and IIGFs, by affecting the BC microenvironment, may contribute to the metastatic process and may be regarded as a novel target for combination therapies aimed at preventing the metastatic evolution.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Grazia Muoio
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Livia Manzella
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| |
Collapse
|
47
|
Sen A, Kaul A, Kaul R. Estrogen receptors in human bladder cells regulate innate cytokine responses to differentially modulate uropathogenic E. coli colonization. Immunobiology 2020; 226:152020. [PMID: 33246308 DOI: 10.1016/j.imbio.2020.152020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/19/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
The bladder epithelial cells elicit robust innate immune responses against urinary tract infections (UTIs) for preventing the bacterial colonization. Physiological fluctuations in circulating estrogen levels in women increase the susceptibility to UTI pathogenesis, often resulting in adverse health outcomes. Dr adhesin bearing Escherichia coli (Dr E. coli) cause recurrent UTIs in menopausal women and acute pyelonephritis in pregnant women. Dr E. coli bind to epithelial cells via host innate immune receptor CD55, under hormonal influence. The role of estrogens or estrogen receptors (ERs) in regulating the innate immune responses in the bladder are poorly understood. In the current study, we investigated the role of ERα, ERβ and GPR30 in modulating the innate immune responses against Dr E. coli induced UTI using human bladder epithelial carcinoma 5637 cells (HBEC). Both ERα and ERβ agonist treatment in bladder cells induced a protection against Dr E. coli invasion via upregulation of TNFα and downregulation of CD55 and IL10, and these effects were reversed by action of ERα and ERβ antagoinsts. In contrast, the agonist-mediated activation of GPR30 led to an increased bacterial colonization due to suppression of innate immune factors in the bladder cells, and these effects were reversed by the antagonist-mediated suppression of GPR30. Further, siRNA-mediated ERα knockdown in the bladder cells reversed the protection against bacterial invasion observed in the ERα positive bladder cells, by modulating the gene expression of TNFα, CD55 and IL10, thus confirming the protective role of ERα. We demonstrate for the first time a protective role of nuclear ERs, ERα and ERβ but not of membrane ER, GPR30 against Dr E. coli invasion in HBEC 5637 cells. These findings have many clinical implications and suggest that ERs may serve as potential drug targets towards developing novel therapeutics for regulating local innate immunity and treating UTIs.
Collapse
Affiliation(s)
- Ayantika Sen
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA; Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Anil Kaul
- Health Care Administration, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA
| | - Rashmi Kaul
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA.
| |
Collapse
|
48
|
Ariyani W, Miyazaki W, Amano I, Hanamura K, Shirao T, Koibuchi N. Soy Isoflavones Accelerate Glial Cell Migration via GPER-Mediated Signal Transduction Pathway. Front Endocrinol (Lausanne) 2020; 11:554941. [PMID: 33250856 PMCID: PMC7672195 DOI: 10.3389/fendo.2020.554941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023] Open
Abstract
Soybean isoflavones, such as genistein, daidzein, and its metabolite, S-equol, are widely known as phytoestrogens. Their biological actions are thought to be exerted via the estrogen signal transduction pathway. Estrogens, such as 17β-estradiol (E2), play a crucial role in the development and functional maintenance of the central nervous system. E2 bind to the nuclear estrogen receptor (ER) and regulates morphogenesis, migration, functional maturation, and intracellular metabolism of neurons and glial cells. In addition to binding to nuclear ER, E2 also binds to the G-protein-coupled estrogen receptor (GPER) and activates the nongenomic estrogen signaling pathway. Soybean isoflavones also bind to the ER and GPER. However, the effect of soybean isoflavone on brain development, particularly glial cell function, remains unclear. We examined the effects of soybean isoflavones using an astrocyte-enriched culture and astrocyte-derived C6 clonal cells. Isoflavones increased glial cell migration. This augmentation was suppressed by co-exposure with G15, a selective GPER antagonist, or knockdown of GPER expression using RNA interference. Isoflavones also activated actin cytoskeleton arrangement via increased actin polymerization and cortical actin, resulting in an increased number and length of filopodia. Isoflavones exposure increased the phosphorylation levels of FAK (Tyr397 and Tyr576/577), ERK1/2 (Thr202/Tyr204), Akt (Ser473), and Rac1/cdc42 (Ser71), and the expression levels of cortactin, paxillin and ERα. These effects were suppressed by knockdown of the GPER. Co-exposure of isoflavones to the selective RhoA inhibitor, rhosin, selective Cdc42 inhibitor, casin, or Rac1/Cdc42 inhibitor, ML-141, decreased the effects of isoflavones on cell migration. These findings indicate that soybean isoflavones exert their action via the GPER to activate the PI3K/FAK/Akt/RhoA/Rac1/Cdc42 signaling pathway, resulting in increased glial cell migration. Furthermore, in silico molecular docking studies to examine the binding mode of isoflavones to the GPER revealed the possibility that isoflavones bind directly to the GPER at the same position as E2, further confirming that the effects of the isoflavones are at least in part exerted via the GPER signal transduction pathway. The findings of the present study indicate that isoflavones may be an effective supplement to promote astrocyte migration in developing and/or injured adult brains.
Collapse
Affiliation(s)
- Winda Ariyani
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Wataru Miyazaki
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, Maebashi, Japan
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Science, Hirosaki University, Hirosaki, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
49
|
Molina L, Bustamante F, Ortloff A, Ramos I, Ehrenfeld P, Figueroa CD. Continuous Exposure of Breast Cancer Cells to Tamoxifen Upregulates GPER-1 and Increases Cell Proliferation. Front Endocrinol (Lausanne) 2020; 11:563165. [PMID: 33117280 PMCID: PMC7561417 DOI: 10.3389/fendo.2020.563165] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
GPER-1 is a novel membrane sited G protein-coupled estrogen receptor. Clinical studies have shown that patients suffering an estrogen receptor α (ERα)/GPER-1 positive, breast cancer have a lower survival rate than those who have developed ERα-positive/GPER-1 negative tumors. Moreover, absence of GPER-1 improves the prognosis of patients treated with tamoxifen, the most used selective estrogen receptor modulator to treat ERα-positive breast cancer. MCF-7 breast cancer cells were continuously treated with 1,000 nM tamoxifen for 7 days to investigate its effect on GPER-1 protein expression, cell proliferation and intracellular [Ca2+]i mobilization, a key signaling pathway. Breast cancer cells continuously treated with tamoxifen, exhibited a robust [Ca2+]i mobilization after stimulation with 1,000 nM tamoxifen, a response that was blunted by preincubation of cells with G15, a commercial GPER-1 antagonist. Continuously treated cells also displayed a high [Ca2+]i mobilization in response to a commercial GPER-1 agonist (G1) and to estrogen, in a magnitude that doubled the response observed in untreated cells and was almost completely abolished by G15. Proliferation of cells continuously treated with tamoxifen and stimulated with 2,000 nM tamoxifen, was also higher than that observed in untreated cells in a degree that was approximately 90% attributable to GPER-1. Finally, prolonged tamoxifen treatment did not increase ERα expression, but did overexpress the kinin B1 receptor, another GPCR, which we have previously shown is highly expressed in breast tumors and increases proliferation of breast cancer cells. Although we cannot fully extrapolate the results obtained in vitro to the patients, our results shed some light on the occurrence of drug resistance in breast cancer patients who are ERα/GPER-1 positive, have been treated with tamoxifen and display low survival rate. Overexpression of kinin B1 receptor may explain the increased proliferative response observed in breast tumors under continuous treatment with tamoxifen.
Collapse
Affiliation(s)
- Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Felipe Bustamante
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Iraidi Ramos
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D. Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
50
|
Grande F, Occhiuzzi MA, Lappano R, Cirillo F, Guzzi R, Garofalo A, Jacquot Y, Maggiolini M, Rizzuti B. Computational Approaches for the Discovery of GPER Targeting Compounds. Front Endocrinol (Lausanne) 2020; 11:517. [PMID: 32849301 PMCID: PMC7417359 DOI: 10.3389/fendo.2020.00517] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Estrogens exert a panel of biological activities mainly through the estrogen receptors α and β, which belong to the nuclear receptor superfamily. Diverse studies have shown that the G protein-coupled estrogen receptor 1 (GPER, previously known as GPR30) also mediates the multifaceted effects of estrogens in numerous pathophysiological events, including neurodegenerative, immune, metabolic, and cardiovascular disorders and the progression of different types of cancer. In particular, GPER is implicated in hormone-sensitive tumors, albeit diverse issues remain to be deeply investigated. As such, this receptor may represent an appealing target for therapeutics in different diseases. The yet unavailable complete GPER crystallographic structure, and its relatively low sequence similarity with the other members of the G protein-coupled receptor (GPCR) family, hamper the possibility to discover compounds able to modulate GPER activity. Consequently, a reliable molecular model of this receptor is required for the design of suitable ligands. To date, convergent approaches involving structure-based drug design and virtual ligand screening have led to the identification of several GPER selective ligands, thus providing important information regarding its mode of action and function. In this survey, we summarize results obtained through computer-aided techniques devoted to the assessment of GPER ligands toward their usefulness in innovative treatments of different diseases.
Collapse
Affiliation(s)
- Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria A. Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Department of Physics, University of Calabria, Rende, Italy
| | - Rita Guzzi
- Department of Physics, University of Calabria, Rende, Italy
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Rende, Italy
| | - Antonio Garofalo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Yves Jacquot
- Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), CNRS UMR 8038, INSERM U1268, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Rende, Italy
| |
Collapse
|