1
|
Terglane J, Mertes N, Weischer S, Zobel T, Johnsson K, Gerke V. Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies. PLoS One 2025; 20:e0316854. [PMID: 39869616 PMCID: PMC11771901 DOI: 10.1371/journal.pone.0316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER. ER, Golgi and WPB themselves provide a unique milieu for the maturation of VWF, which at the level of the Golgi consists of a low pH and elevated Ca2+ concentrations. WPB are also characterized by low luminal pH, but their Ca2+ content has not been addressed so far. Here, we employed a chemigenetic approach to circumvent the problems of Ca2+ imaging in an acidic environment and show that WPB indeed also harbor elevated Ca2+ concentrations. We also show that depletion of the Golgi resident Ca2+ pump ATP2C1 resulted in only a minor decrease of luminal Ca2+ in WPB suggesting additional mechanisms for Ca2+ uptake into the organelle.
Collapse
Affiliation(s)
- Julian Terglane
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| | - Nicole Mertes
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Sarah Weischer
- Münster Imaging Network, Cells in Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Thomas Zobel
- Münster Imaging Network, Cells in Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| |
Collapse
|
2
|
McCaig CD. How Electricity Prevents Us from Bleeding to Death. Rev Physiol Biochem Pharmacol 2025; 187:115-145. [PMID: 39838012 DOI: 10.1007/978-3-031-68827-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Rapid tissue repair is also needed in the event of damage to blood vessels. Most of the essential steps that prevent us from bleeding to death involve the functions of Von Willebrand factor (VWF) and many of these are dependent on electrical forces.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
3
|
Lu CY, Wu JZ, Yao HHY, Liu RJY, Li L, Pluthero FG, Freeman SA, Kahr WHA. Acidification of α-granules in megakaryocytes by vacuolar-type adenosine triphosphatase is essential for organelle biogenesis. J Thromb Haemost 2024; 22:2294-2305. [PMID: 38718926 DOI: 10.1016/j.jtha.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Platelets coordinate blood coagulation at sites of vascular injury and play fundamental roles in a wide variety of (patho)physiological processes. Key to many platelet functions is the transport and secretion of proteins packaged within α-granules, organelles produced by platelet precursor megakaryocytes. Prominent among α-granule cargo are fibrinogen endocytosed from plasma and endogenously synthesized von Willebrand factor. These and other proteins are known to require acidic pH for stable packaging. Luminal acidity has been confirmed for mature α-granules isolated from platelets, but direct measurement of megakaryocyte granule acidity has not been reported. OBJECTIVES To determine the luminal pH of α-granules and their precursors in megakaryocytes and assess the requirement of vacuolar-type adenosine triphosphatase (V-ATPase) activity to establish and maintain the luminal acidity and integrity of these organelles. METHODS Cresyl violet staining was used to detect acidic granules in megakaryocytes. Endocytosis of fibrinogen tagged with the pH-sensitive fluorescent dye fluorescein isothiocyanate was used to load a subset of these organelles. Ratiometric fluorescence analysis was used to determine their luminal pH. RESULTS We show that most of the acidic granules detected in megakaryocytes appear to be α-granules/precursors, for which we established a median luminal pH of 5.2 (IQR, 5.0-5.5). Inhibition of megakaryocyte V-ATPase activity led to enlargement of cargo-containing compartments detected by fluorescence microscopy and electron microscopy. CONCLUSION These observations reveal that V-ATPase activity is required to establish and maintain a luminal acidic pH in megakaryocyte α-granules/precursors, confirming its importance for stable packaging of cargo proteins such as von Willebrand factor.
Collapse
Affiliation(s)
- Chien-Yi Lu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jing Ze Wu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Helen H Y Yao
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Richard J Y Liu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ling Li
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fred G Pluthero
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Spencer A Freeman
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walter H A Kahr
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Csányi MC, Sziklai D, Feller T, Hársfalvi J, Kellermayer M. Cryptic Extensibility in von Willebrand Factor Revealed by Molecular Nanodissection. Int J Mol Sci 2024; 25:7296. [PMID: 39000402 PMCID: PMC11242059 DOI: 10.3390/ijms25137296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Von Willebrand factor (VWF) is a multimer with a variable number of protomers, each of which is a head-to-head dimer of two multi-domain monomers. VWF responds to shear through the unfolding and extension of distinct domains, thereby mediating platelet adhesion and aggregation to the injured blood vessel wall. VWF's C1-6 segment uncoils and then the A2 domain unfolds and extends in a hierarchical and sequential manner. However, it is unclear whether there is any reservoir of further extensibility. Here, we explored the presence of cryptic extensibility in VWF by nanodissecting individual, pre-stretched multimers with atomic force microscopy (AFM). The AFM cantilever tip was pressed into the surface and moved in a direction perpendicular to the VWF axis. It was possible to pull out protein loops from VWF, which resulted in a mean contour length gain of 217 nm. In some cases, the loop became cleaved, and a gap was present along the contour. Frequently, small nodules appeared in the loops, indicating that parts of the nanodissected VWF segment remained folded. After analyzing the nodal structure, we conclude that the cryptic extensibility lies within the C1-6 and A1-3 regions. Cryptic extensibility may play a role in maintaining VWF's functionality in extreme shear conditions.
Collapse
Affiliation(s)
- Mária Csilla Csányi
- Institute of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H1094 Budapest, Hungary; (M.C.C.)
| | - Dominik Sziklai
- Institute of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H1094 Budapest, Hungary; (M.C.C.)
| | - Tímea Feller
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS29JT, UK
| | - Jolán Hársfalvi
- Institute of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H1094 Budapest, Hungary; (M.C.C.)
| | - Miklós Kellermayer
- Institute of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H1094 Budapest, Hungary; (M.C.C.)
- HUNREN-SE Biophysical Virology Group, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| |
Collapse
|
5
|
Ma J, Hao Z, Zhang Y, Li L, Huang X, Wang Y, Chen L, Yang G, Li W. Physical Contacts Between Mitochondria and WPBs Participate in WPB Maturation. Arterioscler Thromb Vasc Biol 2024; 44:108-123. [PMID: 37942609 DOI: 10.1161/atvbaha.123.319939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Weibel-Palade bodies (WPBs) are endothelial cell-specific cigar-shaped secretory organelles containing various biologically active molecules. WPBs play crucial roles in thrombosis, hemostasis, angiogenesis, and inflammation. The main content of WPBs is the procoagulant protein vWF (von Willebrand factor). Physical contacts and functional cross talk between mitochondria and other organelles have been demonstrated. Whether an interorganellar connection exists between mitochondria and WPBs is unknown. METHODS We observed physical contacts between mitochondria and WPBs in human umbilical vein endothelial cells by electron microscopy and living cell confocal microscopy. We developed an artificial intelligence-assisted method to quantify the duration and length of organelle contact sites in live cells. RESULTS We found there existed physical contacts between mitochondria and WPBs. Disruption of mitochondrial function affected the morphology of WPBs. Furthermore, we found that Rab3b, a small GTPase on the WPBs, was enriched at the mitochondrion-WPB contact sites. Rab3b deficiency reduced interaction between the two organelles and impaired the maturation of WPBs and vWF multimer secretion. CONCLUSIONS Our results reveal that Rab3b plays a crucial role in mediating the mitochondrion-WPB contacts, and that mitochondrion-WPB coupling is critical for the maturation of WPBs in vascular endothelial cells.
Collapse
Affiliation(s)
- Jing Ma
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, China (J.M., Z.H., W.L.)
- MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China (J.M., Z.H., W.L.)
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China (J.M., Z.H., W.L.)
| | - Zhenhua Hao
- MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China (J.M., Z.H., W.L.)
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China (J.M., Z.H., W.L.)
| | - Yudong Zhang
- National Laboratory of Pattern Recognition, Institute of Automation (Y.Z., G.Y.), Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China (Y.Z., G.Y.)
| | - Liuju Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology (L.L., L.C.), Peking University, Beijing, China
| | - Xiaoshuai Huang
- Biomedical Engineering Department (X.H.), Peking University, Beijing, China
| | - Yu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology (Y.W.), Chinese Academy of Sciences, Beijing, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology (L.L., L.C.), Peking University, Beijing, China
| | - Ge Yang
- National Laboratory of Pattern Recognition, Institute of Automation (Y.Z., G.Y.), Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China (Y.Z., G.Y.)
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, China (J.M., Z.H., W.L.)
- MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China (J.M., Z.H., W.L.)
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China (J.M., Z.H., W.L.)
| |
Collapse
|
6
|
Hu H, Hu Q, Weng Q, Wang J. Hemocytin, the special aggregation factor connecting insect hemolymph immunity, a potential target of insecticidal immunosuppresant. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105704. [PMID: 38225099 DOI: 10.1016/j.pestbp.2023.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Insects possess an effective innate immunity that enables them to adapt to their intricate living environment and fend off various pathogens (or parasites). This innate immunity comprises both humoral and cellular immunity, which synergistically orchestrate immune responses. Hemocytin, a lectin with a distinctive structure, plays a crucial role in insect hemolymph immunity. Hemocytin is involved in the early immune response, facilitating processes such as coagulation, nodulation, and encapsulation in the hemolymph. It prevents hemolymph overflow and microbial pathogens invasion resulting from epidermal damage, and also aids in the recognition and elimination of invaders. However, the research on hemocytin is still limited. Our previous findings demonstrated that destruxin A effectively inhibits insect hemolymph immunity by interacting with hemocytin, suggesting that hemocytin could be a potential target for insecticides development. Therefore, it is crucial to gain a deeper understanding of hemocytin. This review integrates recent advancements in the study of the structure and function of insect hemocytin and also explores the potential of hemocytin as a target for insecticides. This review aims to enhance our comprehension of insect innate immunity and provide innovative ideas for the development of environmentally friendly pesticides.
Collapse
Affiliation(s)
- Hongwang Hu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Qiongbo Hu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Qunfang Weng
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Jingjing Wang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Wang H, Li D, Chen Y, Liu Z, Liu Y, Meng X, Fan H, Hou S. Shear-induced acquired von Willebrand syndrome: an accomplice of bleeding events in adults on extracorporeal membrane oxygenation support. Front Cardiovasc Med 2023; 10:1159894. [PMID: 37485275 PMCID: PMC10357042 DOI: 10.3389/fcvm.2023.1159894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is an increasingly acceptable life-saving mechanical assistance system that provides cardiac and/or respiratory support for several reversible or treatable diseases. Despite important advances in technology and clinical management, bleeding remains a significant and common complication associated with increased morbidity and mortality. Some studies suggest that acquired von Willebrand syndrome (AVWS) is one of the etiologies of bleeding. It is caused by shear-induced deficiency of von Willebrand factor (VWF). VWF is an important glycoprotein for hemostasis that acts as a linker at sites of vascular injury for platelet adhesion and aggregation under high shear stress. AVWS can usually be diagnosed within 24 h after initiation of ECMO and is always reversible after explantation. Nonetheless, the main mechanism for the defect in the VWF multimers under ECMO support and the association between AVWS and bleeding complications remains unknown. In this review, we specifically discuss the loss of VWF caused by shear induction in the context of ECMO support as well as the current diagnostic and management strategies for AVWS.
Collapse
Affiliation(s)
- Haiwang Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Duo Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yuansen Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| |
Collapse
|
8
|
Gallego P, Garcia-Bonete MJ, Trillo-Muyo S, Recktenwald CV, Johansson MEV, Hansson GC. The intestinal MUC2 mucin C-terminus is stabilized by an extra disulfide bond in comparison to von Willebrand factor and other gel-forming mucins. Nat Commun 2023; 14:1969. [PMID: 37031240 PMCID: PMC10082768 DOI: 10.1038/s41467-023-37666-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/20/2023] [Indexed: 04/10/2023] Open
Abstract
The MUC2 mucin polymer is the main building unit of the intestinal mucus layers separating intestinal microbiota from the host epithelium. The MUC2 mucin is a large glycoprotein with a C-terminal domain similar to the MUC5AC and MUC5B mucins and the von Willebrand factor (VWF). A structural model of the C-terminal part of MUC2, MUC2-C, was generated by combining Cryo-electron microscopy, AlphaFold prediction, information of its glycosylation, and small angle X-ray scattering information. The globular VWD4 assembly in the N-terminal of MUC2-C is followed by 3.5 linear VWC domains that form an extended flexible structure before the C-terminal cystine-knot. All gel-forming mucins and VWF form tail-tail disulfide-bonded dimers in their C-terminal cystine-knot domain, but interestingly the MUC2 mucin has an extra stabilizing disulfide bond on the N-terminal side of the VWD4 domain, likely essential for a stable intestinal mucus barrier.
Collapse
Affiliation(s)
- Pablo Gallego
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Maria-Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Sergio Trillo-Muyo
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Christian V Recktenwald
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
9
|
Meli A, McCormack A, Conte I, Chen Q, Streetley J, Rose ML, Bierings R, Hannah MJ, Molloy JE, Rosenthal PB, Carter T. Altered Storage and Function of von Willebrand Factor in Human Cardiac Microvascular Endothelial Cells Isolated from Recipient Transplant Hearts. Int J Mol Sci 2023; 24:ijms24054553. [PMID: 36901985 PMCID: PMC10003102 DOI: 10.3390/ijms24054553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The assembly of von Willebrand factor (VWF) into ordered helical tubules within endothelial Weibel-Palade bodies (WPBs) is required for the efficient deployment of the protein at sites of vascular injury. VWF trafficking and storage are sensitive to cellular and environmental stresses that are associated with heart disease and heart failure. Altered storage of VWF manifests as a change in WPB morphology from a rod shape to a rounded shape and is associated with impaired VWF deployment during secretion. In this study, we examined the morphology, ultrastructure, molecular composition and kinetics of exocytosis of WPBs in cardiac microvascular endothelial cells isolated from explanted hearts of patients with a common form of heart failure, dilated cardiomyopathy (DCM; HCMECD), or from nominally healthy donors (controls; HCMECC). Using fluorescence microscopy, WPBs in HCMECC (n = 3 donors) showed the typical rod-shaped morphology containing VWF, P-selectin and tPA. In contrast, WPBs in primary cultures of HCMECD (n = 6 donors) were predominantly rounded in shape and lacked tissue plasminogen activator (t-PA). Ultrastructural analysis of HCMECD revealed a disordered arrangement of VWF tubules in nascent WPBs emerging from the trans-Golgi network. HCMECD WPBs still recruited Rab27A, Rab3B, Myosin-Rab Interacting Protein (MyRIP) and Synaptotagmin-like protein 4a (Slp4-a) and underwent regulated exocytosis with kinetics similar to that seen in HCMECc. However, secreted extracellular VWF strings from HCMECD were significantly shorter than for endothelial cells with rod-shaped WPBs, although VWF platelet binding was similar. Our observations suggest that VWF trafficking, storage and haemostatic potential are perturbed in HCMEC from DCM hearts.
Collapse
Affiliation(s)
- Athinoula Meli
- Transplant Immunology, Heart Science Centre, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK
| | - Ann McCormack
- Transplant Immunology, Heart Science Centre, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK
| | - Ianina Conte
- Molecular and Clinical Sciences Research Institute, St Georges University of London, London SW17 0RE, UK
| | - Qu Chen
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - James Streetley
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marlene L. Rose
- Transplant Immunology, Heart Science Centre, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK
| | - Ruben Bierings
- Hematology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Matthew J. Hannah
- High Containment Microbiology, UK Health Security Agency, London NW9 5EQ, UK
| | - Justin E. Molloy
- Single Molecule Enzymology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Tom Carter
- Molecular and Clinical Sciences Research Institute, St Georges University of London, London SW17 0RE, UK
- Correspondence: ; Tel.: +44-(208)-7255961
| |
Collapse
|
10
|
Csányi MC, Salamon P, Feller T, Bozó T, Hársfalvi J, Kellermayer MSZ. Structural hierarchy of mechanical extensibility in human von Willebrand factor multimers. Protein Sci 2023; 32:e4535. [PMID: 36478480 PMCID: PMC9798247 DOI: 10.1002/pro.4535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/04/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
The von Willebrand factor (VWF) is a multimeric glycoprotein composed of 80- to 120-nm-long protomeric units and plays a fundamental role in mediating platelet function at high shear. The exact nature of the shear-induced structural transitions have remained elusive; uncovering them requires the high-resolution quantitative analysis of gradually extended VWF. Here, we stretched human blood-plasma-derived VWF with molecular combing and analyzed the axial structure of the elongated multimers with atomic force microscopy. Protomers extended through structural intermediates that could be grouped into seven distinct topographical classes. Protomer extension thus progresses through the uncoiling of the C1-6 domain segment, rearrangements among the N-terminal VWF domains, and unfolding and elastic extension of the A2 domain. The least and most extended protomer conformations were localized at the ends and the middle of the multimer, respectively, revealing an apparent necking phenomenon characteristic of plastic-material behavior. The structural hierarchy uncovered here is likely to provide a spatial control mechanism to the complex functions of VWF.
Collapse
Affiliation(s)
- Mária Csilla Csányi
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Pál Salamon
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary,Present address:
Department of BioengineeringSapientia Hungarian University of TransylvaniaMiercurea CiucRomania
| | - Tímea Feller
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary,Present address:
Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Tamás Bozó
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Jolán Hársfalvi
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | | |
Collapse
|
11
|
Javitt G, Yeshaya N, Khmelnitsky L, Fass D. Assembly of von Willebrand factor tubules with in vivo helical parameters requires A1 domain insertion. Blood 2022; 140:2835-2843. [PMID: 36179246 PMCID: PMC10653096 DOI: 10.1182/blood.2022017153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2023] Open
Abstract
The von Willebrand factor (VWF) glycoprotein is stored in tubular form in Weibel-Palade bodies (WPBs) before secretion from endothelial cells into the bloodstream. The organization of VWF in the tubules promotes formation of covalently linked VWF polymers and enables orderly secretion without polymer tangling. Recent studies have described the high-resolution structure of helical tubular cores formed in vitro by the D1D2 and D'D3 amino-terminal protein segments of VWF. Here we show that formation of tubules with the helical geometry observed for VWF in intracellular WPBs requires also the VWA1 (A1) domain. We reconstituted VWF tubules from segments containing the A1 domain and discovered it to be inserted between helical turns of the tubule, altering helical parameters and explaining the increased robustness of tubule formation when A1 is present. The conclusion from this observation is that the A1 domain has a direct role in VWF assembly, along with its known activity in hemostasis after secretion.
Collapse
Affiliation(s)
- Gabriel Javitt
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Yeshaya
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lev Khmelnitsky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Fass
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Chen PC, Kutzki F, Mojzisch A, Simon B, Xu ER, Aponte-Santamaría C, Horny K, Jeffries C, Schneppenheim R, Wilmanns M, Brehm MA, Gräter F, Hennig J. Structure and dynamics of the von Willebrand Factor C6 domain. J Struct Biol 2022; 214:107923. [PMID: 36410652 DOI: 10.1016/j.jsb.2022.107923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Von Willebrand disease (VWD) is a bleeding disorder with different levels of severity. VWD-associated mutations are located in the von Willebrand factor (VWF) gene, coding for the large multidomain plasma protein VWF with essential roles in hemostasis and thrombosis. On the one hand, a variety of mutations in the C-domains of VWF are associated with increased bleeding upon vascular injury. On the other hand, VWF gain-of-function (GOF) mutations in the C4 domain have recently been identified, which induce an increased risk of myocardial infarction. Mechanistic insights into how these mutations affect the molecular behavior of VWF are scarce and holistic approaches are challenging due to the multidomain and multimeric character of this large protein. Here, we determine the structure and dynamics of the C6 domain and the single nucleotide polymorphism (SNP) variant G2705R in C6 by combining nuclear magnetic resonance spectroscopy, molecular dynamics simulations and aggregometry. Our findings indicate that this mutation mostly destabilizes VWF by leading to a more pronounced hinging between both subdomains of C6. Hemostatic parameters of variant G2705R are close to normal under static conditions, but the missense mutation results in a gain-of-function under flow conditions, due to decreased VWF stem stability. Together with the fact that two C4 variants also exhibit GOF characteristics, our data underline the importance of the VWF stem region in VWF's hemostatic activity and the risk of mutation-associated prothrombotic properties in VWF C-domain variants due to altered stem dynamics.
Collapse
Affiliation(s)
- Po-Chia Chen
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Fabian Kutzki
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Angelika Mojzisch
- Dermatology and Venereology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Emma-Ruoqi Xu
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Camilo Aponte-Santamaría
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Kai Horny
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Cy Jeffries
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Reinhard Schneppenheim
- Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany; University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Maria A Brehm
- Department of Digital Health Sciences and Biomedicine, School of Life Sciences, University of Siegen, Am Eichenhang 50, 57076 Siegen, Germany
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 305, 69120 Heidelberg, Germany.
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
13
|
Anderson JR, Li J, Springer TA, Brown A. Structures of VWF tubules before and after concatemerization reveal a mechanism of disulfide bond exchange. Blood 2022; 140:1419-1430. [PMID: 35776905 PMCID: PMC9507011 DOI: 10.1182/blood.2022016467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
von Willebrand factor (VWF) is an adhesive glycoprotein that circulates in the blood as disulfide-linked concatemers and functions in primary hemostasis. The loss of long VWF concatemers is associated with the excessive bleeding of type 2A von Willebrand disease (VWD). Formation of the disulfide bonds that concatemerize VWF requires VWF to self-associate into helical tubules, yet how the helical tubules template intermolecular disulfide bonds is not known. Here, we report electron cryomicroscopy (cryo-EM) structures of VWF tubules before and after intermolecular disulfide bond formation. The structures provide evidence that VWF tubulates through a charge-neutralization mechanism and that the A1 domain enhances tubule length by crosslinking successive helical turns. In addition, the structures reveal disulfide states before and after disulfide bond-mediated concatemerization. The structures and proposed assembly mechanism provide a foundation to rationalize VWD-causing mutations.
Collapse
Affiliation(s)
- Jacob R Anderson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Jing Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA; and
| | - Timothy A Springer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| |
Collapse
|
14
|
A conformational transition of the D'D3 domain primes von Willebrand factor for multimerization. Blood Adv 2022; 6:5198-5209. [PMID: 36069828 PMCID: PMC9631632 DOI: 10.1182/bloodadvances.2022006978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022] Open
Abstract
Magnetic tweezers reveal a pH-dependent destabilization of the D3 interface priming VWF for multimerization by exposing Cys1099 and Cys1142. The stability of the D3 interface is increased by FVIII, suggesting a binding site within the D3 submodules.
Von Willebrand factor (VWF) is a multimeric plasma glycoprotein that is critically involved in hemostasis. Biosynthesis of long VWF concatemers in the endoplasmic reticulum and the trans-Golgi is still not fully understood. We use the single-molecule force spectroscopy technique magnetic tweezers to analyze a previously hypothesized conformational change in the D′D3 domain crucial for VWF multimerization. We find that the interface formed by submodules C8-3, TIL3, and E3 wrapping around VWD3 can open and expose 2 buried cysteines, Cys1099 and Cys1142, that are vital for multimerization. By characterizing the conformational change at varying levels of force, we can quantify the kinetics of the transition and stability of the interface. We find a pronounced destabilization of the interface on lowering the pH from 7.4 to 6.2 and 5.5. This is consistent with initiation of the conformational change that enables VWF multimerization at the D′D3 domain by a decrease in pH in the trans-Golgi network and Weibel-Palade bodies. Furthermore, we find a stabilization of the interface in the presence of coagulation factor VIII, providing evidence for a previously hypothesized binding site in submodule C8-3. Our findings highlight the critical role of the D′D3 domain in VWF biosynthesis and function, and we anticipate our methodology to be applicable to study other, similar conformational changes in VWF and beyond.
Collapse
|
15
|
Parker E, Haberichter SL, Lollar P. Subunit Flexibility of Multimeric von Willebrand Factor/Factor VIII Complexes. ACS OMEGA 2022; 7:31183-31196. [PMID: 36092565 PMCID: PMC9453814 DOI: 10.1021/acsomega.2c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Von Willebrand factor (VWF) is a plasma glycoprotein that participates in platelet adhesion and aggregation and serves as a carrier for blood coagulation factor VIII (fVIII). Plasma VWF consists of a population of multimers that range in molecular weight from ∼ 0.55 MDa to greater than 10 MDa. The VWF multimer consists of a variable number of concatenated disulfide-linked ∼275 kDa subunits. We fractionated plasma-derived human VWF/fVIII complexes by size-exclusion chromatography at a pH of 7.4 and subjected them to analysis by sodium dodecyl sulfate agarose gel electrophoresis, sedimentation velocity analytical ultracentrifugation (SV AUC), dynamic light scattering (DLS), and multi-angle light scattering (MALS). Weight-average molecular weights, M w, were independently measured by MALS and by application of the Svedberg equation to SV AUC and DLS measurements. Estimates of the Mark-Houwink-Kuhn-Sakurada exponents , αs, and αD describing the functional relationship between the z-average radius of gyration, , weight-average sedimentation coefficient, s w, z-average diffusion coefficient, D z , and M w were consistent with a random coil conformation of the VWF multimer. Ratios of to the z-average hydrodynamic radius, , estimated by DLS, were calculated across an M w range from 2 to 5 MDa. When compared to values calculated for a semi-flexible, wormlike chain, these ratios were consistent with a contour length over 1000-fold greater than the persistence length. These results indicate a high degree of flexibility between domains of the VWF subunit.
Collapse
Affiliation(s)
- Ernest
T. Parker
- Aflac
Cancer and Blood Disorders Center, Children’s Healthcare of
Atlanta; Department of Pediatrics, Emory
University, Atlanta Georgia 30322, United States
| | - Sandra L. Haberichter
- Diagnostic
Laboratories and Blood Research Institute, Versiti, Milwaukee, Wisconsin 53201-2178, United States
- Pediatric
Hematology/Oncology, Medical College of
Wisconsin, Milwaukee, Wisconsin 53226, United States
- Children’s
Research Institute, Children’s Hospital
of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Pete Lollar
- Aflac
Cancer and Blood Disorders Center, Children’s Healthcare of
Atlanta; Department of Pediatrics, Emory
University, Atlanta Georgia 30322, United States
| |
Collapse
|
16
|
Okamoto S, Tamura S, Sanda N, Odaira K, Hayakawa Y, Mukaide M, Suzuki A, Kanematsu T, Hayakawa F, Katsumi A, Kiyoi H, Kojima T, Matsushita T, Suzuki N. VWF-Gly2752Ser, a novel non-cysteine substitution variant in the CK domain, exhibits severe secretory impairment by hampering C-terminal dimer formation. J Thromb Haemost 2022; 20:1784-1796. [PMID: 35491445 DOI: 10.1111/jth.15746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 08/31/2023]
Abstract
BACKGROUND Von Willebrand factor (VWF) is a multimeric glycoprotein that plays important roles in hemostasis and thrombosis. C-terminal interchain-disulfide bonds in the cystine knot (CK) domain are essential for VWF dimerization. Previous studies have reported that missense variants of cysteine in the CK domain disrupt the intrachain-disulfide bond and cause type 3 von Willebrand disease (VWD). However, type 3 VWD-associated noncysteine substitution variants in the CK domain have not been reported. OBJECTIVE To investigate the molecular mechanism of a novel non-cysteine variant in the CK domain, VWF c.8254 G>A (p.Gly2752Ser), which was identified in a patient with type 3 VWD as homozygous. METHODS Genetic analysis was performed by whole exome sequencing and Sanger sequencing. VWF multimer analysis was performed using SDS-agarose electrophoresis. VWF production and subcellular localization were analyzed using ex vivo endothelial colony forming cells (ECFCs) and an in vitro recombinant VWF (rVWF) expression system. RESULTS The patient was homozygous for VWF-Gly2752Ser. Plasma VWF enzyme-linked immunosorbent assay showed that the VWF antigen level of the patient was 1.2% compared with healthy subjects. A tiny amount of VWF was identified in the patient's ECFC. Multimer analysis revealed that the circulating VWF-Gly2752Ser presented only low molecular weight multimers. Subcellular localization analysis of VWF-Gly2752Ser-transfected cell lines showed that rVWF-Gly2752Ser was severely impaired in its ER-to-Golgi trafficking. CONCLUSION VWF-Gly2752Ser causes severe secretory impairment because of its dimerization failure. This is the first report of a VWF variant with a noncysteine substitution in the CK domain that causes type 3 VWD.
Collapse
Affiliation(s)
- Shuichi Okamoto
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shogo Tamura
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naomi Sanda
- Department of Medical Technique, Nagoya University Hospital, Nagoya, Japan
| | - Koya Odaira
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuri Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Mukaide
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsuo Suzuki
- Department of Medical Technique, Nagoya University Hospital, Nagoya, Japan
| | - Takeshi Kanematsu
- Department of Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Katsumi
- Department of Hematology, National Center for Geriatrics and Gerontology, Obu City, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuhito Kojima
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Aichi Health Promotion Foundation, Nagoya, Japan
| | - Tadashi Matsushita
- Department of Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Nobuaki Suzuki
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
17
|
Acidification of endothelial Weibel-Palade bodies is mediated by the vacuolar-type H+-ATPase. PLoS One 2022; 17:e0270299. [PMID: 35767558 PMCID: PMC9242466 DOI: 10.1371/journal.pone.0270299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Weibel-Palade bodies (WPB) are unique secretory granules of endothelial cells that store the procoagulant von-Willebrand factor (VWF) in a highly compacted form. Upon exocytosis the densely packed VWF unfurls into long strands that expose binding sites for circulating platelets and thereby initiate the formation of a platelet plug at sites of blood vessel injury. Dense packing of VWF requires the establishment of an acidic pH in the lumen of maturing WPB but the mechanism responsible for this acidification has not yet been fully established. We show here that subunits of the vacuolar-type H+-ATPase are present on mature WPB and that interference with the proton pump activity of the ATPase employing inhibitors of different chemical nature blocks a reduction in the relative internal pH of WPB. Furthermore, depletion of the V-ATPase subunit V0d1 from primary endothelial cells prevents WPB pH reduction and the establishment of an elongated morphology of WPB that is dictated by the densely packed VWF tubules. Thus, the vacuolar-type H+-ATPase present on WPB is required for proper acidification and maturation of the organelle.
Collapse
|
18
|
Zeng J, Shu Z, Liang Q, Zhang J, Wu W, Wang X, Zhou A. Structural basis of von Willebrand factor multimerization and tubular storage. Blood 2022; 139:3314-3324. [PMID: 35148377 PMCID: PMC11022981 DOI: 10.1182/blood.2021014729] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
The von Willebrand factor (VWF) propeptide (domains D1D2) is essential for the assembly of VWF multimers and its tubular storage in Weibel-Palade bodies. However, detailed molecular mechanism underlying this propeptide dependence is unclear. Here, we prepared Weibel-Palade body-like tubules using the N-terminal fragment of VWF and solved the cryo-electron microscopy structures of the tubule at atomic resolution. Detailed structural and biochemical analysis indicate that the propeptide forms a homodimer at acidic pH through the D2:D2 binding interface and then recruits 2 D'D3 domains, forming an intertwined D1D2D'D3 homodimer in essence. Stacking of these homodimers by the intermolecular D1:D2 interfaces brings 2 D3 domains face-to-face and facilitates their disulfide linkages and multimerization of VWF. Sequential stacking of these homodimers leads to a right-hand helical tubule for VWF storage. The clinically identified VWF mutations in the propeptide disrupted different steps of the assembling process, leading to diminished VWF multimers in von Willebrand diseases (VWD). Overall, these results indicate that the propeptide serves as a pH-sensing template for VWF multimerization and tubular storage. This sheds light on delivering normal propeptide as a template to rectify the defects in multimerization of VWD mutants.
Collapse
Affiliation(s)
- Jianwei Zeng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zimei Shu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aiwu Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Bai Y, Mi LZ. The effects of shear stress on the interaction between ADAMTS13 and VWF. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Colonization and Infection of Indwelling Medical Devices by Staphylococcus aureus with an Emphasis on Orthopedic Implants. Int J Mol Sci 2022; 23:ijms23115958. [PMID: 35682632 PMCID: PMC9180976 DOI: 10.3390/ijms23115958] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023] Open
Abstract
The use of indwelling medical devices has constantly increased in recent years and has revolutionized the quality of life of patients affected by different diseases. However, despite the improvement of hygiene conditions in hospitals, implant-associated infections remain a common and serious complication in prosthetic surgery, mainly in the orthopedic field, where infection often leads to implant failure. Staphylococcus aureus is the most common cause of biomaterial-centered infection. Upon binding to the medical devices, these bacteria proliferate and develop dense communities encased in a protective matrix called biofilm. Biofilm formation has been proposed as occurring in several stages-(1) attachment; (2) proliferation; (3) dispersal-and involves a variety of host and staphylococcal proteinaceous and non-proteinaceous factors. Moreover, biofilm formation is strictly regulated by several control systems. Biofilms enable staphylococci to avoid antimicrobial activity and host immune response and are a source of persistent bacteremia as well as of localized tissue destruction. While considerable information is available on staphylococcal biofilm formation on medical implants and important results have been achieved on the treatment of biofilms, preclinical and clinical applications need to be further investigated. Thus, the purpose of this review is to gather current studies about the mechanism of infection of indwelling medical devices by S. aureus with a special focus on the biochemical factors involved in biofilm formation and regulation. We also provide a summary of the current therapeutic strategies to combat biomaterial-associated infections and highlight the need to further explore biofilm physiology and conduct research for innovative anti-biofilm approaches.
Collapse
|
21
|
The Power of Touch: Type 4 Pili, the von Willebrand A Domain, and Surface Sensing by Pseudomonas aeruginosa. J Bacteriol 2022; 204:e0008422. [PMID: 35612303 PMCID: PMC9210963 DOI: 10.1128/jb.00084-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Most microbes in the biosphere are attached to surfaces, where they experience mechanical forces due to hydrodynamic flow and cell-to-substratum interactions. These forces likely serve as mechanical cues that influence bacterial physiology and eventually drive environmental adaptation and fitness. Mechanosensors are cellular components capable of sensing a mechanical input and serve as part of a larger system for sensing and transducing mechanical signals. Two cellular components in bacteria that have emerged as candidate mechanosensors are the type IV pili (TFP) and the flagellum. Current models posit that bacteria transmit and convert TFP- and/or flagellum-dependent mechanical force inputs into biochemical signals, including cAMP and c-di-GMP, to drive surface adaptation. Here, we discuss the impact of force-induced changes on the structure and function of two eukaryotic proteins, titin and the human von Willebrand factor (vWF), and these proteins’ relevance to bacteria. Given the wealth of understanding about these eukaryotic mechanosensors, we can use them as a framework to understand the effect of force on Pseudomonas aeruginosa during the early stages of biofilm formation, with a particular emphasis on TFP and the documented surface-sensing mechanosensors PilY1 and FimH. We also discuss the importance of disulfide bonds in mediating force-induced conformational changes, which may modulate mechanosensing and downstream biochemical signaling. We conclude by sharing our perspective on the state of the field and what we deem exciting frontiers in studying bacterial mechanosensing to better understand the mechanisms whereby bacteria transition from a planktonic to a biofilm lifestyle.
Collapse
|
22
|
Bonazza K, Iacob RE, Hudson NE, Li J, Lu C, Engen JR, Springer TA. Von Willebrand factor A1 domain stability and affinity for GPIbα are differentially regulated by its O-glycosylated N- and C-linker. eLife 2022; 11:75760. [PMID: 35532124 PMCID: PMC9084892 DOI: 10.7554/elife.75760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/06/2022] [Indexed: 12/25/2022] Open
Abstract
Hemostasis in the arterial circulation is mediated by binding of the A1 domain of the ultralong protein von Willebrand factor (VWF) to GPIbα on platelets to form a platelet plug. A1 is activated by tensile force on VWF concatemers imparted by hydrodynamic drag force. The A1 core is protected from force-induced unfolding by a long-range disulfide that links cysteines near its N- and C-termini. The O-glycosylated linkers between A1 and its neighboring domains, which transmit tensile force to A1, are reported to regulate A1 activation for binding to GPIb, but the mechanism is controversial and incompletely defined. Here, we study how these linkers, and their polypeptide and O-glycan moieties, regulate A1 affinity by measuring affinity, kinetics, thermodynamics, hydrogen deuterium exchange (HDX), and unfolding by temperature and urea. The N-linker lowers A1 affinity 40-fold with a stronger contribution from its O-glycan than polypeptide moiety. The N-linker also decreases HDX in specific regions of A1 and increases thermal stability and the energy gap between its native state and an intermediate state, which is observed in urea-induced unfolding. The C-linker also decreases affinity of A1 for GPIbα, but in contrast to the N-linker, has no significant effect on HDX or A1 stability. Among different models for A1 activation, our data are consistent with the model that the intermediate state has high affinity for GPIbα, which is induced by tensile force physiologically and regulated allosterically by the N-linker.
Collapse
Affiliation(s)
- Klaus Bonazza
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Roxana E Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Nathan E Hudson
- Department of Physics, East Carolina University, Greenville, United States
| | - Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Chafen Lu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| |
Collapse
|
23
|
Helical self-assembly of a mucin segment suggests an evolutionary origin for von Willebrand factor tubules. Proc Natl Acad Sci U S A 2022; 119:e2116790119. [PMID: 35377815 PMCID: PMC9169620 DOI: 10.1073/pnas.2116790119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Extracellular proteins with mechanical functions often require specialized assembly processes to form covalent oligomers. Progress in tissue bioengineering and repair will benefit from an understanding of how to harness and manipulate these processes. Here, we show that a particular supramolecular assembly mode was pre-encoded in the ancient domain organization common to gel-forming mucins and von Willebrand factor, glycoproteins that are deceptively different due to their divergence for distinct mechanical tasks. This finding highlights symmetry principles and building blocks retooled in nature to construct polymers with wide-ranging properties. These building blocks and knowledge of their self-assembly can be used to design new polymeric structures. The glycoprotein von Willebrand factor (VWF) contributes to hemostasis by stanching injuries in blood vessel walls. A distinctive feature of VWF is its assembly into long, helical tubules in endothelial cells prior to secretion. When VWF is released into the bloodstream, these tubules unfurl to release linear polymers that bind subendothelial collagen at wound sites, recruit platelets, and initiate the clotting cascade. VWF evolved from gel-forming mucins, the polymeric glycoproteins that coat and protect exposed epithelia. Despite the divergent function of VWF in blood vessel repair, sequence conservation and shared domain organization imply that VWF retained key aspects of the mucin bioassembly mechanism. Here, we show using cryo-electron microscopy that the ability to form tubules, a property hitherto thought to have arisen as a VWF adaptation to the vasculature, is a feature of the amino-terminal region of mucin. This segment of the human intestinal gel-forming mucin (MUC2) was found to self-assemble into tubules with a striking resemblance to those of VWF itself. To facilitate a comparison, we determined the residue-resolution structure of tubules formed by the homologous segment of VWF. The structures of the MUC2 and VWF tubules revealed the flexible joints and the intermolecular interactions required for tubule formation. Steric constraints in full-length MUC2 suggest that linear filaments, a previously observed supramolecular assembly form, are more likely than tubules to be the physiological mucin storage intermediate. Nevertheless, MUC2 tubules indicate a possible evolutionary origin for VWF tubules and elucidate design principles present in mucins and VWF.
Collapse
|
24
|
Engineered Molecular Therapeutics Targeting Fibrin and the Coagulation System: a Biophysical Perspective. Biophys Rev 2022; 14:427-461. [PMID: 35399372 PMCID: PMC8984085 DOI: 10.1007/s12551-022-00950-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
The coagulation cascade represents a sophisticated and highly choreographed series of molecular events taking place in the blood with important clinical implications. One key player in coagulation is fibrinogen, a highly abundant soluble blood protein that is processed by thrombin proteases at wound sites, triggering self-assembly of an insoluble protein hydrogel known as a fibrin clot. By forming the key protein component of blood clots, fibrin acts as a structural biomaterial with biophysical properties well suited to its role inhibiting fluid flow and maintaining hemostasis. Based on its clinical importance, fibrin is being investigated as a potentially valuable molecular target in the development of coagulation therapies. In this topical review, we summarize our current understanding of the coagulation cascade from a molecular, structural and biophysical perspective. We highlight single-molecule studies on proteins involved in blood coagulation and report on the current state of the art in directed evolution and molecular engineering of fibrin-targeted proteins and polymers for modulating coagulation. This biophysical overview will help acclimatize newcomers to the field and catalyze interdisciplinary work in biomolecular engineering toward the development of new therapies targeting fibrin and the coagulation system.
Collapse
|
25
|
Xu L, Qiu Y, Li Y, Wei Y, Wan Y, Deng W. Tissue dynamics of von Willebrand factor characterized by a novel fluorescent protein-von Willebrand factor chimera. J Thromb Haemost 2022; 20:208-221. [PMID: 34592034 DOI: 10.1111/jth.15542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tissue dynamics of von Willebrand factor (VWF) that are vital to its biological function have not been fully characterized. OBJECTIVE To develop a new fluorescent protein--VWF chimera (FP-VWF) that has similar hematologic function to wild-type VWF and use it to monitor the tissue dynamics of VWF distribution. METHODS Genotyping, platelet counting, tail bleeding time assay, agarose gels, western blot, platelet aggregation, proteolytic analysis, and ELISA were applied in characterizing the function of FP-VWF; fluorescence spectrometer and confocal fluorescence microscope were used to monitor the plasma and tissue distribution of FP-VWF. RESULTS The transgenic mice that carry the FP-VWF retain hematologic activity of VWF with plasma levels of FP-VWF reduced by 50% and there are reduced high molecular weight FP-VWF multimers compared to the wild-type mice. The GPIb-binding and ADAMTS-13 (A Disintegrin and Metalloprotease with ThrombSpondin type 1 motif, member 13) proteolytic efficiency of FP-VWF are similar to wild-type VWF. The tissue distribution of FP-VWF was probed directly through its intrinsic fluorescence at normal or stimulated status, which indicated that the medicine-stimulated endogenous FP-VWF seems primarily released from the aorta and cleared in the spleen. Similar results were observed in non-fluorescent mice through a standard immunofluorescence approach. The fluorescence signals of FP-VWF were also similar to the standard dye-based approach in detecting the FeCl3 -induced blood clotting in vivo. CONCLUSIONS Together, these results suggest that this novel FP-VWF chimera is valuable in probing the tissue dynamics of VWF in quite a few biological and pharmaceutical applications.
Collapse
Affiliation(s)
- Linru Xu
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yanyang Qiu
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yanqing Li
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yaxuan Wei
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yan Wan
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Wei Deng
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
26
|
Yamazaki Y, Eura Y, Kokame K. V-ATPase V0a1 promotes Weibel-Palade body biogenesis through the regulation of membrane fission. eLife 2021; 10:71526. [PMID: 34904569 PMCID: PMC8718113 DOI: 10.7554/elife.71526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/13/2021] [Indexed: 01/09/2023] Open
Abstract
Membrane fission, the division of a membrane-bound structure into two discrete compartments, is essential for diverse cellular events, such as endocytosis and vesicle/granule biogenesis; however, the process remains unclear. The hemostatic protein von Willebrand factor is produced in vascular endothelial cells and packaged into specialized secretory granules, Weibel–Palade bodies (WPBs) at the trans-Golgi network (TGN). Here, we reported that V0a1, a V-ATPase component, is required for the membrane fission of WPBs. We identified two V0a isoforms in distinct populations of WPBs in cultured endothelial cells, V0a1 and V0a2, on mature and nascent WPBs, respectively. Although WPB buds were formed, WPBs could not separate from the TGN in the absence of V0a1. Screening using dominant–negative forms of known membrane fission regulators revealed protein kinase D (PKD) as an essential factor in biogenesis of WPBs. Further, we showed that the induction of wild-type PKDs in V0a1-depleted cells does not support the segregation of WPBs from the TGN; suggesting a primary role of V0a1 in the membrane fission of WPBs. The identification of V0a1 as a new membrane fission regulator should facilitate the understanding of molecular events that enable membrane fission.
Collapse
Affiliation(s)
- Yasuo Yamazaki
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yuka Eura
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Koichi Kokame
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
27
|
Languin-Cattoën O, Laborie E, Yurkova DO, Melchionna S, Derreumaux P, Belyaev AV, Sterpone F. Exposure of Von Willebrand Factor Cleavage Site in A1A2A3-Fragment under Extreme Hydrodynamic Shear. Polymers (Basel) 2021; 13:polym13223912. [PMID: 34833213 PMCID: PMC8625202 DOI: 10.3390/polym13223912] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022] Open
Abstract
Von Willebrand Factor (vWf) is a giant multimeric extracellular blood plasma involved in hemostasis. In this work we present multi-scale simulations of its three-domains fragment A1A2A3. These three domains are essential for the functional regulation of vWf. Namely the A2 domain hosts the site where the protease ADAMTS13 cleavages the multimeric vWf allowing for its length control that prevents thrombotic conditions. The exposure of the cleavage site follows the elongation/unfolding of the domain that is caused by an increased shear stress in blood. By deploying Lattice Boltzmann molecular dynamics simulations based on the OPEP coarse-grained model for proteins, we investigated at molecular level the unfolding of the A2 domain under the action of a perturbing shear flow. We described the structural steps of this unfolding that mainly concerns the β-strand structures of the domain, and we compared the process occurring under shear with that produced by the action of a directional pulling force, a typical condition of single molecule experiments. We observe, that under the action of shear flow, the competition among the elongational and rotational components of the fluid field leads to a complex behaviour of the domain, where elongated structures can be followed by partially collapsed melted globule structures with a very different degree of exposure of the cleavage site. Our simulations pose the base for the development of a multi-scale in-silico description of vWf dynamics and functionality in physiological conditions, including high resolution details for molecular relevant events, e.g., the binding to platelets and collagen during coagulation or thrombosis.
Collapse
Affiliation(s)
- Olivier Languin-Cattoën
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, F-75005 Paris, France; (O.L.-C.); (E.L.); (P.D.)
| | - Emeline Laborie
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, F-75005 Paris, France; (O.L.-C.); (E.L.); (P.D.)
| | - Daria O. Yurkova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Simone Melchionna
- Dipartimento di Fisica, Università Sapienza, P.le A. Moro 5, 00185 Rome, Italy;
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, F-75005 Paris, France; (O.L.-C.); (E.L.); (P.D.)
| | - Aleksey V. Belyaev
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Correspondence: (A.V.B.); (F.S.)
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, F-75005 Paris, France; (O.L.-C.); (E.L.); (P.D.)
- Correspondence: (A.V.B.); (F.S.)
| |
Collapse
|
28
|
Mojzisch A, Brehm MA. The Manifold Cellular Functions of von Willebrand Factor. Cells 2021; 10:2351. [PMID: 34572000 PMCID: PMC8466076 DOI: 10.3390/cells10092351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The plasma glycoprotein von Willebrand factor (VWF) is exclusively synthesized in endothelial cells (ECs) and megakaryocytes, the precursor cells of platelets. Its primary function lies in hemostasis. However, VWF is much more than just a "fishing hook" for platelets and a transporter for coagulation factor VIII. VWF is a true multitasker when it comes to its many roles in cellular processes. In ECs, VWF coordinates the formation of Weibel-Palade bodies and guides several cargo proteins to these storage organelles, which control the release of hemostatic, inflammatory and angiogenic factors. Leukocytes employ VWF to assist their rolling on, adhesion to and passage through the endothelium. Vascular smooth muscle cell proliferation is supported by VWF, and it regulates angiogenesis. The life cycle of platelets is accompanied by VWF from their budding from megakaryocytes to adhesion, activation and aggregation until the end in apoptosis. Some tumor cells acquire the ability to produce VWF to promote metastasis and hide in a shell of VWF and platelets, and even the maturation of osteoclasts is regulated by VWF. This review summarizes the current knowledge on VWF's versatile cellular functions and the resulting pathophysiological consequences of their dysregulation.
Collapse
Affiliation(s)
- Angelika Mojzisch
- Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Maria A. Brehm
- School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| |
Collapse
|
29
|
Disulfide exchange in multimerization of von Willebrand factor and gel-forming mucins. Blood 2021; 137:1263-1267. [PMID: 32961556 DOI: 10.1182/blood.2020005989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 01/20/2023] Open
|
30
|
Yadegari H, Biswas A, Ahmed S, Naz A, Oldenburg J. von Willebrand factor propeptide missense variants affect anterograde transport to Golgi resulting in ER retention. Hum Mutat 2021; 42:731-744. [PMID: 33942438 DOI: 10.1002/humu.24204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/22/2021] [Accepted: 04/01/2021] [Indexed: 11/07/2022]
Abstract
von Willebrand disease (VWD), the most prevalent congenital bleeding disorder, arises from a deficiency in von Willebrand factor (VWF), which has crucial roles in hemostasis. The present study investigated functional consequences and underlying pathomolecular mechanisms of several VWF propeptide (VWFpp) missense variants detected in our cohort of VWD patients for the first time. Transient expression experiments in HEK293T cells demonstrated that four out of the six investigated missense variants (p.Gly55Glu, p.Val86Glu, p.Trp191Arg, and p.Cys608Trp) severely impaired secretion. Their cotransfections with the wild-type partly corrected VWF secretion, displaying loss of large/intermediate multimers. Immunostaining of the transfected HEK293 cells illustrated the endoplasmic reticulum (ER) retention of the VWF variants. Docking of the COP I and COP II cargo recruitment proteins, ADP-ribosylation factor 1 and Sec24, onto the N-terminal VWF model (D1D2D'D3) revealed that these variants occur at VWFpp putative interfaces, which can hinder VWF loading at the ER exit quality control. Furthermore, quantitative and automated morphometric exploration of the three-dimensional immunofluorescence images showed changes in the number/size of the VWF storage organelles, Weibel-Palade body (WPB)-like vesicles. The result of this study highlighted the significance of the VWFpp variants on anterograde ER-Golgi trafficking of VWF as well as the biogenesis of WPB-like vesicles.
Collapse
Affiliation(s)
- Hamideh Yadegari
- Institute of Experimental Haematology and Transfusion Medicine, University Clinics Bonn, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinics Bonn, Bonn, Germany
| | - Shariq Ahmed
- National Institute of Blood Disease & Bone Marrow Transplantation, Karachi, Pakistan
| | - Arshi Naz
- National Institute of Blood Disease & Bone Marrow Transplantation, Karachi, Pakistan
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinics Bonn, Bonn, Germany
| |
Collapse
|
31
|
Staphylococcus aureus vWF-binding protein triggers a strong interaction between clumping factor A and host vWF. Commun Biol 2021; 4:453. [PMID: 33846500 PMCID: PMC8041789 DOI: 10.1038/s42003-021-01986-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
The Staphylococcus aureus cell wall-anchored adhesin ClfA binds to the very large blood circulating protein, von Willebrand factor (vWF) via vWF-binding protein (vWbp), a secreted protein that does not bind the cell wall covalently. Here we perform force spectroscopy studies on living bacteria to unravel the molecular mechanism of this interaction. We discover that the presence of all three binding partners leads to very high binding forces (2000 pN), largely outperforming other known ternary complexes involving adhesins. Strikingly, our experiments indicate that a direct interaction involving features of the dock, lock and latch mechanism must occur between ClfA and vWF to sustain the extreme tensile strength of the ternary complex. Our results support a previously undescribed mechanism whereby vWbp activates a direct, ultra-strong interaction between ClfA and vWF. This intriguing interaction represents a potential target for therapeutic interventions, including synthetic peptides inhibiting the ultra-strong interactions between ClfA and its ligands. Through force spectroscopy studies on living bacteria, Viljoen et al. characterise the binding of S. aureus to host von Willebrand factor (vWF). They propose that S. aureus vWF-binding protein triggers an ultra-strong interaction between the adhesin clumping factor A and vWF.
Collapse
|
32
|
Karampini E, Bürgisser PE, Olins J, Mulder AA, Jost CR, Geerts D, Voorberg J, Bierings R. Sec22b determines Weibel-Palade body length by controlling anterograde ER-Golgi transport. Haematologica 2021; 106:1138-1147. [PMID: 32336681 PMCID: PMC8018124 DOI: 10.3324/haematol.2019.242727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 01/07/2023] Open
Abstract
Von Willebrand factor (VWF) is a multimeric hemostatic protein that is synthesized in endothelial cells, where it is stored for secretion in elongated secretory organelles called Weibel-Palade bodies (WPB). The hemostatic activity of VWF is strongly related to the length of these bodies, but how endothelial cells control the dimensions of their WPB is unclear. In this study, using a targeted short hairpin RNA screen, we identified longin-SNARE Sec22b as a novel determinant of WPB size and VWF trafficking. We found that Sec22b depletion resulted in loss of the typically elongated WPB morphology together with disintegration of the Golgi and dilation of rough endoplasmic reticulum cisternae. This was accompanied by reduced proteolytic processing of VWF, accumulation of VWF in the dilated rough endoplasmic reticulum and reduced basal and stimulated VWF secretion. Our data demonstrate that the elongation of WPB, and thus adhesive activity of their cargo VWF, is determined by the rate of anterograde transport between endoplasmic reticulum and Golgi, which depends on Sec22b-containing SNARE complexes.
Collapse
Affiliation(s)
- Ellie Karampini
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, The Netherlands
| | - Petra E Bürgisser
- Dept. of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jenny Olins
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, The Netherlands
| | - Aat A Mulder
- Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolina R Jost
- Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dirk Geerts
- Medical Biology, Amsterdam University Medical Center, University of Amsterdam, The Netherlands
| | - Jan Voorberg
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, The Netherlands
| | - Ruben Bierings
- Dept. of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Conformation of the von Willebrand factor/factor VIII complex in quasi-static flow. J Biol Chem 2021; 296:100420. [PMID: 33600794 PMCID: PMC8005835 DOI: 10.1016/j.jbc.2021.100420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
Von Willebrand factor (VWF) is a plasma glycoprotein that circulates noncovalently bound to blood coagulation factor VIII (fVIII). VWF is a population of multimers composed of a variable number of ∼280 kDa monomers that is activated in shear flow to bind collagen and platelet glycoprotein Ibα. Electron microscopy, atomic force microscopy, small-angle neutron scattering, and theoretical studies have produced a model in which the conformation of VWF under static conditions is a compact, globular “ball-of-yarn,” implying strong, attractive forces between monomers. We performed sedimentation velocity (SV) analytical ultracentrifugation measurements on unfractionated VWF/fVIII complexes. There was a 20% per mg/ml decrease in the weight-average sedimentation coefficient, sw, in contrast to the ∼1% per mg/ml decrease observed for compact globular proteins. SV and dynamic light scattering measurements were performed on VWF/fVIII complexes fractionated by size-exclusion chromatography to obtain sw values and z-average diffusion coefficients, Dz. Molecular weights estimated using these values in the Svedberg equation ranged from 1.7 to 4.1 MDa. Frictional ratios calculated from Dz and molecular weights ranged from 2.9 to 3.4, in contrast to values of 1.1–1.3 observed for globular proteins. The Mark–Houwink–Kuhn–Sakurada scaling relationships between sw, Dz and molecular weight, s=k′Mas and D=k″MaD, yielded estimates of 0.51 and –0.49 for as and aD, respectively, consistent with a random coil, in contrast to the as value of 0.65 observed for globular proteins. These results indicate that interactions between monomers are weak or nonexistent and that activation of VWF is intramonomeric.
Collapse
|
34
|
Tsai R, Interlandi G. Oxidation shuts down an auto-inhibitory mechanism of von Willebrand factor. Proteins 2021; 89:731-741. [PMID: 33550613 DOI: 10.1002/prot.26055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/24/2020] [Accepted: 01/31/2021] [Indexed: 01/13/2023]
Abstract
The blood protein von Willebrand factor (VWF) is a key link between inflammation and pathological thrombus formation. In particular, oxidation of methionine residues in specific domains of VWF due to the release of oxidants in inflammatory conditions has been linked to an increased platelet-binding activity. However, the atomistic details of how methionine oxidation activates VWF have not been elucidated to date. Yet understanding the activation mechanism of VWF under oxidizing conditions can lead to the development of novel therapeutics that target VWF selectively under inflammatory conditions in order to reduce its thrombotic activity while maintaining its haemostatic function. In this manuscript, we used a combination of a dynamic flow assay and molecular dynamics (MD) simulations to investigate how methionine oxidation removes an auto-inhibitory mechanism of VWF. Results from the dynamic flow assay revealed that oxidation does not directly activate the A1 domain, which is the domain in VWF that contains the binding site to the platelet surface receptor glycoprotein Ibα (GpIbα), but rather removes the inhibitory function of the neighboring A2 and A3 domains. Furthermore, the MD simulations combined with free energy perturbation calculations suggested that methionine oxidation may destabilize the binding interface between the A1 and A2 domains leading to unmasking of the GpIbα-binding site in the A1 domain.
Collapse
Affiliation(s)
- Rachel Tsai
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Gianluca Interlandi
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
35
|
O'Brien HER, Zhang XF, Sanz-Hernandez M, Chion A, Shapiro S, Mobayen G, Xu Y, De Simone A, Laffan MA, McKinnon TAJ. Blocking von Willebrand factor free thiols inhibits binding to collagen under high and pathological shear stress. J Thromb Haemost 2021; 19:358-369. [PMID: 33075181 DOI: 10.1111/jth.15142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Von Willebrand factor (VWF) contains a number of free thiols, the majority of which are located in its C-domains, and these have been shown to alter VWF function, However, the impact of free thiols on function following acute exposure of VWF to collagen under high and pathological shear stress has not been determined. METHODS VWF free thiols were blocked with N-ethylmaleimide and flow assays performed under high and pathological shear rates to determine the impact on platelet capture and collagen binding function. Atomic force microscopy (AFM) was used to probe the interaction of VWF with collagen and molecular simulations conducted to determine the effect of free thiols on the flexibility of the VWF-C4 domain. RESULTS Blockade of VWF free thiols reduced VWF-mediated platelet capture to collagen in a shear-dependent manner, with platelet capture virtually abolished above 5000 s-1 and in regions of stenosis in microfluidic channels. Direct visualization of VWF fibers formed under extreme pathological shear rates and analysis of collagen-bound VWF attributed the effect to altered binding of VWF to collagen. AFM measurements showed that thiol-blockade reduced the lifetime and strength of the VWF-collagen bond. Pulling simulations of the VWF-C4 domain demonstrated that with one or two reduced disulphide bonds the C4 domain has increased flexibility and the propensity to undergo free-thiol exchange. CONCLUSIONS We conclude that free thiols in the C-domains of VWF enhance the flexibility of the molecule and enable it to withstand high shear forces following collagen binding, demonstrating a previously unrecognized role for VWF free thiols.
Collapse
Affiliation(s)
- Harrison E R O'Brien
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College of Science Technology and Medicine, London, UK
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - X Frank Zhang
- Department of Bioengineering, Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
| | | | - Alain Chion
- Irish Centre for Vascular Biology, Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Susan Shapiro
- Oxford University Hospitals NHS Foundation Trust, Oxford NIHR Biomedical Research Centre, Oxford, UK
- Radcliffe Department of Medicine, Oxford University, Oxford, UK
| | - Golzar Mobayen
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College of Science Technology and Medicine, London, UK
| | - Yan Xu
- Department of Bioengineering, Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
| | | | - Michael A Laffan
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College of Science Technology and Medicine, London, UK
| | - Thomas A J McKinnon
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College of Science Technology and Medicine, London, UK
| |
Collapse
|
36
|
Belyaev AV. Intradimer forces and their implication for conformations of von Willebrand factor multimers. Biophys J 2021; 120:899-911. [PMID: 33524374 DOI: 10.1016/j.bpj.2021.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022] Open
Abstract
The largest blood glycoprotein von Willebrand factor (VWF) responds to hydrodynamic stresses in the bloodstream with abrupt conformation changes, thus increasing its adhesivity to platelets and collagen. Arterial and microvascular hemostasis relies on mechanical and physicochemical properties of this macromolecule. Recently, it was discovered that the mechanical properties of VWF are controlled by multiple pH-dependent interactions with opposite trends within dimeric subunits. In this work, computer simulations reveal the effect of these intradimer forces on the conformation of VWF multimers in various hydrodynamic conditions. A coarse-grained computer model of VWF has been proposed and parameterized to give a good agreement with experimental data. The simulations suggest that strong attraction between VWF D4 domains increases the resistance to elongation under shear stress, whereas even intermediate attraction between VWF C domains contributes to VWF compaction in nonsheared fluid. It is hypothesized that the detailed subdimer dynamics of VWF concatamers may be one of the biophysical regulators of initial hemostasis and arterial thrombosis.
Collapse
Affiliation(s)
- Aleksey V Belyaev
- Lomonosov Moscow State University, Faculty of Physics, Moscow, Russia; IRC Mathematical modelling in Biomedicine, S.M. Nikolskii Mathematical Institute, RUDN University, Moscow, Russia.
| |
Collapse
|
37
|
Javitt G, Khmelnitsky L, Albert L, Bigman LS, Elad N, Morgenstern D, Ilani T, Levy Y, Diskin R, Fass D. Assembly Mechanism of Mucin and von Willebrand Factor Polymers. Cell 2020; 183:717-729.e16. [PMID: 33031746 PMCID: PMC7599080 DOI: 10.1016/j.cell.2020.09.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/25/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
The respiratory and intestinal tracts are exposed to physical and biological hazards accompanying the intake of air and food. Likewise, the vasculature is threatened by inflammation and trauma. Mucin glycoproteins and the related von Willebrand factor guard the vulnerable cell layers in these diverse systems. Colon mucins additionally house and feed the gut microbiome. Here, we present an integrated structural analysis of the intestinal mucin MUC2. Our findings reveal the shared mechanism by which complex macromolecules responsible for blood clotting, mucociliary clearance, and the intestinal mucosal barrier form protective polymers and hydrogels. Specifically, cryo-electron microscopy and crystal structures show how disulfide-rich bridges and pH-tunable interfaces control successive assembly steps in the endoplasmic reticulum and Golgi apparatus. Remarkably, a densely O-glycosylated mucin domain performs an organizational role in MUC2. The mucin assembly mechanism and its adaptation for hemostasis provide the foundation for rational manipulation of barrier function and coagulation.
Collapse
Affiliation(s)
- Gabriel Javitt
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lev Khmelnitsky
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lis Albert
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lavi Shlomo Bigman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Morgenstern
- De Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ron Diskin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
38
|
Sandoval-Pérez A, Berger RML, Garaizar A, Farr SE, Brehm MA, König G, Schneider SW, Collepardo-Guevara R, Huck V, Rädler JO, Aponte-Santamaría C. DNA binds to a specific site of the adhesive blood-protein von Willebrand factor guided by electrostatic interactions. Nucleic Acids Res 2020; 48:7333-7344. [PMID: 32496552 PMCID: PMC7367192 DOI: 10.1093/nar/gkaa466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/07/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Neutrophils release their intracellular content, DNA included, into the bloodstream to form neutrophil extracellular traps (NETs) that confine and kill circulating pathogens. The mechanosensitive adhesive blood protein, von Willebrand Factor (vWF), interacts with the extracellular DNA of NETs to potentially immobilize them during inflammatory and coagulatory conditions. Here, we elucidate the previously unknown molecular mechanism governing the DNA–vWF interaction by integrating atomistic, coarse-grained, and Brownian dynamics simulations, with thermophoresis, gel electrophoresis, fluorescence correlation spectroscopy (FCS), and microfluidic experiments. We demonstrate that, independently of its nucleotide sequence, double-stranded DNA binds to a specific helix of the vWF A1 domain, via three arginines. This interaction is attenuated by increasing the ionic strength. Our FCS and microfluidic measurements also highlight the key role shear-stress has in enabling this interaction. Our simulations attribute the previously-observed platelet-recruitment reduction and heparin-size modulation, upon establishment of DNA–vWF interactions, to indirect steric hindrance and partial overlap of the binding sites, respectively. Overall, we suggest electrostatics—guiding DNA to a specific protein binding site—as the main driving force defining DNA–vWF recognition. The molecular picture of a key shear-mediated DNA–protein interaction is provided here and it constitutes the basis for understanding NETs-mediated immune and hemostatic responses.
Collapse
Affiliation(s)
- Angélica Sandoval-Pérez
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Cra. 1, 18A-12, 111711, Bogotá, Colombia
| | - Ricarda M L Berger
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Stephen E Farr
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Maria A Brehm
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Gesa König
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Stefan W Schneider
- Department of Dermatology, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.,Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.,Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Volker Huck
- Department of Dermatology, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Camilo Aponte-Santamaría
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Cra. 1, 18A-12, 111711, Bogotá, Colombia.,Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
39
|
Noncanonical type 2B von Willebrand disease associated with mutations in the VWF D'D3 and D4 domains. Blood Adv 2020; 4:3405-3415. [PMID: 32722784 DOI: 10.1182/bloodadvances.2020002334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 11/20/2022] Open
Abstract
We observed a 55-year-old Italian man who presented with mucosal and cutaneous bleeding. Results of his blood analysis showed low levels of von Willebrand factor (VWF) antigen and VWF activity (both VWF ristocetin cofactor and VWF collagen binding), mild thrombocytopenia, increased ristocetin-induced platelet aggregation, and a deficiency of high-molecular-weight multimers, all typical phenotypic hallmarks of type 2B von Willebrand disease (VWD). The analysis of the VWF gene sequence revealed heterozygous in cis mutations: (1) c.2771G>A and (2) c.6532G>T substitutions in the exons 21 and 37, respectively. The first mutation causes the substitution of an Arg residue with a Gln at position 924, in the D'D3 domain. The second mutation causes an Ala to Ser substitution at position 2178 in the D4 domain. The patient's daughter did not present the same fatherly mutations but showed only the heterozygous polymorphic c.3379C>T mutation in exon 25 of the VWF gene causing the p.P1127S substitution, inherited from her mother. The in vitro expression of the heterozygous in cis VWF mutant rVWFWT/rVWF924Q-2178S confirmed and recapitulated the ex vivo VWF findings. Molecular modeling showed that these in cis mutations stabilize a partially stretched and open conformation of the VWF monomer. Transmission electron microscopy and atomic force microscopy showed in the heterozygous recombinant form rVWFWT/rVWF924Q-2178S a stretched conformation, forming strings even under static conditions. Thus, the heterozygous in cis mutations 924Q/2178S promote conformational transitions in the VWF molecule, causing a type 2B-like VWD phenotype, despite the absence of typical mutations in the A1 domain of VWF.
Collapse
|
40
|
Karampini E, Bierings R, Voorberg J. Orchestration of Primary Hemostasis by Platelet and Endothelial Lysosome-Related Organelles. Arterioscler Thromb Vasc Biol 2020; 40:1441-1453. [PMID: 32375545 DOI: 10.1161/atvbaha.120.314245] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Megakaryocyte-derived platelets and endothelial cells store their hemostatic cargo in α- and δ-granules and Weibel-Palade bodies, respectively. These storage granules belong to the lysosome-related organelles (LROs), a heterogeneous group of organelles that are rapidly released following agonist-induced triggering of intracellular signaling pathways. Following vascular injury, endothelial Weibel-Palade bodies release their content into the vascular lumen and promote the formation of long VWF (von Willebrand factor) strings that form an adhesive platform for platelets. Binding to VWF strings as well as exposed subendothelial collagen activates platelets resulting in the release of α- and δ-granules, which are crucial events in formation of a primary hemostatic plug. Biogenesis and secretion of these LROs are pivotal for the maintenance of proper hemostasis. Several bleeding disorders have been linked to abnormal generation of LROs in megakaryocytes and endothelial cells. Recent reviews have emphasized common pathways in the biogenesis and biological properties of LROs, focusing mainly on melanosomes. Despite many similarities, LROs in platelet and endothelial cells clearly possess distinct properties that allow them to provide a highly coordinated and synergistic contribution to primary hemostasis by sequentially releasing hemostatic cargo. In this brief review, we discuss in depth the known regulators of α- and δ-granules in megakaryocytes/platelets and Weibel-Palade bodies in endothelial cells, starting from transcription factors that have been associated with granule formation to protein complexes that promote granule maturation. In addition, we provide a detailed view on the interplay between platelet and endothelial LROs in controlling hemostasis as well as their dysfunction in LRO related bleeding disorders.
Collapse
Affiliation(s)
- Ellie Karampini
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - Ruben Bierings
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands.,Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands (R.B.)
| | - Jan Voorberg
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands.,Experimental Vascular Medicine (J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
41
|
Tiemeier GL, de Koning R, Wang G, Kostidis S, Rietjens RGJ, Sol WMPJ, Dumas SJ, Giera M, van den Berg CW, Eikenboom JCJ, van den Berg BM, Carmeliet P, Rabelink TJ. Lowering the increased intracellular pH of human-induced pluripotent stem cell-derived endothelial cells induces formation of mature Weibel-Palade bodies. Stem Cells Transl Med 2020; 9:758-772. [PMID: 32163224 PMCID: PMC7308639 DOI: 10.1002/sctm.19-0392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Differentiation of human‐induced pluripotent stem cells (hiPSCs) into vascular endothelium is of great importance to tissue engineering, disease modeling, and use in regenerative medicine. Although differentiation of hiPSCs into endothelial‐like cells (hiPSC‐derived endothelial cells [hiPSC‐ECs]) has been demonstrated before, controversy exists as to what extent these cells faithfully reflect mature endothelium. To address this issue, we investigate hiPSC‐ECs maturation by their ability to express von Willebrand factor (VWF) and formation of Weibel‐Palade bodies (WPBs). Using multiple hiPSCs lines, hiPSC‐ECs failed to form proper VWF and WPBs, essential for angiogenesis, primary and secondary homeostasis. Lowering the increased intracellular pH (pHi) of hiPSC‐ECs with acetic acid did result in the formation of elongated WPBs. Nuclear magnetic resonance data showed that the higher pHi in hiPSC‐ECs occurred in association with decreased intracellular lactate concentrations. This was explained by decreased glycolytic flux toward pyruvate and lactate in hiPSC‐ECs. In addition, decreased expression of monocarboxylate transporter member 1, a member of the solute carrier family (SLC16A1), which regulates lactate and H+ uptake, contributed to the high pHi of hiPSC‐EC. Mechanistically, pro‐VWF dimers require the lower pH environment of the trans‐Golgi network for maturation and tubulation. These data show that while hiPSC‐ECs may share many features with mature EC, they are characterized by metabolic immaturity hampering proper EC function.
Collapse
Affiliation(s)
- Gesa L Tiemeier
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rozemarijn de Koning
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Gangqi Wang
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rosalie G J Rietjens
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Wendy M P J Sol
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sébastien J Dumas
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Cathelijne W van den Berg
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen C J Eikenboom
- The Einthoven Laboratory for Experimental Vascular Medicine, Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Bernard M van den Berg
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ton J Rabelink
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
42
|
Lancellotti S, Sacco M, Basso M, De Cristofaro R. Mechanochemistry of von Willebrand factor. Biomol Concepts 2019; 10:194-208. [PMID: 31778361 DOI: 10.1515/bmc-2019-0022] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022] Open
Abstract
Von Willebrand factor (VWF), a blood multimeric protein with a very high molecular weight, plays a crucial role in the primary haemostasis, the physiological process characterized by the adhesion of blood platelets to the injured vessel wall. Hydrodynamic forces are responsible for extensive conformational transitions in the VWF multimers that change their structure from a globular form to a stretched linear conformation. This feature makes this protein particularly prone to be investigated by mechanochemistry, the branch of the biophysical chemistry devoted to investigating the effects of shear forces on protein conformation. This review describes the structural elements of the VWF molecule involved in the biochemical response to shear forces. The stretched VWF conformation favors the interaction with the platelet GpIb and at the same time with ADAMTS-13, the zinc-protease that cleaves VWF in the A2 domain, limiting its prothrombotic capacity. The shear-induced conformational transitions favor also a process of self-aggregation, responsible for the formation of a spider-web like network, particularly efficient in the trapping process of flowing platelets. The investigation of the biophysical effects of shear forces on VWF conformation contributes to unraveling the molecular mechanisms of many types of thrombotic and haemorrhagic syndromes.
Collapse
Affiliation(s)
- Stefano Lancellotti
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Monica Sacco
- Istituto di Medicina Interna e Geriatria, Facoltà di Medicina e Chirurgia "A. Gemelli", Università Cattolica S. Cuore, Roma, Italy
| | - Maria Basso
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Raimondo De Cristofaro
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy.,Istituto di Medicina Interna e Geriatria, Facoltà di Medicina e Chirurgia "A. Gemelli", Università Cattolica S. Cuore, Roma, Italy
| |
Collapse
|
43
|
Otogelin, otogelin-like, and stereocilin form links connecting outer hair cell stereocilia to each other and the tectorial membrane. Proc Natl Acad Sci U S A 2019; 116:25948-25957. [PMID: 31776257 DOI: 10.1073/pnas.1902781116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The function of outer hair cells (OHCs), the mechanical actuators of the cochlea, involves the anchoring of their tallest stereocilia in the tectorial membrane (TM), an acellular structure overlying the sensory epithelium. Otogelin and otogelin-like are TM proteins related to secreted epithelial mucins. Defects in either cause the DFNB18B and DFNB84B genetic forms of deafness, respectively, both characterized by congenital mild-to-moderate hearing impairment. We show here that mutant mice lacking otogelin or otogelin-like have a marked OHC dysfunction, with almost no acoustic distortion products despite the persistence of some mechanoelectrical transduction. In both mutants, these cells lack the horizontal top connectors, which are fibrous links joining adjacent stereocilia, and the TM-attachment crowns coupling the tallest stereocilia to the TM. These defects are consistent with the previously unrecognized presence of otogelin and otogelin-like in the OHC hair bundle. The defective hair bundle cohesiveness and the absence of stereociliary imprints in the TM observed in these mice have also been observed in mutant mice lacking stereocilin, a model of the DFNB16 genetic form of deafness, also characterized by congenital mild-to-moderate hearing impairment. We show that the localizations of stereocilin, otogelin, and otogelin-like in the hair bundle are interdependent, indicating that these proteins interact to form the horizontal top connectors and the TM-attachment crowns. We therefore suggest that these 2 OHC-specific structures have shared mechanical properties mediating reaction forces to sound-induced shearing motion and contributing to the coordinated displacement of stereocilia.
Collapse
|
44
|
Ridley C, Lockhart-Cairns MP, Collins RF, Jowitt TA, Subramani DB, Kesimer M, Baldock C, Thornton DJ. The C-terminal dimerization domain of the respiratory mucin MUC5B functions in mucin stability and intracellular packaging before secretion. J Biol Chem 2019; 294:17105-17116. [PMID: 31570524 PMCID: PMC6851316 DOI: 10.1074/jbc.ra119.010771] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Mucin 5B (MUC5B) has an essential role in mucociliary clearance that protects the pulmonary airways. Accordingly, knowledge of MUC5B structure and its interactions with itself and other proteins is critical to better understand airway mucus biology and improve the management of lung diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease (COPD). The role of an N-terminal multimerization domain in the supramolecular organization of MUC5B has been previously described, but less is known about its C-terminal dimerization domain. Here, using cryogenic electron microscopy (cryo-EM) and small-angle X-ray scattering (SAXS) analyses of recombinant disulfide-linked dimeric MUC5B dimerization domain we identified an asymmetric, elongated twisted structure, with a double globular base. We found that the dimerization domain is more resistant to disruption than the multimerization domain suggesting the twisted structure of the dimerization domain confers additional stability to MUC5B polymers. Size-exclusion chromatography-multiangle light scattering (SEC-MALS), SPR-based biophysical analyses and microscale thermophoresis of the dimerization domain disclosed no further assembly, but did reveal reversible, calcium-dependent interactions between the dimerization and multimerization domains that were most active at acidic pH, suggesting that these domains have a role in MUC5B intragranular organization. In summary, our results suggest a role for the C-terminal dimerization domain of MUC5B in compaction of mucin chains during granular packaging via interactions with the N-terminal multimerization domain. Our findings further suggest that the less stable multimerization domain provides a potential target for mucin depolymerization to remove mucus plugs in COPD and other lung pathologies.
Collapse
Affiliation(s)
- Caroline Ridley
- Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,Division of Infection Immunity and Respiratory Medicine, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Michael P Lockhart-Cairns
- Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,Division of Cell-Matrix Biology and Regenerative Medicine, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Richard F Collins
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Thomas A Jowitt
- Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Durai B Subramani
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7362
| | - Mehmet Kesimer
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7362
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom .,School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,Division of Cell-Matrix Biology and Regenerative Medicine, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - David J Thornton
- Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom .,Division of Infection Immunity and Respiratory Medicine, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,Lydia Becker Institute for Immunology and Inflammation, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| |
Collapse
|
45
|
Multiplexed protein force spectroscopy reveals equilibrium protein folding dynamics and the low-force response of von Willebrand factor. Proc Natl Acad Sci U S A 2019; 116:18798-18807. [PMID: 31462494 PMCID: PMC6754583 DOI: 10.1073/pnas.1901794116] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule force spectroscopy has provided unprecedented insights into protein folding, force regulation, and function. So far, the field has relied primarily on atomic force microscope and optical tweezers assays that, while powerful, are limited in force resolution, throughput, and require feedback for constant force measurements. Here, we present a modular approach based on magnetic tweezers (MT) for highly multiplexed protein force spectroscopy. Our approach uses elastin-like polypeptide linkers for the specific attachment of proteins, requiring only short peptide tags on the protein of interest. The assay extends protein force spectroscopy into the low force (<1 pN) regime and enables parallel and ultra-stable measurements at constant forces. We present unfolding and refolding data for the small, single-domain protein ddFLN4, commonly used as a molecular fingerprint in force spectroscopy, and for the large, multidomain dimeric protein von Willebrand factor (VWF) that is critically involved in primary hemostasis. For both proteins, our measurements reveal exponential force dependencies of unfolding and refolding rates. We directly resolve the stabilization of the VWF A2 domain by Ca2+ and discover transitions in the VWF C domain stem at low forces that likely constitute the first steps of VWF's mechano-activation. Probing the force-dependent lifetime of biotin-streptavidin bonds, we find that monovalent streptavidin constructs with specific attachment geometry are significantly more force stable than commercial, multivalent streptavidin. We expect our modular approach to enable multiplexed force-spectroscopy measurements for a wide range of proteins, in particular in the physiologically relevant low-force regime.
Collapse
|
46
|
Streetley J, Fonseca AV, Turner J, Kiskin NI, Knipe L, Rosenthal PB, Carter T. Stimulated release of intraluminal vesicles from Weibel-Palade bodies. Blood 2019; 133:2707-2717. [PMID: 30760452 PMCID: PMC6624784 DOI: 10.1182/blood-2018-09-874552] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/06/2019] [Indexed: 12/16/2022] Open
Abstract
Weibel-Palade bodies (WPBs) are secretory granules that contain von Willebrand factor and P-selectin, molecules that regulate hemostasis and inflammation, respectively. The presence of CD63/LAMP3 in the limiting membrane of WPBs has led to their classification as lysosome-related organelles. Many lysosome-related organelles contain intraluminal vesicles (ILVs) enriched in CD63 that are secreted into the extracellular environment during cell activation to mediate intercellular communication. To date, there are no reports that WPBs contain or release ILVs. By light microscopy and live-cell imaging, we show that CD63 is enriched in microdomains within WPBs. Extracellular antibody recycling studies showed that CD63 in WPB microdomains can originate from the plasma membrane. By cryo-electron tomography of frozen-hydrated endothelial cells, we identify internal vesicles as novel structural features of the WPB lumen. By live-cell fluorescence microscopy, we directly observe the exocytotic release of EGFP-CD63 ILVs as discrete particles from individual WPBs. WPB exocytosis provides a novel route for release of ILVs during endothelial cell stimulation.
Collapse
Affiliation(s)
- James Streetley
- MRC National Institute for Medical Research, The Ridgeway, London, United Kingdom
| | - Ana-Violeta Fonseca
- MRC National Institute for Medical Research, The Ridgeway, London, United Kingdom
| | - Jack Turner
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom; and
| | - Nikolai I Kiskin
- MRC National Institute for Medical Research, The Ridgeway, London, United Kingdom
| | - Laura Knipe
- MRC National Institute for Medical Research, The Ridgeway, London, United Kingdom
| | - Peter B Rosenthal
- MRC National Institute for Medical Research, The Ridgeway, London, United Kingdom
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom; and
| | - Tom Carter
- MRC National Institute for Medical Research, The Ridgeway, London, United Kingdom
- Molecular and Clinical Sciences Research Institute, St George's University, London, United Kingdom
| |
Collapse
|
47
|
Dong X, Leksa NC, Chhabra ES, Arndt JW, Lu Q, Knockenhauer KE, Peters RT, Springer TA. The von Willebrand factor D'D3 assembly and structural principles for factor VIII binding and concatemer biogenesis. Blood 2019; 133:1523-1533. [PMID: 30642920 PMCID: PMC6450429 DOI: 10.1182/blood-2018-10-876300] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022] Open
Abstract
D assemblies make up half of the von Willebrand factor (VWF), yet are of unknown structure. D1 and D2 in the prodomain and D'D3 in mature VWF at Golgi pH form helical VWF tubules in Weibel Palade bodies and template dimerization of D3 through disulfides to form ultralong VWF concatemers. D'D3 forms the binding site for factor VIII. The crystal structure of monomeric D'D3 with cysteine residues required for dimerization mutated to alanine was determined at an endoplasmic reticulum (ER)-like pH. The smaller C8-3, TIL3 (trypsin inhibitor-like 3), and E3 modules pack through specific interfaces as they wind around the larger, N-terminal, Ca2+-binding von Willebrand D domain (VWD) 3 module to form a wedge shape. D' with its TIL' and E' modules projects away from D3. The 2 mutated cysteines implicated in D3 dimerization are buried, providing a mechanism for protecting them against premature disulfide linkage in the ER, where intrachain disulfide linkages are formed. D3 dimerization requires co-association with D1 and D2, Ca2+, and Golgi-like acidic pH. Associated structural rearrangements in the C8-3 and TIL3 modules are required to expose cysteine residues for disulfide linkage. Our structure provides insight into many von Willebrand disease mutations, including those that diminish factor VIII binding, which suggest that factor VIII binds not only to the N-terminal TIL' domain of D' distal from D3 but also extends across 1 side of D3. The organizing principle for the D3 assembly has implications for other D assemblies and the construction of higher-order, disulfide-linked assemblies in the Golgi in both VWF and mucins.
Collapse
Affiliation(s)
- Xianchi Dong
- Children's Hospital Boston, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | | | | | | | - Qi Lu
- Bioverativ, a Sanofi company, Waltham, MA; and
| | | | | | - Timothy A Springer
- Children's Hospital Boston, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| |
Collapse
|
48
|
Jiang Y, Fu H, Springer TA, Wong WP. Electrostatic Steering Enables Flow-Activated Von Willebrand Factor to Bind Platelet Glycoprotein, Revealed by Single-Molecule Stretching and Imaging. J Mol Biol 2019; 431:1380-1396. [PMID: 30797858 DOI: 10.1016/j.jmb.2019.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/21/2019] [Accepted: 02/14/2019] [Indexed: 01/13/2023]
Abstract
Von Willebrand factor (VWF), a large multimeric blood protein, senses changes in shear stress during bleeding and responds by binding platelets to plug ruptures in the vessel wall. Molecular mechanisms underlying this dynamic process are difficult to uncover using standard approaches due to the challenge of applying mechanical forces while monitoring structure and activity. By combining single-molecule fluorescence imaging with high-pressure, rapidly switching microfluidics, we reveal the key role of electrostatic steering in accelerating the binding between flow-activated VWF and GPIbα, and in rapidly immobilizing platelets under flow. We measure the elongation and tension-dependent activation of individual VWF multimers under a range of ionic strengths and pH levels, and find that the association rate is enhanced by 4 orders of magnitude by electrostatic steering. Under supraphysiologic salt concentrations, strong electrostatic screening dramatically decreases platelet binding to VWF in flow, revealing the critical role of electrostatic attraction in VWF-platelet binding during bleeding.
Collapse
Affiliation(s)
- Yan Jiang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hongxia Fu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Division of Hematology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Wesley P Wong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Xu ER, von Bülow S, Chen PC, Lenting PJ, Kolšek K, Aponte-Santamaría C, Simon B, Foot J, Obser T, Schneppenheim R, Gräter F, Denis CV, Wilmanns M, Hennig J. Structure and dynamics of the platelet integrin-binding C4 domain of von Willebrand factor. Blood 2019; 133:366-376. [PMID: 30305279 PMCID: PMC6450055 DOI: 10.1182/blood-2018-04-843615] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022] Open
Abstract
Von Willebrand factor (VWF) is a key player in the regulation of hemostasis by promoting recruitment of platelets to sites of vascular injury. An array of 6 C domains forms the dimeric C-terminal VWF stem. Upon shear force activation, the stem adopts an open conformation allowing the adhesion of VWF to platelets and the vessel wall. To understand the underlying molecular mechanism and associated functional perturbations in disease-related variants, knowledge of high-resolution structures and dynamics of C domains is of paramount interest. Here, we present the solution structure of the VWF C4 domain, which binds to the platelet integrin and is therefore crucial for the VWF function. In the structure, we observed 5 intra- and inter-subdomain disulfide bridges, of which 1 is unique in the C4 domain. The structure further revealed an unusually hinged 2-subdomain arrangement. The hinge is confined to a very short segment around V2547 connecting the 2 subdomains. Together with 2 nearby inter-subdomain disulfide bridges, this hinge induces slow conformational changes and positional alternations of both subdomains with respect to each other. Furthermore, the structure demonstrates that a clinical gain-of-function VWF variant (Y2561) is more likely to have an effect on the arrangement of the C4 domain with neighboring domains rather than impairing platelet integrin binding.
Collapse
Affiliation(s)
- Emma-Ruoqi Xu
- Hamburg Unit, European Molecular Biology Laboratory, Hamburg, Germany
| | - Sören von Bülow
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Po-Chia Chen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Peter J Lenting
- INSERM, UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Katra Kolšek
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Camilo Aponte-Santamaría
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Mathematikon, Heidelberg University, Heidelberg, Germany
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jaelle Foot
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tobias Obser
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; and
| | - Reinhard Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; and
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Cécile V Denis
- INSERM, UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Matthias Wilmanns
- Hamburg Unit, European Molecular Biology Laboratory, Hamburg, Germany
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
50
|
Advancing multimer analysis of von Willebrand factor by single-molecule AFM imaging. PLoS One 2019; 14:e0210963. [PMID: 30645640 PMCID: PMC6333368 DOI: 10.1371/journal.pone.0210963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/06/2019] [Indexed: 11/19/2022] Open
Abstract
The formation of hemostatic plugs at sites of vascular injury crucially involves the multimeric glycoprotein von Willebrand factor (VWF). VWF multimers are linear chains of N-terminally linked dimers. The latter are formed from monomers via formation of the C-terminal disulfide bonds Cys2771-Cys2773', Cys2773-Cys2771', and Cys2811-Cys2811'. Mutations in VWF that impair multimerization can lead to subtype 2A of the bleeding disorder von Willebrand Disease (VWD). Commonly, the multimer size distribution of VWF is assessed by electrophoretic multimer analysis. Here, we present atomic force microscopy (AFM) imaging as a method to determine the size distribution of VWF variants by direct visualization at the single-molecule level. We first validated our approach by investigating recombinant wildtype VWF and a previously studied mutant (p.Cys1099Tyr) that impairs N-terminal multimerization. We obtained excellent quantitative agreement with results from earlier studies and with electrophoretic multimer analysis. We then imaged specific mutants that are known to exhibit disturbed C-terminal dimerization. For the mutants p.Cys2771Arg and p.Cys2773Arg, we found the majority of monomers (87 ± 5% and 73 ± 4%, respectively) not to be C-terminally dimerized. While these results confirm that Cys2771 and Cys2773 are crucial for dimerization, they additionally provide quantitative information on the mutants' different abilities to form alternative C-terminal disulfides for residual dimerization. We further mutated Cys2811 to Ala and found that only 23 ± 3% of monomers are not C-terminally dimerized, indicating that Cys2811 is structurally less important for dimerization. Furthermore, for mutants p.Cys2771Arg, p.Cys2773Arg, and p.Cys2811Ala we found 'even-numbered' non-native multimers, i.e. multimers with monomers attached on both termini; a multimer species that cannot be distinguished from native multimers by conventional multimer analysis. Summarizing, we demonstrate that AFM imaging can provide unique insights into VWF processing defects at the single-molecule level that cannot be gained from established methods of multimer analysis.
Collapse
|