1
|
Kobayashi J, Higashisaka K, Muranaka M, Xie Y, Okuno W, Haga Y, Tsutsumi Y. Localization of silica nanoparticles to lysosome causes lysosomal dysfunction in JEG-3 cells. Biochem Biophys Res Commun 2024; 736:150488. [PMID: 39111054 DOI: 10.1016/j.bbrc.2024.150488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 11/10/2024]
Abstract
Nanoparticles have useful functions due to the characteristics conferred on them by an increase in their specific surface area, and they have already been put into practical use in products in various industrial fields. Although exposure to nanoparticles in daily life is unavoidable for pregnant women, studies that evaluate the toxicity of nanoparticles in pregnant women are lacking. To redress this, we have focused on the placenta and have previously revealed that nanoparticles can show placental toxicity. However, there is still little knowledge regarding the behavior of nanoparticles within placental cells, which would enable us to understand their mode of action. Here, we tried to clarify the intracellular localization of silica nanoparticles in placental cells and how this affects placental toxicity. We analyzed the uptake of silica nanoparticles with a diameter of 10 nm (nSP10) into JEG-3 cells, a human choriocarcinoma cell line. Flow cytometry analysis showed that nSP10 labelled with red fluorescence were taken up into JEG-3 cells, and that pre-treatment with the endocytosis inhibitor cytochalasin D inhibited their uptake, suggesting that nSP10 are taken up into JEG-3 cells by the endocytic pathway. Moreover, confocal microscopy revealed that nSP10 are prominently localized in lysosomes. Staining with LysoTracker showed that nSP10 treatment increased the acidic compartment of JEG-3 cells, suggesting lysosome accumulation and swelling. These results indicate that nSP10 taken into placental cells are transferred to lysosomes and may cause lysosomal dysfunction.
Collapse
Affiliation(s)
- Jundai Kobayashi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kazuma Higashisaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Institute for Advanced Co-Creation Studies, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Mizuki Muranaka
- School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yankun Xie
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Wakako Okuno
- School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yuya Haga
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Sho T, Li Y, Jiao H, Yu L. Migratory autolysosome disposal mitigates lysosome damage. J Cell Biol 2024; 223:e202403195. [PMID: 39347717 PMCID: PMC11457477 DOI: 10.1083/jcb.202403195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 10/01/2024] Open
Abstract
Lysosomes, essential for intracellular degradation and recycling, employ damage-control strategies such as lysophagy and membrane repair mechanisms to maintain functionality and cellular homeostasis. Our study unveils migratory autolysosome disposal (MAD), a response to lysosomal damage where cells expel LAMP1-LC3 positive structures via autolysosome exocytosis, requiring autophagy machinery, SNARE proteins, and cell migration. This mechanism, crucial for mitigating lysosomal damage, underscores the role of cell migration in lysosome damage control and facilitates the release of small extracellular vesicles, highlighting the intricate relationship between cell migration, organelle quality control, and extracellular vesicle release.
Collapse
Affiliation(s)
- Takami Sho
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Li
- Cryo-EM Facility of Tsinghua University, Branch of National Protein Science Facility, Tsinghua University, Beijing, China
| | - Haifeng Jiao
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Liu Y, Liu Q, Shang H, Li J, Chai H, Wang K, Guo Z, Luo T, Liu S, Liu Y, Wang X, Zhang H, Wu C, Song SJ, Yang J. Potential application of natural compounds in ischaemic stroke: Focusing on the mechanisms underlying "lysosomocentric" dysfunction of the autophagy-lysosomal pathway. Pharmacol Ther 2024; 263:108721. [PMID: 39284368 DOI: 10.1016/j.pharmthera.2024.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Ischaemic stroke (IS) is the second leading cause of death and a major cause of disability worldwide. Currently, the clinical management of IS still depends on restoring blood flow via pharmacological thrombolysis or mechanical thrombectomy, with accompanying disadvantages of narrow therapeutic time window and risk of haemorrhagic transformation. Thus, novel pathophysiological mechanisms and targeted therapeutic candidates are urgently needed. The autophagy-lysosomal pathway (ALP), as a dynamic cellular lysosome-based degradative process, has been comprehensively studied in recent decades, including its upstream regulatory mechanisms and its role in mediating neuronal fate after IS. Importantly, increasing evidence has shown that IS can lead to lysosomal dysfunction, such as lysosomal membrane permeabilization, impaired lysosomal acidity, lysosomal storage disorder, and dysfunctional lysosomal ion homeostasis, which are involved in the IS-mediated defects in ALP function. There is tightly regulated crosstalk between transcription factor EB (TFEB), mammalian target of rapamycin (mTOR) and lysosomal function, but their relationship remains to be systematically summarized. Notably, a growing body of evidence emphasizes the benefits of naturally derived compounds in the treatment of IS via modulation of ALP function. However, little is known about the roles of natural compounds as modulators of lysosomes in the treatment of IS. Therefore, in this context, we provide an overview of the current understanding of the mechanisms underlying IS-mediated ALP dysfunction, from a lysosomal perspective. We also provide an update on the effect of natural compounds on IS, according to their chemical structural types, in different experimental stroke models, cerebral regions and cell types, with a primary focus on lysosomes and autophagy initiation. This review aims to highlight the therapeutic potential of natural compounds that target lysosomal and ALP function for IS treatment.
Collapse
Affiliation(s)
- Yueyang Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hanxiao Shang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jichong Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - He Chai
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Kaixuan Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhenkun Guo
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tianyu Luo
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shiqi Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yan Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xuemei Wang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hangyi Zhang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chunfu Wu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Jingyu Yang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
4
|
Su B, Ren Y, Yao W, Su Y, He Q. Mitochondrial dysfunction and NLRP3 inflammasome: key players in kidney stone formation. BJU Int 2024; 134:696-713. [PMID: 38967108 DOI: 10.1111/bju.16454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The mitochondrion serves as a critical intracellular organelle, engaging in essential roles in the regulation of energy production, oxidative stress management, calcium homeostasis, and apoptosis. One such disease that has been particularly associated with these functions is kidney stone disease (KSD), specifically calcium oxalate (CaOx). It is underpinned by oxidative stress and tissue inflammation. Recent studies have shed light on the vital involvement of mitochondrial dysfunction, the nucleotide-binding domain and leucine-rich repeat containing protein 3 (NLRP3) inflammasome, endoplasmic reticulum stress and subsequent cell death in CaOx crystal retention and aggregation. These processes are pivotal in the pathogenesis of kidney stone formation. This review focuses on the pivotal roles of mitochondria in renal cell functions and provides an overview of the intricate interconnectedness between mitochondrial dysfunction and NLRP3 inflammasome activation in the context of KSD. It is essential to recognise the utmost significance of gaining a comprehensive understanding of the mechanisms that safeguard mitochondrial function and regulate the NLRP3 inflammasome. Such knowledge carries significant scientific implications and opens up promising avenues for the development of innovative strategies to prevent the formation of kidney stones.
Collapse
Affiliation(s)
- Boyan Su
- Department of Urology, Key Laboratory of Disease of Urological Systems, Gansu Nepho-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - YaLin Ren
- Department of Urology, Key Laboratory of Disease of Urological Systems, Gansu Nepho-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Weimin Yao
- Department of Urology, Tongji Medical College Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Su
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Qiqi He
- Department of Urology, Key Laboratory of Disease of Urological Systems, Gansu Nepho-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Koyano F, Yamano K, Hoshina T, Kosako H, Fujiki Y, Tanaka K, Matsuda N. AAA+ ATPase chaperone p97/VCP FAF2 governs basal pexophagy. Nat Commun 2024; 15:9347. [PMID: 39472561 PMCID: PMC11522385 DOI: 10.1038/s41467-024-53558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Peroxisomes are organelles that are central to lipid metabolism and chemical detoxification. Despite advances in our understanding of peroxisome biogenesis, the mechanisms maintaining peroxisomal membrane proteins remain to be fully elucidated. We show here that mammalian FAF2/UBXD8, a membrane-associated cofactor of p97/VCP, maintains peroxisomal homeostasis by modulating the turnover of peroxisomal membrane proteins such as PMP70. In FAF2-deficient cells, PMP70 accumulation recruits the autophagy adaptor OPTN (Optineurin) to peroxisomes and promotes their autophagic clearance (pexophagy). Pexophagy is also induced by p97/VCP inhibition. FAF2 functions together with p97/VCP to negatively regulate pexophagy rather than as a factor for peroxisome biogenesis. Our results strongly suggest that p97/VCPFAF2-mediated extraction of ubiquitylated peroxisomal membrane proteins (e.g., PMP70) prevents peroxisomes from inducing nonessential autophagy under steady state conditions. These findings provide insight into molecular mechanisms underlying the regulation of peroxisomal integrity by p97/VCP and its associated cofactors.
Collapse
Affiliation(s)
- Fumika Koyano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU) (Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Koji Yamano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU) (Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tomoyuki Hoshina
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU) (Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food-Kyushu University Collaboration Program, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Institute for Advanced Study, Kyushu University, Fukuoka, 816-8580, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Noriyuki Matsuda
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU) (Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
6
|
Sou YS, Yamaguchi J, Masuda K, Uchiyama Y, Maeda Y, Koike M. Golgi pH homeostasis stabilizes the lysosomal membrane through N-glycosylation of membrane proteins. Life Sci Alliance 2024; 7:e202402677. [PMID: 39079741 PMCID: PMC11289521 DOI: 10.26508/lsa.202402677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Protein glycosylation plays a vital role in various cellular functions, many of which occur within the Golgi apparatus. The Golgi pH regulator (GPHR) is essential for the proper functioning of the Golgi apparatus. The lysosomal membrane contains highly glycosylated membrane proteins in abundance. This study investigated the role of the Golgi luminal pH in N-glycosylation of lysosomal membrane proteins and the effect of this protein modification on membrane stability using Gphr-deficient MEFs. We showed that Gphr deficiency causes an imbalance in the Golgi luminal pH, resulting in abnormal protein N-glycosylation, indicated by a reduction in sialylated glycans and markedly reduced molecular weight of glycoproteins. Further experiments using FRAP and PLA revealed that Gphr deficiency prevented the trafficking dynamics and proximity condition of glycosyltransferases in the Golgi apparatus. In addition, incomplete N-glycosylation of lysosomal membrane proteins affected lysosomal membrane stability, as demonstrated by the increased susceptibility to lysosomal damage. Thus, this study highlights the critical role of Golgi pH regulation in controlling protein glycosylation and the impact of Golgi dysfunction on lysosomal membrane stability.
Collapse
Affiliation(s)
- Yu-Shin Sou
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Junji Yamaguchi
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Bunkyo, Japan
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Keisuke Masuda
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Yusuke Maeda
- https://ror.org/035t8zc32 Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| |
Collapse
|
7
|
Ferrari V, Tedesco B, Cozzi M, Chierichetti M, Casarotto E, Pramaggiore P, Cornaggia L, Mohamed A, Patelli G, Piccolella M, Cristofani R, Crippa V, Galbiati M, Poletti A, Rusmini P. Lysosome quality control in health and neurodegenerative diseases. Cell Mol Biol Lett 2024; 29:116. [PMID: 39237893 PMCID: PMC11378602 DOI: 10.1186/s11658-024-00633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Lysosomes are acidic organelles involved in crucial intracellular functions, including the degradation of organelles and protein, membrane repair, phagocytosis, endocytosis, and nutrient sensing. Given these key roles of lysosomes, maintaining their homeostasis is essential for cell viability. Thus, to preserve lysosome integrity and functionality, cells have developed a complex intracellular system, called lysosome quality control (LQC). Several stressors may affect the integrity of lysosomes, causing Lysosomal membrane permeabilization (LMP), in which membrane rupture results in the leakage of luminal hydrolase enzymes into the cytosol. After sensing the damage, LQC either activates lysosome repair, or induces the degradation of the ruptured lysosomes through autophagy. In addition, LQC stimulates the de novo biogenesis of functional lysosomes and lysosome exocytosis. Alterations in LQC give rise to deleterious consequences for cellular homeostasis. Specifically, the persistence of impaired lysosomes or the malfunctioning of lysosomal processes leads to cellular toxicity and death, thereby contributing to the pathogenesis of different disorders, including neurodegenerative diseases (NDs). Recently, several pieces of evidence have underlined the importance of the role of lysosomes in NDs. In this review, we describe the elements of the LQC system, how they cooperate to maintain lysosome homeostasis, and their implication in the pathogenesis of different NDs.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Paola Pramaggiore
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Laura Cornaggia
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Ali Mohamed
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Guglielmo Patelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy.
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| |
Collapse
|
8
|
Liu X, Li M, Woo S. Subcellular Drug Distribution: Exploring Organelle-Specific Characteristics for Enhanced Therapeutic Efficacy. Pharmaceutics 2024; 16:1167. [PMID: 39339204 PMCID: PMC11434838 DOI: 10.3390/pharmaceutics16091167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The efficacy and potential toxicity of drug treatments depends on the drug concentration at its site of action, intricately linked to its distribution within diverse organelles of mammalian cells. These organelles, including the nucleus, endosome, lysosome, mitochondria, endoplasmic reticulum, Golgi apparatus, lipid droplets, exosomes, and membrane-less structures, create distinct sub-compartments within the cell, each with unique biological features. Certain structures within these sub-compartments possess the ability to selectively accumulate or exclude drugs based on their physicochemical attributes, directly impacting drug efficacy. Under pathological conditions, such as cancer, many cells undergo dynamic alterations in subcellular organelles, leading to changes in the active concentration of drugs. A mechanistic and quantitative understanding of how organelle characteristics and abundance alter drug partition coefficients is crucial. This review explores biological factors and physicochemical properties influencing subcellular drug distribution, alongside strategies for modulation to enhance efficacy. Additionally, we discuss physiologically based computational models for subcellular drug distribution, providing a quantifiable means to simulate and predict drug distribution at the subcellular level, with the potential to optimize drug development strategies.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-8033, USA;
| | - Miaomiao Li
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210-1267, USA;
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-8033, USA;
| |
Collapse
|
9
|
Hushmandi K, Einollahi B, Aow R, Suhairi SB, Klionsky DJ, Aref AR, Reiter RJ, Makvandi P, Rabiee N, Xu Y, Nabavi N, Saadat SH, Farahani N, Kumar AP. Investigating the interplay between mitophagy and diabetic neuropathy: Uncovering the hidden secrets of the disease pathology. Pharmacol Res 2024; 208:107394. [PMID: 39233055 DOI: 10.1016/j.phrs.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitophagy, the cellular process of selectively eliminating damaged mitochondria, plays a crucial role in maintaining metabolic balance and preventing insulin resistance, both key factors in type 2 diabetes mellitus (T2DM) development. When mitophagy malfunctions in diabetic neuropathy, it triggers a cascade of metabolic disruptions, including reduced energy production, increased oxidative stress, and cell death, ultimately leading to various complications. Thus, targeting mitophagy to enhance the process may have emerged as a promising therapeutic strategy for T2DM and its complications. Notably, plant-derived compounds with β-cell protective and mitophagy-stimulating properties offer potential as novel therapeutic agents. This review highlights the intricate mechanisms linking mitophagy dysfunction to T2DM and its complications, particularly neuropathy, elucidating potential therapeutic interventions for this debilitating disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rachel Aow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suhana Binte Suhairi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Pooyan Makvandi
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Talaia G, Bentley-DeSousa A, Ferguson SM. Lysosomal TBK1 responds to amino acid availability to relieve Rab7-dependent mTORC1 inhibition. EMBO J 2024; 43:3948-3967. [PMID: 39103493 PMCID: PMC11405869 DOI: 10.1038/s44318-024-00180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024] Open
Abstract
Lysosomes play a pivotal role in coordinating macromolecule degradation and regulating cell growth and metabolism. Despite substantial progress in identifying lysosomal signaling proteins, understanding the pathways that synchronize lysosome functions with changing cellular demands remains incomplete. This study uncovers a role for TANK-binding kinase 1 (TBK1), well known for its role in innate immunity and organelle quality control, in modulating lysosomal responsiveness to nutrients. Specifically, we identify a pool of TBK1 that is recruited to lysosomes in response to elevated amino acid levels. This lysosomal TBK1 phosphorylates Rab7 on serine 72. This is critical for alleviating Rab7-mediated inhibition of amino acid-dependent mTORC1 activation. Furthermore, a TBK1 mutant (E696K) associated with amyotrophic lateral sclerosis and frontotemporal dementia constitutively accumulates at lysosomes, resulting in elevated Rab7 phosphorylation and increased mTORC1 activation. This data establishes the lysosome as a site of amino acid regulated TBK1 signaling that is crucial for efficient mTORC1 activation. This lysosomal pool of TBK1 has broader implications for lysosome homeostasis, and its dysregulation could contribute to the pathogenesis of ALS-FTD.
Collapse
Affiliation(s)
- Gabriel Talaia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Amanda Bentley-DeSousa
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
11
|
Domingues N, Catarino S, Cristóvão B, Rodrigues L, Carvalho FA, Sarmento MJ, Zuzarte M, Almeida J, Ribeiro-Rodrigues T, Correia-Rodrigues Â, Fernandes F, Rodrigues-Santos P, Aasen T, Santos NC, Korolchuk VI, Gonçalves T, Milosevic I, Raimundo N, Girão H. Connexin43 promotes exocytosis of damaged lysosomes through actin remodelling. EMBO J 2024; 43:3627-3649. [PMID: 39044100 PMCID: PMC11377567 DOI: 10.1038/s44318-024-00177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
A robust and efficient cellular response to lysosomal membrane damage prevents leakage from the lysosome lumen into the cytoplasm. This response is understood to happen through either lysosomal membrane repair or lysophagy. Here we report exocytosis as a third response mechanism to lysosomal damage, which is further potentiated when membrane repair or lysosomal degradation mechanisms are impaired. We show that Connexin43 (Cx43), a protein canonically associated with gap junctions, is recruited from the plasma membrane to damaged lysosomes, promoting their secretion and accelerating cell recovery. The effects of Cx43 on lysosome exocytosis are mediated by a reorganization of the actin cytoskeleton that increases plasma membrane fluidity and decreases cell stiffness. Furthermore, we demonstrate that Cx43 interacts with the actin nucleator Arp2, the activity of which was shown to be necessary for Cx43-mediated actin rearrangement and lysosomal exocytosis following damage. These results define a novel mechanism of lysosomal quality control whereby Cx43-mediated actin remodelling potentiates the secretion of damaged lysosomes.
Collapse
Affiliation(s)
- Neuza Domingues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Steve Catarino
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Beatriz Cristóvão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Lisa Rodrigues
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria João Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Jani Almeida
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Ânia Correia-Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Fábio Fernandes
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo Rodrigues-Santos
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Trond Aasen
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Teresa Gonçalves
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
- University of Oxford, Centre for Human Genetics, Nuffield Department of Medicine, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Henrique Girão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal.
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal.
| |
Collapse
|
12
|
Suzuki Y, Hayashi K, Goto F, Nomura Y, Fujimoto C, Makishima M. Premature senescence is regulated by crosstalk among TFEB, the autophagy lysosomal pathway and ROS derived from damaged mitochondria in NaAsO 2-exposed auditory cells. Cell Death Discov 2024; 10:382. [PMID: 39191766 DOI: 10.1038/s41420-024-02139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/13/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Age-related hearing loss (ARHL) is one of the most prevalent types of sensory decline in a superaging society. Although various studies have focused on the effect of oxidative stress on the inner ear as an inducer of ARHL, there are no effective preventive approaches for ARHL. Recent studies have suggested that oxidative stress-induced DNA damage responses (oxidative DDRs) drive cochlear cell senescence and contribute to accelerated ARHL, and autophagy could function as a defense mechanism against cellular senescence in auditory cells. However, the underlying mechanism remains unclear. Sodium arsenite (NaAsO2) is a unique oxidative stress inducer associated with reactive oxygen species (ROS) that causes high-tone hearing loss similar to ARHL. Transcription factor EB (TFEB) functions as a master regulator of the autophagy‒lysosome pathway (ALP), which is a potential target during aging and the pathogenesis of various age-related diseases. Here, we focused on the function of TFEB and the impact of intracellular ROS as a potential target for ARHL treatment in a NaAsO2-induced auditory premature senescence model. Our results suggested that short exposure to NaAsO2 leads to DNA damage, lysosomal damage and mitochondrial damage in auditory cells, triggering temporary signals for TFEB transport into the nucleus and, as a result, causing insufficient autophagic flux and declines in lysosomal function and biogenesis and mitochondrial quality. Then, intracellular ROS derived from damaged mitochondria play a role as a second messenger to induce premature senescence in auditory cells. These findings suggest that TFEB activation via transport into the nucleus contributes to anti-senescence activity in auditory cells and represents a new therapeutic target for ARHL. We have revealed the potential function of TFEB as a master regulator of the induction of oxidative stress-induced premature senescence and the senescence-associated secretion phenotype (SASP) in auditory cells, which regulates ALP and controls mitochondrial quality through ROS production.
Collapse
Affiliation(s)
- Yuna Suzuki
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Ken Hayashi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan.
- Department of Otolaryngology, Sakura Koedo Clinic, Saitama, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Keio University, Tokyo, Japan.
| | - Fumiyuki Goto
- Department of Otolaryngology-Head and Neck Surgery, Tokai University, Kanagawa, Japan
| | - Yasuyuki Nomura
- Department of Otolaryngology-Head and Neck Surgery, Nihon University, Tokyo, Japan
| | - Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Bonet-Ponce L, Kluss JH, Cookson MR. Mechanisms of lysosomal tubulation and sorting driven by LRRK2. Biochem Soc Trans 2024; 52:1909-1919. [PMID: 39083004 DOI: 10.1042/bst20240087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/29/2024]
Abstract
Lysosomes are dynamic cellular structures that adaptively remodel their membrane in response to stimuli, including membrane damage. Lysosomal dysfunction plays a central role in the pathobiology of Parkinson's disease (PD). Gain-of-function mutations in Leucine-rich repeat kinase 2 (LRRK2) cause familial PD and genetic variations in its locus increase the risk of developing the sporadic form of the disease. We previously uncovered a process we term LYTL (LYsosomal Tubulation/sorting driven by LRRK2), wherein membrane-damaged lysosomes generate tubules sorted into mobile vesicles. Subsequently, these vesicles interact with healthy lysosomes. LYTL is orchestrated by LRRK2 kinase activity, via the recruitment and phosphorylation of a subset of RAB GTPases. Here, we summarize the current understanding of LYTL and its regulation, as well as the unknown aspects of this process.
Collapse
Affiliation(s)
- Luis Bonet-Ponce
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, U.S.A
| | | | - Mark R Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, U.S.A
| |
Collapse
|
14
|
Dupont N, Terzi F. Lipophagy and Mitophagy in Renal Pathophysiology. Nephron Clin Pract 2024:1-12. [PMID: 39182483 DOI: 10.1159/000540688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The lysosomal autophagic pathway plays a fundamental role in cellular and tissue homeostasis, and its deregulation is linked to human pathologies including kidney diseases. Autophagy can randomly degrade cytoplasmic components in a nonselective manner commonly referred to as bulk autophagy. In contrast, selective forms of autophagy specifically target cytoplasmic structures such as organelles and protein aggregates, thereby being important for cellular quality control and organelle homeostasis. SUMMARY Research during the past decades has begun to elucidate the role of selective autophagy in kidney physiology and kidney diseases. KEY MESSAGES In this review, we will summarize the knowledge on lipophagy and mitophagy, two forms of selective autophagy important in renal epithelium homeostasis, and discuss how their deregulations contribute to renal disease progression.
Collapse
Affiliation(s)
- Nicolas Dupont
- NSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Fabiola Terzi
- NSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| |
Collapse
|
15
|
Hao J, Guo X, Wang S, Guo X, Yuan K, Chen R, Hao L. LincRNA-p21/AIF-1/CMPK2/NLRP3 pathway promoted inflammation, autophagy and apoptosis of human tubular epithelial cell induced by urate via exosomes. Sci Rep 2024; 14:18146. [PMID: 39103417 PMCID: PMC11300820 DOI: 10.1038/s41598-024-69323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
Urate nephropathy, a common complication of hyperuricemia, has garnered increasing attention worldwide. However, the exact pathogenesis of this condition remains unclear. Currently, inflammation is widely accepted as the key factor in urate nephropathy. Therefore, the aim of this study was to elucidate the interaction of lincRNA-p21/AIF-1/CMPK2/NLRP3 via exosomes in urate nephropathy. This study evaluated the effect of lincRNA-p21/AIF-1/CMPK2/NLRP3 using clinical data collected from patients with urate nephropathy and human renal tubular epithelial cells (HK2) cultured with different concentrations of urate. In clinical research section, the level of lincRNA-p21/AIF-1 in exosomes of urine in patients with hyperuricemia or urate nephropathy was found to be increased, particularly in patients with urate nephropathy. In vitro study section, the level of exosomes, inflammation, autophagy, and apoptosis was increased in HK2 cells induced by urate. Additionally, the expression of lincRNA-p21, AIF-1, CMPK2, and NLRP3 was upregulated in exosomes and HK2 cells. Furthermore, manipulating the activity of lincRNA-p21, AIF-1, CMPK2, and NLRP3 through overexpression or interference vectors regulated the level of inflammation, autophagy, and apoptosis in HK2 cells. In conclusion, the pathway of lincRNA-p21/AIF-1/CMPK2/NLRP3 contributed to inflammation, autophagy, and apoptosis of human renal tubular epithelial cell induced by urate via exosomes. Additionally, the specific exosomes in urine might serve as novel biomarkers for urate nephropathy.
Collapse
Affiliation(s)
- Jianbing Hao
- Department of Nephrology, Southern University of Science and Technology Hospital, Shenzhen, China.
| | - Xinyu Guo
- Department of Nephrology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Siyu Wang
- Department of Nephrology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Xiaojun Guo
- Department of Nephrology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Kun Yuan
- Department of Nephrology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Ruihong Chen
- Department of Nephrology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Lirong Hao
- Department of Nephrology, Southern University of Science and Technology Hospital, Shenzhen, China.
| |
Collapse
|
16
|
Deretic V, Duque T, Trosdal E, Paddar M, Javed R, Akepati P. Membrane atg8ylation in Canonical and Noncanonical Autophagy. J Mol Biol 2024; 436:168532. [PMID: 38479594 PMCID: PMC11260254 DOI: 10.1016/j.jmb.2024.168532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Membrane atg8ylation is a homeostatic process responding to membrane remodeling and stress signals. Membranes are atg8ylated by mammalian ATG8 ubiquitin-like proteins through a ubiquitylation-like cascade. A model has recently been put forward which posits that atg8ylation of membranes is conceptually equivalent to ubiquitylation of proteins. Like ubiquitylation, membrane atg8ylation involves E1, E2 and E3 enzymes. The E3 ligases catalyze the final step of atg8ylation of aminophospholipids in membranes. Until recently, the only known E3 ligase for membrane atg8ylation was ATG16L1 in a noncovalent complex with the ATG12-ATG5 conjugate. ATG16L1 was first identified as a factor in canonical autophagy. During canonical autophagy, the ATG16L1-based E3 ligase complex includes WIPI2, which in turn recognizes phosphatidylinositiol 3-phosphate and directs atg8ylation of autophagic phagophores. As an alternative to WIPIs, binding of ATG16L1 to the proton pump V-ATPase guides atg8ylation of endolysosomal and phagosomal membranes in response to lumenal pH changes. Recently, a new E3 complex containing TECPR1 instead of ATG16L1, has been identified that responds to sphingomyelin's presence on the cytofacial side of perturbed endolysosomal membranes. In present review, we cover the principles of membrane atg8ylation, catalog its various presentations, and provide a perspective on the growing repertoire of E3 ligase complexes directing membrane atg8ylation at diverse locations.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA.
| | - Thabata Duque
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Einar Trosdal
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Masroor Paddar
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Ruheena Javed
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Prithvi Akepati
- Gastroenterology Division, Department of Internal Medicine, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| |
Collapse
|
17
|
Park J, Kim J, Park H, Kim T, Lee S. ESCRT-III: a versatile membrane remodeling machinery and its implications in cellular processes and diseases. Anim Cells Syst (Seoul) 2024; 28:367-380. [PMID: 39070887 PMCID: PMC11275535 DOI: 10.1080/19768354.2024.2380294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The endosomal sorting complexes required for transport (ESCRT) machinery is an evolutionarily conserved cytosolic protein complex that plays a crucial role in membrane remodeling and scission events across eukaryotes. Initially discovered for its function in multivesicular body (MVB) formation, the ESCRT complex has since been implicated in a wide range of membrane-associated processes, including endocytosis, exocytosis, cytokinesis, and autophagy. Recent advances have elucidated the ESCRT assembly pathway and highlighted the distinct functions of the various ESCRT complexes and their associated partners. Among the ESCRT complexes, ESCRT-III stands out as a critical player in membrane remodeling, with its subunits assembled into higher-order multimers capable of bending and severing membranes. This review focuses on the ESCRT-III complex, exploring its diverse functions in cellular processes beyond MVB biogenesis. We delve into the molecular mechanisms underlying ESCRT-III-mediated membrane remodeling and highlight its emerging roles in processes such as viral budding, autophagosome closure, and cytokinetic abscission. We also discuss the implications of ESCRT-III dysregulation in neurodegenerative diseases. The versatile membrane remodeling capabilities of ESCRT-III across diverse cellular processes underscore its importance in maintaining proper cellular function. Furthermore, we highlight the promising potential of ESCRT-III as a therapeutic target for neurodegenerative diseases, offering insights into the treatments of the diseases and the technical applications in related research fields.
Collapse
Affiliation(s)
- Jisoo Park
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Jongyoon Kim
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Hyungsun Park
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Taewan Kim
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Seongju Lee
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Department of Anatomy, College of Medicine, Inha University, Incheon, Republic of Korea
| |
Collapse
|
18
|
Feng X, Brown CM, Wang H, Kashif S, Roberts S, Yan L, Munshi T, Hands PJW, Zhang W, Chen X. Carrier-free chemo-phototherapeutic nanomedicines with endo/lysosomal escape function enhance the therapeutic effect of drug molecules in tumors. J Mater Chem B 2024; 12:6703-6715. [PMID: 38895858 DOI: 10.1039/d4tb00465e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Carrier-free nanomedicines offer advantages of extremely high drug loading capacity (>80%), minimal non-drug constituent burden, and facile preparation processes. Numerous studies have proved that multimodal cancer therapy can enhance chemotherapy efficiency and mitigate multi-drug resistance (MDR) through synergistic therapeutic effects. Upon penetration into the tumor matrix, nanoparticles (NPs) are anticipated to be uptaken by cancer cells, primarily through clathrin-meditated endocytosis pathways, leading to their accumulation in endosomes/lysosomes within cells. However, endo/lysosomes exhibit a highly degradative environment for organic NPs and drug molecules, often resulting in treatment failure. Hence, this study designed a lysosomal escape mechanism with carrier-free nanomedicine, combining the chemotherapeutic drug, curcumin (Cur), and the photothermal/photodynamic therapeutic drug, indocyanine green (ICG), for synergistic cancer treatment (ICG-Cur NPs) via a facile preparation process. To facilitate endo/lysosomal escape, ICG-Cur NPs were modified with metal-phenolic networks (MPNs) of different thickness. The results indicate that a thick MPN coating promotes rapid endo/lysosomal escape of ICG-Cur NPs within 4 h and enhances the photothermal conversion efficiency of ICG-Cur NPs by 55.8%, significantly improving anticancer efficacy in both chemo- and photo-therapies within 3D solid tumor models. This finding underscores the critical role of endo/lysosomal escape capacity in carrier-free drug NPs for therapeutic outcomes and offers a facile solution to achieve it.
Collapse
Affiliation(s)
- Xue Feng
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| | - Calum M Brown
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, The King's Buildings, EH9 3FF Edinburgh, UK
| | - Hongdi Wang
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| | - Saima Kashif
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| | - Sam Roberts
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Tasnim Munshi
- School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire LN6 7TS, UK
| | - Philip J W Hands
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, The King's Buildings, EH9 3FF Edinburgh, UK
| | - Wenjun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| |
Collapse
|
19
|
Asif M, Khayyat AIA, Alawbathani S, Abdullah U, Sanner A, Georgomanolis T, Haasters J, Becker K, Budde B, Becker C, Thiele H, Baig SM, Isidoro-García M, Winter D, Pogoda HM, Muhammad S, Hammerschmidt M, Kraft F, Kurth I, Martin HG, Wagner M, Nürnberg P, Hussain MS. Biallelic loss-of-function variants of ZFTRAF1 cause neurodevelopmental disorder with microcephaly and hypotonia. Genet Med 2024; 26:101143. [PMID: 38641995 DOI: 10.1016/j.gim.2024.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
PURPOSE Neurodevelopmental disorders exhibit clinical and genetic heterogeneity, ergo manifest dysfunction in components of diverse cellular pathways; the precise pathomechanism for the majority remains elusive. METHODS We studied 5 affected individuals from 3 unrelated families manifesting global developmental delay, postnatal microcephaly, and hypotonia. We used exome sequencing and prioritized variants that were subsequently characterized using immunofluorescence, immunoblotting, pulldown assays, and RNA sequencing. RESULTS We identified biallelic variants in ZFTRAF1, encoding a protein of yet unknown function. Four affected individuals from 2 unrelated families segregated 2 homozygous frameshift variants in ZFTRAF1, whereas, in the third family, an intronic splice site variant was detected. We investigated ZFTRAF1 at the cellular level and signified it as a nucleocytoplasmic protein in different human cell lines. ZFTRAF1 was completely absent in the fibroblasts of 2 affected individuals. We also identified 110 interacting proteins enriched in mRNA processing and autophagy-related pathways. Based on profiling of autophagy markers, patient-derived fibroblasts show irregularities in the protein degradation process. CONCLUSION Thus, our findings suggest that biallelic variants of ZFTRAF1 cause a severe neurodevelopmental disorder.
Collapse
Affiliation(s)
- Maria Asif
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | | - Salem Alawbathani
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; GenAlive Lab, Riyadh, Saudi Arabia
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Anne Sanner
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Theodoros Georgomanolis
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Judith Haasters
- Department of Paediatric Neurology and Developmental Medicine, Dr. von Hauner Children's Hospital, LMU Hospital Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | - Kerstin Becker
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Birgit Budde
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christian Becker
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Shahid M Baig
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan; Health Services Academy (HSA), Ministry of National Health Services Regulations and Coordination (MNHSR&C), Islamabad, Pakistan
| | - María Isidoro-García
- Reference Unit for Rare Diseases DiERCyL, Clinical Biochemistry Department, University Hospital of Salamanca, Medicine Department, University of Salamanca, IBSAL, Salamanca, Spain
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hans-Martin Pogoda
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Matthias Hammerschmidt
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Hilario Gomez Martin
- Departamento de Pediatría, Hospital Universitario de Salamanca, INCYL member, Salamanca, Spain
| | - Matias Wagner
- Department of Paediatric Neurology and Developmental Medicine, Dr. von Hauner Children's Hospital, LMU Hospital Munich, Ludwig-Maximilians-Universität, Munich, Germany; Institute of Human Genetics, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany; Institute for Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Muhammad Sajid Hussain
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
20
|
Jiménez-Loygorri JI, Viedma-Poyatos Á, Gómez-Sintes R, Boya P. Urolithin A promotes p62-dependent lysophagy to prevent acute retinal neurodegeneration. Mol Neurodegener 2024; 19:49. [PMID: 38890703 PMCID: PMC11186080 DOI: 10.1186/s13024-024-00739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of blindness in elderly people in the developed world, and the number of people affected is expected to almost double by 2040. The retina presents one of the highest metabolic demands in our bodies that is partially or fully fulfilled by mitochondria in the neuroretina and retinal pigment epithelium (RPE), respectively. Together with its post-mitotic status and constant photooxidative damage from incoming light, the retina requires a tightly-regulated housekeeping system that involves autophagy. The natural polyphenol Urolithin A (UA) has shown neuroprotective benefits in several models of aging and age-associated disorders, mostly attributed to its ability to induce mitophagy and mitochondrial biogenesis. Sodium iodate (SI) administration recapitulates the late stages of AMD, including geographic atrophy and photoreceptor cell death. METHODS A combination of in vitro, ex vivo and in vivo models were used to test the neuroprotective potential of UA in the SI model. Functional assays (OCT, ERGs), cellular analysis (flow cytometry, qPCR) and fine confocal microscopy (immunohistochemistry, tandem selective autophagy reporters) helped address this question. RESULTS UA alleviated neurodegeneration and preserved visual function in SI-treated mice. Simultaneously, we observed severe proteostasis defects upon SI damage induction, including autophagosome accumulation, that were resolved in animals that received UA. Treatment with UA restored autophagic flux and triggered PINK1/Parkin-dependent mitophagy, as previously reported in the literature. Autophagy blockage caused by SI was caused by severe lysosomal membrane permeabilization. While UA did not induce lysosomal biogenesis, it did restore upcycling of permeabilized lysosomes through lysophagy. Knockdown of the lysophagy adaptor SQSTM1/p62 abrogated viability rescue by UA in SI-treated cells, exacerbated lysosomal defects and inhibited lysophagy. CONCLUSIONS Collectively, these data highlight a novel putative application of UA in the treatment of AMD whereby it bypasses lysosomal defects by promoting p62-dependent lysophagy to sustain proteostasis.
Collapse
Affiliation(s)
- Juan Ignacio Jiménez-Loygorri
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain.
| | - Álvaro Viedma-Poyatos
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Raquel Gómez-Sintes
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain.
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
21
|
Mao TH, Huang HQ, Zhang CH. Clinical characteristics and treatment compounds of obesity-related kidney injury. World J Diabetes 2024; 15:1091-1110. [PMID: 38983811 PMCID: PMC11229974 DOI: 10.4239/wjd.v15.i6.1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Disorders in energy homeostasis can lead to various metabolic diseases, particularly obesity. The obesity epidemic has led to an increased incidence of obesity-related nephropathy (ORN), a distinct entity characterized by proteinuria, glomerulomegaly, progressive glomerulosclerosis, and renal function decline. Obesity and its associated renal damage are common in clinical practice, and their incidence is increasing and attracting great attention. There is a great need to identify safe and effective therapeutic modalities, and therapeutics using chemical compounds and natural products are receiving increasing attention. However, the summary is lacking about the specific effects and mechanisms of action of compounds in the treatment of ORN. In this review, we summarize the important clinical features and compound treatment strategies for obesity and obesity-induced kidney injury. We also summarize the pathologic and clinical features of ORN as well as its pathogenesis and potential therapeutics targeting renal inflammation, oxidative stress, insulin resistance, fibrosis, kidney lipid accumulation, and dysregulated autophagy. In addition, detailed information on natural and synthetic compounds used for the treatment of obesity-related kidney disease is summarized. The synthesis of detailed information aims to contribute to a deeper understanding of the clinical treatment modalities for obesity-related kidney diseases, fostering the anticipation of novel insights in this domain.
Collapse
Affiliation(s)
- Tuo-Hua Mao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Han-Qi Huang
- Department of Endocrinology, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan 430033, Hubei Province, China
| | - Chuan-Hai Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
22
|
Li Q, Peng G, Liu H, Wang L, Lu R, Li L. Molecular mechanisms of secretory autophagy and its potential role in diseases. Life Sci 2024; 347:122653. [PMID: 38663839 DOI: 10.1016/j.lfs.2024.122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Autophagy is a cellular degradation system that recycles or degrades damaged organelles, viral particles, and aggregated proteins through the lysosomal pathway. Autophagy plays an indispensable role in cellular homeostasis and communication processes. An interesting aspect is that autophagy also mediates the secretion of cellular contents, a process known as secretory autophagy. Secretory autophagy differs from macroautophagy, which sequesters recruited proteins, organelles, or viral particles into autophagosomes and degrades these sequesters in lysosomes, while the secretory autophagy pathway participates in the extracellular export of cellular contents sequestered by autophagosomes through autophagy and endosomal modulators. Recent evidence reveals that secretory autophagy is pivotal in the occurrence and progression of diseases. In this review, we summarize the molecular mechanisms of secretory autophagy. Furthermore, we review the impact of secretory autophagy on diseases, including cancer, viral infectious diseases, neurodegenerative diseases, and cardiovascular diseases. Considering the pleiotropic actions of secretory autophagy on diseases, studying the mechanism of secretory autophagy may help to understand the relevant pathophysiological processes.
Collapse
Affiliation(s)
- Qin Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Guolong Peng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Huimei Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Liwen Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Ruirui Lu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
23
|
Korsmo HW, Ekperikpe US, Daehn IS. Emerging Roles of Xanthine Oxidoreductase in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:712. [PMID: 38929151 PMCID: PMC11200862 DOI: 10.3390/antiox13060712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Xanthine Oxidoreductase (XOR) is a ubiquitous, essential enzyme responsible for the terminal steps of purine catabolism, ultimately producing uric acid that is eliminated by the kidneys. XOR is also a physiological source of superoxide ion, hydrogen peroxide, and nitric oxide, which can function as second messengers in the activation of various physiological pathways, as well as contribute to the development and the progression of chronic conditions including kidney diseases, which are increasing in prevalence worldwide. XOR activity can promote oxidative distress, endothelial dysfunction, and inflammation through the biological effects of reactive oxygen species; nitric oxide and uric acid are the major products of XOR activity. However, the complex relationship of these reactions in disease settings has long been debated, and the environmental influences and genetics remain largely unknown. In this review, we give an overview of the biochemistry, biology, environmental, and current clinical impact of XOR in the kidney. Finally, we highlight recent genetic studies linking XOR and risk for kidney disease, igniting enthusiasm for future biomarker development and novel therapeutic approaches targeting XOR.
Collapse
Affiliation(s)
| | | | - Ilse S. Daehn
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1243, New York, NY 10029, USA
| |
Collapse
|
24
|
Maeda S, Sakai S, Takabatake Y, Yamamoto T, Minami S, Nakamura J, Namba-Hamano T, Takahashi A, Matsuda J, Yonishi H, Matsui S, Imai A, Edahiro R, Yamamoto-Imoto H, Matsui I, Takashima S, Imamura R, Nonomura N, Yanagita M, Okada Y, Ballabio A, Nakamura S, Yoshimori T, Isaka Y. MondoA and AKI and AKI-to-CKD Transition. J Am Soc Nephrol 2024; 35:00001751-990000000-00338. [PMID: 38819935 PMCID: PMC11387036 DOI: 10.1681/asn.0000000000000414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/24/2024] [Indexed: 06/02/2024] Open
Abstract
Key Points
The expression of MondoA was decreased in the renal tubules of patients with CKD.Genetic ablation of MondoA in proximal tubules inhibited autophagy and increased vulnerability to AKI through increased expression of Rubicon.MondoA ablation during the recovery phase after ischemia-reperfusion aggravated kidney injury through downregulation of the transcription factor EB-peroxisome proliferator-activated receptor-γ coactivator-1α axis.
Background
Elderly individuals and patients with CKD are at a higher risk of AKI. The transcription factor MondoA is downregulated in the kidneys of aged individuals or patients with AKI; however, its roles in AKI development and the AKI-to-CKD transition remain unknown.
Methods
We investigated the expression of MondoA in human kidney biopsy samples, ischemia-reperfusion–injured (IRI) mouse kidneys, and cultured proximal tubular epithelial cells under hypoxia/reoxygenation. The role of MondoA during the initial and recovery phases after IRI was evaluated using proximal tubule–specific MondoA knockout mice and MondoA-deficient proximal tubular epithelial cells. Furthermore, we explored the involvement of Rubicon and transcription factor EB (TFEB), both of which are downstream factors of MondoA.
Results
MONDOA expression was decreased in the renal tubules of patients with CKD. In mouse kidneys, MondoA expression was decreased under ischemia, whereas its expression was increased during reperfusion. Genetic ablation of MondoA in proximal tubular epithelial cells inhibited autophagy and increased vulnerability to AKI through increased expression of Rubicon. Ablation of Rubicon in MondoA-deficient IRI kidneys activated autophagy and protected mitochondrial function. MondoA ablation during the recovery phase after ischemia-reperfusion aggravated kidney injury through downregulation of the TFEB-peroxisome proliferator-activated receptor-γ coactivator-1α axis. Pharmacological upregulation of TFEB contributed to maintaining mitochondrial biogenesis and increased peroxisome proliferator-activated receptor-γ coactivator-1α transcription.
Conclusions
Our findings demonstrate that MondoA protected against vulnerability to AKI by maintaining autophagy and subsequently supporting mitochondrial function to prevent progression to CKD.
Collapse
Grants
- JP22gm1410014 AMED
- 21K08276 a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology in Japan
- 22K16240 a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology in Japan
- 21H02935 a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology in Japan
- None Novo Nordisk Pharma
- None Manpei Suzuki Diabetes Foundation
Collapse
Affiliation(s)
- Shihomi Maeda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Minami
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Nakamura
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Yonishi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sho Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsuhiro Imai
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryoichi Imamura
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas
| | - Shuhei Nakamura
- Department of Biochemistry, Nara Medical University, Nara, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
25
|
Sakuma C, Shizukuishi S, Ogawa M, Honjo Y, Takeyama H, Guan JL, Weiser J, Sasai M, Yamamoto M, Ohnishi M, Akeda Y. Individual Atg8 paralogs and a bacterial metabolite sequentially promote hierarchical CASM-xenophagy induction and transition. Cell Rep 2024; 43:114131. [PMID: 38656870 DOI: 10.1016/j.celrep.2024.114131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Atg8 paralogs, consisting of LC3A/B/C and GBRP/GBRPL1/GATE16, function in canonical autophagy; however, their function is controversial because of functional redundancy. In innate immunity, xenophagy and non-canonical single membranous autophagy called "conjugation of Atg8s to single membranes" (CASM) eliminate bacteria in various cells. Previously, we reported that intracellular Streptococcus pneumoniae can induce unique hierarchical autophagy comprised of CASM induction, shedding, and subsequent xenophagy. However, the molecular mechanisms underlying these processes and the biological significance of transient CASM induction remain unknown. Herein, we profile the relationship between Atg8s, autophagy receptors, poly-ubiquitin, and Atg4 paralogs during pneumococcal infection to understand the driving principles of hierarchical autophagy and find that GATE16 and GBRP sequentially play a pivotal role in CASM shedding and subsequent xenophagy induction, respectively, and LC3A and GBRPL1 are involved in CASM/xenophagy induction. Moreover, we reveal ingenious bacterial tactics to gain intracellular survival niches by manipulating CASM-xenophagy progression by generating intracellular pneumococci-derived H2O2.
Collapse
Affiliation(s)
- Chisato Sakuma
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Sayaka Shizukuishi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Michinaga Ogawa
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Yuko Honjo
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan; Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, CARE/Crawley Building, Suite E-870 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Jeffery Weiser
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
26
|
Li H, Puopolo T, Seeram NP, Liu C, Ma H. Anti-Ferroptotic Effect of Cannabidiol in Human Skin Keratinocytes Characterized by Data-Independent Acquisition-Based Proteomics. JOURNAL OF NATURAL PRODUCTS 2024; 87:1493-1499. [PMID: 38373879 DOI: 10.1021/acs.jnatprod.3c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Skin cells are susceptible to oxidative stress and various types of cell death, including an iron-dependent form known as ferroptosis. Cannabidiol (CBD) can protect skin cells against oxidative stress, but whether this is attributed to the inhibition of ferroptosis is unknown. Herein, we evaluated the anti-ferroptotic effect of CBD in human keratinocytes using biochemical assays (radical scavenging and iron chelating) and cell-based models (for lipid peroxidation and intracellular iron). CBD's anti-ferroptotic effect was further characterized by proteomic analysis. This study identifies anti-ferroptosis as a mechanism of CBD's skin protective effects.
Collapse
Affiliation(s)
- Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Tess Puopolo
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
27
|
Batra S, Vaquer-Alicea JI, Valdez C, Taylor SP, Manon VA, Vega AR, Kashmer OM, Kolay S, Lemoff A, Cairns NJ, White CL, Diamond MI. VCP regulates early tau seed amplification via specific cofactors. RESEARCH SQUARE 2024:rs.3.rs-4307848. [PMID: 38826306 PMCID: PMC11142303 DOI: 10.21203/rs.3.rs-4307848/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Neurodegenerative tauopathies may progress based on seeding by pathological tau assemblies, whereby an aggregate is released from one cell, gains entry to an adjacent or connected cell, and serves as a specific template for its own replication in the cytoplasm. In vitro seeding reactions typically take days, yet seeding into the complex cytoplasmic milieu happens within hours, implicating a machinery with unknown players that controls this process in the acute phase. Methods We used proximity labeling to identify factors that control seed amplification within 5h of seed exposure. We fused split-APEX2 to the C-terminus of tau repeat domain (RD) to reconstitute peroxidase activity 5h after seeded intracellular tau aggregation. Valosin containing protein (VCP/p97) was the top hit. VCP harbors dominant mutations that underlie two neurodegenerative diseases, multisystem proteinopathy and vacuolar tauopathy, but its mechanistic role is unclear. We used immortalized cells and human neurons to study the effects of VCP on tau seeding. We exposed cells to fibrils or brain homogenates in cell culture media and measured effects on uptake and induction of intracellular tau aggregation following various genetic and chemical manipulations of VCP. Results VCP knockdown reduced tau seeding. Chemical inhibitors had opposing effects on aggregation in HEK293T tau biosensor cells and human neurons alike: ML-240 increased seeding efficiency, whereas NMS-873 decreased it. The inhibitors were effective only when administered within 8h of seed exposure, indicating a role for VCP early in seed processing. We screened 30 VCP co-factors in HEK293T biosensor cells by genetic knockout or knockdown. Reduction of ATXN3, NSFL1C, UBE4B, NGLY1, and OTUB1 decreased tau seeding, as did NPLOC4, which also uniquely increased soluble tau levels. By contrast, reduction of FAF2 increased tau seeding. Conclusions Divergent effects on tau seeding of chemical inhibitors and cofactor reduction indicate that VCP regulates this process. This is consistent with a dedicated cytoplasmic processing complex based on VCP that directs seeds acutely towards degradation vs. amplification.
Collapse
Affiliation(s)
- Sushobhna Batra
- UT Southwestern: The University of Texas Southwestern Medical Center
| | | | - Clarissa Valdez
- UT Southwestern: The University of Texas Southwestern Medical Center
| | - Skyler P Taylor
- UT Southwestern: The University of Texas Southwestern Medical Center
| | - Victor A Manon
- UT Southwestern: The University of Texas Southwestern Medical Center
| | - Anthony R Vega
- UT Southwestern: The University of Texas Southwestern Medical Center
| | - Omar M Kashmer
- UT Southwestern: The University of Texas Southwestern Medical Center
| | - Sourav Kolay
- UT Southwestern: The University of Texas Southwestern Medical Center
| | - Andrew Lemoff
- UT Southwestern: The University of Texas Southwestern Medical Center
| | - Nigel J Cairns
- University of Exeter Faculty of Health and Life Sciences
| | - Charles L White
- UT Southwestern: The University of Texas Southwestern Medical Center
| | - Marc I Diamond
- UT Southwestern: The University of Texas Southwestern Medical Center
| |
Collapse
|
28
|
Klein AD, Petruzzi KL, Lee C, Overholtzer M. Stress-induced microautophagy is coordinated with lysosome biogenesis and regulated by PIKfyve. Mol Biol Cell 2024; 35:ar70. [PMID: 38536415 PMCID: PMC11151102 DOI: 10.1091/mbc.e23-08-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/18/2024] Open
Abstract
Lysosome turnover and biogenesis are induced in response to treatment of cells with agents that cause membrane rupture, but whether other stress conditions engage similar homeostatic mechanisms is not well understood. Recently we described a form of selective turnover of lysosomes that is induced by metabolic stress or by treatment of cells with ionophores or lysosomotropic agents, involving the formation of intraluminal vesicles within intact organelles through microautophagy. Selective turnover involves noncanonical autophagy and the lipidation of LC3 onto lysosomal membranes, as well as the autophagy gene-dependent formation of intraluminal vesicles. Here, we find a form of microautophagy induction that requires activity of the lipid kinase PIKfyve and is associated with the nuclear translocation of TFEB, a known mediator of lysosome biogenesis. We show that LC3 undergoes turnover during this process, and that PIKfyve is required for the formation of intraluminal vesicles and LC3 turnover, but not for LC3 lipidation onto lysosomal membranes, demonstrating that microautophagy is regulated by PIKfyve downstream of noncanonical autophagy. We further show that TFEB activation requires noncanonical autophagy but not PIKfyve, distinguishing the regulation of biogenesis from microautophagy occurring in response to agents that induce lysosomal stress.
Collapse
Affiliation(s)
- Alison D. Klein
- BCMB Graduate Program, Weill Cornell Medical College, New York, NY 10065
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Kayla L. Petruzzi
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Chan Lee
- BCMB Graduate Program, Weill Cornell Medical College, New York, NY 10065
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Michael Overholtzer
- BCMB Graduate Program, Weill Cornell Medical College, New York, NY 10065
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
29
|
Wang J, Zhang H, Yuan H, Chen S, Yu Y, Zhang X, Gao Z, Du H, Li W, Wang Y, Xia P, Wang J, Song M. Prophylactic Supplementation with Lactobacillus Reuteri or Its Metabolite GABA Protects Against Acute Ischemic Cardiac Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307233. [PMID: 38487926 PMCID: PMC11095141 DOI: 10.1002/advs.202307233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/06/2023] [Indexed: 05/16/2024]
Abstract
The gut microbiome has emerged as a potential target for the treatment of cardiovascular disease. Ischemia/reperfusion (I/R) after myocardial infarction is a serious complication and whether certain gut bacteria can serve as a treatment option remains unclear. Lactobacillus reuteri (L. reuteri) is a well-studied probiotic that can colonize mammals including humans with known cholesterol-lowering properties and anti-inflammatory effects. Here, the prophylactic cardioprotective effects of L. reuteri or its metabolite γ-aminobutyric acid (GABA) against acute ischemic cardiac injury caused by I/R surgery are demonstrated. The prophylactic gavage of L. reuteri or GABA confers cardioprotection mainly by suppressing cardiac inflammation upon I/R. Mechanistically, GABA gavage results in a decreased number of proinflammatory macrophages in I/R hearts and GABA gavage no longer confers any cardioprotection in I/R hearts upon the clearance of macrophages. In vitro studies with LPS-stimulated bone marrow-derived macrophages (BMDM) further reveal that GABA inhibits the polarization of macrophages toward the proinflammatory M1 phenotype by inhibiting lysosomal leakage and NLRP3 inflammasome activation. Together, this study demonstrates that the prophylactic oral administration of L. reuteri or its metabolite GABA attenuates macrophage-mediated cardiac inflammation and therefore alleviates cardiac dysfunction after I/R, thus providing a new prophylactic strategy to mitigate acute ischemic cardiac injury.
Collapse
Affiliation(s)
- Jiawan Wang
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
- Beijing Chao‐Yang HospitalDepartment of AnesthesiologyBeijing100020China
| | - Hao Zhang
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hailong Yuan
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
- Joint National Laboratory for Antibody Drug EngineeringHenan UniversityKaifeng475004China
| | - Siqi Chen
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ying Yu
- University of Chinese Academy of SciencesBeijing100049China
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyChinese Academy of SciencesBeijing100101China
| | - Xuan Zhang
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyChinese Academy of SciencesBeijing100101China
| | - Zeyu Gao
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
| | - Heng Du
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Weitao Li
- Department of ImmunologySchool of Basic Medical SciencesPeking UniversityBeijing100191China
| | - Yaohui Wang
- Joint National Laboratory for Antibody Drug EngineeringHenan UniversityKaifeng475004China
| | - Pengyan Xia
- Department of ImmunologySchool of Basic Medical SciencesPeking UniversityBeijing100191China
| | - Jun Wang
- University of Chinese Academy of SciencesBeijing100049China
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyChinese Academy of SciencesBeijing100101China
| | - Moshi Song
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
30
|
Yin Q, Yang C. Exploring lysosomal biology: current approaches and methods. BIOPHYSICS REPORTS 2024; 10:111-120. [PMID: 38774350 PMCID: PMC11103719 DOI: 10.52601/bpr.2023.230028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/04/2024] [Indexed: 05/24/2024] Open
Abstract
Lysosomes are the degradation centers and signaling hubs in the cell. Lysosomes undergo adaptation to maintain cell homeostasis in response to a wide variety of cues. Dysfunction of lysosomes leads to aging and severe diseases including lysosomal storage diseases (LSDs), neurodegenerative disorders, and cancer. To understand the complexity of lysosome biology, many research approaches and tools have been developed to investigate lysosomal functions and regulatory mechanisms in diverse experimental systems. This review summarizes the current approaches and tools adopted for studying lysosomes, and aims to provide a methodological overview of lysosomal research and related fields.
Collapse
Affiliation(s)
- Qiuyuan Yin
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
31
|
Nam KH, Ordureau A. How does the neuronal proteostasis network react to cellular cues? Biochem Soc Trans 2024; 52:581-592. [PMID: 38488108 DOI: 10.1042/bst20230316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/25/2024]
Abstract
Even though neurons are post-mitotic cells, they still engage in protein synthesis to uphold their cellular content balance, including for organelles, such as the endoplasmic reticulum or mitochondria. Additionally, they expend significant energy on tasks like neurotransmitter production and maintaining redox homeostasis. This cellular homeostasis is upheld through a delicate interplay between mRNA transcription-translation and protein degradative pathways, such as autophagy and proteasome degradation. When faced with cues such as nutrient stress, neurons must adapt by altering their proteome to survive. However, in many neurodegenerative disorders, such as Parkinson's disease, the pathway and processes for coping with cellular stress are impaired. This review explores neuronal proteome adaptation in response to cellular stress, such as nutrient stress, with a focus on proteins associated with autophagy, stress response pathways, and neurotransmitters.
Collapse
Affiliation(s)
- Ki Hong Nam
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, U.S.A
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, U.S.A
| |
Collapse
|
32
|
Gahlot P, Kravic B, Rota G, van den Boom J, Levantovsky S, Schulze N, Maspero E, Polo S, Behrends C, Meyer H. Lysosomal damage sensing and lysophagy initiation by SPG20-ITCH. Mol Cell 2024; 84:1556-1569.e10. [PMID: 38503285 DOI: 10.1016/j.molcel.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
Cells respond to lysosomal membrane permeabilization by membrane repair or selective macroautophagy of damaged lysosomes, termed lysophagy, but it is not fully understood how this decision is made. Here, we uncover a pathway in human cells that detects lipid bilayer perturbations in the limiting membrane of compromised lysosomes, which fail to be repaired, and then initiates ubiquitin-triggered lysophagy. We find that SPG20 binds the repair factor IST1 on damaged lysosomes and, importantly, integrates that with the detection of damage-associated lipid-packing defects of the lysosomal membrane. Detection occurs via sensory amphipathic helices in SPG20 before rupture of the membrane. If lipid-packing defects are extensive, such as during lipid peroxidation, SPG20 recruits and activates ITCH, which marks the damaged lysosome with lysine-63-linked ubiquitin chains to initiate lysophagy and thus triages the lysosome for destruction. With SPG20 being linked to neurodegeneration, these findings highlight the relevance of a coordinated lysosomal damage response for cellular homeostasis.
Collapse
Affiliation(s)
- Pinki Gahlot
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Bojana Kravic
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Giulia Rota
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Johannes van den Boom
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Sophie Levantovsky
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Nina Schulze
- Imaging Center Campus Essen, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Elena Maspero
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Simona Polo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Hemmo Meyer
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
33
|
Bonet-Ponce L, Tegicho T, Beilina A, Kluss JH, Li Y, Cookson MR. Opposing actions of JIP4 and RILPL1 provide antagonistic motor force to dynamically regulate membrane reformation during lysosomal tubulation/sorting driven by LRRK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587808. [PMID: 38903076 PMCID: PMC11188082 DOI: 10.1101/2024.04.02.587808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Lysosomes are dynamic cellular structures that adaptively remodel their membrane in response to stimuli, including membrane damage. We previously uncovered a process we term LYTL (LYsosomal Tubulation/sorting driven by Leucine-Rich Repeat Kinase 2 [LRRK2]), wherein damaged lysosomes generate tubules sorted into mobile vesicles. LYTL is orchestrated by the Parkinson's disease-associated kinase LRRK2 that recruits the motor adaptor protein and RHD family member JIP4 to lysosomes via phosphorylated RAB proteins. To identify new players involved in LYTL, we performed unbiased proteomics on isolated lysosomes after LRRK2 kinase inhibition. Our results demonstrate that there is recruitment of RILPL1 to ruptured lysosomes via LRRK2 activity to promote phosphorylation of RAB proteins at the lysosomal surface. RILPL1, which is also a member of the RHD family, enhances the clustering of LRRK2-positive lysosomes in the perinuclear area and causes retraction of LYTL tubules, in contrast to JIP4 which promotes LYTL tubule extension. Mechanistically, RILPL1 binds to p150Glued, a dynactin subunit, facilitating the transport of lysosomes and tubules to the minus end of microtubules. Further characterization of the tubulation process revealed that LYTL tubules move along tyrosinated microtubules, with tubulin tyrosination proving essential for tubule elongation. In summary, our findings emphasize the dynamic regulation of LYTL tubules by two distinct RHD proteins and pRAB effectors, serving as opposing motor adaptor proteins: JIP4, promoting tubulation via kinesin, and RILPL1, facilitating tubule retraction through dynein/dynactin. We infer that the two opposing processes generate a metastable lysosomal membrane deformation that facilitates dynamic tubulation events.
Collapse
Affiliation(s)
- Luis Bonet-Ponce
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Tsion Tegicho
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Alexandra Beilina
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Jillian H. Kluss
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Yan Li
- Proteomic Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
34
|
Duran J, Poolsup S, Allers L, Lemus MR, Cheng Q, Pu J, Salemi M, Phinney B, Jia J. A mechanism that transduces lysosomal damage signals to stress granule formation for cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587368. [PMID: 38617306 PMCID: PMC11014484 DOI: 10.1101/2024.03.29.587368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Lysosomal damage poses a significant threat to cell survival. Our previous work has reported that lysosomal damage induces stress granule (SG) formation. However, the importance of SG formation in determining cell fate and the precise mechanisms through which lysosomal damage triggers SG formation remains unclear. Here, we show that SG formation is initiated via a novel calcium-dependent pathway and plays a protective role in promoting cell survival in response to lysosomal damage. Mechanistically, we demonstrate that during lysosomal damage, ALIX, a calcium-activated protein, transduces lysosomal damage signals by sensing calcium leakage to induce SG formation by controlling the phosphorylation of eIF2α. ALIX modulates eIF2α phosphorylation by regulating the association between PKR and its activator PACT, with galectin-3 exerting a negative effect on this process. We also found this regulatory event of SG formation occur on damaged lysosomes. Collectively, these investigations reveal novel insights into the precise regulation of SG formation triggered by lysosomal damage, and shed light on the interaction between damaged lysosomes and SGs. Importantly, SG formation is significant for promoting cell survival in the physiological context of lysosomal damage inflicted by SARS-CoV-2 ORF3a, adenovirus infection, Malaria hemozoin, proteopathic tau as well as environmental hazard silica.
Collapse
Affiliation(s)
- Jacob Duran
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
| | - Suttinee Poolsup
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Monica Rosas Lemus
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Qiuying Cheng
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Brett Phinney
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Jingyue Jia
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
- Lead Contact
| |
Collapse
|
35
|
Ding WX, Ma X, Kim S, Wang S, Ni HM. Recent insights about autophagy in pancreatitis. EGASTROENTEROLOGY 2024; 2:e100057. [PMID: 38770349 PMCID: PMC11104508 DOI: 10.1136/egastro-2023-100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Acute pancreatitis is a common inflammatory gastrointestinal disease without any successful treatment. Pancreatic exocrine acinar cells have high rates of protein synthesis to produce and secrete large amounts of digestive enzymes. When the regulation of organelle and protein homeostasis is disrupted, it can lead to endoplasmic reticulum (ER) stress, damage to the mitochondria and improper intracellular trypsinogen activation, ultimately resulting in acinar cell damage and the onset of pancreatitis. To balance the homeostasis of organelles and adapt to protect themselves from organelle stress, cells use protective mechanisms such as autophagy. In the mouse pancreas, defective basal autophagy disrupts ER homoeostasis, leading to ER stress and trypsinogen activation, resulting in spontaneous pancreatitis. In this review, we discuss the regulation of autophagy and its physiological role in maintaining acinar cell homeostasis and function. We also summarise the current understanding of the mechanisms and the role of defective autophagy at multiple stages in experimental pancreatitis induced by cerulein or alcohol.
Collapse
Affiliation(s)
- Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sydney Kim
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
36
|
Theodore CJ, Wagner LH, Campellone KG. Autophagosome turnover requires Arp2/3 complex-mediated maintenance of lysosomal integrity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584718. [PMID: 38559247 PMCID: PMC10980047 DOI: 10.1101/2024.03.12.584718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Autophagy is an intracellular degradation process that maintains homeostasis, responds to stress, and plays key roles in the prevention of aging and disease. Autophagosome biogenesis, vesicle rocketing, and autolysosome tubulation are controlled by multiple actin nucleation factors, but the impact of actin assembly on completion of the autophagic pathway is not well understood. Here we studied autophagosome and lysosome remodeling in fibroblasts harboring an inducible knockout (iKO) of the Arp2/3 complex, an essential actin nucleator. Arp2/3 complex ablation resulted in increased basal levels of autophagy receptors and lipidated membrane proteins from the LC3 and GABARAP families. Under both steady-state and starvation conditions, Arp2/3 iKO cells accumulated abnormally high numbers of autolysosomes, suggesting a defect in autophagic flux. The inability of Arp2/3 complex-deficient cells to complete autolysosome degradation and turnover is explained by the presence of damaged, leaky lysosomes. In cells treated with an acute lysosomal membrane-damaging agent, the Arp2/3-activating protein WHAMM is recruited to lysosomes, where Arp2/3 complex-dependent actin assembly is crucial for restoring intact lysosomal structure. These results establish the Arp2/3 complex as a central player late in the canonical autophagy pathway and reveal a new role for the actin nucleation machinery in maintaining lysosomal integrity.
Collapse
Affiliation(s)
- Corey J. Theodore
- Department of Molecular and Cell Biology; University of Connecticut, Storrs CT, USA
- Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
| | - Lianna H. Wagner
- Department of Molecular and Cell Biology; University of Connecticut, Storrs CT, USA
- Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
| | - Kenneth G. Campellone
- Department of Molecular and Cell Biology; University of Connecticut, Storrs CT, USA
- Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
- Center on Aging, UConn Health; University of Connecticut, Storrs CT, USA
| |
Collapse
|
37
|
Gheitasi H, Sabbaghian M, Fadaee M, Mohammadzadeh N, Shekarchi AA, Poortahmasebi V. The relationship between autophagy and respiratory viruses. Arch Microbiol 2024; 206:136. [PMID: 38436746 DOI: 10.1007/s00203-024-03838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 03/05/2024]
Abstract
Respiratory viruses have caused severe global health problems and posed essential challenges to the medical community. In recent years, the role of autophagy as a critical process in cells in viral respiratory diseases has been noticed. One of the vital catabolic biological processes in the body is autophagy. Autophagy contributes to energy recovery by targeting and selectively directing foreign microorganisms, organelles, and senescent intracellular proteins to the lysosome for degradation and phagocytosis. Activation or suppression of autophagy is often initiated when foreign pathogenic organisms such as viruses infect cells. Because of its antiviral properties, several viruses may escape or resist this process by encoding viral proteins. Viruses can also use autophagy to enhance their replication or prolong the persistence of latent infections. Here, we provide an overview of autophagy and respiratory viruses such as coronavirus, rhinovirus, parainfluenza, influenza, adenovirus, and respiratory syncytial virus, and examine the interactions between them and the role of autophagy in the virus-host interaction process and the resulting virus replication strategy.
Collapse
Affiliation(s)
- Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Mohammadzadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Asahina Y, Sakaguchi Y, Oka T, Hattori K, Kawaoka T, Doi Y, Yamamoto R, Matsui I, Mizui M, Kaimori JY, Isaka Y. Association between urinary uric acid excretion and kidney outcome in patients with CKD. Sci Rep 2024; 14:5119. [PMID: 38429496 PMCID: PMC10907602 DOI: 10.1038/s41598-024-55809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/03/2024] Open
Abstract
Inhibiting tubular urate reabsorption may protect the kidney from urate-induced tubular injury. However, this approach may promote intratubular uric acid crystallization, especially in acidified urine, which could be toxic to the kidney. To assess how tubular urate handling affects kidney outcomes, we conducted a retrospective cohort study including 1042 patients with estimated glomerular filtration rates (eGFR) of 15-60 mL/min/1.73 m2. The exposures were fractional excretion of uric acid (FEUA) and urinary uric acid-to-creatinine ratio (UUCR). The kidney outcome was defined as a halving of eGFR from baseline or initiating kidney replacement therapy. The median FEUA and UUCR were 7.2% and 0.33 g/gCre, respectively. During a median follow-up of 1.9 years, 314 kidney outcomes occurred. In a multivariate Cox model, the lowest FEUA quartile exhibited a 1.68-fold higher rate of kidney outcome than the highest FEUA quartile (95% confidence interval, 1.13-2.50; P = 0.01). Similarly, lower UUCR was associated with a higher rate of kidney outcome. Notably, patients in the highest quartile of FEUA and UUCR were at the lowest risk of kidney outcome even among those with aciduria. In conclusion, lower FEUA and UUCR were associated with a higher risk of kidney failure, suggesting that increased urate reabsorption is harmful to the kidney.
Collapse
Affiliation(s)
- Yuta Asahina
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yusuke Sakaguchi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Tatsufumi Oka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koki Hattori
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takayuki Kawaoka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yohei Doi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryohei Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
- Health and Counseling Center, Osaka University, Toyonaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Jun-Ya Kaimori
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
39
|
Settembre C, Perera RM. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol 2024; 25:223-245. [PMID: 38001393 DOI: 10.1038/s41580-023-00676-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/26/2023]
Abstract
Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Rushika M Perera
- Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
40
|
Shariq M, Khan MF, Raj R, Ahsan N, Kumar P. PRKAA2, MTOR, and TFEB in the regulation of lysosomal damage response and autophagy. J Mol Med (Berl) 2024; 102:287-311. [PMID: 38183492 DOI: 10.1007/s00109-023-02411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Lysosomes function as critical signaling hubs that govern essential enzyme complexes. LGALS proteins (LGALS3, LGALS8, and LGALS9) are integral to the endomembrane damage response. If ESCRT fails to rectify damage, LGALS-mediated ubiquitination occurs, recruiting autophagy receptors (CALCOCO2, TRIM16, and SQSTM1) and VCP/p97 complex containing UBXN6, PLAA, and YOD1, initiating selective autophagy. Lysosome replenishment through biogenesis is regulated by TFEB. LGALS3 interacts with TFRC and TRIM16, aiding ESCRT-mediated repair and autophagy-mediated removal of damaged lysosomes. LGALS8 inhibits MTOR and activates TFEB for ATG and lysosomal gene transcription. LGALS9 inhibits USP9X, activates PRKAA2, MAP3K7, ubiquitination, and autophagy. Conjugation of ATG8 to single membranes (CASM) initiates damage repair mediated by ATP6V1A, ATG16L1, ATG12, ATG5, ATG3, and TECPR1. ATG8ylation or CASM activates the MERIT system (ESCRT-mediated repair, autophagy-mediated clearance, MCOLN1 activation, Ca2+ release, RRAG-GTPase regulation, MTOR modulation, TFEB activation, and activation of GTPase IRGM). Annexins ANAX1 and ANAX2 aid damage repair. Stress granules stabilize damaged membranes, recruiting FLCN-FNIP1/2, G3BP1, and NUFIP1 to inhibit MTOR and activate TFEB. Lysosomes coordinate the synergistic response to endomembrane damage and are vital for innate and adaptive immunity. Future research should unveil the collaborative actions of ATG proteins, LGALSs, TRIMs, autophagy receptors, and lysosomal proteins in lysosomal damage response.
Collapse
Affiliation(s)
- Mohd Shariq
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE.
| | - Mohammad Firoz Khan
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE.
| | - Reshmi Raj
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | - Nuzhat Ahsan
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | - Pramod Kumar
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| |
Collapse
|
41
|
Sun S, Zhao G, Jia M, Jiang Q, Li S, Wang H, Li W, Wang Y, Bian X, Zhao YG, Huang X, Yang G, Cai H, Pastor-Pareja JC, Ge L, Zhang C, Hu J. Stay in touch with the endoplasmic reticulum. SCIENCE CHINA. LIFE SCIENCES 2024; 67:230-257. [PMID: 38212460 DOI: 10.1007/s11427-023-2443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/28/2023] [Indexed: 01/13/2024]
Abstract
The endoplasmic reticulum (ER), which is composed of a continuous network of tubules and sheets, forms the most widely distributed membrane system in eukaryotic cells. As a result, it engages a variety of organelles by establishing membrane contact sites (MCSs). These contacts regulate organelle positioning and remodeling, including fusion and fission, facilitate precise lipid exchange, and couple vital signaling events. Here, we systematically review recent advances and converging themes on ER-involved organellar contact. The molecular basis, cellular influence, and potential physiological functions for ER/nuclear envelope contacts with mitochondria, Golgi, endosomes, lysosomes, lipid droplets, autophagosomes, and plasma membrane are summarized.
Collapse
Affiliation(s)
- Sha Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haibin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Li
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yan G Zhao
- Brain Research Center, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ge Yang
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jose C Pastor-Pareja
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Neurosciences, Consejo Superior de Investigaciones Cientfflcas-Universidad Miguel Hernandez, San Juan de Alicante, 03550, Spain.
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
42
|
Xun J, Zhang Z, Lv B, Lu D, Yang H, Shang G, Tan JX. A conserved ion channel function of STING mediates noncanonical autophagy and cell death. EMBO Rep 2024; 25:544-569. [PMID: 38177926 PMCID: PMC10897221 DOI: 10.1038/s44319-023-00045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
The cGAS/STING pathway triggers inflammation upon diverse cellular stresses such as infection, cellular damage, aging, and diseases. STING also triggers noncanonical autophagy, involving LC3 lipidation on STING vesicles through the V-ATPase-ATG16L1 axis, as well as induces cell death. Although the proton pump V-ATPase senses organelle deacidification in other contexts, it is unclear how STING activates V-ATPase for noncanonical autophagy. Here we report a conserved channel function of STING in proton efflux and vesicle deacidification. STING activation induces an electron-sparse pore in its transmembrane domain, which mediates proton flux in vitro and the deacidification of post-Golgi STING vesicles in cells. A chemical ligand of STING, C53, which binds to and blocks its channel, strongly inhibits STING-mediated proton flux in vitro. C53 fully blocks STING trafficking from the ER to the Golgi, but adding C53 after STING arrives at the Golgi allows for selective inhibition of STING-dependent vesicle deacidification, LC3 lipidation, and cell death, without affecting trafficking. The discovery of STING as a channel opens new opportunities for selective targeting of canonical and noncanonical STING functions.
Collapse
Affiliation(s)
- Jinrui Xun
- Xiangya School of Medicine, Central South University, Changsha, China
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Zhichao Zhang
- College of Life Sciences, Shanxi Agricultural University, Taiyuan, China
| | - Bo Lv
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Defen Lu
- College of Life Sciences, Shanxi Agricultural University, Taiyuan, China
| | - Haoxiang Yang
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Guijun Shang
- College of Life Sciences, Shanxi Agricultural University, Taiyuan, China.
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.
- Shanxi Provincial Key Laboratory of Protein Structure Determination, SAARI, Taiyuan, China.
| | - Jay Xiaojun Tan
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
43
|
Ebstrup ML, Sønder SL, Fogde DL, Heitmann ASB, Dietrich TN, Dias C, Jäättelä M, Maeda K, Nylandsted J. Annexin A7 mediates lysosome repair independently of ESCRT-III. Front Cell Dev Biol 2024; 11:1211498. [PMID: 38348092 PMCID: PMC10860759 DOI: 10.3389/fcell.2023.1211498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/21/2023] [Indexed: 02/15/2024] Open
Abstract
Lysosomes are crucial organelles essential for various cellular processes, and any damage to them can severely compromise cell viability. This study uncovers a previously unrecognized function of the calcium- and phospholipid-binding protein Annexin A7 in lysosome repair, which operates independently of the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Our research reveals that Annexin A7 plays a role in repairing damaged lysosomes, different from its role in repairing the plasma membrane, where it facilitates repair through the recruitment of ESCRT-III components. Notably, our findings strongly suggest that Annexin A7, like the ESCRT machinery, is dispensable for membrane contact site formation within the newly discovered phosphoinositide-initiated membrane tethering and lipid transport (PITT) pathway. Instead, we speculate that Annexin A7 is recruited to damaged lysosomes and promotes repair through its membrane curvature and cross-linking capabilities. Our findings provide new insights into the diverse mechanisms underlying lysosomal membrane repair and highlight the multifunctional role of Annexin A7 in membrane repair.
Collapse
Affiliation(s)
| | | | | | | | | | - Catarina Dias
- Membrane Integrity, Danish Cancer Institute, Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, Danish Cancer Institute, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism, Danish Cancer Institute, Copenhagen, Denmark
| | - Jesper Nylandsted
- Membrane Integrity, Danish Cancer Institute, Copenhagen, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
44
|
Radulovic M, Stenmark H. Lysophagy prevents neurotoxic aggregate transmission. Proc Natl Acad Sci U S A 2024; 121:e2321181121. [PMID: 38190545 PMCID: PMC10801843 DOI: 10.1073/pnas.2321181121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Affiliation(s)
- Maja Radulovic
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, OsloN-0379, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, OsloN-0379, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, OsloN-0379, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, OsloN-0379, Norway
| |
Collapse
|
45
|
Inpanathan S, Ospina-Escobar E, Li VC, Adamji Z, Lackraj T, Cho YH, Porco N, Choy CH, McPhee JB, Botelho RJ. Salmonella actively modulates TFEB in murine macrophages in a growth-phase and time-dependent manner. Microbiol Spectr 2024; 12:e0498122. [PMID: 38051049 PMCID: PMC10783059 DOI: 10.1128/spectrum.04981-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Activation of the host transcription factor TFEB helps mammalian cells adapt to stresses such as starvation and infection by upregulating lysosome, autophagy, and immuno-protective gene expression. Thus, TFEB is generally thought to protect host cells. However, it may also be that pathogenic bacteria like Salmonella orchestrate TFEB in a spatio-temporal manner to harness its functions to grow intracellularly. Indeed, the relationship between Salmonella and TFEB is controversial since some studies showed that Salmonella actively promotes TFEB, while others have observed that Salmonella degrades TFEB and that compounds that promote TFEB restrict bacterial growth. Our work provides a path to resolve these apparent discordant observations since we showed that stationary-grown Salmonella actively delays TFEB after infection, while late-log Salmonella is permissive of TFEB activation. Nevertheless, the exact function of this manipulation remains unclear, but conditions that erase the conditional control of TFEB by Salmonella may be detrimental to the microbe.
Collapse
Affiliation(s)
- Subothan Inpanathan
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Erika Ospina-Escobar
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Vanessa Cruz Li
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Zainab Adamji
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Tracy Lackraj
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Youn Hee Cho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Natasha Porco
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Christopher H. Choy
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Joseph B. McPhee
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Roberto J. Botelho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Cui M, Yamano K, Yamamoto K, Yamamoto-Imoto H, Minami S, Yamamoto T, Matsui S, Kaminishi T, Shima T, Ogura M, Tsuchiya M, Nishino K, Layden BT, Kato H, Ogawa H, Oki S, Okada Y, Isaka Y, Kosako H, Matsuda N, Yoshimori T, Nakamura S. HKDC1, a target of TFEB, is essential to maintain both mitochondrial and lysosomal homeostasis, preventing cellular senescence. Proc Natl Acad Sci U S A 2024; 121:e2306454120. [PMID: 38170752 PMCID: PMC10786298 DOI: 10.1073/pnas.2306454120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondrial and lysosomal functions are intimately linked and are critical for cellular homeostasis, as evidenced by the fact that cellular senescence, aging, and multiple prominent diseases are associated with concomitant dysfunction of both organelles. However, it is not well understood how the two important organelles are regulated. Transcription factor EB (TFEB) is the master regulator of lysosomal function and is also implicated in regulating mitochondrial function; however, the mechanism underlying the maintenance of both organelles remains to be fully elucidated. Here, by comprehensive transcriptome analysis and subsequent chromatin immunoprecipitation-qPCR, we identified hexokinase domain containing 1 (HKDC1), which is known to function in the glycolysis pathway as a direct TFEB target. Moreover, HKDC1 was upregulated in both mitochondrial and lysosomal stress in a TFEB-dependent manner, and its function was critical for the maintenance of both organelles under stress conditions. Mechanistically, the TFEB-HKDC1 axis was essential for PINK1 (PTEN-induced kinase 1)/Parkin-dependent mitophagy via its initial step, PINK1 stabilization. In addition, the functions of HKDC1 and voltage-dependent anion channels, with which HKDC1 interacts, were essential for the clearance of damaged lysosomes and maintaining mitochondria-lysosome contact. Interestingly, HKDC1 regulated mitophagy and lysosomal repair independently of its prospective function in glycolysis. Furthermore, loss function of HKDC1 accelerated DNA damage-induced cellular senescence with the accumulation of hyperfused mitochondria and damaged lysosomes. Our results show that HKDC1, a factor downstream of TFEB, maintains both mitochondrial and lysosomal homeostasis, which is critical to prevent cellular senescence.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo156-8506, Japan
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo113-8510, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Hitomi Yamamoto-Imoto
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Satoshi Minami
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Sho Matsui
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Tatsuya Kaminishi
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
| | - Takayuki Shima
- Department of Biochemistry, Nara Medical University, Kashihara, Nara634-8521, Japan
| | - Monami Ogura
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Megumi Tsuchiya
- Laboratory of Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima770-8503, Japan
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, University of Illinois Chicago, Chicago, IL60612
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL60612
| | - Hisakazu Kato
- Department of Medical Biochemistry, Graduate School of Medicine/Frontier Bioscience, Osaka University, Suita, Osaka565-0871, Japan
| | - Hidesato Ogawa
- Laboratory of Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center, World Premier International Research Center (WPI-IFReC), Osaka University, Suita, Osaka565-0871, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima770-8503, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo156-8506, Japan
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo113-8510, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Shuhei Nakamura
- Department of Biochemistry, Nara Medical University, Kashihara, Nara634-8521, Japan
| |
Collapse
|
47
|
Kakuda K, Ikenaka K, Kuma A, Doi J, Aguirre C, Wang N, Ajiki T, Choong CJ, Kimura Y, Badawy SMM, Shima T, Nakamura S, Baba K, Nagano S, Nagai Y, Yoshimori T, Mochizuki H. Lysophagy protects against propagation of α-synuclein aggregation through ruptured lysosomal vesicles. Proc Natl Acad Sci U S A 2024; 121:e2312306120. [PMID: 38147546 PMCID: PMC10769825 DOI: 10.1073/pnas.2312306120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
The neuron-to-neuron propagation of misfolded α-synuclein (αSyn) aggregates is thought to be key to the pathogenesis of synucleinopathies. Recent studies have shown that extracellular αSyn aggregates taken up by the endosomal-lysosomal system can rupture the lysosomal vesicular membrane; however, it remains unclear whether lysosomal rupture leads to the transmission of αSyn aggregation. Here, we applied cell-based αSyn propagation models to show that ruptured lysosomes are the pathway through which exogenous αSyn aggregates transmit aggregation, and furthermore, this process was prevented by lysophagy, i.e., selective autophagy of damaged lysosomes. αSyn aggregates accumulated predominantly in lysosomes, causing their rupture, and seeded the aggregation of endogenous αSyn, initially around damaged lysosomes. Exogenous αSyn aggregates induced the accumulation of LC3 on lysosomes. This LC3 accumulation was not observed in cells in which a key regulator of autophagy, RB1CC1/FIP200, was knocked out and was confirmed as lysophagy by transmission electron microscopy. Importantly, RB1CC1/FIP200-deficient cells treated with αSyn aggregates had increased numbers of ruptured lysosomes and enhanced propagation of αSyn aggregation. Furthermore, various types of lysosomal damage induced using lysosomotropic reagents, depletion of lysosomal enzymes, or more toxic species of αSyn fibrils also exacerbated the propagation of αSyn aggregation, and impaired lysophagy and lysosomal membrane damage synergistically enhanced propagation. These results indicate that lysophagy prevents exogenous αSyn aggregates from escaping the endosomal-lysosomal system and transmitting aggregation to endogenous cytosolic αSyn via ruptured lysosomal vesicles. Our findings suggest that the progression and severity of synucleinopathies are associated with damage to lysosomal membranes and impaired lysophagy.
Collapse
Affiliation(s)
- Keita Kakuda
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Akiko Kuma
- Department of Genetics, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Junko Doi
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - César Aguirre
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Nan Wang
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Takahiro Ajiki
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Chi-Jing Choong
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Yasuyoshi Kimura
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Shaymaa Mohamed Mohamed Badawy
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
- Department of Agricultural Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig44519, Egypt
| | - Takayuki Shima
- Department of Genetics, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Shuhei Nakamura
- Department of Biochemistry, Nara Medical University, Kashihara, Nara634-8521, Japan
| | - Kousuke Baba
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
- Department of Neurotherapeutics, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Seiichi Nagano
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
- Department of Neurotherapeutics, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Yoshitaka Nagai
- Department of Neurology, Kindai University, Faculty of Medicine, Osaka-sayama, Osaka589-8511, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University, Graduate School of Medicine, Suita, Osaka565-0871, Japan
| |
Collapse
|
48
|
Zheng A, Guo Z, Li C, Zhang Z, Li C, Yao J, Wang X, Li J, Zhao S, Wang W, Zhang W, Zhou L. A wide-range UAC sensor for the classification of hyperuricemia in spot samples. Talanta 2024; 266:125102. [PMID: 37651905 DOI: 10.1016/j.talanta.2023.125102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/03/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
Hyperuricemia (HUA) has received wide attention as an independent risk factor for various chronic diseases. HUA is usually asymptomatic, and the related damage can be reduced by effective classification and treatment according to uric acid clearance (UAC). UAC is a calculated ratio based on the uric acid level in blood and urine. This important method is not universally used due to the inconvenience of collecting 24-h urine samples in the clinic, and most sensors are limited by the need for wide ranges and for two testing samples. In this study, a pH-sensitive urate oxidase-modified electrochemical sensor with filter membrane was proposed to calculate UAC by detecting uric acid in blood and urine. The results demonstrated that the sensor had high selectivity for uric acid with a detection limit of 0.25 μM in 5 μL spot sample, the wide linear range was 2.5-7000 μM, and the impact of the sample pH was calibrated. The linear correlation of the measurement results between the UAC sensor and clinical instrument was higher than 0.980 for 87 patients. The change in UAC in spot urine may reflect alteration in body-transport mechanisms. Thus, the UAC sensor may open a new window for the management of HUA and broaden its application in point-of-care testing.
Collapse
Affiliation(s)
- Anran Zheng
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen Guo
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Suzhou CASENS Co., Ltd, Suzhou, 215163, China
| | - Chao Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhiqi Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Chuanyu Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Suzhou CASENS Co., Ltd, Suzhou, 215163, China
| | - Jia Yao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jinze Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Shasha Zhao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Weiguo Wang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, Jiangsu Province, China.
| | - Wei Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Lianqun Zhou
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Suzhou CASENS Co., Ltd, Suzhou, 215163, China.
| |
Collapse
|
49
|
Sanyal A, Scanavachi G, Somerville E, Saminathan A, Nair A, Oikonomou A, Hatzakis NS, Kirchhausen T. Constitutive Endolysosomal Perforation in Neurons allows Induction of α-Synuclein Aggregation by Internalized Pre-Formed Fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573738. [PMID: 38260258 PMCID: PMC10802249 DOI: 10.1101/2023.12.30.573738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The endocytic pathway is both an essential route of molecular uptake in cells and a potential entry point for pathology-inducing cargo. The cell-to-cell spread of cytotoxic aggregates, such as those of α-synuclein (α-syn) in Parkinson's Disease (PD), exemplifies this duality. Here we used a human iPSC-derived induced neuronal model (iNs) prone to death mediated by aggregation in late endosomes and lysosomes of endogenous α-syn, seeded by internalized pre-formed fibrils of α-syn (PFFs). This PFF-mediated death was not observed with parental iPSCs or other non-neuronal cells. Using live-cell optical microscopy to visualize the read out of biosensors reporting endo-lysosome wounding, we discovered that up to about 10% of late endosomes and lysosomes in iNs exhibited spontaneous constitutive perforations, regardless of the presence of internalized PFFs. This wounding, absent in parental iPSCs and non-neuronal cells, corresponded to partial damage by nanopores in the limiting membranes of a subset of endolysosomes directly observed by volumetric focused ion beam scanning electron microscopy (FIB-SEM) in iNs and in CA1 pyramidal neurons from mouse brain, and not found in iPSCs or in other non-neuronal cells in culture or in mouse liver and skin. We suggest that the compromised limiting membranes in iNs and neurons in general are the primary conduit for cytosolic α-syn to access PFFs entrapped within endo-lysosomal lumens, initiating PFF-mediated α-syn aggregation. Significantly, eradicating the intrinsic endolysosomal perforations in iNs by inhibiting the endosomal Phosphatidylinositol-3-Phosphate/Phosphatidylinositol 5-Kinase (PIKfyve kinase) using Apilimod or Vacuolin-1 markedly reduced PFF-induced α-syn aggregation, despite PFFs continuing to enter the endolysosomal compartment. Crucially, this intervention also diminished iN death associated with PFF incubation. Our results reveal the surprising presence of intrinsically perforated endo-lysosomes in neurons, underscoring their crucial early involvement in the genesis of toxic α-syn aggregates induced by internalized PFFs. This discovery offers a basis for employing PIKfyve kinase inhibition as a potential therapeutic strategy to counteract synucleinopathies.
Collapse
Affiliation(s)
- Anwesha Sanyal
- Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
| | - Elliott Somerville
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
| | - Anand Saminathan
- Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
| | - Athul Nair
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
| | | | - Nikos S. Hatzakis
- Department of Chemistry University of Copenhagen, 2100 Copenhagen, Denmark
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
50
|
Awuah WA, Tan JK, Shkodina AD, Ferreira T, Adebusoye FT, Mazzoleni A, Wellington J, David L, Chilcott E, Huang H, Abdul-Rahman T, Shet V, Atallah O, Kalmanovich J, Jiffry R, Madhu DE, Sikora K, Kmyta O, Delva MY. Hereditary spastic paraplegia: Novel insights into the pathogenesis and management. SAGE Open Med 2023; 12:20503121231221941. [PMID: 38162912 PMCID: PMC10757446 DOI: 10.1177/20503121231221941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Hereditary spastic paraplegia is a genetically heterogeneous neurodegenerative disorder characterised primarily by muscle stiffness in the lower limbs. Neurodegenerative disorders are conditions that result from cellular and metabolic abnormalities, many of which have strong genetic ties. While ageing is a known contributor to these changes, certain neurodegenerative disorders can manifest early in life, progressively affecting a person's quality of life. Hereditary spastic paraplegia is one such condition that can appear in individuals of any age. In hereditary spastic paraplegia, a distinctive feature is the degeneration of long nerve fibres in the corticospinal tract of the lower limbs. This degeneration is linked to various cellular and metabolic processes, including mitochondrial dysfunction, remodelling of the endoplasmic reticulum membrane, autophagy, abnormal myelination processes and alterations in lipid metabolism. Additionally, hereditary spastic paraplegia affects processes like endosome membrane trafficking, oxidative stress and mitochondrial DNA polymorphisms. Disease-causing genetic loci and associated genes influence the progression and severity of hereditary spastic paraplegia, potentially affecting various cellular and metabolic functions. Although hereditary spastic paraplegia does not reduce a person's lifespan, it significantly impairs their quality of life as they age, particularly with more severe symptoms. Regrettably, there are currently no treatments available to halt or reverse the pathological progression of hereditary spastic paraplegia. This review aims to explore the metabolic mechanisms underlying the pathophysiology of hereditary spastic paraplegia, emphasising the interactions of various genes identified in recent network studies. By comprehending these associations, targeted molecular therapies that address these biochemical processes can be developed to enhance treatment strategies for hereditary spastic paraplegia and guide clinical practice effectively.
Collapse
Affiliation(s)
| | | | - Anastasiia D Shkodina
- Department of Neurological Diseases, Poltava State Medical University, Poltava, Ukraine
| | - Tomas Ferreira
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Adele Mazzoleni
- Barts and the London School of Medicine and Dentistry, London, UK
| | - Jack Wellington
- Cardiff University School of Medicine, Cardiff University, Wales, UK
| | - Lian David
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Ellie Chilcott
- Cardiff University School of Medicine, Cardiff University, Wales, UK
| | - Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | | | - Vallabh Shet
- Faculty of Medicine, Bangalore Medical College and Research Institute, Karnataka, India
| | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Riaz Jiffry
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | | | | | | | - Mykhailo Yu Delva
- Department of Neurological Diseases, Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|