1
|
Pandiyan A, Mallikarjun J, Maheshwari H, Gowrishankar J. Pathological R-loops in bacteria from engineered expression of endogenous antisense RNAs whose synthesis is ordinarily terminated by Rho. Nucleic Acids Res 2024; 52:12438-12455. [PMID: 39373509 PMCID: PMC11551753 DOI: 10.1093/nar/gkae839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/13/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024] Open
Abstract
In many bacteria, the essential factors Rho and NusG mediate termination of synthesis of nascent transcripts (including antisense RNAs) that are not being simultaneously translated. It has been proposed that in Rho's absence toxic RNA-DNA hybrids (R-loops) may be generated from nascent untranslated transcripts, and genome-wide mapping studies in Escherichia coli have identified putative loci of R-loop formation from more than 100 endogenous antisense transcripts that are synthesized only in a Rho-deficient strain. Here we provide evidence that engineered expression in wild-type E. coli of several such individual antisense regions on a plasmid or the chromosome generates R-loops that, in an RNase H-modulated manner, serve to disrupt genome integrity. Rho inhibition was associated with increased prevalence of antisense R-loops also in Xanthomonas oryzae pv. oryzae and Caulobacter crescentus. Our results confirm the essential role of Rho in several bacterial genera for prevention of toxic R-loops from pervasive yet cryptic endogenous antisense transcripts. Engineered antisense R-looped regions may be useful for studies on both site-specific impediments to bacterial chromosomal replication and the mechanisms of their resolution.
Collapse
Affiliation(s)
- Apuratha Pandiyan
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
| | - Jillella Mallikarjun
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
- Centre for DNA Fingerprinting and Diagnostics, Uppal Road, Hyderabad 500039, Telengana, India
| | - Himanshi Maheshwari
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
| | - Jayaraman Gowrishankar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
| |
Collapse
|
2
|
Qian J, Wang B, Artsimovitch I, Dunlap D, Finzi L. Force and the α-C-terminal domains bias RNA polymerase recycling. Nat Commun 2024; 15:7520. [PMID: 39214958 PMCID: PMC11364550 DOI: 10.1038/s41467-024-51603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
After an RNA polymerase reaches a terminator, instead of dissociating from the template, it may diffuse along the DNA and recommence RNA synthesis from the previous or a different promoter. Magnetic tweezers were used to monitor such secondary transcription and determine the effects of low forces assisting or opposing translocation, protein roadblocks, and transcription factors. Remarkably, up to 50% of Escherichia coli (E. coli) RNA polymerases diffused along the DNA after termination. Force biased the direction of diffusion (sliding) and the velocity increased rapidly with force up to 0.7 pN and much more slowly thereafter. Sigma factor 70 (σ70) likely remained associated with the DNA promoting sliding and enabling re-initiation from promoters in either orientation. However, deletions of the α-C-terminal domains severely limited the ability of RNAP to turn around between successive rounds of transcription. The addition of elongation factor NusG, which competes with σ70 for binding to RNAP, limited additional rounds of transcription. Surprisingly, sliding RNA polymerases blocked by a DNA-bound lac repressor could slowly re-initiate transcription and were not affected by NusG, suggesting a σ-independent pathway. Low forces effectively biased promoter selection suggesting a prominent role for topological entanglements that affect RNA polymerase translocation.
Collapse
Affiliation(s)
- Jin Qian
- Physics Department, Emory University, Atlanta, GA, USA
| | - Bing Wang
- The Center for RNA Biology and Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Irina Artsimovitch
- The Center for RNA Biology and Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - David Dunlap
- Department of Physics & Astronomy, Clemson University, Clemson, SC, USA
| | - Laura Finzi
- Department of Physics & Astronomy, Clemson University, Clemson, SC, USA.
| |
Collapse
|
3
|
Weeks-Pollenz SJ, Petrides MJ, Davis R, Harris KK, Bloom LB. Single-stranded DNA binding protein hitches a ride with the Escherichia coli YoaA-χ helicase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600097. [PMID: 38948847 PMCID: PMC11213134 DOI: 10.1101/2024.06.21.600097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The Escherichia coli XPD/Rad3-like helicase, YoaA, and DNA polymerase III subunit, χ, are involved in E. coli DNA damage tolerance and repair. YoaA and χ promote tolerance to the DNA chain-terminator, 3 -azidothymidine (AZT), and together form the functional helicase complex, YoaA-χ. How YoaA-χ contributes to DNA damage tolerance is not well understood. E. coli single-stranded DNA binding protein (SSB) accumulates at stalled replication forks, and the SSB-χ interaction is required to promote AZT tolerance via an unknown mechanism. YoaA-χ and SSB interactions were investigated in vitro to better understand this DNA damage tolerance mechanism, and we discovered YoaA-χ and SSB have a functional interaction. SSB confers a substrate-specific effect on the helicase activity of YoaA-χ, barely affecting YoaA-χ on an overhang DNA substrate but inhibiting YoaA-χ on forked DNA. A paralog helicase, DinG, unwinds SSB-bound DNA in a similar manner to YoaA-χ on the substrates tested. Through use of ensemble experiments, we believe SSB binds behind YoaA-χ relative to the DNA ds/ss junction and show via single-molecule assays that SSB translocates along ssDNA with YoaA-χ. This is, to our knowledge, the first demonstration of a mechanoenzyme pulling SSB along ssDNA.
Collapse
Affiliation(s)
| | | | | | | | - Linda B. Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610-0245, USA
| |
Collapse
|
4
|
Atre M, Joshi B, Babu J, Sawant S, Sharma S, Sankar TS. Origin, evolution, and maintenance of gene-strand bias in bacteria. Nucleic Acids Res 2024; 52:3493-3509. [PMID: 38442257 DOI: 10.1093/nar/gkae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Gene-strand bias is a characteristic feature of bacterial genome organization wherein genes are preferentially encoded on the leading strand of replication, promoting co-orientation of replication and transcription. This co-orientation bias has evolved to protect gene essentiality, expression, and genomic stability from the harmful effects of head-on replication-transcription collisions. However, the origin, variation, and maintenance of gene-strand bias remain elusive. Here, we reveal that the frequency of inversions that alter gene orientation exhibits large variation across bacterial populations and negatively correlates with gene-strand bias. The density, distance, and distribution of inverted repeats show a similar negative relationship with gene-strand bias explaining the heterogeneity in inversions. Importantly, these observations are broadly evident across the entire bacterial kingdom uncovering inversions and inverted repeats as primary factors underlying the variation in gene-strand bias and its maintenance. The distinct catalytic subunits of replicative DNA polymerase have co-evolved with gene-strand bias, suggesting a close link between replication and the origin of gene-strand bias. Congruently, inversion frequencies and inverted repeats vary among bacteria with different DNA polymerases. In summary, we propose that the nature of replication determines the fitness cost of replication-transcription collisions, establishing a selection gradient on gene-strand bias by fine-tuning DNA sequence repeats and, thereby, gene inversions.
Collapse
Affiliation(s)
- Malhar Atre
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Bharat Joshi
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Jebin Babu
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Shabduli Sawant
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Shreya Sharma
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - T Sabari Sankar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
5
|
Valenzisi P, Marabitti V, Pichierri P, Franchitto A. WRNIP1 prevents transcription-associated genomic instability. eLife 2024; 12:RP89981. [PMID: 38488661 PMCID: PMC10942783 DOI: 10.7554/elife.89981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
R-loops are non-canonical DNA structures that form during transcription and play diverse roles in various physiological processes. Disruption of R-loop homeostasis can lead to genomic instability and replication impairment, contributing to several human diseases, including cancer. Although the molecular mechanisms that protect cells against such events are not fully understood, recent research has identified fork protection factors and DNA damage response proteins as regulators of R-loop dynamics. In this study, we identify the Werner helicase-interacting protein 1 (WRNIP1) as a novel factor that counteracts transcription-associated DNA damage upon replication perturbation. Loss of WRNIP1 leads to R-loop accumulation, resulting in collisions between the replisome and transcription machinery. We observe co-localization of WRNIP1 with transcription/replication complexes and R-loops after replication perturbation, suggesting its involvement in resolving transcription-replication conflicts. Moreover, WRNIP1-deficient cells show impaired replication restart from transcription-induced fork stalling. Notably, transcription inhibition and RNase H1 overexpression rescue all the defects caused by loss of WRNIP1. Importantly, our findings highlight the critical role of WRNIP1 ubiquitin-binding zinc finger (UBZ) domain in preventing pathological persistence of R-loops and limiting DNA damage, thereby safeguarding genome integrity.
Collapse
Affiliation(s)
- Pasquale Valenzisi
- Section of Mechanisms Biomarkers and Models, Department of Environment and Health, Istituto Superiore di SanitaRomeItaly
| | - Veronica Marabitti
- Section of Mechanisms Biomarkers and Models, Department of Environment and Health, Istituto Superiore di SanitaRomeItaly
| | - Pietro Pichierri
- Section of Mechanisms Biomarkers and Models, Department of Environment and Health, Istituto Superiore di SanitaRomeItaly
| | - Annapaola Franchitto
- Section of Mechanisms Biomarkers and Models, Department of Environment and Health, Istituto Superiore di SanitaRomeItaly
| |
Collapse
|
6
|
Chai X, Wang X, Rong L, Luo M, Yuan L, Li Q, He B, Jiang J, Ji D, Ouyang M, Lu Q, Zhang L, Rochaix JD, Chi W. The translocon protein FtsHi1 is an ATP-dependent DNA/RNA helicase that prevents R-loop accumulation in chloroplasts. THE NEW PHYTOLOGIST 2024; 241:2209-2226. [PMID: 38084045 DOI: 10.1111/nph.19470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/22/2023] [Indexed: 02/09/2024]
Abstract
R-loops, three-stranded nucleic acid structures consisting of a DNA: RNA hybrid and displaced single-stranded DNA, play critical roles in gene expression and genome stability. How R-loop homeostasis is integrated into chloroplast gene expression remains largely unknown. We found an unexpected function of FtsHi1, an inner envelope membrane-bound AAA-ATPase in chloroplast R-loop homeostasis of Arabidopsis thaliana. Previously, this protein was shown to function as a component of the import motor complex for nuclear-encoded chloroplast proteins. However, this study provides evidence that FtsHi1 is an ATP-dependent helicase that efficiently unwinds both DNA-DNA and DNA-RNA duplexes, thereby preventing R-loop accumulation. Over-accumulation of R-loops could impair chloroplast transcription but not necessarily genome integrity. The dual function of FtsHi1 in both protein import and chloroplast gene expression may be important to coordinate the biogenesis of nuclear- and chloroplast-encoded subunits of multi-protein photosynthetic complexes. This study suggests a mechanical link between protein import and R-loop homeostasis in chloroplasts of higher plants.
Collapse
Affiliation(s)
- Xin Chai
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiushun Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liwei Rong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manfei Luo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Yuan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuxin Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoye He
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingjing Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Min Ouyang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qingtao Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun St., Kaifeng, 475001, China
| | - Jean-David Rochaix
- Department of Molecular Biology, University of Geneva, 1211, Geneva, Switzerland
- Department of Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
7
|
Bonde NJ, Kozlov AG, Cox MM, Lohman TM, Keck JL. Molecular insights into the prototypical single-stranded DNA-binding protein from E. coli. Crit Rev Biochem Mol Biol 2024; 59:99-127. [PMID: 38770626 PMCID: PMC11209772 DOI: 10.1080/10409238.2024.2330372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/11/2024] [Indexed: 05/22/2024]
Abstract
The SSB protein of Escherichia coli functions to bind single-stranded DNA wherever it occurs during DNA metabolism. Depending upon conditions, SSB occurs in several different binding modes. In the course of its function, SSB diffuses on ssDNA and transfers rapidly between different segments of ssDNA. SSB interacts with many other proteins involved in DNA metabolism, with 22 such SSB-interacting proteins, or SIPs, defined to date. These interactions chiefly involve the disordered and conserved C-terminal residues of SSB. When not bound to ssDNA, SSB can aggregate to form a phase-separated biomolecular condensate. Current understanding of the properties of SSB and the functional significance of its many intermolecular interactions are summarized in this review.
Collapse
Affiliation(s)
- Nina J. Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander G. Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Browning KR, Merrikh H. Pathogenic bacteria experience pervasive RNA polymerase backtracking during infection. mBio 2024; 15:e0273723. [PMID: 38095872 PMCID: PMC10790778 DOI: 10.1128/mbio.02737-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
IMPORTANCE Eukaryotic hosts have defense mechanisms that may disrupt molecular transactions along the pathogen's chromosome through excessive DNA damage. Given that DNA damage stalls RNA polymerase (RNAP) thereby increasing mutagenesis, investigating how host defense mechanisms impact the movement of the transcription machinery on the pathogen chromosome is crucial. Using a new methodology we developed, we elucidated the dynamics of RNAP movement and association with the chromosome in the pathogenic bacterium Salmonella enterica during infection. We found that dynamics of RNAP movement on the chromosome change significantly during infection genome-wide, including at regions that encode for key virulence genes. In particular, we found that there is pervasive RNAP backtracking on the bacterial chromosome during infections and that anti-backtracking factors are critical for pathogenesis. Altogether, our results suggest that, interestingly, the host environment can promote the development of antimicrobial resistance and hypervirulence as stalled RNAPs can accelerate evolution through increased mutagenesis.
Collapse
Affiliation(s)
- Kaitlyn R. Browning
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Houra Merrikh
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Wollman AJM, Syeda AH, Howard JAL, Payne-Dwyer A, Leech A, Warecka D, Guy C, McGlynn P, Hawkins M, Leake MC. Tetrameric UvrD Helicase Is Located at the E. Coli Replisome due to Frequent Replication Blocks. J Mol Biol 2024; 436:168369. [PMID: 37977299 DOI: 10.1016/j.jmb.2023.168369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
DNA replication in all organisms must overcome nucleoprotein blocks to complete genome duplication. Accessory replicative helicases in Escherichia coli, Rep and UvrD, help remove these blocks and aid the re-initiation of replication. Mechanistic details of Rep function have emerged from recent live cell studies; however, the division of UvrD functions between its activities in DNA repair and role as an accessory helicase remain unclear in live cells. By integrating super-resolved single-molecule fluorescence microscopy with biochemical analysis, we find that UvrD self-associates into tetrameric assemblies and, unlike Rep, is not recruited to a specific replisome protein despite being found at approximately 80% of replication forks. Instead, its colocation with forks is likely due to the very high frequency of replication blocks composed of DNA-bound proteins, including RNA polymerase and factors involved in repairing DNA damage. Deleting rep and DNA repair factor genes mutS and uvrA, and inhibiting transcription through RNA polymerase mutation and antibiotic inhibition, indicates that the level of UvrD at the fork is dependent on UvrD's function. Our findings show that UvrD is recruited to sites of nucleoprotein blocks via different mechanisms to Rep and plays a multi-faceted role in ensuring successful DNA replication.
Collapse
Affiliation(s)
- Adam J M Wollman
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Aisha H Syeda
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Jamieson A L Howard
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Alex Payne-Dwyer
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Andrew Leech
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Dominika Warecka
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Colin Guy
- Covance Laboratories Ltd., Otley Road, Harrogate HG3 1PY, United Kingdom
| | - Peter McGlynn
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Michelle Hawkins
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Mark C Leake
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom.
| |
Collapse
|
10
|
Carrasco B, Torres R, Moreno-del Álamo M, Ramos C, Ayora S, Alonso JC. Processing of stalled replication forks in Bacillus subtilis. FEMS Microbiol Rev 2024; 48:fuad065. [PMID: 38052445 PMCID: PMC10804225 DOI: 10.1093/femsre/fuad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Accurate DNA replication and transcription elongation are crucial for preventing the accumulation of unreplicated DNA and genomic instability. Cells have evolved multiple mechanisms to deal with impaired replication fork progression, challenged by both intrinsic and extrinsic impediments. The bacterium Bacillus subtilis, which adopts multiple forms of differentiation and development, serves as an excellent model system for studying the pathways required to cope with replication stress to preserve genomic stability. This review focuses on the genetics, single molecule choreography, and biochemical properties of the proteins that act to circumvent the replicative arrest allowing the resumption of DNA synthesis. The RecA recombinase, its mediators (RecO, RecR, and RadA/Sms) and modulators (RecF, RecX, RarA, RecU, RecD2, and PcrA), repair licensing (DisA), fork remodelers (RuvAB, RecG, RecD2, RadA/Sms, and PriA), Holliday junction resolvase (RecU), nucleases (RnhC and DinG), and translesion synthesis DNA polymerases (PolY1 and PolY2) are key functions required to overcome a replication stress, provided that the fork does not collapse.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - María Moreno-del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| |
Collapse
|
11
|
Kumar C, Remus D. Looping out of control: R-loops in transcription-replication conflict. Chromosoma 2024; 133:37-56. [PMID: 37419963 PMCID: PMC10771546 DOI: 10.1007/s00412-023-00804-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Transcription-replication conflict is a major cause of replication stress that arises when replication forks collide with the transcription machinery. Replication fork stalling at sites of transcription compromises chromosome replication fidelity and can induce DNA damage with potentially deleterious consequences for genome stability and organismal health. The block to DNA replication by the transcription machinery is complex and can involve stalled or elongating RNA polymerases, promoter-bound transcription factor complexes, or DNA topology constraints. In addition, studies over the past two decades have identified co-transcriptional R-loops as a major source for impairment of DNA replication forks at active genes. However, how R-loops impede DNA replication at the molecular level is incompletely understood. Current evidence suggests that RNA:DNA hybrids, DNA secondary structures, stalled RNA polymerases, and condensed chromatin states associated with R-loops contribute to the of fork progression. Moreover, since both R-loops and replication forks are intrinsically asymmetric structures, the outcome of R-loop-replisome collisions is influenced by collision orientation. Collectively, the data suggest that the impact of R-loops on DNA replication is highly dependent on their specific structural composition. Here, we will summarize our current understanding of the molecular basis for R-loop-induced replication fork progression defects.
Collapse
Affiliation(s)
- Charanya Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA.
| |
Collapse
|
12
|
Das S, Forrest J, Kuzminov A. Synthetic lethal mutants in Escherichia coli define pathways necessary for survival with RNase H deficiency. J Bacteriol 2023; 205:e0028023. [PMID: 37819120 PMCID: PMC10601623 DOI: 10.1128/jb.00280-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 10/13/2023] Open
Abstract
Ribonucleotides frequently contaminate DNA and, if not removed, cause genomic instability. Consequently, all organisms are equipped with RNase H enzymes to remove RNA-DNA hybrids (RDHs). Escherichia coli lacking RNase HI (rnhA) and RNase HII (rnhB) enzymes, the ∆rnhA ∆rnhB double mutant, accumulates RDHs in its DNA. These RDHs can convert into RNA-containing DNA lesions (R-lesions) of unclear nature that compromise genomic stability. The ∆rnhAB double mutant has severe phenotypes, like growth inhibition, replication stress, sensitivity to ultraviolet radiation, SOS induction, increased chromosomal fragmentation, and defects in nucleoid organization. In this study, we found that RNase HI deficiency also alters wild-type levels of DNA supercoiling. Despite these severe chromosomal complications, ∆rnhAB double mutant survives, suggesting that dedicated pathways operate to avoid or repair R-lesions. To identify these pathways, we systematically searched for mutants synthetic lethal (colethal) with the rnhAB defect using an unbiased color screen and a candidate gene approach. We identified both novel and previously reported rnhAB-colethal and -coinhibited mutants, characterized them, and sorted them into avoidance or repair pathways. These mutants operate in various parts of nucleic acid metabolism, including replication fork progression, R-loop prevention and removal, nucleoid organization, tRNA modification, recombinational repair, and chromosome-dimer resolution, demonstrating the pleiotropic nature of RNase H deficiency. IMPORTANCE Ribonucleotides (rNs) are structurally very similar to deoxyribonucleotides. Consequently, rN contamination of DNA is common and pervasive across all domains of life. Failure to remove rNs from DNA has severe consequences, and all organisms are equipped with RNase H enzymes to remove RNA-DNA hybrids. RNase H deficiency leads to complications in bacteria, yeast, and mouse, and diseases like progressive external ophthalmoplegia (mitochondrial defects in RNASEH1) and Aicardi-Goutières syndrome (defects in RNASEH2) in humans. Escherichia coli ∆rnhAB mutant, deficient in RNases H, has severe chromosomal complications. Despite substantial problems, nearly half of the mutant population survives. We have identified novel and previously confirmed pathways in various parts of nucleic acid metabolism that ensure survival with RNase H deficiency.
Collapse
Affiliation(s)
- Sneha Das
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan Forrest
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Parekh VJ, Węgrzyn G, Arluison V, Sinden RR. Genomic Instability of G-Quadruplex Sequences in Escherichia coli: Roles of DinG, RecG, and RecQ Helicases. Genes (Basel) 2023; 14:1720. [PMID: 37761860 PMCID: PMC10530614 DOI: 10.3390/genes14091720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Guanine-rich DNA can fold into highly stable four-stranded DNA structures called G-quadruplexes (G4). Originally identified in sequences from telomeres and oncogene promoters, they can alter DNA metabolism. Indeed, G4-forming sequences represent obstacles for the DNA polymerase, with important consequences for cell life as they may lead to genomic instability. To understand their role in bacterial genomic instability, different G-quadruplex-forming repeats were cloned into an Escherichia coli genetic system that reports frameshifts and complete or partial deletions of the repeat when the G-tract comprises either the leading or lagging template strand during replication. These repeats formed stable G-quadruplexes in single-stranded DNA but not naturally supercoiled double-stranded DNA. Nevertheless, transcription promoted G-quadruplex formation in the resulting R-loop for (G3T)4 and (G3T)8 repeats. Depending on genetic background and sequence propensity for structure formation, mutation rates varied by five orders of magnitude. Furthermore, while in vitro approaches have shown that bacterial helicases can resolve G4, it is still unclear whether G4 unwinding is important in vivo. Here, we show that a mutation in recG decreased mutation rates, while deficiencies in the structure-specific helicases DinG and RecQ increased mutation rates. These results suggest that G-quadruplex formation promotes genetic instability in bacteria and that helicases play an important role in controlling this process in vivo.
Collapse
Affiliation(s)
- Virali J. Parekh
- Laboratory of DNA Structure and Mutagenesis, Department of Chemistry, Biology and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, CEA Saclay, 91191 Gif-sur-Yvette, France
- UFR Sciences du Vivant, Université Paris Cité, 75006 Paris, France
| | - Richard R. Sinden
- Laboratory of DNA Structure and Mutagenesis, Department of Chemistry, Biology and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| |
Collapse
|
14
|
De Piante E, D'Aria F, Napolitano LMR, Amato J, Pirrello S, Onesti S, Giancola C. Exploring the G-quadruplex binding and unwinding activity of the bacterial FeS helicase DinG. Sci Rep 2023; 13:12610. [PMID: 37537265 PMCID: PMC10400533 DOI: 10.1038/s41598-023-39675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Despite numerous reports on the interactions of G-quadruplexes (G4s) with helicases, systematic analysis addressing the selectivity and specificity of each helicase towards a variety of G4 topologies are scarce. Among the helicases able to unwind G4s are those containing an iron-sulphur (FeS) cluster, including both the bacterial DinG (found in E. coli and several pathogenic bacteria) and the medically important eukaryotic homologues (XPD, FancJ, DDX11 and RTEL1). We carried out a detailed study of the interactions between the E. coli DinG and a variety of G4s, by employing physicochemical and biochemical methodologies. A series of G4-rich sequences from different genomic locations (promoter and telomeric regions), able to form unimolecular G4 structures with diverse topologies, were analyzed (c-KIT1, KRAS, c-MYC, BCL2, Tel23, T30695, Zic1). DinG binds to most of the investigated G4s with little discrimination, while it exhibits a clear degree of unwinding specificity towards different G4 topologies. Whereas previous reports suggested that DinG was active only on bimolecular G4s, here we show that it is also able to bind to and resolve the more physiologically relevant unimolecular G4s. In addition, when the G4 structures were stabilized by ligands (Pyridostatin, PhenDC3, BRACO-19 or Netropsin), the DinG unwinding activity decreased and in most cases was abolished, with a pattern that is not simply explained by a change in binding affinity. Overall, these results have important implications for the biochemistry of helicases, strongly suggesting that when analysing the G4 unwinding property of an enzyme, it is necessary to investigate a variety of G4 substrates.
Collapse
Affiliation(s)
- Elisa De Piante
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A, 34149, Trieste, Italy
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Luisa M R Napolitano
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A, 34149, Trieste, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Simone Pirrello
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A, 34149, Trieste, Italy
| | - Silvia Onesti
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A, 34149, Trieste, Italy.
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy.
| |
Collapse
|
15
|
Goodall DJ, Warecka D, Hawkins M, Rudolph CJ. Interplay between chromosomal architecture and termination of DNA replication in bacteria. Front Microbiol 2023; 14:1180848. [PMID: 37434703 PMCID: PMC10331603 DOI: 10.3389/fmicb.2023.1180848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Faithful transmission of the genome from one generation to the next is key to life in all cellular organisms. In the majority of bacteria, the genome is comprised of a single circular chromosome that is normally replicated from a single origin, though additional genetic information may be encoded within much smaller extrachromosomal elements called plasmids. By contrast, the genome of a eukaryote is distributed across multiple linear chromosomes, each of which is replicated from multiple origins. The genomes of archaeal species are circular, but are predominantly replicated from multiple origins. In all three cases, replication is bidirectional and terminates when converging replication fork complexes merge and 'fuse' as replication of the chromosomal DNA is completed. While the mechanics of replication initiation are quite well understood, exactly what happens during termination is far from clear, although studies in bacterial and eukaryotic models over recent years have started to provide some insight. Bacterial models with a circular chromosome and a single bidirectional origin offer the distinct advantage that there is normally just one fusion event between two replication fork complexes as synthesis terminates. Moreover, whereas termination of replication appears to happen in many bacteria wherever forks happen to meet, termination in some bacterial species, including the well-studied bacteria Escherichia coli and Bacillus subtilis, is more restrictive and confined to a 'replication fork trap' region, making termination even more tractable. This region is defined by multiple genomic terminator (ter) sites, which, if bound by specific terminator proteins, form unidirectional fork barriers. In this review we discuss a range of experimental results highlighting how the fork fusion process can trigger significant pathologies that interfere with the successful conclusion of DNA replication, how these pathologies might be resolved in bacteria without a fork trap system and how the acquisition of a fork trap might have provided an alternative and cleaner solution, thus explaining why in bacterial species that have acquired a fork trap system, this system is remarkably well maintained. Finally, we consider how eukaryotic cells can cope with a much-increased number of termination events.
Collapse
Affiliation(s)
- Daniel J. Goodall
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | | | | | - Christian J. Rudolph
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
16
|
Browning KR, Merrikh H. Pathogenic bacteria experience pervasive RNA polymerase backtracking during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540596. [PMID: 37215019 PMCID: PMC10197661 DOI: 10.1101/2023.05.12.540596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pathogenic bacteria and their eukaryotic hosts are in a constant arms race. Hosts have numerous defense mechanisms at their disposal that not only challenge the bacterial invaders, but have the potential to disrupt molecular transactions along the bacterial chromosome. However, it is unclear how the host impacts association of proteins with the bacterial chromosome at the molecular level during infection. This is partially due to the lack of a method that could detect these events in pathogens while they are within host cells. We developed and optimized a system capable of mapping and measuring levels of bacterial proteins associated with the chromosome while they are actively infecting the host (referred to as PIC-seq). Here, we focused on the dynamics of RNA polymerase (RNAP) movement and association with the chromosome in the pathogenic bacterium Salmonella enterica as a model system during infection. Using PIC-seq, we found that RNAP association patterns with the chromosome change during infection genome-wide, including at regions that encode for key virulence genes. Importantly, we found that infection of a host significantly increases RNAP backtracking on the bacterial chromosome. RNAP backtracking is the most common form of disruption to RNAP progress on the chromosome. Interestingly, we found that the resolution of backtracked RNAPs via the anti-backtracking factors GreA and GreB is critical for pathogenesis, revealing a new class of virulence genes. Altogether, our results strongly suggest that infection of a host significantly impacts transcription by disrupting RNAP movement on the chromosome within the bacterial pathogen. The increased backtracking events have important implications not only for efficient transcription, but also for mutation rates as stalled RNAPs increase the levels of mutagenesis.
Collapse
Affiliation(s)
- Kaitlyn R. Browning
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN 37232, USA
| | - Houra Merrikh
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN 37232, USA
| |
Collapse
|
17
|
Weeks-Pollenz SJ, Ali Y, Morris LA, Sutera VA, Dudenhausen EE, Hibnick M, Lovett ST, Bloom LB. Characterization of the Escherichia coli XPD/Rad3 iron-sulfur helicase YoaA in complex with the DNA polymerase III clamp loader subunit chi (χ). J Biol Chem 2023; 299:102786. [PMID: 36509145 PMCID: PMC9826845 DOI: 10.1016/j.jbc.2022.102786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Escherichia coli YoaA aids in the resolution of DNA damage that halts DNA synthesis in vivo in conjunction with χ, an accessory subunit of DNA polymerase III. YoaA and χ form a discrete complex separate from the DNA polymerase III holoenzyme, but little is known about how YoaA and χ work together to help the replication fork overcome damage. Although YoaA is predicted to be an iron-sulfur helicase in the XPD/Rad3 helicase family based on sequence analysis, the biochemical activities of YoaA have not been described. Here, we characterize YoaA and show that purified YoaA contains iron. YoaA and χ form a complex that is stable through three chromatographic steps, including gel filtration chromatography. When overexpressed in the absence of χ, YoaA is mostly insoluble. In addition, we show the YoaA-χ complex has DNA-dependent ATPase activity. Our measurement of the YoaA-χ helicase activity illustrates for the first time YoaA-χ translocates on ssDNA in the 5' to 3' direction and requires a 5' single-stranded overhang, or ssDNA gap, for DNA/DNA unwinding. Furthermore, YoaA-χ preferentially unwinds forked duplex DNA that contains both 3' and 5' single-stranded overhangs versus duplex DNA with only a 5' overhang. Finally, we demonstrate YoaA-χ can unwind damaged DNA that contains an abasic site or damage on 3' ends that stall replication extension. These results are the first biochemical evidence demonstrating YoaA is a bona fide iron-sulfur helicase, and we further propose the physiologically relevant form of the helicase is YoaA-χ.
Collapse
Affiliation(s)
- Savannah J Weeks-Pollenz
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Yasmin Ali
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Leslie A Morris
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Vincent A Sutera
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Elizabeth E Dudenhausen
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Margaret Hibnick
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Susan T Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Linda B Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
18
|
Han F, Xu B, Lu N, Caliari A, Lu H, Xia Y, Su'etsugu M, Xu J, Yomo T. Optimization and compartmentalization of a cell-free mixture of DNA amplification and protein translation. Appl Microbiol Biotechnol 2022; 106:8139-8149. [PMID: 36355086 DOI: 10.1007/s00253-022-12278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Recent studies have shown that the reconstituted cell-free DNA replisome and in vitro transcription and translation systems from Escherichia coli are highly important in applied and synthetic biology. To date, no attempt has been made to combine those two systems. Here, we study the performance of the mixed two separately exploited systems commercially available as RCR and PURE systems. Regarding the genetic information flow from DNA to proteins, mixtures with various ratios of RCR/PURE gave low protein expression, possibly due to the well-known conflict between replication and transcription or inappropriate buffer conditions. To further increase the compatibility of the two systems, rationally designed reaction buffers with a lower concentration of nucleoside triphosphates in 50 mM HEPES (pH7.6) were evaluated, showing increased performance from RCR/PURE (85%/15%) in a time-dependent manner. The compatibility was also validated in compartmentalized cell-sized droplets encapsulating the same RCR/PURE soup. Our findings can help to better fine-tune the reaction conditions of RCR-PURE systems and provide new avenues for rewiring the central dogma of molecular biology as self-sustaining systems in synthetic cell models. KEY POINTS: • Commercial reconstituted DNA amplification (RCR) and transcription and translation (PURE) systems hamper each other upon mixing. • A newly optimized buffer with a low bias for PURE was formulated in the RCR-PURE mixture. • The performance and dynamics of RCR-PURE were investigated in either bulk or compartmentalized droplets.
Collapse
Affiliation(s)
- Fuhai Han
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Boying Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China.,Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Nan Lu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Adriano Caliari
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Hui Lu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Yang Xia
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Masayuki Su'etsugu
- Department of Life Science, College of Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China.
| | - Tetsuya Yomo
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China.
| |
Collapse
|
19
|
McLean EK, Nye TM, Lowder FC, Simmons LA. The Impact of RNA-DNA Hybrids on Genome Integrity in Bacteria. Annu Rev Microbiol 2022; 76:461-480. [PMID: 35655343 PMCID: PMC9527769 DOI: 10.1146/annurev-micro-102521-014450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
During the essential processes of DNA replication and transcription, RNA-DNA hybrid intermediates are formed that pose significant risks to genome integrity when left unresolved. To manage RNA-DNA hybrids, all cells rely on RNase H family enzymes that specifically cleave the RNA portion of the many different types of hybrids that form in vivo. Recent experimental advances have provided new insight into how RNA-DNA hybrids form and the consequences to genome integrity that ensue when persistent hybrids remain unresolved. Here we review the types of RNA-DNA hybrids, including R-loops, RNA primers, and ribonucleotide misincorporations, that form during DNA replication and transcription and discuss how each type of hybrid can contribute to genome instability in bacteria. Further, we discuss how bacterial RNase HI, HII, and HIII and bacterial FEN enzymes contribute to genome maintenance through the resolution of hybrids.
Collapse
Affiliation(s)
- Emma K McLean
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Taylor M Nye
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
- Current affiliation: Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Frances C Lowder
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Lyle A Simmons
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| |
Collapse
|
20
|
Hao S, Wang Y, Zhao Y, Gao W, Cui W, Li Y, Cui J, Liu Y, Lin L, Xu X, Wang H. Dynamic switching of crotonylation to ubiquitination of H2A at lysine 119 attenuates transcription-replication conflicts caused by replication stress. Nucleic Acids Res 2022; 50:9873-9892. [PMID: 36062559 PMCID: PMC9508856 DOI: 10.1093/nar/gkac734] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/20/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
The reversible post-translational modification (PTM) of proteins plays an important role in many cellular processes. Lysine crotonylation (Kcr) is a newly identified PTM, but its functional significance remains unclear. Here, we found that Kcr is involved in the replication stress response. We show that crotonylation of histone H2A at lysine 119 (H2AK119) and ubiquitination of H2AK119 are reversibly regulated by replication stress. Decrotonylation of H2AK119 by SIRT1 is a prerequisite for subsequent ubiquitination of H2AK119 by BMI1. Accumulation of ubiquitinated H2AK119 at reversed replication forks leads to the release of RNA Polymerase II and transcription repression in the vicinity of stalled replication forks. These effects attenuate transcription–replication conflicts (TRCs) and TRC-associated R-loop formation and DNA double-strand breaks. These findings suggest that decrotonylation and ubiquitination of H2A at lysine 119 act together to resolve replication stress-induced TRCs and protect genome stability.
Collapse
Affiliation(s)
- Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ya Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuqin Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wen Gao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wei Cui
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Youhang Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jian Cui
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lixiu Lin
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, China Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
21
|
Goswami S, Gowrishankar J. Role for DNA double strand end-resection activity of RecBCD in control of aberrant chromosomal replication initiation in Escherichia coli. Nucleic Acids Res 2022; 50:8643-8657. [PMID: 35929028 PMCID: PMC9410895 DOI: 10.1093/nar/gkac670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/13/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
Replication of the circular bacterial chromosome is initiated from a locus oriC with the aid of an essential protein DnaA. One approach to identify factors acting to prevent aberrant oriC-independent replication initiation in Escherichia coli has been that to obtain mutants which survive loss of DnaA. Here, we show that a ΔrecD mutation, associated with attenuation of RecBCD’s DNA double strand end-resection activity, provokes abnormal replication and rescues ΔdnaA lethality in two situations: (i) in absence of 5′-3′ single-strand DNA exonuclease RecJ, or (ii) when multiple two-ended DNA double strand breaks (DSBs) are generated either by I-SceI endonucleolytic cleavages or by radiomimetic agents phleomycin or bleomycin. One-ended DSBs in the ΔrecD mutant did not rescue ΔdnaA lethality. With two-ended DSBs in the ΔrecD strain, ΔdnaA viability was retained even after linearization of the chromosome. Data from genome-wide DNA copy number determinations in ΔdnaA-rescued cells lead us to propose a model that nuclease-mediated DNA resection activity of RecBCD is critical for prevention of a σ-mode of rolling-circle over-replication when convergent replication forks merge and fuse, as may be expected to occur during normal replication at the chromosomal terminus region or during repair of two-ended DSBs following ‘ends-in’ replication.
Collapse
Affiliation(s)
- Sayantan Goswami
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India.,Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Jayaraman Gowrishankar
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.,Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| |
Collapse
|
22
|
Miropolskaya N, Petushkov I, Esyunina D, Kulbachinskiy A. Suppressor mutations in Escherichia coli RNA polymerase alter transcription initiation but do not affect translesion RNA synthesis in vitro. J Biol Chem 2022; 298:102099. [PMID: 35667439 PMCID: PMC9254596 DOI: 10.1016/j.jbc.2022.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Bacterial RNA polymerase (RNAP) coordinates transcription with DNA repair and replication. Many RNAP mutations have pleiotropic phenotypes with profound effects on transcription-coupled processes. One class of RNAP mutations (rpo*) has been shown to suppress mutations in regulatory factors responsible for changes in gene expression during stationary phase or starvation, as well as in factors involved in the restoration of replication forks after DNA damage. These mutations were suggested to affect the ability of RNAP to transcribe damaged DNA and to decrease the stability of transcription complexes, thus facilitating their dislodging during DNA replication and repair, although this was not explicitly demonstrated. Here, we obtained nine mutations of this class located around the DNA/RNA binding cleft of E. coli RNAP and analyzed their transcription properties in vitro. We found that these mutations decreased promoter complex stability to varying degrees and all decreased the activity of rRNA promoters. However, they did not have strong effects on elongation complex stability. Some mutations were shown to stimulate transcriptional pauses or decrease intrinsic RNA cleavage by RNAP, but none altered the ability of RNAP to transcribe DNA templates containing damaged nucleotides. Thus, we conclude that the suppressor phenotypes of the mutations are unlikely to result from direct effects on DNA lesion recognition by RNAP but may be primarily explained by changes in transcription initiation. Further analysis of the effects of these mutations on the genomic distribution of RNAP and its interactions with regulatory factors will be essential for understanding their diverse phenotypes in vivo.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Ivan Petushkov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| |
Collapse
|
23
|
Fleurier S, Dapa T, Tenaillon O, Condon C, Matic I. rRNA operon multiplicity as a bacterial genome stability insurance policy. Nucleic Acids Res 2022; 50:12601-12620. [PMID: 35552441 PMCID: PMC9825170 DOI: 10.1093/nar/gkac332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 01/29/2023] Open
Abstract
Quick growth restart after upon encountering favourable environmental conditions is a major fitness contributor in natural environment. It is widely assumed that the time required to restart growth after nutritional upshift is determined by how long it takes for cells to synthesize enough ribosomes to produce the proteins required to reinitiate growth. Here we show that a reduction in the capacity to synthesize ribosomes by reducing number of ribosomal RNA (rRNA) operons (rrn) causes a longer transition from stationary phase to growth of Escherichia coli primarily due to high mortality rates. Cell death results from DNA replication blockage and massive DNA breakage at the sites of the remaining rrn operons that become overloaded with RNA polymerases (RNAPs). Mortality rates and growth restart duration can be reduced by preventing R-loop formation and improving DNA repair capacity. The same molecular mechanisms determine the duration of the recovery phase after ribosome-damaging stresses, such as antibiotics, exposure to bile salts or high temperature. Our study therefore suggests that a major function of rrn operon multiplicity is to ensure that individual rrn operons are not saturated by RNAPs, which can result in catastrophic chromosome replication failure and cell death during adaptation to environmental fluctuations.
Collapse
Affiliation(s)
- Sebastien Fleurier
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Tanja Dapa
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | | | - Ciarán Condon
- Institut de Biologie Physico-Chimique, CNRS UMR8261, Université de Paris, 75005 Paris, France
| | - Ivan Matic
- To whom correspondence should be addressed.
| |
Collapse
|
24
|
Visser BJ, Sharma S, Chen PJ, McMullin AB, Bates ML, Bates D. Psoralen mapping reveals a bacterial genome supercoiling landscape dominated by transcription. Nucleic Acids Res 2022; 50:4436-4449. [PMID: 35420137 PMCID: PMC9071471 DOI: 10.1093/nar/gkac244] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/14/2022] Open
Abstract
DNA supercoiling is a key regulator of all DNA metabolic processes including replication, transcription, and recombination, yet a reliable genomic assay for supercoiling is lacking. Here, we present a robust and flexible method (Psora-seq) to measure whole-genome supercoiling at high resolution. Using this tool in Escherichia coli, we observe a supercoiling landscape that is well correlated to transcription. Supercoiling twin-domains generated by RNA polymerase complexes span 25 kb in each direction - an order of magnitude farther than previous measurements in any organism. Thus, ribosomal and many other highly expressed genes strongly affect the topology of about 40 neighboring genes each, creating highly integrated gene circuits. Genomic patterns of supercoiling revealed by Psora-seq could be aptly predicted from modeling based on gene expression levels alone, indicating that transcription is the major determinant of chromosome supercoiling. Large-scale supercoiling patterns were highly symmetrical between left and right chromosome arms (replichores), indicating that DNA replication also strongly influences supercoiling. Skew in the axis of symmetry from the natural ori-ter axis supports previous indications that the rightward replication fork is delayed several minutes after initiation. Implications of supercoiling on DNA replication and chromosome domain structure are discussed.
Collapse
Affiliation(s)
- Bryan J Visser
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sonum Sharma
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Po J Chen
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anna B McMullin
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maia L Bates
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Bates
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
25
|
Bianco PR. Insight into the biochemical mechanism of DNA helicases provided by bulk-phase and single-molecule assays. Methods 2021; 204:348-360. [PMID: 34896247 PMCID: PMC9534331 DOI: 10.1016/j.ymeth.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022] Open
Abstract
There are multiple assays available that can provide insight into the biochemical mechanism of DNA helicases. For the first 22 years since their discovery, bulk-phase assays were used. These include gel-based, spectrophotometric, and spectrofluorometric assays that revealed many facets of these enzymes. From 2001, single-molecule studies have contributed additional insight into these DNA nanomachines to reveal details on energy coupling, step size, processivity as well as unique aspects of individual enzyme behavior that were masked in the averaging inherent in ensemble studies. In this review, important aspects of the study of helicases are discussed including beginning with active, nuclease-free enzyme, followed by several bulk-phase approaches that have been developed and still find widespread use today. Finally, two single-molecule approaches are discussed, and the resulting findings are related to the results obtained in bulk-phase studies.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| |
Collapse
|
26
|
Jameson KH, Rudolph CJ, Hawkins M. Termination of DNA replication at Tus-ter barriers results in under-replication of template DNA. J Biol Chem 2021; 297:101409. [PMID: 34780717 DOI: 10.1016/j.jbc.2021.101409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 02/05/2023] Open
Abstract
The complete and accurate duplication of genomic information is vital to maintain genome stability in all domains of life. In Escherichia coli, replication termination, the final stage of the duplication process, is confined to the 'replication fork trap' region by multiple unidirectional fork barriers formed by the binding of Tus protein to genomic ter sites. Termination typically occurs away from Tus-ter complexes, but they become part of the fork fusion process when a delay to one replisome allows the second replisome to travel more than halfway around the chromosome. In this instance, replisome progression is blocked at the non-permissive interface of the Tus-ter complex, termination then occurs when a converging replisome meets the permissive interface. To investigate the consequences of replication fork fusion at Tus-ter complexes, we established a plasmid-based replication system where we could mimic the termination process at Tus-ter complexes in vitro. We developed a termination mapping assay to measure leading strand replication fork progression and demonstrate that the DNA template is under-replicated by 15-24 bases when replication forks fuse at Tus-ter complexes. This gap could not be closed by the addition of lagging strand processing enzymes or by the inclusion of several helicases that promote DNA replication. Our results indicate that accurate fork fusion at Tus-ter barriers requires further enzymatic processing, highlighting large gaps that still exist in our understanding of the final stages of chromosome duplication and the evolutionary advantage of having a replication fork trap.
Collapse
Affiliation(s)
- Katie H Jameson
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Michelle Hawkins
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
27
|
Hurst V, Challa K, Jonas F, Forey R, Sack R, Seebacher J, Schmid CD, Barkai N, Shimada K, Gasser SM, Poli J. A regulatory phosphorylation site on Mec1 controls chromatin occupancy of RNA polymerases during replication stress. EMBO J 2021; 40:e108439. [PMID: 34569643 PMCID: PMC8561635 DOI: 10.15252/embj.2021108439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/16/2023] Open
Abstract
Upon replication stress, budding yeast checkpoint kinase Mec1ATR triggers the downregulation of transcription, thereby reducing the level of RNA polymerase (RNAP) on chromatin to facilitate replication fork progression. Here, we identify a hydroxyurea-induced phosphorylation site on Mec1, Mec1-S1991, that contributes to the eviction of RNAPII and RNAPIII during replication stress. The expression of the non-phosphorylatable mec1-S1991A mutant reduces replication fork progression genome-wide and compromises survival on hydroxyurea. This defect can be suppressed by destabilizing chromatin-bound RNAPII through a TAP fusion to its Rpb3 subunit, suggesting that lethality in mec1-S1991A mutants arises from replication-transcription conflicts. Coincident with a failure to repress gene expression on hydroxyurea in mec1-S1991A cells, highly transcribed genes such as GAL1 remain bound at nuclear pores. Consistently, we find that nuclear pore proteins and factors controlling RNAPII and RNAPIII are phosphorylated in a Mec1-dependent manner on hydroxyurea. Moreover, we show that Mec1 kinase also contributes to reduced RNAPII occupancy on chromatin during an unperturbed S phase by promoting degradation of the Rpb1 subunit.
Collapse
Affiliation(s)
- Verena Hurst
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Kiran Challa
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Felix Jonas
- Departments of Molecular Genetics and Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Romain Forey
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Ragna Sack
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Christoph D Schmid
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Naama Barkai
- Departments of Molecular Genetics and Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Jérôme Poli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| |
Collapse
|
28
|
Single-molecule studies of helicases and translocases in prokaryotic genome-maintenance pathways. DNA Repair (Amst) 2021; 108:103229. [PMID: 34601381 DOI: 10.1016/j.dnarep.2021.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022]
Abstract
Helicases involved in genomic maintenance are a class of nucleic-acid dependent ATPases that convert the energy of ATP hydrolysis into physical work to execute irreversible steps in DNA replication, repair, and recombination. Prokaryotic helicases provide simple models to understand broadly conserved molecular mechanisms involved in manipulating nucleic acids during genome maintenance. Our understanding of the catalytic properties, mechanisms of regulation, and roles of prokaryotic helicases in DNA metabolism has been assembled through a combination of genetic, biochemical, and structural methods, further refined by single-molecule approaches. Together, these investigations have constructed a framework for understanding the mechanisms that maintain genomic integrity in cells. This review discusses recent single-molecule insights into molecular mechanisms of prokaryotic helicases and translocases.
Collapse
|
29
|
Brüning JG, Marians KJ. Bypass of complex co-directional replication-transcription collisions by replisome skipping. Nucleic Acids Res 2021; 49:9870-9885. [PMID: 34469567 PMCID: PMC8464059 DOI: 10.1093/nar/gkab760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Collisions between the replisome and RNA polymerases [RNAP(s)] are the main obstacle to DNA replication. These collisions can occur either head-on or co-directionally with respect to the direction of translocation of both complexes. Whereas head-on collisions require additional factors to be resolved, co-directional collisions are thought to be overcome by the replisome itself using the mRNA transcript as a primer. We show that mRNA takeover is utilized primarily after collisions with single RNAP complexes with short transcripts. Bypass of more complex transcription complexes requires the synthesis of a new primer downstream of the RNAP for the replisome to resume leading-strand synthesis. In both cases, bypass proceeds with displacement of the RNAP. Rep, Mfd, UvrD and RNase H can process the RNAP block and facilitate replisome bypass by promoting the formation of continuous leading strands. Bypass of co-directional RNAP(s) and/or R-loops is determined largely by the length of the obstacle that the replisome needs to traverse: R-loops are about equally as potent obstacles as RNAP arrays if they occupy the same length of the DNA template.
Collapse
Affiliation(s)
- Jan-Gert Brüning
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kenneth J Marians
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
30
|
Lemma AS, Brynildsen MP. Toxin Induction or Inhibition of Transcription or Translation Posttreatment Increases Persistence to Fluoroquinolones. mBio 2021; 12:e0198321. [PMID: 34399616 PMCID: PMC8406316 DOI: 10.1128/mbio.01983-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/19/2021] [Indexed: 02/03/2023] Open
Abstract
Toxin-antitoxin modules are widespread in prokaryotes, and the capacity of toxin accumulation to increase the tolerances of bacteria to antibiotics has been well documented. The conventional model for this functionality implies that an overabundance of toxin arrests bacterial growth, which inhibits processes targeted by antibiotics and thereby limits their corruption and the lethal damage that would ensue. Implicit in this model is that toxins exert their influence on antibiotic lethality before and/or during treatment, even though they are also present and functional after treatment concludes. Given recent evidence establishing that the period following antibiotic treatment (recovery) is important for the survival of nongrowing bacterial populations treated with fluoroquinolones (FQs), we assayed to what extent toxins influence bacterial survival during the recovery period. With both LdrD and MazF, toxins of type I and II systems, respectively, controlling accumulation to occur only after FQ treatment of nongrowing cultures resulted in significant increases in persisters. Further genetic investigation revealed important roles for homologous recombination and nucleotide excision repair machinery. Focusing on the wild type, we did not observe any SOS-induced toxin functioning in this manner; however, an analogous phenomenon was observed for wild-type Escherichia coli as well as uropathogenic E. coli (UPEC) when transcription or translation was inhibited during the post-FQ recovery period. Collectively, these data reveal the capacity of toxins to thwart FQ killing even after the treatment has concluded and show that FQ treatment of nongrowing bacteria can be rendered largely ineffective if bacteria cannot readily resume translation and growth at the conclusion of treatment. IMPORTANCE Overabundances of toxins have been shown to increase the antibiotic tolerances of bacteria. Largely, these effects have been attributed to the abilities of toxins to inhibit bacterial growth before and during antibiotic exposure. In this study, we assessed to what extent toxins can influence bacterial survival following antibiotic treatment, rather than before or during. Using two mechanistically distinct toxins, we show that their accumulations after antibiotic exposure have the capacity to increase the abundances of fluoroquinolone persisters from nongrowing populations. Further, we show with wild-type and uropathogenic E. coli that chemical inhibition of growth, not just that induced by toxins, produces analogous results. These observations reveal another dimension of how toxins influence antibiotic tolerance and highlight the importance of postantibiotic physiology on bacterial survival.
Collapse
Affiliation(s)
- Annabel S. Lemma
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Mark P. Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
31
|
Genetic Analysis of DinG Family Helicase YoaA and Its Interaction with Replication Clamp Loader Protein HolC in Escherichia coli. J Bacteriol 2021; 203:e0022821. [PMID: 34181484 PMCID: PMC8378479 DOI: 10.1128/jb.00228-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The XP-D/DinG family of DNA helicases contributes to genomic stability in all three domains of life. Here, we investigate the role of one of these proteins, YoaA, of Escherichia coli. In E. coli, YoaA aids in tolerance to the nucleoside azidothymidine (AZT), a DNA replication inhibitor, and physically interacts with a subunit of the DNA polymerase III holoenzyme, HolC. We map the residues of YoaA required for HolC interaction to its C terminus by yeast two-hybrid analysis. We propose that this interaction competes with HolC’s interaction with HolD and the rest of the replisome; YoaA indeed inhibits growth when overexpressed, dependent on this interaction region. By gene fusions, we show that YoaA is repressed by LexA and induced in response to DNA damage as part of the SOS response. Induction of YoaA by AZT is biphasic, with an immediate response after treatment and a slower response that peaks in the late log phase of growth. This growth-phase-dependent induction by AZT is not blocked by lexA3 (Ind−), which normally negates its self-cleavage, implying another means to induce the DNA damage response that responds to the nutritional state of the cell. We propose that YoaA helicase activity increases access to the 3′ nascent strand during replication; consistent with this, YoaA appears to aid in the removal of potential A-to-T transversion mutations in ndk mutants, which are prone to nucleotide misincorporation. We provide evidence that YoaA and its paralog DinG may also initiate template switching that leads to deletions between tandem repeats in DNA. IMPORTANCE Maintaining genomic stability is crucial for all living organisms. Replication of DNA frequently encounters barriers that must be removed to complete genome duplication. Balancing DNA synthesis with its repair is critical and not entirely understood at a mechanistic level. The YoaA protein, studied here, is required for certain types of DNA repair and interacts in an alternative manner with proteins that catalyze DNA replication. YoaA is part of the well-studied LexA-regulated response to DNA damage, the SOS response. We describe an unusual feature of its regulation that promotes induction after DNA damage as the culture begins to experience starvation. Replication fork repair integrates both DNA damage and nutritional signals. We also show that YoaA affects genomic stability.
Collapse
|
32
|
Topoisomerase I Essentiality, DnaA-Independent Chromosomal Replication, and Transcription-Replication Conflict in Escherichia coli. J Bacteriol 2021; 203:e0019521. [PMID: 34124945 DOI: 10.1128/jb.00195-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Topoisomerase I (Topo I) of Escherichia coli, encoded by topA, acts to relax negative supercoils in DNA. Topo I deficiency results in hypernegative supercoiling, formation of transcription-associated RNA-DNA hybrids (R-loops), and DnaA- and oriC-independent constitutive stable DNA replication (cSDR), but some uncertainty persists as to whether topA is essential for viability in E. coli and related enterobacteria. Here, we show that several topA alleles, including ΔtopA, confer lethality in derivatives of wild-type E. coli strain MG1655. Viability in the absence of Topo I was restored with two perturbations, neither of which reversed the hypernegative supercoiling phenotype: (i) in a reduced-genome strain (MDS42) or (ii) by an RNA polymerase (RNAP) mutation, rpoB*35, that has been reported to alleviate the deleterious consequences of RNAP backtracking and transcription-replication conflicts. Four phenotypes related to cSDR were identified for topA mutants: (i) one of the topA alleles rescued ΔdnaA lethality; (ii) in dnaA+ derivatives, Topo I deficiency generated a characteristic copy number peak in the terminus region of the chromosome; (iii) topA was synthetically lethal with rnhA (encoding RNase HI, whose deficiency also confers cSDR); and (iv) topA rnhA synthetic lethality was itself rescued by ΔdnaA. We propose that the terminal lethal consequence of hypernegative DNA supercoiling in E. coli topA mutants is RNAP backtracking during transcription elongation and associated R-loop formation, which in turn leads to transcription-replication conflicts and to cSDR. IMPORTANCE In all life forms, double-helical DNA exists in a topologically supercoiled state. The enzymes DNA gyrase and topoisomerase I act, respectively, to introduce and to relax negative DNA supercoils in Escherichia coli. That gyrase deficiency leads to bacterial death is well established, but the essentiality of topoisomerase I for viability has been less certain. This study confirms that topoisomerase I is essential for E. coli viability and suggests that in its absence, aberrant chromosomal DNA replication and excessive transcription-replication conflicts occur that are responsible for lethality.
Collapse
|
33
|
Urrutia-Irazabal I, Ault JR, Sobott F, Savery NJ, Dillingham MS. Analysis of the PcrA-RNA polymerase complex reveals a helicase interaction motif and a role for PcrA/UvrD helicase in the suppression of R-loops. eLife 2021; 10:68829. [PMID: 34279225 PMCID: PMC8318588 DOI: 10.7554/elife.68829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The PcrA/UvrD helicase binds directly to RNA polymerase (RNAP) but the structural basis for this interaction and its functional significance have remained unclear. In this work, we used biochemical assays and hydrogen-deuterium exchange coupled to mass spectrometry to study the PcrA-RNAP complex. We find that PcrA binds tightly to a transcription elongation complex in a manner dependent on protein:protein interaction with the conserved PcrA C-terminal Tudor domain. The helicase binds predominantly to two positions on the surface of RNAP. The PcrA C-terminal domain engages a conserved region in a lineage-specific insert within the β subunit which we identify as a helicase interaction motif present in many other PcrA partner proteins, including the nucleotide excision repair factor UvrB. The catalytic core of the helicase binds near the RNA and DNA exit channels and blocking PcrA activity in vivo leads to the accumulation of R-loops. We propose a role for PcrA as an R-loop suppression factor that helps to minimize conflicts between transcription and other processes on DNA including replication.
Collapse
Affiliation(s)
- Inigo Urrutia-Irazabal
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol. Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Nigel J Savery
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol. Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Mark S Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol. Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| |
Collapse
|
34
|
Moreno-del Álamo M, Carrasco B, Torres R, Alonso JC. Bacillus subtilis PcrA Helicase Removes Trafficking Barriers. Cells 2021; 10:935. [PMID: 33920686 PMCID: PMC8074105 DOI: 10.3390/cells10040935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022] Open
Abstract
Bacillus subtilis PcrA interacts with the RNA polymerase and might contribute to mitigate replication-transcription conflicts (RTCs). We show that PcrA depletion lethality is partially suppressed by rnhB inactivation, but cell viability is significantly reduced by rnhC or dinG inactivation. Following PcrA depletion, cells lacking RnhC or DinG are extremely sensitive to DNA damage. Chromosome segregation is not further impaired by rnhB or dinG inactivation but is blocked by rnhC or recA inactivation upon PcrA depletion. Despite our efforts, we could not construct a ΔrnhC ΔrecA strain. These observations support the idea that PcrA dismantles RTCs. Purified PcrA, which binds single-stranded (ss) DNA over RNA, is a ssDNA-dependent ATPase and preferentially unwinds DNA in a 3'→5'direction. PcrA unwinds a 3'-tailed RNA of an RNA-DNA hybrid significantly faster than that of a DNA substrate. Our results suggest that a replicative stress, caused by mis-incorporated rNMPs, indirectly increases cell viability upon PcrA depletion. We propose that PcrA, in concert with RnhC or DinG, contributes to removing spontaneous or enzyme-driven R-loops, to counteract deleterious trafficking conflicts and preserve to genomic integrity.
Collapse
Affiliation(s)
| | | | | | - Juan Carlos Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain; (M.M.-d.Á.); (B.C.); (R.T.)
| |
Collapse
|
35
|
The Role of Replication Clamp-Loader Protein HolC of Escherichia coli in Overcoming Replication/Transcription Conflicts. mBio 2021; 12:mBio.00184-21. [PMID: 33688004 PMCID: PMC8092217 DOI: 10.1128/mbio.00184-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, DNA replication is catalyzed by an assembly of proteins, the DNA polymerase III holoenzyme. This complex includes the polymerase and proofreading subunits, the processivity clamp, and clamp loader complex. The holC gene encodes an accessory protein (known as χ) to the core clamp loader complex and is the only protein of the holoenzyme that binds to single-strand DNA binding protein, SSB. HolC is not essential for viability, although mutants show growth impairment, genetic instability, and sensitivity to DNA damaging agents. In this study, we isolate spontaneous suppressor mutants in a ΔholC strain and identify these by whole-genome sequencing. Some suppressors are alleles of RNA polymerase, suggesting that transcription is problematic for holC mutant strains, or alleles of sspA, encoding stringent starvation protein. Using a conditional holC plasmid, we examine factors affecting transcription elongation and termination for synergistic or suppressive effects on holC mutant phenotypes. Alleles of RpoA (α), RpoB (β), and RpoC (β') RNA polymerase holoenzyme can partially suppress loss of HolC. In contrast, mutations in transcription factors DksA and NusA enhanced the inviability of holC mutants. HolC mutants showed enhanced sensitivity to bicyclomycin, a specific inhibitor of Rho-dependent termination. Bicyclomycin also reverses suppression of holC by rpoA, rpoC, and sspA An inversion of the highly expressed rrnA operon exacerbates the growth defects of holC mutants. We propose that transcription complexes block replication in holC mutants and that Rho-dependent transcriptional termination and DksA function are particularly important to sustain viability and chromosome integrity.IMPORTANCE Transcription elongation complexes present an impediment to DNA replication. We provide evidence that one component of the replication clamp loader complex, HolC, of Escherichia coli is required to overcome these blocks. This genetic study of transcription factor effects on holC growth defects implicates Rho-dependent transcriptional termination and DksA function as critical. It also implicates, for the first time, a role of SspA, stringent starvation protein, in avoidance or tolerance of replication/replication conflicts. We speculate that HolC helps avoid or resolve collisions between replication and transcription complexes, which become toxic in HolC's absence.
Collapse
|
36
|
Sutera VA, Weeks SJ, Dudenhausen EE, Baggett HBR, Shaw MC, Brand KA, Glass DJ, Bloom LB, Lovett ST. Alternative complexes formed by the Escherichia coli clamp loader accessory protein HolC (x) with replication protein HolD (ψ) and repair protein YoaA. DNA Repair (Amst) 2021; 100:103006. [PMID: 33582602 DOI: 10.1016/j.dnarep.2020.103006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 10/22/2022]
Abstract
Efficient and faithful replication of DNA is essential for all organisms. However, the replication fork frequently encounters barriers that need to be overcome to ensure cell survival and genetic stability. Cells must carefully balance and regulate replication vs. repair reactions. In Escherichia coli, the replisome consists of the DNA polymerase III holoenzyme, including DNA polymerase, proofreading exonuclease, processivity clamp and clamp loader, as well as a fork helicase, DnaB and primase, DnaG. We provide evidence here that one component of the clamp loader complex, HolC (or χ) plays a dual role via its ability to form 2 mutually exclusive complexes: one with HolD (or ψ) that recruits the clamp-loader and hence the DNA polymerase holoenzyme and another with helicase-like YoaA protein, a DNA-damage inducible repair protein. By yeast 2 hybrid analysis, we show that two residues of HolC, F64 and W57, at the interface in the structure with HolD, are required for interaction with HolD and for interaction with YoaA. Mutation of these residues does not interfere with HolC's interaction with single-strand DNA binding protein, SSB. In vivo, these mutations fail to complement the poor growth and sensitivity to azidothymidine, a chain-terminating replication inhibitor. In support of the notion that these are exclusive complexes, co-expression of HolC, HolD and YoaA, followed by pulldown of YoaA, yields a complex with HolC but not HolD. YoaA fails to pulldown HolC-F64A. We hypothesize that HolC, by binding with SSB, can recruit the DNA polymerase III holoenzyme through HolD, or an alternative repair complex with YoaA helicase.
Collapse
Affiliation(s)
- Vincent A Sutera
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, MS029, 415 South St., Waltham, MA, 02453, United States
| | - Savannah J Weeks
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610-0245, United States
| | - Elizabeth E Dudenhausen
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610-0245, United States
| | - Helen B Rappe Baggett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, MS029, 415 South St., Waltham, MA, 02453, United States
| | - McKay C Shaw
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, MS029, 415 South St., Waltham, MA, 02453, United States
| | - Kirsten A Brand
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, MS029, 415 South St., Waltham, MA, 02453, United States
| | - David J Glass
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, MS029, 415 South St., Waltham, MA, 02453, United States
| | - Linda B Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610-0245, United States
| | - Susan T Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, MS029, 415 South St., Waltham, MA, 02453, United States.
| |
Collapse
|
37
|
Brüning JG, Marians KJ. Replisome bypass of transcription complexes and R-loops. Nucleic Acids Res 2020; 48:10353-10367. [PMID: 32926139 PMCID: PMC7544221 DOI: 10.1093/nar/gkaa741] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
The vast majority of the genome is transcribed by RNA polymerases. G+C-rich regions of the chromosomes and negative superhelicity can promote the invasion of the DNA by RNA to form R-loops, which have been shown to block DNA replication and promote genome instability. However, it is unclear whether the R-loops themselves are sufficient to cause this instability or if additional factors are required. We have investigated replisome collisions with transcription complexes and R-loops using a reconstituted bacterial DNA replication system. RNA polymerase transcription complexes co-directionally oriented with the replication fork were transient blockages, whereas those oriented head-on were severe, stable blockages. On the other hand, replisomes easily bypassed R-loops on either template strand. Replication encounters with R-loops on the leading-strand template (co-directional) resulted in gaps in the nascent leading strand, whereas lagging-strand template R-loops (head-on) had little impact on replication fork progression. We conclude that whereas R-loops alone can act as transient replication blocks, most genome-destabilizing replication fork stalling likely occurs because of proteins bound to the R-loops.
Collapse
Affiliation(s)
- Jan-Gert Brüning
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kenneth J Marians
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
38
|
Wolak C, Ma HJ, Soubry N, Sandler SJ, Reyes-Lamothe R, Keck JL. Interaction with single-stranded DNA-binding protein localizes ribonuclease HI to DNA replication forks and facilitates R-loop removal. Mol Microbiol 2020; 114:495-509. [PMID: 32426857 PMCID: PMC7934204 DOI: 10.1111/mmi.14529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 01/06/2023]
Abstract
DNA replication complexes (replisomes) routinely encounter proteins and unusual nucleic acid structures that can impede their progress. Barriers can include transcription complexes and R-loops that form when RNA hybridizes with complementary DNA templates behind RNA polymerases. Cells encode several RNA polymerase and R-loop clearance mechanisms to limit replisome exposure to these potential obstructions. One such mechanism is hydrolysis of R-loops by ribonuclease HI (RNase HI). Here, we examine the cellular role of the interaction between Escherichia coli RNase HI and the single-stranded DNA-binding protein (SSB) in this process. Interaction with SSB localizes RNase HI foci to DNA replication sites. Mutation of rnhA to encode an RNase HI variant that cannot interact with SSB but that maintains enzymatic activity (rnhAK60E) eliminates RNase HI foci. The mutation also produces a media-dependent slow-growth phenotype and an activated DNA damage response in cells lacking Rep helicase, which is an enzyme that disrupts stalled transcription complexes. RNA polymerase variants that are thought to increase or decrease R-loop accumulation enhance or suppress, respectively, the growth phenotype of rnhAK60E rep::kan strains. These results identify a cellular role for the RNase HI/SSB interaction in helping to clear R-loops that block DNA replication.
Collapse
Affiliation(s)
- Christine Wolak
- Department of Biomolecular Chemistry, 420 Henry Mall, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Hui Jun Ma
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Nicolas Soubry
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Steven J. Sandler
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Rodrigo Reyes-Lamothe
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - James L. Keck
- Department of Biomolecular Chemistry, 420 Henry Mall, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| |
Collapse
|
39
|
Liu R, Liang L, Freed EF, Choudhury A, Eckert CA, Gill RT. Engineering regulatory networks for complex phenotypes in E. coli. Nat Commun 2020; 11:4050. [PMID: 32792485 PMCID: PMC7426931 DOI: 10.1038/s41467-020-17721-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Regulatory networks describe the hierarchical relationship between transcription factors, associated proteins, and their target genes. Regulatory networks respond to environmental and genetic perturbations by reprogramming cellular metabolism. Here we design, construct, and map a comprehensive regulatory network library containing 110,120 specific mutations in 82 regulators expected to perturb metabolism. We screen the library for different targeted phenotypes, and identify mutants that confer strong resistance to various inhibitors, and/or enhanced production of target compounds. These improvements are identified in a single round of selection, showing that the regulatory network library is universally applicable and is convenient and effective for engineering targeted phenotypes. The facile construction and mapping of the regulatory network library provides a path for developing a more detailed understanding of global regulation in E. coli, with potential for adaptation and use in less-understood organisms, expanding toolkits for future strain engineering, synthetic biology, and broader efforts.
Collapse
Affiliation(s)
- Rongming Liu
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA
| | - Liya Liang
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA
| | - Emily F Freed
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA
| | - Alaksh Choudhury
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA
| | - Carrie A Eckert
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA
- National Renewable Energy Laboratory (NREL), Golden, Colorado, USA
| | - Ryan T Gill
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
40
|
Schroeder JW, Sankar TS, Wang JD, Simmons LA. The roles of replication-transcription conflict in mutagenesis and evolution of genome organization. PLoS Genet 2020; 16:e1008987. [PMID: 32853297 PMCID: PMC7451550 DOI: 10.1371/journal.pgen.1008987] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Replication-transcription conflicts promote mutagenesis and give rise to evolutionary signatures, with fundamental importance to genome stability ranging from bacteria to metastatic cancer cells. This review focuses on the interplay between replication-transcription conflicts and the evolution of gene directionality. In most bacteria, the majority of genes are encoded on the leading strand of replication such that their transcription is co-directional with the direction of DNA replication fork movement. This gene strand bias arises primarily due to negative selection against deleterious consequences of head-on replication-transcription conflict. However, many genes remain head-on. Can head-on orientation provide some benefit? We combine insights from both mechanistic and evolutionary studies, review published work, and analyze gene expression data to evaluate an emerging model that head-on genes are temporal targets for adaptive mutagenesis during stress. We highlight the alternative explanation that genes in the head-on orientation may simply be the result of genomic inversions and relaxed selection acting on nonessential genes. We seek to clarify how the mechanisms of replication-transcription conflict, in concert with other mutagenic mechanisms, balanced by natural selection, have shaped bacterial genome evolution.
Collapse
Affiliation(s)
- Jeremy W. Schroeder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - T. Sabari Sankar
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| | - Jue D. Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
41
|
Moreno-Del Alamo M, Torres R, Manfredi C, Ruiz-Masó JA, Del Solar G, Alonso JC. Bacillus subtilis PcrA Couples DNA Replication, Transcription, Recombination and Segregation. Front Mol Biosci 2020; 7:140. [PMID: 32793628 PMCID: PMC7385302 DOI: 10.3389/fmolb.2020.00140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023] Open
Abstract
Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection (addAB or recQ), positive and negative RecA modulators (rarA or recX and recU), or genes involved in the reactivation of a stalled RNA polymerase (recD2, helD, hepA, and ywqA). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd, but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD2, helD, hepA, or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA, or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions.
Collapse
Affiliation(s)
- María Moreno-Del Alamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Candela Manfredi
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - José A Ruiz-Masó
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Gloria Del Solar
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Juan Carlos Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| |
Collapse
|
42
|
Björkman A, Johansen SL, Lin L, Schertzer M, Kanellis DC, Katsori AM, Christensen ST, Luo Y, Andersen JS, Elsässer SJ, Londono-Vallejo A, Bartek J, Schou KB. Human RTEL1 associates with Poldip3 to facilitate responses to replication stress and R-loop resolution. Genes Dev 2020; 34:1065-1074. [PMID: 32561545 PMCID: PMC7397856 DOI: 10.1101/gad.330050.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
In this study from Björkman et al., the authors sought to understand how RTEL1 helicase preserves genomic stability during replication. They demonstrate that RTEL1 and the Polδ subunit Poldip3 form a complex and are mutually dependent in chromatin binding after replication stress, and loss of RTEL1 and Poldip3 leads to marked R-loop accumulation that is confined to sites of active replication, thus highlighting a previously unknown role of RTEL1 and Poldip3 in R-loop suppression at genomic regions where transcription and replication intersect. RTEL1 helicase is a component of DNA repair and telomere maintenance machineries. While RTEL1's role in DNA replication is emerging, how RTEL1 preserves genomic stability during replication remains elusive. Here we used a range of proteomic, biochemical, cell, and molecular biology and gene editing approaches to provide further insights into potential role(s) of RTEL1 in DNA replication and genome integrity maintenance. Our results from complementary human cell culture models established that RTEL1 and the Polδ subunit Poldip3 form a complex and are/function mutually dependent in chromatin binding after replication stress. Loss of RTEL1 and Poldip3 leads to marked R-loop accumulation that is confined to sites of active replication, enhances endogenous replication stress, and fuels ensuing genomic instability. The impact of depleting RTEL1 and Poldip3 is epistatic, consistent with our proposed concept of these two proteins operating in a shared pathway involved in DNA replication control under stress conditions. Overall, our data highlight a previously unsuspected role of RTEL1 and Poldip3 in R-loop suppression at genomic regions where transcription and replication intersect, with implications for human diseases including cancer.
Collapse
Affiliation(s)
- Andrea Björkman
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden
| | - Søren L Johansen
- Department of Cell Biology and Physiology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus 8200, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Mike Schertzer
- 3UMR 3244 (Telomere and Cancer Laboratory), Centre National de la Recherche Scientifique, Institut Curie, PSL Research University, Sorbonne Universités, Paris 75005, France
| | - Dimitris C Kanellis
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden
| | - Anna-Maria Katsori
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden
| | - Søren T Christensen
- Department of Cell Biology and Physiology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus 8200, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Simon J Elsässer
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden
| | - Arturo Londono-Vallejo
- 3UMR 3244 (Telomere and Cancer Laboratory), Centre National de la Recherche Scientifique, Institut Curie, PSL Research University, Sorbonne Universités, Paris 75005, France
| | - Jiri Bartek
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden.,Danish Cancer Society Research Centre, DK-2100 Copenhagen, Denmark
| | - Kenneth B Schou
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden
| |
Collapse
|
43
|
Dewitte A, Bouvenot T, Pierre F, Ricard I, Pradel E, Barois N, Hujeux A, Bontemps-Gallo S, Sebbane F. A refined model of how Yersinia pestis produces a transmissible infection in its flea vector. PLoS Pathog 2020; 16:e1008440. [PMID: 32294143 PMCID: PMC7185726 DOI: 10.1371/journal.ppat.1008440] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/27/2020] [Accepted: 02/27/2020] [Indexed: 12/25/2022] Open
Abstract
In flea-borne plague, blockage of the flea's foregut by Yersinia pestis hastens transmission to the mammalian host. Based on microscopy observations, we first suggest that flea blockage results from primary infection of the foregut and not from midgut colonization. In this model, flea infection is characterized by the recurrent production of a mass that fills the lumen of the proventriculus and encompasses a large number of Y. pestis. This recurrence phase ends when the proventricular cast is hard enough to block blood ingestion. We further showed that ymt (known to be essential for flea infection) is crucial for cast production, whereas the hmsHFRS operon (known to be essential for the formation of the biofilm that blocks the gut) is needed for cast consolidation. By screening a library of mutants (each lacking a locus previously known to be upregulated in the flea gut) for biofilm formation, we found that rpiA is important for flea blockage but not for colonization of the midgut. This locus may initially be required to resist toxic compounds within the proventricular cast. However, once the bacterium has adapted to the flea, rpiA helps to form the biofilm that consolidates the proventricular cast. Lastly, we used genetic techniques to demonstrate that ribose-5-phosphate isomerase activity (due to the recent gain of a second copy of rpiA (y2892)) accentuated blockage but not midgut colonization. It is noteworthy that rpiA is an ancestral gene, hmsHFRS and rpiA2 were acquired by the recent ancestor of Y. pestis, and ymt was acquired by Y. pestis itself. Our present results (i) highlight the physiopathological and molecular mechanisms leading to flea blockage, (ii) show that the role of a gene like rpiA changes in space and in time during an infection, and (iii) emphasize that evolution is a gradual process punctuated by sudden jumps.
Collapse
Affiliation(s)
- Amélie Dewitte
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Typhanie Bouvenot
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - François Pierre
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Isabelle Ricard
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Elizabeth Pradel
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Nicolas Barois
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Anaïs Hujeux
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Sébastien Bontemps-Gallo
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Florent Sebbane
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
- * E-mail:
| |
Collapse
|
44
|
Syeda AH, Dimude JU, Skovgaard O, Rudolph CJ. Too Much of a Good Thing: How Ectopic DNA Replication Affects Bacterial Replication Dynamics. Front Microbiol 2020; 11:534. [PMID: 32351461 PMCID: PMC7174701 DOI: 10.3389/fmicb.2020.00534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Each cell division requires the complete and accurate duplication of the entire genome. In bacteria, the duplication process of the often-circular chromosomes is initiated at a single origin per chromosome, resulting in two replication forks that traverse the chromosome in opposite directions. DNA synthesis is completed once the two forks fuse in a region diametrically opposite the origin. In some bacteria, such as Escherichia coli, the region where forks fuse forms a specialized termination area. Polar replication fork pause sites flanking this area can pause the progression of replication forks, thereby allowing forks to enter but not to leave. Transcription of all required genes has to take place simultaneously with genome duplication. As both of these genome trafficking processes share the same template, conflicts are unavoidable. In this review, we focus on recent attempts to add additional origins into various ectopic chromosomal locations of the E. coli chromosome. As ectopic origins disturb the native replichore arrangements, the problems resulting from such perturbations can give important insights into how genome trafficking processes are coordinated and the problems that arise if this coordination is disturbed. The data from these studies highlight that head-on replication–transcription conflicts are indeed highly problematic and multiple repair pathways are required to restart replication forks arrested at obstacles. In addition, the existing data also demonstrate that the replication fork trap in E. coli imposes significant constraints to genome duplication if ectopic origins are active. We describe the current models of how replication fork fusion events can cause serious problems for genome duplication, as well as models of how such problems might be alleviated both by a number of repair pathways as well as the replication fork trap system. Considering the problems associated both with head-on replication-transcription conflicts as well as head-on replication fork fusion events might provide clues of how these genome trafficking issues have contributed to shape the distinct architecture of bacterial chromosomes.
Collapse
Affiliation(s)
- Aisha H Syeda
- Department of Biology, University of York, York, United Kingdom
| | - Juachi U Dimude
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
45
|
Liu J, Yu M, Chatnaparat T, Lee JH, Tian Y, Hu B, Zhao Y. Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae. BMC Genomics 2020; 21:296. [PMID: 32272893 PMCID: PMC7146990 DOI: 10.1186/s12864-020-6701-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Pseudomonas syringae is an important plant pathogen, which could adapt many different environmental conditions. Under the nutrient-limited and other stress conditions, P. syringae produces nucleotide signal molecules, i.e., guanosine tetra/pentaphosphate ((p)ppGpp), to globally regulate gene expression. Previous studies showed that (p) ppGpp played an important role in regulating virulence factors in P. syringae pv. tomato DC3000 (PstDC3000) and P. syringae pv. syringae B728a (PssB728a). Here we present a comparative transcriptomic analysis to uncover the overall effects of (p)ppGpp-mediated stringent response in P. syringae. RESULTS In this study, we investigated global gene expression profiles of PstDC3000 and PssB728a and their corresponding (p)ppGpp0 mutants in hrp-inducing minimal medium (HMM) using RNA-seq. A total of 1886 and 1562 differentially expressed genes (DEGs) were uncovered between the (p)ppGpp0 mutants and the wild-type in PstDC3000 and PssB728a, respectively. Comparative transcriptomics identified 1613 common DEGs, as well as 444 and 293 unique DEGs in PstDC3000 and PssB728a, respectively. Functional cluster analysis revealed that (p) ppGpp positively regulated a variety of virulence-associated genes, including type III secretion system (T3SS), type VI secretion system (T6SS), cell motility, cell division, and alginate biosynthesis, while negatively regulated multiple basic physiological processes, including DNA replication, RNA processes, nucleotide biosynthesis, fatty acid metabolism, ribosome protein biosynthesis, and amino acid metabolism in both PstDC3000 and PssB728a. Furthermore, (p) ppGpp had divergent effects on other processes in PstDC3000 and PssB728a, including phytotoxin, nitrogen regulation and general secretion pathway (GSP). CONCLUSION In this study, comparative transcriptomic analysis reveals common regulatory networks in both PstDC3000 and PssB728a mediated by (p) ppGpp in HMM. In both P. syringae systems, (p) ppGpp re-allocate cellular resources by suppressing multiple basic physiological activities and enhancing virulence gene expression, suggesting a balance between growth, survival and virulence. Our research is important in that due to similar global gene expression mediated by (p) ppGpp in both PstDC3000 and PssB728a, it is reasonable to propose that (p) ppGpp could be used as a target to develop novel control measures to fight against important plant bacterial diseases.
Collapse
Affiliation(s)
- Jun Liu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Tiyakhon Chatnaparat
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Yanli Tian
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Baishi Hu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
| |
Collapse
|
46
|
Brambati A, Zardoni L, Nardini E, Pellicioli A, Liberi G. The dark side of RNA:DNA hybrids. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108300. [PMID: 32430097 DOI: 10.1016/j.mrrev.2020.108300] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/07/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
RNA:DNA hybrids form when nascent transcripts anneal to the DNA template strand or any homologous DNA region. Co-transcriptional RNA:DNA hybrids, organized in R-loop structures together with the displaced non-transcribed strand, assist gene expression, DNA repair and other physiological cellular functions. A dark side of the matter is that RNA:DNA hybrids are also a cause of DNA damage and human diseases. In this review, we summarize recent advances in the understanding of the mechanisms by which the impairment of hybrid turnover promotes DNA damage and genome instability via the interference with DNA replication and DNA double-strand break repair. We also discuss how hybrids could contribute to cancer, neurodegeneration and susceptibility to viral infections, focusing on dysfunctions associated with the anti-R-loop helicase Senataxin.
Collapse
Affiliation(s)
- Alessandra Brambati
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy.
| | - Luca Zardoni
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy; Scuola Universitaria Superiore, IUSS, 27100, Pavia, Italy
| | - Eleonora Nardini
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Achille Pellicioli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy; IFOM Foundation, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
47
|
Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L, Sørensen SJ, Shah SA. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res 2020; 48:2000-2012. [PMID: 31879772 PMCID: PMC7038947 DOI: 10.1093/nar/gkz1197] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022] Open
Abstract
CRISPR-Cas systems provide prokaryotes with adaptive immune functions against viruses and other genetic parasites. In contrast to all other types of CRISPR-Cas systems, type IV has remained largely overlooked. Here, we describe a previously uncharted diversity of type IV gene cassettes, primarily encoded by plasmid-like elements from diverse prokaryotic taxa. Remarkably, via a comprehensive analysis of their CRISPR spacer content, these systems were found to exhibit a strong bias towards the targeting of other plasmids. Our data indicate that the functions of type IV systems have diverged from those of other host-related CRISPR-Cas immune systems to adopt a role in mediating conflicts between plasmids. Furthermore, we find evidence for cross-talk between certain type IV and type I CRISPR-Cas systems that co-exist intracellularly, thus providing a simple answer to the enigmatic absence of type IV adaptation modules. Collectively, our results lead to the expansion and reclassification of type IV systems and provide novel insights into the biological function and evolution of these elusive systems.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, 2200 Copenhagen, Denmark
| | - David Mayo-Muñoz
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Roger A Garrett
- Danish Archaea Centre, Department of Biology, University of Copenhagen, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Lennart Randau
- Philipps-Universität Marburg, Faculty of Biology, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| |
Collapse
|
48
|
Syeda AH, Wollman AJM, Hargreaves AL, Howard JAL, Brüning JG, McGlynn P, Leake MC. Single-molecule live cell imaging of Rep reveals the dynamic interplay between an accessory replicative helicase and the replisome. Nucleic Acids Res 2020; 47:6287-6298. [PMID: 31028385 PMCID: PMC6614839 DOI: 10.1093/nar/gkz298] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/01/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
DNA replication must cope with nucleoprotein barriers that impair efficient replisome translocation. Biochemical and genetic studies indicate accessory helicases play essential roles in replication in the presence of nucleoprotein barriers, but how they operate inside the cell is unclear. With high-speed single-molecule microscopy we observed genomically-encoded fluorescent constructs of the accessory helicase Rep and core replisome protein DnaQ in live Escherichia coli cells. We demonstrate that Rep colocalizes with 70% of replication forks, with a hexameric stoichiometry, indicating maximal occupancy of the single DnaB hexamer. Rep associates dynamically with the replisome with an average dwell time of 6.5 ms dependent on ATP hydrolysis, indicating rapid binding then translocation away from the fork. We also imaged PriC replication restart factor and observe Rep-replisome association is also dependent on PriC. Our findings suggest two Rep-replisome populations in vivo: one continually associating with DnaB then translocating away to aid nucleoprotein barrier removal ahead of the fork, another assisting PriC-dependent reloading of DnaB if replisome progression fails. These findings reveal how a single helicase at the replisome provides two independent ways of underpinning replication of protein-bound DNA, a problem all organisms face as they replicate their genomes.
Collapse
Affiliation(s)
- Aisha H Syeda
- Department of Physics, University of York, York YO10 5DD, UK.,Department of Biology, University of York, York YO10 5DD, UK
| | - Adam J M Wollman
- Department of Physics, University of York, York YO10 5DD, UK.,Department of Biology, University of York, York YO10 5DD, UK
| | - Alex L Hargreaves
- Department of Physics, University of York, York YO10 5DD, UK.,Department of Biology, University of York, York YO10 5DD, UK
| | - Jamieson A L Howard
- Department of Physics, University of York, York YO10 5DD, UK.,Department of Biology, University of York, York YO10 5DD, UK
| | | | - Peter McGlynn
- Department of Biology, University of York, York YO10 5DD, UK
| | - Mark C Leake
- Department of Physics, University of York, York YO10 5DD, UK.,Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
49
|
Chong SY, Cutler S, Lin JJ, Tsai CH, Tsai HK, Biggins S, Tsukiyama T, Lo YC, Kao CF. H3K4 methylation at active genes mitigates transcription-replication conflicts during replication stress. Nat Commun 2020; 11:809. [PMID: 32041946 PMCID: PMC7010754 DOI: 10.1038/s41467-020-14595-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Transcription-replication conflicts (TRCs) occur when intensive transcriptional activity compromises replication fork stability, potentially leading to gene mutations. Transcription-deposited H3K4 methylation (H3K4me) is associated with regions that are susceptible to TRCs; however, the interplay between H3K4me and TRCs is unknown. Here we show that H3K4me aggravates TRC-induced replication failure in checkpoint-defective cells, and the presence of methylated H3K4 slows down ongoing replication. Both S-phase checkpoint activity and H3K4me are crucial for faithful DNA synthesis under replication stress, especially in highly transcribed regions where the presence of H3K4me is highest and TRCs most often occur. H3K4me mitigates TRCs by decelerating ongoing replication, analogous to how speed bumps slow down cars. These findings establish the concept that H3K4me defines the transcriptional status of a genomic region and defends the genome from TRC-mediated replication stress and instability. Transcription-replication conflicts (TRC) can contribute to genome instability. Here the authors reveal that under replication stress H3K4 methylation can play a role in TRC prevention.
Collapse
Affiliation(s)
- Shin Yen Chong
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan.,Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Sam Cutler
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Cheng-Hung Tsai
- Institute of Information Science, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Sue Biggins
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Yi-Chen Lo
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
50
|
Hawkins M, Dimude JU, Howard JAL, Smith AJ, Dillingham MS, Savery NJ, Rudolph CJ, McGlynn P. Direct removal of RNA polymerase barriers to replication by accessory replicative helicases. Nucleic Acids Res 2019; 47:5100-5113. [PMID: 30869136 PMCID: PMC6547429 DOI: 10.1093/nar/gkz170] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/22/2019] [Accepted: 03/08/2019] [Indexed: 11/24/2022] Open
Abstract
Bacterial genome duplication and transcription require simultaneous access to the same DNA template. Conflicts between the replisome and transcription machinery can lead to interruption of DNA replication and loss of genome stability. Pausing, stalling and backtracking of transcribing RNA polymerases add to this problem and present barriers to replisomes. Accessory helicases promote fork movement through nucleoprotein barriers and exist in viruses, bacteria and eukaryotes. Here, we show that stalled Escherichia coli transcription elongation complexes block reconstituted replisomes. This physiologically relevant block can be alleviated by the accessory helicase Rep or UvrD, resulting in the formation of full-length replication products. Accessory helicase action during replication-transcription collisions therefore promotes continued replication without leaving gaps in the DNA. In contrast, DinG does not promote replisome movement through stalled transcription complexes in vitro. However, our data demonstrate that DinG operates indirectly in vivo to reduce conflicts between replication and transcription. These results suggest that Rep and UvrD helicases operate on DNA at the replication fork whereas DinG helicase acts via a different mechanism.
Collapse
Affiliation(s)
- Michelle Hawkins
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Juachi U Dimude
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | | | - Abigail J Smith
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Mark S Dillingham
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Nigel J Savery
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|