1
|
Geevarghese R, Sajjadi SS, Hudecki A, Sajjadi S, Jalal NR, Madrakian T, Ahmadi M, Włodarczyk-Biegun MK, Ghavami S, Likus W, Siemianowicz K, Łos MJ. Biodegradable and Non-Biodegradable Biomaterials and Their Effect on Cell Differentiation. Int J Mol Sci 2022; 23:ijms232416185. [PMID: 36555829 PMCID: PMC9785373 DOI: 10.3390/ijms232416185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Biomaterials for tissue scaffolds are key components in modern tissue engineering and regenerative medicine. Targeted reconstructive therapies require a proper choice of biomaterial and an adequate choice of cells to be seeded on it. The introduction of stem cells, and the transdifferentiation procedures, into regenerative medicine opened a new era and created new challenges for modern biomaterials. They must not only fulfill the mechanical functions of a scaffold for implanted cells and represent the expected mechanical strength of the artificial tissue, but furthermore, they should also assure their survival and, if possible, affect their desired way of differentiation. This paper aims to review how modern biomaterials, including synthetic (i.e., polylactic acid, polyurethane, polyvinyl alcohol, polyethylene terephthalate, ceramics) and natural (i.e., silk fibroin, decellularized scaffolds), both non-biodegradable and biodegradable, could influence (tissue) stem cells fate, regulate and direct their differentiation into desired target somatic cells.
Collapse
Affiliation(s)
- Rency Geevarghese
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Seyedeh Sara Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | - Andrzej Hudecki
- Łukasiewicz Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland
| | - Samad Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | | | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Małgorzata K. Włodarczyk-Biegun
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Saeid Ghavami
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
| | - Wirginia Likus
- Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Krzysztof Siemianowicz
- Department of Biochemistry, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| |
Collapse
|
2
|
Hoffman T, Khademhosseini A, Langer R. Chasing the Paradigm: Clinical Translation of 25 Years of Tissue Engineering. Tissue Eng Part A 2019; 25:679-687. [PMID: 30727841 PMCID: PMC6533781 DOI: 10.1089/ten.tea.2019.0032] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
IMPACT STATEMENT In this Perspective, we discuss the impact of the past 25 years of tissue engineering on the development of clinical therapies. Based on their success and other significant research accomplishments, platforms of innovation were identified. Their discoveries will enable tissue engineering inspired therapies to meet the requirements necessary for large-scale manufacturing and Food and Drug Administration (FDA) approval for a diverse range of indications.
Collapse
Affiliation(s)
- Tyler Hoffman
- Department of Bioengineering, University of California, Los Angeles, California
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, California
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|