1
|
Hanson FM, Ribeiro de Oliveira MI, Cross AK, Allen KE, Campbell SG. eIF2B localization and its regulation during the integrated stress response is cell-type specific. iScience 2024; 27:110851. [PMID: 39310746 PMCID: PMC11414691 DOI: 10.1016/j.isci.2024.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Eukaryotic initiation factor 2B (eIF2B) controls translation initiation by recycling inactive eIF2-GDP to active eIF2-GTP. Under cellular stress, the integrated stress response (ISR) is activated inhibiting eIF2B activity resulting in the translation attenuation and reprogramming of gene expression to overcome the stress. The ISR can dictate cell fate wherein chronic activation has pathological outcomes. Vanishing white matter disease (VWMD) is a chronic ISR-related disorder with mutations in eIF2B targeting astrocyte and oligodendrocyte cells. Regulation of eIF2B localization (eIF2B bodies) has been implicated in the ISR. We present evidence that neuronal and glial cell types possess distinct patterns of eIF2B bodies which change in a manner correlating to acute and chronic ISR activation. We also demonstrate that while neural and glial cell types respond similarly to the acute induction of the ISR a chronic ISR exerts cell-type specific differences. These findings provide key insights into neural cell responses and adaptation to cellular stress.
Collapse
Affiliation(s)
- Filipe M. Hanson
- Biomolecular Sciences Research Centre, Industry and Innovation Research Institute (IRI), Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Madalena I. Ribeiro de Oliveira
- Biomolecular Sciences Research Centre, Industry and Innovation Research Institute (IRI), Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Alison K. Cross
- Biomolecular Sciences Research Centre, Industry and Innovation Research Institute (IRI), Sheffield Hallam University, Sheffield S1 1WB, UK
| | - K. Elizabeth Allen
- Biomolecular Sciences Research Centre, Industry and Innovation Research Institute (IRI), Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Susan G. Campbell
- Biomolecular Sciences Research Centre, Industry and Innovation Research Institute (IRI), Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
2
|
Khan D, Fox PL. Host-like RNA Elements Regulate Virus Translation. Viruses 2024; 16:468. [PMID: 38543832 PMCID: PMC10976276 DOI: 10.3390/v16030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Viruses are obligate, intracellular parasites that co-opt host cell machineries for propagation. Critical among these machineries are those that translate RNA into protein and their mechanisms of control. Most regulatory mechanisms effectuate their activity by targeting sequence or structural features at the RNA termini, i.e., at the 5' or 3' ends, including the untranslated regions (UTRs). Translation of most eukaryotic mRNAs is initiated by 5' cap-dependent scanning. In contrast, many viruses initiate translation at internal RNA regions at internal ribosome entry sites (IRESs). Eukaryotic mRNAs often contain upstream open reading frames (uORFs) that permit condition-dependent control of downstream major ORFs. To offset genome compression and increase coding capacity, some viruses take advantage of out-of-frame overlapping uORFs (oORFs). Lacking the essential machinery of protein synthesis, for example, ribosomes and other translation factors, all viruses utilize the host apparatus to generate virus protein. In addition, some viruses exhibit RNA elements that bind host regulatory factors that are not essential components of the translation machinery. SARS-CoV-2 is a paradigm example of a virus taking advantage of multiple features of eukaryotic host translation control: the virus mimics the established human GAIT regulatory element and co-opts four host aminoacyl tRNA synthetases to form a stimulatory binding complex. Utilizing discontinuous transcription, the elements are present and identical in all SARS-CoV-2 subgenomic RNAs (and the genomic RNA). Thus, the virus exhibits a post-transcriptional regulon that improves upon analogous eukaryotic regulons, in which a family of functionally related mRNA targets contain elements that are structurally similar but lacking sequence identity. This "thrifty" virus strategy can be exploited against the virus since targeting the element can suppress the expression of all subgenomic RNAs as well as the genomic RNA. Other 3' end viral elements include 3'-cap-independent translation elements (3'-CITEs) and 3'-tRNA-like structures. Elucidation of virus translation control elements, their binding proteins, and their mechanisms can lead to novel therapeutic approaches to reduce virus replication and pathogenicity.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
3
|
Grove DJ, Russell PJ, Kearse MG. To initiate or not to initiate: A critical assessment of eIF2A, eIF2D, and MCT-1·DENR to deliver initiator tRNA to ribosomes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1833. [PMID: 38433101 PMCID: PMC11260288 DOI: 10.1002/wrna.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 03/05/2024]
Abstract
Selection of the correct start codon is critical for high-fidelity protein synthesis. In eukaryotes, this is typically governed by a multitude of initiation factors (eIFs), including eIF2·GTP that directly delivers the initiator tRNA (Met-tRNAi Met ) to the P site of the ribosome. However, numerous reports, some dating back to the early 1970s, have described other initiation factors having high affinity for the initiator tRNA and the ability of delivering it to the ribosome, which has provided a foundation for further work demonstrating non-canonical initiation mechanisms using alternative initiation factors. Here we provide a critical analysis of current understanding of eIF2A, eIF2D, and the MCT-1·DENR dimer, the evidence surrounding their ability to initiate translation, their implications in human disease, and lay out important key questions for the field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
- Daisy J. Grove
- The Ohio State Biochemistry Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Paul J. Russell
- The Ohio State Biochemistry Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- The Cellular, Molecular, Biochemical Sciences Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Michael G. Kearse
- The Ohio State Biochemistry Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- The Cellular, Molecular, Biochemical Sciences Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Tidu A, Martin F. The interplay between cis- and trans-acting factors drives selective mRNA translation initiation in eukaryotes. Biochimie 2024; 217:20-30. [PMID: 37741547 DOI: 10.1016/j.biochi.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Translation initiation consists in the assembly of the small and large ribosomal subunits on the start codon. This important step directly modulates the general proteome in living cells. Recently, genome wide studies revealed unexpected translation initiation events from unsuspected novel open reading frames resulting in the synthesis of a so-called 'dark proteome'. Indeed, the identification of the start codon by the translation machinery is a critical step that defines the translational landscape of the cell. Therefore, translation initiation is a highly regulated process in all organisms. In this review, we focus on the various cis- and trans-acting factors that rule the regulation of translation initiation in eukaryotes. Recent discoveries have shown that the guidance of the translation machinery for the choice of the start codon require sophisticated molecular mechanisms. In particular, the 5'UTR and the coding sequences contain cis-acting elements that trigger the use of AUG codons but also non-AUG codons to initiate protein synthesis. The use of these alternative start codons is also largely influenced by numerous trans-acting elements that drive selective mRNA translation in response to environmental changes.
Collapse
Affiliation(s)
- Antonin Tidu
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Franck Martin
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France.
| |
Collapse
|
5
|
Gaikwad S, Ghobakhlou F, Zhang H, Hinnebusch AG. Yeast eIF2A has a minimal role in translation initiation and uORF-mediated translational control in vivo. eLife 2024; 12:RP92916. [PMID: 38266075 PMCID: PMC10945734 DOI: 10.7554/elife.92916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Initiating translation of most eukaryotic mRNAs depends on recruitment of methionyl initiator tRNA (Met-tRNAi) in a ternary complex (TC) with GTP-bound eukaryotic initiation factor 2 (eIF2) to the small (40S) ribosomal subunit, forming a 43S preinitiation complex (PIC) that attaches to the mRNA and scans the 5'-untranslated region (5' UTR) for an AUG start codon. Previous studies have implicated mammalian eIF2A in GTP-independent binding of Met-tRNAi to the 40S subunit and its recruitment to specialized mRNAs that do not require scanning, and in initiation at non-AUG start codons, when eIF2 function is attenuated by phosphorylation of its α-subunit during stress. The role of eIF2A in translation in vivo is poorly understood however, and it was unknown whether the conserved ortholog in budding yeast can functionally substitute for eIF2. We performed ribosome profiling of a yeast deletion mutant lacking eIF2A and isogenic wild-type (WT) cells in the presence or absence of eIF2α phosphorylation induced by starvation for amino acids isoleucine and valine. Whereas starvation of WT confers changes in translational efficiencies (TEs) of hundreds of mRNAs, the eIF2AΔ mutation conferred no significant TE reductions for any mRNAs in non-starved cells, and it reduced the TEs of only a small number of transcripts in starved cells containing phosphorylated eIF2α. We found no evidence that eliminating eIF2A altered the translation of mRNAs containing putative internal ribosome entry site (IRES) elements, or harboring uORFs initiated by AUG or near-cognate start codons, in non-starved or starved cells. Thus, very few mRNAs (possibly only one) appear to employ eIF2A for Met-tRNAi recruitment in yeast cells, even when eIF2 function is attenuated by stress.
Collapse
Affiliation(s)
- Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Fardin Ghobakhlou
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Hongen Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
6
|
Lee S, Kim SY, Kwon E, Choi S, Jung DM, Kim KK, Kim EM. A novel G3BP1-GFP reporter human lung cell system enabling real-time monitoring of stress granule dynamics for in vitro lung toxicity assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115755. [PMID: 38039847 DOI: 10.1016/j.ecoenv.2023.115755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Under various cellular stress conditions, including exposure to toxic chemicals, RNA-binding proteins (RBPs), including Ras GTPase-activating protein-binding protein 1 (G3BP1), aggregate and form stress granule complexes, which serve as hallmarks of cellular stress. The existing methods for analyzing stress granule assembly have limitations in the rapid detection of dynamic cellular stress and ignore the effects of constitutively overexpressed RBP on cellular stress and stress-related processes. Therefore, to overcome these limitations, we established a G3BP1-GFP reporter in a human lung epithelial cell line using CRISPR/Cas9-based knock-in as an alternative system for stress granule analysis. We showed that the G3BP1-GFP reporter system responds to stress conditions and forms a stress granule complex similar to that of native G3BP1. Furthermore, we validated the stress granule response of an established cell line under exposure to various household chemicals. Overall, this novel G3BP1-GFP reporter human lung cell system is capable of monitoring stress granule dynamics in real time and can be used for assessing the lung toxicity of various substances in vitro.
Collapse
Affiliation(s)
- Sangsoo Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Seung-Yeon Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea
| | - Eunhye Kwon
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Da-Min Jung
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, South Korea.
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea.
| |
Collapse
|
7
|
Zeng L, Zheng W, Zhang J, Wang J, Ji Q, Wu X, Meng Y, Zhu X. An epitope encoded by uORF of RNF10 elicits a therapeutic anti-tumor immune response. Mol Ther Oncolytics 2023; 31:100737. [PMID: 38020063 PMCID: PMC10654591 DOI: 10.1016/j.omto.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor-specific antigens (TSAs) are crucial for tumor-specific immune response that reduces tumor burden and thus serve as important targets for immunotherapy. Identification of novel TSAs can provide new strategies for immunotherapies. In this study, we demonstrated that the upstream open reading frame (uORF) of RNF10 encodes an antigenic peptide (RNF10 uPeptide), capable of eliciting a T cell-mediated anti-tumor immune response. We initially demonstrated the immunogenicity of the RNF10 uPeptide in a CT26 tumor mouse model, by showing that its epitope was specifically recognized by CD8+ T cells. Vaccination of mice with the long form of the RNF10 uPeptide conferred strong anti-tumor activity. Next, we proved that the human RNF10 uORF could be translated. In addition, we predicted the binding of an RNF10 uPeptide epitope to HLA-A∗02:01 (HLA-A2). This HLA-A2-restricted epitope of the RNF10 uPeptide induced a potent specific human T cell response. Finally, we showed that an HLA-A2-restricted cytotoxic T cell (CTL) clone, derived from a pancreatic cancer patient, recognized the RNF10 uPeptide epitope (RLFGQQQRA) and lysed HLA-A2+ pancreatic carcinoma cells expressing the RNF10 uPeptide. These results indicate that the RNF10 uPeptide could be a promising target for pancreatic carcinoma immunotherapy.
Collapse
Affiliation(s)
- Lili Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Pathology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Wei Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiahui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiawen Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qing Ji
- Department of Pathology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Xinglong Wu
- Department of Pathology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yaming Meng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Xiaofeng Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast and Thyroid Center, Guangzhou Women and Children’s Medical Center, Guangzhou 510000, China
| |
Collapse
|
8
|
Gaikwad S, Ghobakhlou F, Zhang H, Hinnebusch AG. Yeast eIF2A has a minimal role in translation initiation and uORF-mediated translational control in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561292. [PMID: 37986989 PMCID: PMC10659434 DOI: 10.1101/2023.10.06.561292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Initiating translation of most eukaryotic mRNAs depends on recruitment of methionyl initiator tRNA (Met-tRNAi) in a ternary complex (TC) with GTP-bound eukaryotic initiation factor 2 (eIF2) to the small (40S) ribosomal subunit, forming a 43S preinitiation complex (PIC) that attaches to the mRNA and scans the 5'-untranslated region (5' UTR) for an AUG start codon. Previous studies have implicated mammalian eIF2A in GTP-independent binding of Met-tRNAi to the 40S subunit and its recruitment to specialized mRNAs that do not require scanning, and in initiation at non-AUG start codons, when eIF2 function is attenuated by phosphorylation of its α-subunit during stress. The role of eIF2A in translation in vivo is poorly understood however, and it was unknown whether the conserved ortholog in budding yeast can functionally substitute for eIF2. We performed ribosome profiling of a yeast deletion mutant lacking eIF2A and isogenic wild-type (WT) cells in the presence or absence of eIF2α phosphorylation induced by starvation for amino acids isoleucine and valine. Whereas starvation of WT confers changes in translational efficiencies (TEs) of hundreds of mRNAs, the eIF2AΔ mutation conferred no significant TE reductions for any mRNAs in non-starved cells, and it reduced the TEs of only a small number of transcripts in starved cells containing phosphorylated eIF2α. We found no evidence that eliminating eIF2A altered the translation of mRNAs containing putative IRES elements, or harboring uORFs initiated by AUG or near-cognate start codons, in non-starved or starved cells. Thus, very few mRNAs (possibly only one) appear to employ eIF2A for Met-tRNAi recruitment in yeast cells, even when eIF2 function is attenuated by stress.
Collapse
Affiliation(s)
- Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Fardin Ghobakhlou
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
- Current affiliations: Department of Microbiology, Infectiology & Immunology, Faculty of Medicine, University of Montreal, Canada, H3T 1J4
| | - Hongen Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
9
|
Meyer L, Courtin B, Gomard M, Namane A, Permal E, Badis G, Jacquier A, Fromont-Racine M. eIF2A represses cell wall biogenesis gene expression in Saccharomyces cerevisiae. PLoS One 2023; 18:e0293228. [PMID: 38011112 PMCID: PMC10681259 DOI: 10.1371/journal.pone.0293228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/07/2023] [Indexed: 11/29/2023] Open
Abstract
Translation initiation is a complex and highly regulated process that represents an important mechanism, controlling gene expression. eIF2A was proposed as an alternative initiation factor, however, its role and biological targets remain to be discovered. To further gain insight into the function of eIF2A in Saccharomyces cerevisiae, we identified mRNAs associated with the eIF2A complex and showed that 24% of the most enriched mRNAs encode proteins related to cell wall biogenesis and maintenance. In agreement with this result, we showed that an eIF2A deletion sensitized cells to cell wall damage induced by calcofluor white. eIF2A overexpression led to a growth defect, correlated with decreased synthesis of several cell wall proteins. In contrast, no changes were observed in the transcriptome, suggesting that eIF2A controls the expression of cell wall-related proteins at a translational level. The biochemical characterization of the eIF2A complex revealed that it strongly interacts with the RNA binding protein, Ssd1, which is a negative translational regulator, controlling the expression of cell wall-related genes. Interestingly, eIF2A and Ssd1 bind several common mRNA targets and we found that the binding of eIF2A to some targets was mediated by Ssd1. Surprisingly, we further showed that eIF2A is physically and functionally associated with the exonuclease Xrn1 and other mRNA degradation factors, suggesting an additional level of regulation. Altogether, our results highlight new aspects of this complex and redundant fine-tuned regulation of proteins expression related to the cell wall, a structure required to maintain cell shape and rigidity, providing protection against harmful environmental stress.
Collapse
Affiliation(s)
- Laura Meyer
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Baptiste Courtin
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Maïté Gomard
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Abdelkader Namane
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Emmanuelle Permal
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Gwenael Badis
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Alain Jacquier
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Micheline Fromont-Racine
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| |
Collapse
|
10
|
Grove DJ, Levine DJ, Kearse MG. Increased levels of eIF2A inhibit translation by sequestering 40S ribosomal subunits. Nucleic Acids Res 2023; 51:9983-10000. [PMID: 37602404 PMCID: PMC10570035 DOI: 10.1093/nar/gkad683] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
eIF2A was the first eukaryotic initiator tRNA carrier discovered but its exact function has remained enigmatic. Uncharacteristic of translation initiation factors, eIF2A is reported to be non-cytosolic in multiple human cancer cell lines. Attempts to study eIF2A mechanistically have been limited by the inability to achieve high yield of soluble recombinant protein. Here, we developed a purification paradigm that yields ∼360-fold and ∼6000-fold more recombinant human eIF2A from Escherichia coli and insect cells, respectively, than previous reports. Using a mammalian in vitro translation system, we found that increased levels of recombinant human eIF2A inhibit translation of multiple reporter mRNAs, including those that are translated by cognate and near-cognate start codons, and does so prior to start codon recognition. eIF2A also inhibited translation directed by all four types of cap-independent viral IRESs, including the CrPV IGR IRES that does not require initiation factors or initiator tRNA, suggesting excess eIF2A sequesters 40S subunits. Supplementation with additional 40S subunits prevented eIF2A-mediated inhibition and pull-down assays demonstrated direct binding between recombinant eIF2A and purified 40S subunits. These data support a model that eIF2A must be kept away from the translation machinery to avoid sequestering 40S ribosomal subunits.
Collapse
Affiliation(s)
- Daisy J Grove
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel J Levine
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael G Kearse
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Wei LH, Sun Y, Guo JU. Genome-wide CRISPR screens identify noncanonical translation factor eIF2A as an enhancer of SARS-CoV-2 programmed -1 ribosomal frameshifting. Cell Rep 2023; 42:112987. [PMID: 37581984 DOI: 10.1016/j.celrep.2023.112987] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/23/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Many positive-strand RNA viruses, including all known coronaviruses, employ programmed -1 ribosomal frameshifting (-1 PRF) to regulate the translation of polycistronic viral RNAs. However, only a few host factors have been shown to regulate -1 PRF. Through a genome-wide CRISPR-Cas9 knockout screen, we have identified host factors that either suppress or enhance severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) -1 PRF. Among them, eukaryotic translation initiation factor 2A (eIF2A) specifically and directly enhances -1 PRF independent of changes in initiation. Consistent with the crucial role of efficient -1 PRF in transcriptase/replicase expression, loss of eIF2A reduces SARS-CoV-2 replication in cells. Furthermore, transcriptome-wide analysis shows that eIF2A preferentially binds CG-rich RNA motifs, including a region within 18S ribosomal RNA near the contacts between the SARS-CoV-2 frameshift-stimulatory element (FSE) and the ribosome. Thus, our results indicate a role for eIF2A in modulating the translation of specific RNAs independent of its role during initiation.
Collapse
Affiliation(s)
- Lian-Huan Wei
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yu Sun
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Junjie U Guo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Hiragori Y, Takahashi H, Karino T, Kaido A, Hayashi N, Sasaki S, Nakao K, Motomura T, Yamashita Y, Naito S, Onouchi H. Genome-wide identification of Arabidopsis non-AUG-initiated upstream ORFs with evolutionarily conserved regulatory sequences that control protein expression levels. PLANT MOLECULAR BIOLOGY 2023; 111:37-55. [PMID: 36044152 DOI: 10.1007/s11103-022-01309-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
This study identified four novel regulatory non-AUG-initiated upstream ORFs (uORFs) with evolutionarily conserved sequences in Arabidopsis and elucidated the mechanism by which a non-AUG-initiated uORF promotes main ORF translation. Upstream open reading frames (uORFs) are short ORFs found in the 5'-untranslated regions (5'-UTRs) of eukaryotic transcripts and can influence the translation of protein-coding main ORFs (mORFs). Recent genome-wide ribosome profiling studies have revealed that hundreds or thousands of uORFs initiate translation at non-AUG start codons. However, the physiological significance of these non-AUG uORFs has so far been demonstrated for only a few of them. In this study, to identify physiologically important regulatory non-AUG uORFs in Arabidopsis, we took an approach that combined bioinformatics and experimental analysis. Since physiologically important non-AUG uORFs are likely to be conserved across species, we first searched the Arabidopsis genome for non-AUG-initiated uORFs with evolutionarily conserved sequences. Then, we examined the effects of the conserved non-AUG uORFs on the expression of the downstream mORFs using transient expression assays. As a result, three inhibitory and one promotive non-AUG uORFs were identified. Among the inhibitory non-AUG uORFs, two exerted repressive effects on mORF expression in an amino acid sequence-dependent manner. These two non-AUG uORFs are likely to encode regulatory peptides that cause ribosome stalling, thereby enhancing their repressive effects. In contrast, one of the identified regulatory non-AUG uORFs promoted mORF expression by alleviating the inhibitory effect of a downstream AUG-initiated uORF. These findings provide insights into the mechanisms that enable non-AUG uORFs to play regulatory roles despite their low translation initiation efficiencies.
Collapse
Affiliation(s)
- Yuta Hiragori
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Taihei Karino
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Atsushi Kaido
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Noriya Hayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Shun Sasaki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kodai Nakao
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Taichiro Motomura
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Satoshi Naito
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
13
|
Kim H, Aponte-Diaz D, Sotoudegan MS, Shengjuler D, Arnold JJ, Cameron CE. The enterovirus genome can be translated in an IRES-independent manner that requires the initiation factors eIF2A/eIF2D. PLoS Biol 2023; 21:e3001693. [PMID: 36689548 PMCID: PMC9894558 DOI: 10.1371/journal.pbio.3001693] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 02/02/2023] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
RNA recombination in positive-strand RNA viruses is a molecular-genetic process, which permits the greatest evolution of the genome and may be essential to stabilizing the genome from the deleterious consequences of accumulated mutations. Enteroviruses represent a useful system to elucidate the details of this process. On the biochemical level, it is known that RNA recombination is catalyzed by the viral RNA-dependent RNA polymerase using a template-switching mechanism. For this mechanism to function in cells, the recombining genomes must be located in the same subcellular compartment. How a viral genome is trafficked to the site of genome replication and recombination, which is membrane associated and isolated from the cytoplasm, is not known. We hypothesized that genome translation was essential for colocalization of genomes for recombination. We show that complete inactivation of internal ribosome entry site (IRES)-mediated translation of a donor enteroviral genome enhanced recombination instead of impairing it. Recombination did not occur by a nonreplicative mechanism. Rather, sufficient translation of the nonstructural region of the genome occurred to support subsequent steps required for recombination. The noncanonical translation initiation factors, eIF2A and eIF2D, were required for IRES-independent translation. Our results support an eIF2A/eIF2D-dependent mechanism under conditions in which the eIF2-dependent mechanism is inactive. Detection of an IRES-independent mechanism for translation of the enterovirus genome provides an explanation for a variety of debated observations, including nonreplicative recombination and persistence of enteroviral RNA lacking an IRES. The existence of an eIF2A/eIF2D-dependent mechanism in enteroviruses predicts the existence of similar mechanisms in other viruses.
Collapse
Affiliation(s)
- Hyejeong Kim
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David Aponte-Diaz
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Mohamad S. Sotoudegan
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | | | - Jamie J. Arnold
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Craig E. Cameron
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
14
|
Kamble VS, Pachpor TA, Khandagale SB, Wagh VV, Khare SP. Translation initiation and dysregulation of initiation factors in rare diseases. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Green KM, Miller SL, Malik I, Todd PK. Non-canonical initiation factors modulate repeat-associated non-AUG translation. Hum Mol Genet 2022; 31:2521-2534. [PMID: 35220421 PMCID: PMC9618161 DOI: 10.1093/hmg/ddac021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/28/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Repeat-associated non-AUG (RAN) translation of expanded repeat-mutation mRNA produces toxic peptides in neurons of patients suffering from neurodegenerative diseases. Recent findings indicate that RAN translation in diverse model systems is not inhibited by cellular stressors that impair global translation through phosphorylation of the alpha subunit of eIF2, the essential eukaryotic translation initiation factor that brings the initiator tRNA to the 40S ribosome. Using in vitro, cell-based and Drosophila models, we examined the role of alternative ternary complex factors that may function in place of eIF2, including eIF2A, eIF2D, DENR and MCTS1. Among these factors, DENR knockdown had the greatest inhibitory effect on RAN translation of expanded GGGGCC and CGG repeat reporters and its reduction improved the survival of Drosophila expressing expanded GGGGCC repeats. Taken together, these data support a role for alternative initiation factors in RAN translation and suggest these may serve as novel therapeutic targets in neurodegenerative disease.
Collapse
Affiliation(s)
- Katelyn M Green
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Shannon L Miller
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Xu NY, Liu ZY, Yang QM, Bian PP, Li M, Zhao X. Genomic Analyses for Selective Signatures and Genes Involved in Hot Adaptation Among Indigenous Chickens From Different Tropical Climate Regions. Front Genet 2022; 13:906447. [PMID: 35979430 PMCID: PMC9377314 DOI: 10.3389/fgene.2022.906447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Climate change, especially weather extremes like extreme cold or extreme hot, is a major challenge for global livestock. One of the animal breeding goals for sustainable livestock production should be to breed animals with excellent climate adaptability. Indigenous livestock and poultry are well adapted to the local climate, and they are good resources to study the genetic footprints and mechanism of the resilience to weather extremes. In order to identify selection signatures and genes that might be involved in hot adaptation in indigenous chickens from different tropical climates, we conducted a genomic analysis of 65 indigenous chickens that inhabit different climates. Several important unique positively selected genes (PSGs) were identified for each local chicken group by the cross-population extended haplotype homozygosity (XP-EHH). These PSGs, verified by composite likelihood ratio, genetic differentiation index, nucleotide diversity, Tajima’s D, and decorrelated composite of multiple signals, are related to nerve regulation, vascular function, immune function, lipid metabolism, kidney development, and function, which are involved in thermoregulation and hot adaptation. However, one common PSG was detected for all three tropical groups of chickens via XP-EHH but was not confirmed by other five types of selective sweep analyses. These results suggest that the hot adaptability of indigenous chickens from different tropical climate regions has evolved in parallel by taking different pathways with different sets of genes. The results from our study have provided reasonable explanations and insights for the rapid adaptation of chickens to diverse tropical climates and provide practical values for poultry breeding.
Collapse
Affiliation(s)
- Nai-Yi Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhen-Yu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qi-Meng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Pei-Pei Bian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ming Li
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, QC, Canada
- *Correspondence: Xin Zhao,
| |
Collapse
|
17
|
Zhang Y, Glineburg MR, Basrur V, Conlon K, Wright SE, Krans A, Hall DA, Todd PK. Mechanistic convergence across initiation sites for RAN translation in fragile X associated tremor ataxia syndrome. Hum Mol Genet 2022; 31:2317-2332. [PMID: 35137065 PMCID: PMC9307318 DOI: 10.1093/hmg/ddab353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Repeat associated non-AUG (RAN) translation of CGG repeats in the 5'UTR of FMR1 produces toxic proteins that contribute to fragile X-associated tremor/ataxia syndrome (FXTAS) pathogenesis. The most abundant RAN product, FMRpolyG, initiates predominantly at an ACG upstream of the repeat. Accurate FMRpolyG measurements in FXTAS patients are lacking. We used data-dependent acquisition and parallel reaction monitoring (PRM) mass spectrometry coupled with stable isotope labeled standard peptides to identify signature FMRpolyG fragments in patient samples. Following immunoprecipitation, PRM detected FMRpolyG signature peptides in transfected cells, and FXTAS tissues and cells, but not in controls. We identified two amino-terminal peptides: an ACG-initiated Ac-MEAPLPGGVR and a GUG-initiated Ac-TEAPLPGGVR, as well as evidence for RAN translation initiation within the CGG repeat itself in two reading frames. Initiation at all sites increased following cellular stress, decreased following eIF1 overexpression and was eIF4A and M7G cap-dependent. These data demonstrate that FMRpolyG is quantifiable in human samples and FMR1 RAN translation initiates via similar mechanisms for near-cognate codons and within the repeat through processes dependent on available initiation factors and cellular environment.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - M Rebecca Glineburg
- To whom correspondence should be addressed at: Todd Lab (ATTN: Drs Glineburg and Todd), 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA. Tel: +1 7346155632; Fax: +1 7346479777; ;
| | | | - Kevin Conlon
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Shannon E Wright
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - Peter K Todd
- To whom correspondence should be addressed at: Todd Lab (ATTN: Drs Glineburg and Todd), 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA. Tel: +1 7346155632; Fax: +1 7346479777; ;
| |
Collapse
|
18
|
Abstract
Cells respond to viral infections through sensors that detect non-self-molecules, and through effectors, which can have direct antiviral activities or adapt cell physiology to limit viral infection and propagation. Eukaryotic translation initiation factor 2 alpha kinase 2, better known as PKR, acts as both a sensor and an effector in the response to viral infections. After sensing double-stranded RNA molecules in infected cells, PKR self-activates and majorly exerts its antiviral function by blocking the translation machinery and inducing apoptosis. The antiviral potency of PKR is emphasized by the number of strategies developed by viruses to antagonize the PKR pathway. In this review, we present an update on the diversity of such strategies, which range from preventing double-stranded RNA recognition upstream from PKR activation, to activating eIF2B downstream from PKR targets.
Collapse
Affiliation(s)
- Teresa Cesaro
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Thomas Michiels
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
19
|
Sonobe Y, Aburas J, Krishnan G, Fleming AC, Ghadge G, Islam P, Warren EC, Gu Y, Kankel MW, Brown AEX, Kiskinis E, Gendron TF, Gao FB, Roos RP, Kratsios P. A C. elegans model of C9orf72-associated ALS/FTD uncovers a conserved role for eIF2D in RAN translation. Nat Commun 2021; 12:6025. [PMID: 34654821 PMCID: PMC8519953 DOI: 10.1038/s41467-021-26303-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
A hexanucleotide repeat expansion GGGGCC in the non-coding region of C9orf72 is the most common cause of inherited amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Toxic dipeptide repeats (DPRs) are synthesized from GGGGCC via repeat-associated non-AUG (RAN) translation. Here, we develop C. elegans models that express, either ubiquitously or exclusively in neurons, 75 GGGGCC repeats flanked by intronic C9orf72 sequence. The worms generate DPRs (poly-glycine-alanine [poly-GA], poly-glycine-proline [poly-GP]) and poly-glycine-arginine [poly-GR]), display neurodegeneration, and exhibit locomotor and lifespan defects. Mutation of a non-canonical translation-initiating codon (CUG) upstream of the repeats selectively reduces poly-GA steady-state levels and ameliorates disease, suggesting poly-GA is pathogenic. Importantly, loss-of-function mutations in the eukaryotic translation initiation factor 2D (eif-2D/eIF2D) reduce poly-GA and poly-GP levels, and increase lifespan in both C. elegans models. Our in vitro studies in mammalian cells yield similar results. Here, we show a conserved role for eif-2D/eIF2D in DPR expression.
Collapse
Affiliation(s)
- Yoshifumi Sonobe
- grid.412578.d0000 0000 8736 9513University of Chicago Medical Center, 5841S. Maryland Avenue, Chicago, IL 60637 USA ,grid.412578.d0000 0000 8736 9513Department of Neurology, University of Chicago Medical Center, 5841S. Maryland Avenue, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL USA
| | - Jihad Aburas
- grid.412578.d0000 0000 8736 9513University of Chicago Medical Center, 5841S. Maryland Avenue, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Department of Neurobiology, University of Chicago, Chicago, IL USA
| | - Gopinath Krishnan
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Andrew C. Fleming
- grid.16753.360000 0001 2299 3507The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Ghanashyam Ghadge
- grid.412578.d0000 0000 8736 9513University of Chicago Medical Center, 5841S. Maryland Avenue, Chicago, IL 60637 USA ,grid.412578.d0000 0000 8736 9513Department of Neurology, University of Chicago Medical Center, 5841S. Maryland Avenue, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL USA
| | - Priota Islam
- grid.14105.310000000122478951MRC London Institute of Medical Sciences, London, UK ,grid.7445.20000 0001 2113 8111Institute of Clinical Sciences, Imperial College London, London, UK
| | - Eleanor C. Warren
- grid.14105.310000000122478951MRC London Institute of Medical Sciences, London, UK ,grid.7445.20000 0001 2113 8111Institute of Clinical Sciences, Imperial College London, London, UK
| | - Yuanzheng Gu
- grid.417832.b0000 0004 0384 8146Neuromuscular & Movement Disorders, Biogen, Cambridge, MA 02142 USA
| | - Mark W. Kankel
- grid.417832.b0000 0004 0384 8146Neuromuscular & Movement Disorders, Biogen, Cambridge, MA 02142 USA
| | - André E. X. Brown
- grid.14105.310000000122478951MRC London Institute of Medical Sciences, London, UK ,grid.7445.20000 0001 2113 8111Institute of Clinical Sciences, Imperial College London, London, UK
| | - Evangelos Kiskinis
- grid.16753.360000 0001 2299 3507The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Tania F. Gendron
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Fen-Biao Gao
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Raymond P. Roos
- grid.412578.d0000 0000 8736 9513University of Chicago Medical Center, 5841S. Maryland Avenue, Chicago, IL 60637 USA ,grid.412578.d0000 0000 8736 9513Department of Neurology, University of Chicago Medical Center, 5841S. Maryland Avenue, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL USA
| | - Paschalis Kratsios
- University of Chicago Medical Center, 5841S. Maryland Avenue, Chicago, IL, 60637, USA. .,The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL, USA. .,Department of Neurobiology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
Sorokin II, Vassilenko KS, Terenin IM, Kalinina NO, Agol VI, Dmitriev SE. Non-Canonical Translation Initiation Mechanisms Employed by Eukaryotic Viral mRNAs. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1060-1094. [PMID: 34565312 PMCID: PMC8436584 DOI: 10.1134/s0006297921090042] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Viruses exploit the translation machinery of an infected cell to synthesize their proteins. Therefore, viral mRNAs have to compete for ribosomes and translation factors with cellular mRNAs. To succeed, eukaryotic viruses adopt multiple strategies. One is to circumvent the need for m7G-cap through alternative instruments for ribosome recruitment. These include internal ribosome entry sites (IRESs), which make translation independent of the free 5' end, or cap-independent translational enhancers (CITEs), which promote initiation at the uncapped 5' end, even if located in 3' untranslated regions (3' UTRs). Even if a virus uses the canonical cap-dependent ribosome recruitment, it can still perturb conventional ribosomal scanning and start codon selection. The pressure for genome compression often gives rise to internal and overlapping open reading frames. Their translation is initiated through specific mechanisms, such as leaky scanning, 43S sliding, shunting, or coupled termination-reinitiation. Deviations from the canonical initiation reduce the dependence of viral mRNAs on translation initiation factors, thereby providing resistance to antiviral mechanisms and cellular stress responses. Moreover, viruses can gain advantage in a competition for the translational machinery by inactivating individual translational factors and/or replacing them with viral counterparts. Certain viruses even create specialized intracellular "translation factories", which spatially isolate the sites of their protein synthesis from cellular antiviral systems, and increase availability of translational components. However, these virus-specific mechanisms may become the Achilles' heel of a viral life cycle. Thus, better understanding of the unconventional mechanisms of viral mRNA translation initiation provides valuable insight for developing new approaches to antiviral therapy.
Collapse
Affiliation(s)
- Ivan I Sorokin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Konstantin S Vassilenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Natalia O Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Vadim I Agol
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute of Poliomyelitis, Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, Moscow, 108819, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
21
|
Li HC, Yang CH, Lo SY. Cellular factors involved in the hepatitis C virus life cycle. World J Gastroenterol 2021; 27:4555-4581. [PMID: 34366623 PMCID: PMC8326260 DOI: 10.3748/wjg.v27.i28.4555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/04/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV), an obligatory intracellular pathogen, highly depends on its host cells to propagate successfully. The HCV life cycle can be simply divided into several stages including viral entry, protein translation, RNA replication, viral assembly and release. Hundreds of cellular factors involved in the HCV life cycle have been identified over more than thirty years of research. Characterization of these cellular factors has provided extensive insight into HCV replication strategies. Some of these cellular factors are targets for anti-HCV therapies. In this review, we summarize the well-characterized and recently identified cellular factors functioning at each stage of the HCV life cycle.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| |
Collapse
|
22
|
Zhang H, Wang Y, Wu X, Tang X, Wu C, Lu J. Determinants of genome-wide distribution and evolution of uORFs in eukaryotes. Nat Commun 2021; 12:1076. [PMID: 33597535 PMCID: PMC7889888 DOI: 10.1038/s41467-021-21394-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/20/2021] [Indexed: 01/02/2023] Open
Abstract
Upstream open reading frames (uORFs) play widespread regulatory functions in modulating mRNA translation in eukaryotes, but the principles underlying the genomic distribution and evolution of uORFs remain poorly understood. Here, we analyze ~17 million putative canonical uORFs in 478 eukaryotic species that span most of the extant taxa of eukaryotes. We demonstrate how positive and purifying selection, coupled with differences in effective population size (Ne), has shaped the contents of uORFs in eukaryotes. Besides, gene expression level is important in influencing uORF occurrences across genes in a species. Our analyses suggest that most uORFs might play regulatory roles rather than encode functional peptides. We also show that the Kozak sequence context of uORFs has evolved across eukaryotic clades, and that noncanonical uORFs tend to have weaker suppressive effects than canonical uORFs in translation regulation. This study provides insights into the driving forces underlying uORF evolution in eukaryotes.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Yirong Wang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- College of Biology, Hunan University, Changsha, China
| | - Xinkai Wu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Changcheng Wu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
23
|
Mendes A, Gigan JP, Rodriguez Rodrigues C, Choteau SA, Sanseau D, Barros D, Almeida C, Camosseto V, Chasson L, Paton AW, Paton JC, Argüello RJ, Lennon-Duménil AM, Gatti E, Pierre P. Proteostasis in dendritic cells is controlled by the PERK signaling axis independently of ATF4. Life Sci Alliance 2020; 4:4/2/e202000865. [PMID: 33443099 PMCID: PMC7756897 DOI: 10.26508/lsa.202000865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Differentiated dendritic cells display an unusual activation of the integrated stress response, which is necessary for normal type-I Interferon production and cell migration. In stressed cells, phosphorylation of eukaryotic initiation factor 2α (eIF2α) controls transcriptome-wide changes in mRNA translation and gene expression known as the integrated stress response. We show here that DCs are characterized by high eIF2α phosphorylation, mostly caused by the activation of the ER kinase PERK (EIF2AK3). Despite high p-eIF2α levels, DCs display active protein synthesis and no signs of a chronic integrated stress response. This biochemical specificity prevents translation arrest and expression of the transcription factor ATF4 during ER-stress induction by the subtilase cytotoxin (SubAB). PERK inactivation, increases globally protein synthesis levels and regulates IFN-β expression, while impairing LPS-stimulated DC migration. Although the loss of PERK activity does not impact DC development, the cross talk existing between actin cytoskeleton dynamics; PERK and eIF2α phosphorylation is likely important to adapt DC homeostasis to the variations imposed by the immune contexts.
Collapse
Affiliation(s)
- Andreia Mendes
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France.,Department of Medical Sciences, Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, University of Aveiro, Aveiro, Portugal.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France
| | - Julien P Gigan
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France
| | - Christian Rodriguez Rodrigues
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France
| | - Sébastien A Choteau
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France.,Aix-Marseille Université, INSERM, Theories and Approaches of Genomic Complexity (TAGC), CENTURI, Marseille, France
| | - Doriane Sanseau
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | - Daniela Barros
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France.,Department of Medical Sciences, Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, University of Aveiro, Aveiro, Portugal.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France
| | - Catarina Almeida
- Department of Medical Sciences, Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, University of Aveiro, Aveiro, Portugal.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France
| | - Voahirana Camosseto
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France.,INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | - Lionel Chasson
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France
| | - Adrienne W Paton
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - James C Paton
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Rafael J Argüello
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France.,INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | | | - Evelina Gatti
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France .,Department of Medical Sciences, Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, University of Aveiro, Aveiro, Portugal.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France.,INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | - Philippe Pierre
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France .,Department of Medical Sciences, Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, University of Aveiro, Aveiro, Portugal.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France.,INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| |
Collapse
|
24
|
A tRNA-Derived Small RNA Regulates Ribosomal Protein S28 Protein Levels after Translation Initiation in Humans and Mice. Cell Rep 2020; 29:3816-3824.e4. [PMID: 31851915 DOI: 10.1016/j.celrep.2019.11.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/03/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
tRNA-derived small RNAs (tsRNAs) have been implicated in many cellular processes, yet the detailed mechanisms are not well defined. We previously found that the 3' end of Leu-CAG tRNA-derived small RNA (LeuCAG3'tsRNA) regulates ribosome biogenesis in humans by maintaining ribosomal protein S28 (RPS28) levels. The tsRNA binds to coding (CDS) and non-coding 3' UTR sequence in the RPS28 mRNA, altering its secondary structure and enhancing its translation. Here we report that the functional 3' UTR target site is present in primates while the CDS target site is present in many vertebrates. We establish that this tsRNA also regulates mouse Rps28 translation by interacting with the CDS target site. We further establish that the change in mRNA translation occurred at a post-initiation step in both species. Overall, our results suggest that LeuCAG3'tsRNA might maintain ribosome biogenesis through a conserved gene regulatory mechanism in vertebrates.
Collapse
|
25
|
Vassilaki N, Frakolaki E, Kalliampakou KI, Sakellariou P, Kotta-Loizou I, Bartenschlager R, Mavromara P. A Novel Cis-Acting RNA Structural Element Embedded in the Core Coding Region of the Hepatitis C Virus Genome Directs Internal Translation Initiation of the Overlapping Core+1 ORF. Int J Mol Sci 2020; 21:ijms21186974. [PMID: 32972019 PMCID: PMC7554737 DOI: 10.3390/ijms21186974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) genome translation is initiated via an internal ribosome entry site (IRES) embedded in the 5'-untranslated region (5'UTR). We have earlier shown that the conserved RNA stem-loops (SL) SL47 and SL87 of the HCV core-encoding region are important for viral genome translation in cell culture and in vivo. Moreover, we have reported that an open reading frame overlapping the core gene in the +1 frame (core+1 ORF) encodes alternative translation products, including a protein initiated at the internal AUG codons 85/87 of this frame (nt 597-599 and 603-605), downstream of SL87, which is designated core+1/Short (core+1/S). Here, we provide evidence for SL47 and SL87 possessing a novel cis-acting element that directs the internal translation initiation of core+1/S. Firstly, using a bicistronic dual luciferase reporter system and RNA-transfection experiments, we found that nucleotides 344-596 of the HCV genotype-1a and -2a genomes support translation initiation at the core+1 frame AUG codons 85/87, when present in the sense but not the opposite orientation. Secondly, site-directed mutagenesis combined with an analysis of ribosome-HCV RNA association elucidated that SL47 and SL87 are essential for this alternative translation mechanism. Finally, experiments using cells transfected with JFH1 replicons or infected with virus-like particles showed that core+1/S expression is independent from the 5'UTR IRES and does not utilize the polyprotein initiation codon, but it requires intact SL47 and SL87 structures. Thus, SL47 and SL87, apart from their role in viral polyprotein translation, are necessary elements for mediating the internal translation initiation of the alternative core+1/S ORF.
Collapse
Affiliation(s)
- Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
- Correspondence: (N.V.); (P.M.)
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
| | - Katerina I. Kalliampakou
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
| | - Panagiotis Sakellariou
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
| | - Ioly Kotta-Loizou
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
- Laboratory of Biochemistry and Molecular Virology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Thrace, Greece
- Correspondence: (N.V.); (P.M.)
| |
Collapse
|
26
|
Liu Y, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao XX, Huang J, Mao S, Ou X, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Rehman MU, Chen X. The role of host eIF2α in viral infection. Virol J 2020; 17:112. [PMID: 32703221 PMCID: PMC7376328 DOI: 10.1186/s12985-020-01362-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background eIF2α is a regulatory node that controls protein synthesis initiation by its phosphorylation or dephosphorylation. General control nonderepressible-2 (GCN2), protein kinase R-like endoplasmic reticulum kinase (PERK), double-stranded RNA (dsRNA)-dependent protein kinase (PKR) and heme-regulated inhibitor (HRI) are four kinases that regulate eIF2α phosphorylation. Main body In the viral infection process, dsRNA or viral proteins produced by viral proliferation activate different eIF2α kinases, resulting in eIF2α phosphorylation, which hinders ternary tRNAMet-GTP-eIF2 complex formation and inhibits host or viral protein synthesis. The stalled messenger ribonucleoprotein (mRNP) complex aggregates under viral infection stress to form stress granules (SGs), which encapsulate viral RNA and transcription- and translation-related proteins, thereby limiting virus proliferation. However, many viruses have evolved a corresponding escape mechanism to synthesize their own proteins in the event of host protein synthesis shutdown and SG formation caused by eIF2α phosphorylation, and viruses can block the cell replication cycle through the PERK-eIF2α pathway, providing a favorable environment for their own replication. Subsequently, viruses can induce host cell autophagy or apoptosis through the eIF2α-ATF4-CHOP pathway. Conclusions This review summarizes the role of eIF2α in viral infection to provide a reference for studying the interactions between viruses and hosts.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| |
Collapse
|
27
|
Hepatitis C Virus Translation Regulation. Int J Mol Sci 2020; 21:ijms21072328. [PMID: 32230899 PMCID: PMC7178104 DOI: 10.3390/ijms21072328] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Translation of the hepatitis C virus (HCV) RNA genome is regulated by the internal ribosome entry site (IRES), located in the 5’-untranslated region (5′UTR) and part of the core protein coding sequence, and by the 3′UTR. The 5′UTR has some highly conserved structural regions, while others can assume different conformations. The IRES can bind to the ribosomal 40S subunit with high affinity without any other factors. Nevertheless, IRES activity is modulated by additional cis sequences in the viral genome, including the 3′UTR and the cis-acting replication element (CRE). Canonical translation initiation factors (eIFs) are involved in HCV translation initiation, including eIF3, eIF2, eIF1A, eIF5, and eIF5B. Alternatively, under stress conditions and limited eIF2-Met-tRNAiMet availability, alternative initiation factors such as eIF2D, eIF2A, and eIF5B can substitute for eIF2 to allow HCV translation even when cellular mRNA translation is downregulated. In addition, several IRES trans-acting factors (ITAFs) modulate IRES activity by building large networks of RNA-protein and protein–protein interactions, also connecting 5′- and 3′-ends of the viral RNA. Moreover, some ITAFs can act as RNA chaperones that help to position the viral AUG start codon in the ribosomal 40S subunit entry channel. Finally, the liver-specific microRNA-122 (miR-122) stimulates HCV IRES-dependent translation, most likely by stabilizing a certain structure of the IRES that is required for initiation.
Collapse
|
28
|
Komar AA, Merrick WC. A Retrospective on eIF2A-and Not the Alpha Subunit of eIF2. Int J Mol Sci 2020; 21:E2054. [PMID: 32192132 PMCID: PMC7139343 DOI: 10.3390/ijms21062054] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/29/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
Initiation of protein synthesis in eukaryotes is a complex process requiring more than 12 different initiation factors, comprising over 30 polypeptide chains. The functions of many of these factors have been established in great detail; however, the precise role of some of them and their mechanism of action is still not well understood. Eukaryotic initiation factor 2A (eIF2A) is a single chain 65 kDa protein that was initially believed to serve as the functional homologue of prokaryotic IF2, since eIF2A and IF2 catalyze biochemically similar reactions, i.e., they stimulate initiator Met-tRNAi binding to the small ribosomal subunit. However, subsequent identification of a heterotrimeric 126 kDa factor, eIF2 (α,β,γ) showed that this factor, and not eIF2A, was primarily responsible for the binding of Met-tRNAi to 40S subunit in eukaryotes. It was found however, that eIF2A can promote recruitment of Met-tRNAi to 40S/mRNA complexes under conditions of inhibition of eIF2 activity (eIF2α-phosphorylation), or its absence. eIF2A does not function in major steps in the initiation process, but is suggested to act at some minor/alternative initiation events such as re-initiation, internal initiation, or non-AUG initiation, important for translational control of specific mRNAs. This review summarizes our current understanding of the eIF2A structure and function.
Collapse
Affiliation(s)
- Anton A. Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - William C. Merrick
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
29
|
Romero-López C, Berzal-Herranz A. The Role of the RNA-RNA Interactome in the Hepatitis C Virus Life Cycle. Int J Mol Sci 2020; 21:ijms21041479. [PMID: 32098260 PMCID: PMC7073135 DOI: 10.3390/ijms21041479] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023] Open
Abstract
RNA virus genomes are multifunctional entities endowed with conserved structural elements that control translation, replication and encapsidation, among other processes. The preservation of these structural RNA elements constraints the genomic sequence variability. The hepatitis C virus (HCV) genome is a positive, single-stranded RNA molecule with numerous conserved structural elements that manage different steps during the infection cycle. Their function is ensured by the association of protein factors, but also by the establishment of complex, active, long-range RNA-RNA interaction networks-the so-called HCV RNA interactome. This review describes the RNA genome functions mediated via RNA-RNA contacts, and revisits some canonical ideas regarding the role of functional high-order structures during the HCV infective cycle. By outlining the roles of long-range RNA-RNA interactions from translation to virion budding, and the functional domains involved, this work provides an overview of the HCV genome as a dynamic device that manages the course of viral infection.
Collapse
|
30
|
Abstract
Viruses must co-opt the cellular translation machinery to produce progeny virions. Eukaryotic viruses have evolved a variety of ways to manipulate the cellular translation apparatus, in many cases using elegant RNA-centred strategies. Viral RNAs can alter or control every phase of protein synthesis and have diverse targets, mechanisms and structures. In addition, as cells attempt to limit infection by downregulating translation, some of these viral RNAs enable the virus to overcome this response or even take advantage of it to promote viral translation over cellular translation. In this Review, we present important examples of viral RNA-based strategies to exploit the cellular translation machinery. We describe what is understood of the structures and mechanisms of diverse viral RNA elements that alter or regulate translation, the advantages that are conferred to the virus and some of the major unknowns that provide motivation for further exploration. Eukaryotic viruses have evolved a variety of ways to manipulate the cellular translation apparatus. In this Review, Jaafar and Kieft present important examples of viral RNA-based strategies to exploit the cellular translation machinery.
Collapse
Affiliation(s)
- Zane A Jaafar
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, USA. .,RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, CO, USA.
| |
Collapse
|
31
|
Sprooten J, Garg AD. Type I interferons and endoplasmic reticulum stress in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:63-118. [PMID: 32138904 PMCID: PMC7104985 DOI: 10.1016/bs.ircmb.2019.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) comprise of pro-inflammatory cytokines created, as well as sensed, by all nucleated cells with the main objective of blocking pathogens-driven infections. Owing to this broad range of influence, type I IFNs also exhibit critical functions in many sterile inflammatory diseases and immunopathologies, especially those associated with endoplasmic reticulum (ER) stress-driven signaling pathways. Indeed, over the years accumulating evidence has indicated that the presence of ER stress can influence the production, or sensing of, type I IFNs induced by perturbations like pattern recognition receptor (PRR) agonists, infections (bacterial, viral or parasitic) or autoimmunity. In this article we discuss the link between type I IFNs and ER stress in various diseased contexts. We describe how ER stress regulates type I IFNs production or sensing, or how type I IFNs may induce ER stress, in various circumstances like microbial infections, autoimmunity, diabetes, cancer and other ER stress-related contexts.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
32
|
Kearse MG, Goldman DH, Choi J, Nwaezeapu C, Liang D, Green KM, Goldstrohm AC, Todd PK, Green R, Wilusz JE. Ribosome queuing enables non-AUG translation to be resistant to multiple protein synthesis inhibitors. Genes Dev 2019; 33:871-885. [PMID: 31171704 PMCID: PMC6601509 DOI: 10.1101/gad.324715.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/24/2019] [Indexed: 02/05/2023]
Abstract
Aberrant translation initiation at non-AUG start codons is associated with multiple cancers and neurodegenerative diseases. Nevertheless, how non-AUG translation may be regulated differently from canonical translation is poorly understood. Here, we used start codon-specific reporters and ribosome profiling to characterize how translation from non-AUG start codons responds to protein synthesis inhibitors in human cells. These analyses surprisingly revealed that translation of multiple non-AUG-encoded reporters and the endogenous GUG-encoded DAP5 (eIF4G2/p97) mRNA is resistant to cycloheximide (CHX), a translation inhibitor that severely slows but does not completely abrogate elongation. Our data suggest that slowly elongating ribosomes can lead to queuing/stacking of scanning preinitiation complexes (PICs), preferentially enhancing recognition of weak non-AUG start codons. Consistent with this model, limiting PIC formation or scanning sensitizes non-AUG translation to CHX. We further found that non-AUG translation is resistant to other inhibitors that target ribosomes within the coding sequence but not those targeting newly initiated ribosomes. Together, these data indicate that ribosome queuing enables mRNAs with poor initiation context-namely, those with non-AUG start codons-to be resistant to pharmacological translation inhibitors at concentrations that robustly inhibit global translation.
Collapse
Affiliation(s)
- Michael G Kearse
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Daniel H Goldman
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jiou Choi
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Chike Nwaezeapu
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Dongming Liang
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Katelyn M Green
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Veterans Affairs Medical Center, Ann Arbor, Michigan 48105, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
33
|
Function and Evolution of Upstream ORFs in Eukaryotes. Trends Biochem Sci 2019; 44:782-794. [PMID: 31003826 DOI: 10.1016/j.tibs.2019.03.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022]
Abstract
There is growing interest in the role of translational regulation in cellular homeostasis during organismal development. Translation initiation is the rate-limiting step in mRNA translation and is central to translational regulation. Upstream open reading frames (uORFs) are regulatory elements that are prevalent in eukaryotic mRNAs. uORFs modulate the translation initiation rate of downstream coding sequences (CDSs) by sequestering ribosomes. Over the past several years, genome-wide studies have revealed the widespread regulatory functions of uORFs in different species in different biological contexts. Here, we review the current understanding of uORF-mediated translational regulation from the perspective of functional and evolutionary genomics and address remaining gaps that deserve further study.
Collapse
|
34
|
Merrick WC, Pavitt GD. Protein Synthesis Initiation in Eukaryotic Cells. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a033092. [PMID: 29735639 DOI: 10.1101/cshperspect.a033092] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes our current understanding of the major pathway for the initiation phase of protein synthesis in eukaryotic cells, with a focus on recent advances. We describe the major scanning or messenger RNA (mRNA) m7G cap-dependent mechanism, which is a highly coordinated and stepwise regulated process that requires the combined action of at least 12 distinct translation factors with initiator transfer RNA (tRNA), ribosomes, and mRNAs. We limit our review to studies involving either mammalian or budding yeast cells and factors, as these represent the two best-studied experimental systems, and only include a reference to other organisms where particular insight has been gained. We close with a brief description of what we feel are some of the major unknowns in eukaryotic initiation.
Collapse
Affiliation(s)
- William C Merrick
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
35
|
Kim E, Kim JH, Seo K, Hong KY, An SWA, Kwon J, Lee SJV, Jang SK. eIF2A, an initiator tRNA carrier refractory to eIF2α kinases, functions synergistically with eIF5B. Cell Mol Life Sci 2018; 75:4287-4300. [PMID: 30019215 PMCID: PMC6208778 DOI: 10.1007/s00018-018-2870-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
The initiator tRNA (Met-tRNA i Met ) at the P site of the small ribosomal subunit plays an important role in the recognition of an mRNA start codon. In bacteria, the initiator tRNA carrier, IF2, facilitates the positioning of Met-tRNA i Met on the small ribosomal subunit. Eukarya contain the Met-tRNA i Met carrier, eIF2 (unrelated to IF2), whose carrier activity is inhibited under stress conditions by the phosphorylation of its α-subunit by stress-activated eIF2α kinases. The stress-resistant initiator tRNA carrier, eIF2A, was recently uncovered and shown to load Met-tRNA i Met on the 40S ribosomal subunit associated with a stress-resistant mRNA under stress conditions. Here, we report that eIF2A interacts and functionally cooperates with eIF5B (a homolog of IF2), and we describe the functional domains of eIF2A that are required for its binding of Met-tRNA i Met , eIF5B, and a stress-resistant mRNA. The results indicate that the eukaryotic eIF5B-eIF2A complex functionally mimics the bacterial IF2 containing ribosome-, GTP-, and initiator tRNA-binding domains in a single polypeptide.
Collapse
Affiliation(s)
- Eunah Kim
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Joon Hyun Kim
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Keunhee Seo
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Ka Young Hong
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Seon Woo A An
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Junyoung Kwon
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Seung-Jae V Lee
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Sung Key Jang
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea.
| |
Collapse
|
36
|
Pavitt GD. Regulation of translation initiation factor eIF2B at the hub of the integrated stress response. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1491. [PMID: 29989343 DOI: 10.1002/wrna.1491] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 12/29/2022]
Abstract
Phosphorylation of the translation initiation factor eIF2 is one of the most widely used and well-studied mechanisms cells use to respond to diverse cellular stresses. Known as the integrated stress response (ISR), the control pathway uses modulation of protein synthesis to reprogram gene expression and restore homeostasis. Here the current knowledge of the molecular mechanisms of eIF2 activation and its control by phosphorylation at a single-conserved phosphorylation site, serine 51 are discussed with a major focus on the regulatory roles of eIF2B and eIF5 where a current molecular view of ISR control of eIF2B activity is presented. How genetic disorders affect eIF2 or eIF2B is discussed, as are syndromes where excess signaling through the ISR is a component. Finally, studies into the action of recently identified compounds that modulate the ISR in experimental systems are discussed; these suggest that eIF2B is a potential therapeutic target for a wide range of conditions. This article is categorized under: Translation > Translation Regulation.
Collapse
Affiliation(s)
- Graham D Pavitt
- Division Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
37
|
Chu J, Pelletier J. Therapeutic Opportunities in Eukaryotic Translation. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032995. [PMID: 29440069 DOI: 10.1101/cshperspect.a032995] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability to block biological processes with selective small molecules provides advantages distinct from most other experimental approaches. These include rapid time to onset, swift reversibility, ability to probe activities in manners that cannot be accessed by genetic means, and the potential to be further developed as therapeutic agents. Small molecule inhibitors can also be used to alter expression and activity without affecting the stoichiometry of interacting partners. These tenets have been especially evident in the field of translation. Small molecule inhibitors were instrumental in enabling investigators to capture short-lived complexes and characterize specific steps of protein synthesis. In addition, several drugs that are the mainstay of modern antimicrobial drug therapy are potent inhibitors of prokaryotic translation. Currently, there is much interest in targeting eukaryotic translation as decades of research have revealed that deregulated protein synthesis in cancer cells represents a targetable vulnerability. In addition to being potential therapeutics, small molecules that manipulate translation have also been shown to influence cognitive processes such as memory. In this review, we focus on small molecule modulators that target the eukaryotic translation initiation apparatus and provide an update on their potential application to the treatment of disease.
Collapse
Affiliation(s)
- Jennifer Chu
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Department of Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
38
|
Roberts L, Wieden HJ. Viruses, IRESs, and a universal translation initiation mechanism. Biotechnol Genet Eng Rev 2018; 34:60-75. [PMID: 29804514 DOI: 10.1080/02648725.2018.1471567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Internal ribosome entry sites (IRESs) are cis-acting RNA elements capable of recruiting ribosomes and initiating translation on an internal portion of an mRNA. This is divergent from canonical eukaryotic translation initiation, where the 5' cap is recognized by initiation factors (IFs) that recruit the ribosome to initiate translation of the encoded peptide. All known IRESs are capable of initiating translation in a cap-independent manner, and are therefore not constrained by the absence or presence of a 5' m7G cap. In addition to being cap-independent, IRES-mediated translation often uses only a subset of IFs allowing them to function independently of canonical initiation. The ability to function independently of the canonical translation initiation pathway allows IRESs to mediate gene expression when cap-dependent translation has been inhibited. Recent reports of viral IRESs capable of initiating translation across taxonomic domains (Eukarya and Bacteria) have sparked interest in designing gene expression systems compatible with multiple organisms. The ability to drive translation independent of cellular context using a common mechanism would have a wide range of applications ranging from agriculture biotechnology to the development of antiviral drugs. Here we discuss IRES-mediated translation and critically compare the available mechanistic and structural information. A particular focus will be on IRES-meditated translation across domains of life (viral and cellular IRESs) , IRES bioengineering and the possibility of an evolutionary conserved translation initiation mechanism.
Collapse
Affiliation(s)
- Luc Roberts
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| | - Hans-Joachim Wieden
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| |
Collapse
|
39
|
Sonobe Y, Ghadge G, Masaki K, Sendoel A, Fuchs E, Roos RP. Translation of dipeptide repeat proteins from the C9ORF72 expanded repeat is associated with cellular stress. Neurobiol Dis 2018; 116:155-165. [PMID: 29792928 DOI: 10.1016/j.nbd.2018.05.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 01/13/2023] Open
Abstract
Expansion of a hexanucleotide repeat (HRE), GGGGCC, in the C9ORF72 gene is recognized as the most common cause of familial amyotrophic lateral sclerosis (FALS), frontotemporal dementia (FTD) and ALS-FTD, as well as 5-10% of sporadic ALS. Despite the location of the HRE in the non-coding region (with respect to the main C9ORF72 gene product), dipeptide repeat proteins (DPRs) that are thought to be toxic are translated from the HRE in all three reading frames from both the sense and antisense transcript. Here, we identified a CUG that has a good Kozak consensus sequence as the translation initiation codon. Mutation of this CTG significantly suppressed polyglycine-alanine (GA) translation. GA was translated when the G4C2 construct was placed as the second cistron in a bicistronic construct. CRISPR/Cas9-induced knockout of a non-canonical translation initiation factor, eIF2A, impaired GA translation. Transfection of G4C2 constructs induced an integrated stress response (ISR), while triggering the ISR led to a continuation of translation of GA with a decline in conventional cap-dependent translation. These in vitro observations were confirmed in chick embryo neural cells. The findings suggest that DPRs translated from an HRE in C9ORF72 aggregate and lead to an ISR that then leads to continuing DPR production and aggregation, thereby creating a continuing pathogenic cycle.
Collapse
Affiliation(s)
- Yoshifumi Sonobe
- Department of Neurology, University of Chicago Medical Center, 5841 S. Maryland Ave., Chicago, IL 60637, United States
| | - Ghanashyam Ghadge
- Department of Neurology, University of Chicago Medical Center, 5841 S. Maryland Ave., Chicago, IL 60637, United States
| | - Katsuhisa Masaki
- Department of Neurology, University of Chicago Medical Center, 5841 S. Maryland Ave., Chicago, IL 60637, United States
| | - Ataman Sendoel
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Ave., Box 300, NY, NY, 10021-6399, United States
| | - Elaine Fuchs
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Ave., Box 300, NY, NY, 10021-6399, United States
| | - Raymond P Roos
- Department of Neurology, University of Chicago Medical Center, 5841 S. Maryland Ave., Chicago, IL 60637, United States.
| |
Collapse
|
40
|
Battling for Ribosomes: Translational Control at the Forefront of the Antiviral Response. J Mol Biol 2018; 430:1965-1992. [PMID: 29746850 DOI: 10.1016/j.jmb.2018.04.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 01/05/2023]
Abstract
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus-host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.
Collapse
|
41
|
Arrangements of nucleotides flanking the start codon in the IRES of the hepatitis C virus in the IRES binary complex with the human 40S ribosomal subunit. Biochimie 2018; 148:72-79. [PMID: 29501734 DOI: 10.1016/j.biochi.2018.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/26/2018] [Indexed: 01/09/2023]
Abstract
Genomic RNA of hepatitis C virus (HCV) has an internal ribosome entry site (IRES), a specific highly structured fragment responsible for its non-canonical translation initiation. The HCV IRES contains a major part of the 5'-untranslated region of the viral RNA and a small portion of the open reading frame (ORF). At the first step of initiation, IRES directly binds to 40S ribosomal subunits so that the AUG start codon appears at the P site region without scanning and without involving initiation factors. However, it is still not entirely clear whether the IRES ORF is correctly loaded into the 40S ribosomal mRNA binding channel in the resulting binary complex. To address this issue, we applied site-directed cross-linking using HCV IRES derivatives bearing a perfluorophenyl azide cross-linker at nucleotides in definite positions relative to the adenine of the AUG start codon. We found that the modifier at the IRES position -3 cross-links to ribosomal proteins uS11 and eS26. These proteins have been identified together with uS7 as those interacting with the mRNA nucleotide in position -3 relative to the first nucleotide of the codon directed to the P site by a cognate tRNA. Thus, our results indicate a certain difference in the locations of the above parts of HCV IRES and canonical mRNAs on 40S subunits. The modifier at the IRES positions +4/5 was attached to uS19, which is specific for ribosomal complexes with the P site tRNA and similar derivatives of model canonical mRNAs when the modifier is in the same positions. However, the cross-linking efficiency of the IRES derivative was drastically lower than that previously observed with derivatives of model mRNAs. This implies that the IRES ORF portion is correctly loaded into the mRNA binding channel only in a tiny fraction of the binary complexes.
Collapse
|
42
|
Mailliot J, Martin F. Viral internal ribosomal entry sites: four classes for one goal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9. [PMID: 29193740 DOI: 10.1002/wrna.1458] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/19/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
To ensure efficient propagation, viruses need to rapidly produce viral proteins after cell entrance. Since viral genomes do not encode any components of the protein biosynthesis machinery, viral proteins must be produced by the host cell. To hi-jack the host cellular translation, viruses use a great variety of distinct strategies. Many single-stranded positive-sensed RNA viruses contain so-called internal ribosome entry sites (IRESs). IRESs are structural RNA motifs that have evolved to specific folds that recruit the host ribosomes on the viral coding sequences in order to synthesize viral proteins. In host canonical translation, recruitment of the translation machinery components is essentially guided by the 5' cap (m7 G) of mRNA. In contrast, IRESs are able to promote efficient ribosome assembly internally and in cap-independent manner. IRESs have been categorized into four classes, based on their length, nucleotide sequence, secondary and tertiary structures, as well as their mode of action. Classes I and II require the assistance of cellular auxiliary factors, the eukaryotic intiation factors (eIF), for efficient ribosome assembly. Class III IRESs require only a subset of eIFs whereas Class IV, which are the more compact, can promote translation without any eIFs. Extensive functional and structural investigations of IRESs over the past decades have allowed a better understanding of their mode of action for viral translation. Because viral translation has a pivotal role in the infectious program, IRESs are therefore attractive targets for therapeutic purposes. WIREs RNA 2018, 9:e1458. doi: 10.1002/wrna.1458 This article is categorized under: Translation > Ribosome Structure/Function Translation > Translation Mechanisms RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Justine Mailliot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Illkirch-Graffenstaden, France
| | - Franck Martin
- Institut de Biologie Moléculaire et Cellulaire, "Architecture et Réactivité de l'ARN" CNRS UPR9002, Université De Strasbourg, Strasbourg, France
| |
Collapse
|
43
|
González-Almela E, Williams H, Sanz MA, Carrasco L. The Initiation Factors eIF2, eIF2A, eIF2D, eIF4A, and eIF4G Are Not Involved in Translation Driven by Hepatitis C Virus IRES in Human Cells. Front Microbiol 2018; 9:207. [PMID: 29487587 PMCID: PMC5816946 DOI: 10.3389/fmicb.2018.00207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/30/2018] [Indexed: 12/22/2022] Open
Abstract
Animal viruses have evolved a variety of strategies to ensure the efficient translation of their mRNAs. One such strategy is the use of internal ribosome entry site (IRES) elements, which circumvent the requirement for some eukaryotic initiation factors (eIFs). Much effort has been directed to unravel the precise mechanism of translation initiation by hepatitis C virus (HCV) mRNA. In the present study, we examined the involvement of several eIFs in HCV IRES-driven translation in human cells in a comparative analysis with mRNAs bearing the encephalomyocarditis virus or the Cricket paralysis virus IRES element. Consistent with previous findings, several inhibitors of eIF2 activity, including sodium arsenite, thapsigargin, tunicamycin, and salubrinal, had no inhibitory effect on the translation of an mRNA bearing the HCV IRES, and all induced the phosphorylation of eIF2α. In addition, hippuristanol and pateamine A, two known inhibitors of eIF4A, failed to block HCV IRES-directed translation. To test the release of nuclear proteins to the cytoplasm and to analyze the formation of stress granules, the location of the nuclear protein TIA1 was tested by immunocytochemistry. Both arsenite and pateamine A could efficiently induce the formation of stress granules containing TIA1 and eIF4G, whereas eIF3 and eIF2 failed to localize to these cytoplasmic bodies. The finding of eIF4A and eIF4G in stress granules suggests that they do not participate in mRNA translation. Human HAP1 cells depleted for eIF2A, eIF2D, or both factors, were able to synthesize luciferase from an mRNA bearing the HCV IRES even when eIF2α was phosphorylated. Overall, these results demonstrate that neither eIF2A nor eIF2D does not participate in the translation directed by HCV IRES. We conclude that eIF2, eIF4A, eIF2A, and eIF2D do not participate in the initiation of translation of HCV mRNA.
Collapse
Affiliation(s)
- Esther González-Almela
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Hugh Williams
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel A Sanz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
44
|
Willcocks MM, Zaini S, Chamond N, Ulryck N, Allouche D, Rajagopalan N, Davids NA, Fahnøe U, Hadsbjerg J, Rasmussen TB, Roberts LO, Sargueil B, Belsham GJ, Locker N. Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus internal ribosome entry sites. Nucleic Acids Res 2018; 45:13016-13028. [PMID: 29069411 PMCID: PMC5727462 DOI: 10.1093/nar/gkx991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/12/2017] [Indexed: 01/23/2023] Open
Abstract
Viral internal ribosomes entry site (IRES) elements coordinate the recruitment of the host translation machinery to direct the initiation of viral protein synthesis. Within hepatitis C virus (HCV)-like IRES elements, the sub-domain IIId(1) is crucial for recruiting the 40S ribosomal subunit. However, some HCV-like IRES elements possess an additional sub-domain, termed IIId2, whose function remains unclear. Herein, we show that IIId2 sub-domains from divergent viruses have different functions. The IIId2 sub-domain present in Seneca valley virus (SVV), a picornavirus, is dispensable for IRES activity, while the IIId2 sub-domains of two pestiviruses, classical swine fever virus (CSFV) and border disease virus (BDV), are required for 80S ribosomes assembly and IRES activity. Unlike in SVV, the deletion of IIId2 from the CSFV and BDV IRES elements impairs initiation of translation by inhibiting the assembly of 80S ribosomes. Consequently, this negatively affects the replication of CSFV and BDV. Finally, we show that the SVV IIId2 sub-domain is required for efficient viral RNA synthesis and growth of SVV, but not for IRES function. This study sheds light on the molecular evolution of viruses by clearly demonstrating that conserved RNA structures, within distantly related RNA viruses, have acquired different roles in the virus life cycles.
Collapse
Affiliation(s)
- Margaret M Willcocks
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Salmah Zaini
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Nathalie Chamond
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Nathalie Ulryck
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Delphine Allouche
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Noemie Rajagopalan
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Nana A Davids
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Ulrik Fahnøe
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Johanne Hadsbjerg
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Thomas Bruun Rasmussen
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Lisa O Roberts
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Bruno Sargueil
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Graham J Belsham
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
45
|
Johnson AG, Grosely R, Petrov AN, Puglisi JD. Dynamics of IRES-mediated translation. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0177. [PMID: 28138065 DOI: 10.1098/rstb.2016.0177] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 12/19/2022] Open
Abstract
Viral internal ribosome entry sites (IRESs) are unique RNA elements, which use stable and dynamic RNA structures to recruit ribosomes and drive protein synthesis. IRESs overcome the high complexity of the canonical eukaryotic translation initiation pathway, often functioning with a limited set of eukaryotic initiation factors. The simplest types of IRESs are typified by the cricket paralysis virus intergenic region (CrPV IGR) and hepatitis C virus (HCV) IRESs, both of which independently form high-affinity complexes with the small (40S) ribosomal subunit and bypass the molecular processes of cap-binding and scanning. Owing to their simplicity and ribosomal affinity, the CrPV and HCV IRES have been important models for structural and functional studies of the eukaryotic ribosome during initiation, serving as excellent targets for recent technological breakthroughs in cryogenic electron microscopy (cryo-EM) and single-molecule analysis. High-resolution structural models of ribosome : IRES complexes, coupled with dynamics studies, have clarified decades of biochemical research and provided an outline of the conformational and compositional trajectory of the ribosome during initiation. Here we review recent progress in the study of HCV- and CrPV-type IRESs, highlighting important structural and dynamics insights and the synergy between cryo-EM and single-molecule studies.This article is part of the themed issue 'Perspectives on the ribosome'.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexey N Petrov
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
46
|
Abstract
This review by Kearse and Wilusz discusses the profound impact of non-AUG start codons in eukaryotic translation. It describes how misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and how modulation of non-AUG usage may represent a novel therapeutic strategy. Although it was long thought that eukaryotic translation almost always initiates at an AUG start codon, recent advancements in ribosome footprint mapping have revealed that non-AUG start codons are used at an astonishing frequency. These non-AUG initiation events are not simply errors but instead are used to generate or regulate proteins with key cellular functions; for example, during development or stress. Misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and modulation of non-AUG usage may represent a novel therapeutic strategy. It is thus becoming increasingly clear that start codon selection is regulated by many trans-acting initiation factors as well as sequence/structural elements within messenger RNAs and that non-AUG translation has a profound impact on cellular states.
Collapse
Affiliation(s)
- Michael G Kearse
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104 USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104 USA
| |
Collapse
|
47
|
Romero-López C, Berzal-Herranz A. The 5BSL3.2 Functional RNA Domain Connects Distant Regions in the Hepatitis C Virus Genome. Front Microbiol 2017; 8:2093. [PMID: 29163393 PMCID: PMC5671509 DOI: 10.3389/fmicb.2017.02093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/12/2017] [Indexed: 02/05/2023] Open
Abstract
Viral genomes are complexly folded entities that carry all the information required for the infective cycle. The nucleotide sequence of the RNA virus genome encodes proteins and functional information contained in discrete, highly conserved structural units. These so-called functional RNA domains play essential roles in the progression of infection, which requires their preservation from one generation to the next. Numerous functional RNA domains exist in the genome of the hepatitis C virus (HCV). Among them, the 5BSL3.2 domain in the cis-acting replication element (CRE) at the 3' end of the viral open reading frame has become of particular interest given its role in HCV RNA replication and as a regulator of viral protein synthesis. These functionalities are achieved via the establishment of a complex network of long-distance RNA-RNA contacts involving (at least as known to date) the highly conserved 3'X tail, the apical loop of domain IIId in the internal ribosome entry site, and/or the so-called Alt region upstream of the CRE. Changing contacts promotes the execution of different stages of the viral cycle. The 5BSL3.2 domain thus operates at the core of a system that governs the progression of HCV infection. This review summarizes our knowledge of the long-range RNA-RNA interaction network in the HCV genome, with special attention paid to the structural and functional consequences derived from the establishment of different contacts. The potential implications of such interactions in switching between the different stages of the viral cycle are discussed.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| |
Collapse
|
48
|
Yamamoto H, Unbehaun A, Spahn CMT. Ribosomal Chamber Music: Toward an Understanding of IRES Mechanisms. Trends Biochem Sci 2017; 42:655-668. [PMID: 28684008 DOI: 10.1016/j.tibs.2017.06.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022]
Abstract
Internal initiation is a 5'-end-independent mode of translation initiation engaged by many virus- and putatively some cell-encoded templates. Internal initiation is facilitated by specific RNA tertiary folds, called internal ribosomal entry sites (IRESs), in the 5' untranslated region (UTR) of the respective transcripts. In this review we discuss recent structural insight into how established IRESs first capture and then manipulate the eukaryotic translation machinery through non-canonical interactions and by guiding the intrinsic conformational flexibility of the eukaryotic ribosome. Because IRESs operate with reduced complexity and constitute minimal systems of initiation, comparison with canonical initiation may allow common mechanistic principles of the ribosome to be delineated.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany
| | - Anett Unbehaun
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian M T Spahn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
49
|
Smad7 knockdown activates protein kinase RNA-associated eIF2α pathway leading to colon cancer cell death. Cell Death Dis 2017; 8:e2681. [PMID: 28300830 PMCID: PMC5386514 DOI: 10.1038/cddis.2017.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023]
Abstract
Upregulation of Smad7, an inhibitor of transforming growth factor-β1 (TGF-β1), occurs in sporadic colorectal cancer (CRC) and knockdown of Smad7 inhibits CRC cell growth, a phenomenon that associates with decreased expression of cell division cycle 25 homolog A and arrest of cells in the S phase of the cell cycle. These findings occur in CRC cells unresponsive to TGF-β1, thus suggesting the existence of a Smad7-mediated TGF-β1-independent mechanism that controls CRC cell behavior. Here we show that Smad7 inhibition with a specific Smad7 antisense oligonucleotide upregulates eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, a transcription factor involved in the regulation of cell cycle arrest and induction of cell death, and induces activating transcription factor 4 (ATF4) and CCAAT/enhancer binding protein homology protein (CHOP), two downstream targets of eIF2α. Among the upstream kinases that control eIF2α phosphorylation, the serine-threonine protein kinase RNA (PKR), but not general control non-derepressible 2 (GCN2) and protein kinase RNA-like endoplasmic reticulum kinase (PERK), is activated by Smad7 knockdown. PKR silencing abolishes Smad7 antisense-induced eIF2α phosphorylation and ATF4/CHOP induction, thereby preventing Smad7 antisense-driven cell death. Smad7 inhibition diminishes interaction of PKR with protein kinase inhibitor p58 (p58IPK), a cellular inhibitor of PKR, but does not change the expression and/or activity of other factors involved in the control of PKR activation. These findings delineate a novel mechanism by which Smad7 knockdown promotes CRC cell death.
Collapse
|
50
|
Sanz MA, González Almela E, Carrasco L. Translation of Sindbis Subgenomic mRNA is Independent of eIF2, eIF2A and eIF2D. Sci Rep 2017; 7:43876. [PMID: 28240315 PMCID: PMC5327398 DOI: 10.1038/srep43876] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/01/2017] [Indexed: 12/31/2022] Open
Abstract
Translation of Sindbis virus subgenomic mRNA (sgmRNA) can occur after inactivation of eIF2 by phosphorylation in mammalian cells. Several studies have suggested that eIF2 can be replaced by eIF2A or eIF2D. HAP1 human cell lines knocked-out for eIF2A, eIF2D or both by CRISPR/Cas9 genome engineering were compared with wild-type (WT) cells to test the potential role of eIF2A and eIF2D in translation. Sindbis virus infection was comparable between the four cell lines. Moreover, synthesis of viral proteins during late stage infection was similar in all four cell lines despite the fact that eIF2α became phosphorylated. These findings demonstrate that eIF2A and eIF2D are not required for the translation of sgmRNA when eIF2α is phosphorylated. Moreover, silencing of eIF2A or eIF2D by transfection of the corresponding siRNAs in HAP1 WT, HAP1-eIF2A− and HAP1-eIF2D− cells had little effect on the synthesis of viral proteins late in infection. Modification of AUGi to other codons in sgmRNA failed to abrogate translation. Sindbis virus replicons containing these sgmRNA variants could still direct the synthesis of viral proteins. No significant differences were found between the cell lines assayed, suggesting that neither eIF2A nor eIF2D are involved in the translation of this sgmRNA bearing non-AUG codons.
Collapse
Affiliation(s)
- Miguel Angel Sanz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Esther González Almela
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|