1
|
Zhang Y, Xie Y, Zhang X, Duan C, Ma J, Wang Y, Wu Y, Shan N, Cheng K, Zhuang R, Bian K. CD226 implicated in Akt-dependent apoptosis of CD4 + T cell contributes to asthmatic pathogenesis. Cell Death Dis 2024; 15:705. [PMID: 39349422 PMCID: PMC11442704 DOI: 10.1038/s41419-024-07080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Asthma is a chronic airway inflammatory disease in which CD4+ T cell dysregulation occurs. Here, we investigated the molecular role and clinical significance of CD226, a costimulatory molecule of T lymphocytes, in the development of allergic asthma. Our results revealed that the expression of CD226 was significantly increased in CD4+ effector T cells, especially in T helper (Th) 2 cells and Th17 cells in patients with asthma. Moreover, CD4+ T cell-specific Cd226-knockout mice were generated and together with littermates were challenged with ovalbumin (OVA) to establish a model of allergic asthma. We found that CD226 deficiency in CD4+ T cells mitigated lung inflammation, IgE production, and eosinophil infiltration and reduced airway remodeling in experimental allergic asthma. However, the impact of CD226 on asthma was independent of Treg cell modulation. Through RNA-seq data analysis, the apoptosis pathway was screened. Mechanistically, CD226 deletion promoted CD4+ T cell late apoptosis via the activation of Caspase-3 in an Akt-dependent manner. Furthermore, blocking CD226 signaling with a recombinant fusion protein attenuated asthma features in mice and achieved a good therapeutic effect. Overall, this study revealed a unique role of CD226 in CD4+ T cell regulation in asthma pathogenesis. Therefore, targeting CD226 may provide new insights into the clinical treatment of asthma.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yang Xie
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuexin Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jingchang Ma
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yilin Wu
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Niqi Shan
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Cheng
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Ka Bian
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Arvind M, Pattnaik B, Gheware A, Prakash YS, Srivastava M, Agrawal A, Bhatraju NK. Plausible role of INPP4A dysregulation in idiopathic pulmonary fibrosis. Physiol Rep 2024; 12:e16032. [PMID: 38720166 PMCID: PMC11078778 DOI: 10.14814/phy2.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/02/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
INPP4A has been shown to be involved in the regulation of cell proliferation and apoptosis of multiple cell types including fibroblasts. Previous reports from our group have demonstrated the role of inositol polyphosphate 4-phosphatase Type I A (INPP4A) in these functions. Though existing evidences suggest a critical role for INPP4A in the maintenance of lung homeostasis, its role in chronic lung diseases is relatively under explored. In the current study, we made an attempt to understand the regulation of INPP4A in idiopathic pulmonary fibrosis (IPF). Through integration of relevant INPP4A gene expression data from public repositories with our results from in vitro experiments and mouse models, we show that INPP4A is altered in IPF. Interestingly, the direction of the change is dependent both on the disease stage and the region of the lung used. INPP4A was found to be upregulated when analyzed in lung sample representative of the whole lung, but was downregulated in the fibrotic regions of the lung. Similarly, INPP4A was found to be high, compared to controls, only in the early stage of the disease. Though the observed increase in INPP4A was found to be negatively correlated to physiological indices, FVC, and DLCO, of lung function, treatment with anti-INPP4A antibody worsened the condition in bleomycin treated mice. These contrasting results taken together are suggestive of a nuanced regulation of INPP4A in IPF which is dependent on the disease stage, cellular state and extent of fibrosis in the lung region being analyzed.
Collapse
Affiliation(s)
- Meghana Arvind
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Bijay Pattnaik
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Department of Pulmonary Critical Care and Sleep MedicineAll India Institute of Medical SciencesNew DelhiIndia
| | - Atish Gheware
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Division of Pulmonary and Critical Care Medicine, Department of MedicineWashington University in St. LouisSt. LouisMissouriUSA
| | - Y. S. Prakash
- Department of Anaesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Mousami Srivastava
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Symbiosis Statistical Institute (SSI)Symbiosis International University (SIU)PuneMaharashtraIndia
| | - Anurag Agrawal
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Trivedi School of BiosciencesAshoka UniversitySonipatHaryanaIndia
| | - Naveen Kumar Bhatraju
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Trivedi School of BiosciencesAshoka UniversitySonipatHaryanaIndia
| |
Collapse
|
3
|
Forston MD, Wei GZ, Chariker JH, Stephenson T, Andres K, Glover C, Rouchka EC, Whittemore SR, Hetman M. Enhanced oxidative phosphorylation, re-organized intracellular signaling, and epigenetic de-silencing as revealed by oligodendrocyte translatome analysis after contusive spinal cord injury. Sci Rep 2023; 13:21254. [PMID: 38040794 PMCID: PMC10692148 DOI: 10.1038/s41598-023-48425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Reducing the loss of oligodendrocytes (OLs) is a major goal for neuroprotection after spinal cord injury (SCI). Therefore, the OL translatome was determined in Ribotag:Plp1-CreERT2 mice at 2, 10, and 42 days after moderate contusive T9 SCI. At 2 and 42 days, mitochondrial respiration- or actin cytoskeleton/cell junction/cell adhesion mRNAs were upregulated or downregulated, respectively. The latter effect suggests myelin sheath loss/morphological simplification which is consistent with downregulation of cholesterol biosynthesis transcripts on days 10 and 42. Various regulators of pro-survival-, cell death-, and/or oxidative stress response pathways showed peak expression acutely, on day 2. Many acutely upregulated OL genes are part of the repressive SUZ12/PRC2 operon suggesting that epigenetic de-silencing contributes to SCI effects on OL gene expression. Acute OL upregulation of the iron oxidoreductase Steap3 was confirmed at the protein level and replicated in cultured OLs treated with the mitochondrial uncoupler FCCP. Hence, STEAP3 upregulation may mark mitochondrial dysfunction. Taken together, in SCI-challenged OLs, acute and subchronic enhancement of mitochondrial respiration may be driven by axonal loss and subsequent myelin sheath degeneration. Acutely, the OL switch to oxidative phosphorylation may lead to oxidative stress that is further amplified by upregulation of such enzymes as STEAP3.
Collapse
Affiliation(s)
- Michael D Forston
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - George Z Wei
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- MD/PhD Program, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Julia H Chariker
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
- Neuroscience Training, University Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Tyler Stephenson
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Kariena Andres
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Charles Glover
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Eric C Rouchka
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- MD/PhD Program, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- MD/PhD Program, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
4
|
Abstract
Phosphoinositides (PIs) are phospholipids derived from phosphatidylinositol. PIs are regulated via reversible phosphorylation, which is directed by the opposing actions of PI kinases and phosphatases. PIs constitute a minor fraction of the total cellular lipid pool but play pleiotropic roles in multiple aspects of cell biology. Genetic mutations of PI regulatory enzymes have been identified in rare congenital developmental syndromes, including ciliopathies, and in numerous human diseases, such as cancer and metabolic and neurological disorders. Accordingly, PI regulatory enzymes have been targeted in the design of potential therapeutic interventions for human diseases. Recent advances place PIs as central regulators of membrane dynamics within functionally distinct subcellular compartments. This brief review focuses on the emerging role PIs play in regulating cell signaling within the primary cilium and in directing transfer of molecules at interorganelle membrane contact sites and identifies new roles for PIs in subcellular spaces.
Collapse
Affiliation(s)
- Elizabeth Michele Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Christina Anne Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Harald Alfred Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research. The Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
| |
Collapse
|
5
|
Leonard TA, Loose M, Martens S. The membrane surface as a platform that organizes cellular and biochemical processes. Dev Cell 2023; 58:1315-1332. [PMID: 37419118 DOI: 10.1016/j.devcel.2023.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
Membranes are essential for life. They act as semi-permeable boundaries that define cells and organelles. In addition, their surfaces actively participate in biochemical reaction networks, where they confine proteins, align reaction partners, and directly control enzymatic activities. Membrane-localized reactions shape cellular membranes, define the identity of organelles, compartmentalize biochemical processes, and can even be the source of signaling gradients that originate at the plasma membrane and reach into the cytoplasm and nucleus. The membrane surface is, therefore, an essential platform upon which myriad cellular processes are scaffolded. In this review, we summarize our current understanding of the biophysics and biochemistry of membrane-localized reactions with particular focus on insights derived from reconstituted and cellular systems. We discuss how the interplay of cellular factors results in their self-organization, condensation, assembly, and activity, and the emergent properties derived from them.
Collapse
Affiliation(s)
- Thomas A Leonard
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
| | - Martin Loose
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
6
|
Forston MD, Wei G, Chariker JH, Stephenson T, Andres K, Glover C, Rouchka EC, Whittemore SR, Hetman M. Enhanced oxidative phosphorylation, re-organized intracellular signaling, and epigenetic de-silencing as revealed by oligodendrocyte translatome analysis after contusive spinal cord injury. RESEARCH SQUARE 2023:rs.3.rs-3164618. [PMID: 37546871 PMCID: PMC10402259 DOI: 10.21203/rs.3.rs-3164618/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Reducing the loss of oligodendrocytes (OLs) is a major goal for neuroprotection after spinal cord injury (SCI). Therefore, the OL translatome was determined in Ribotag:Plp1-CreERT2 mice at 2, 10, and 42 days after moderate contusive T9 SCI. At 2 and 42 days, mitochondrial respiration- or actin cytoskeleton/cell junction/cell adhesion mRNAs were upregulated or downregulated, respectively. The latter effect suggests myelin sheath loss/morphological simplification which is consistent with downregulation of cholesterol biosynthesis transcripts on days 10 and 42. Various regulators of pro-survival-, cell death-, and/or oxidative stress response pathways showed peak expression acutely, on day 2. Many acutely upregulated OL genes are part of the repressive SUZ12/PRC2 operon suggesting that epigenetic de-silencing contributes to SCI effects on OL gene expression. Acute OL upregulation of the iron oxidoreductase Steap3 was confirmed at the protein level and replicated in cultured OLs treated with the mitochondrial uncoupler FCCP. Hence, STEAP3 upregulation may mark mitochondrial dysfunction. Taken together, in SCI-challenged OLs, acute and subchronic enhancement of mitochondrial respiration may be driven by axonal loss and subsequent myelin sheath degeneration. Acutely, the OL switch to oxidative phosphorylation may lead to oxidative stress that is further amplified by upregulation of such enzymes as STEAP3.
Collapse
Affiliation(s)
| | - George Wei
- University of Louisville School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Fernandes S, Meyer ST, Shah JP, Adhikari AA, Kerr WG, Chisholm JD. N1-Benzyl Tryptamine Pan-SHIP1/2 Inhibitors: Synthesis and Preliminary Biological Evaluation as Anti-Tumor Agents. Molecules 2022; 27:8451. [PMID: 36500543 PMCID: PMC9738565 DOI: 10.3390/molecules27238451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Inhibition of phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase (SHIP) with small molecule inhibitors leads to apoptosis in tumor cells. Inhibitors that target both SHIP1 and SHIP2 (pan-SHIP1/2 inhibitors) may have benefits in these areas since paralog compensation is not possible when both SHIP paralogs are being inhibited. A series of tryptamine-based pan-SHIP1/2 inhibitors have been synthesized and evaluated for their ability to inhibit the SHIP paralogs. The most active compounds were also evaluated for their effects on cancer cell lines.
Collapse
Affiliation(s)
- Sandra Fernandes
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Shea T. Meyer
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Jigisha P. Shah
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | | | - William G. Kerr
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - John D. Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
8
|
Tan H, Tong X, Gao Z, Xu Y, Tan L, Zhang W, Xiang R, Xu Y. The hMeDIP-Seq identified INPP4A as a novel biomarker for eosinophilic chronic rhinosinusitis with nasal polyps. Epigenomics 2022; 14:757-775. [PMID: 35765979 DOI: 10.2217/epi-2022-0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Eosinophilic chronic rhinosinusitis with nasal polyps (ECRSwNP) is an endotype of chronic rhinosinusitis with nasal polyps characterized by more severe symptoms, a stronger association with asthma and a greater recurrence risk. It is unknown whether DNA hydroxymethylation could influence ECRSwNP. Methods: Hydroxymethylated DNA immunoprecipitation sequencing was carried out in three distinct groups (control, ECRSwNP and NECRSwNP). Additional qRT-PCR, immunohistochemistry and analysis of the receiver operating characteristic curve were performed. Results: Between ECRSwNP and NECRSwNP, 26 genes exhibited differential DNA hydroxymethylation. Consistent with their hydroxymethylation level, GNAL, INPP4A and IRF4 expression levels were significantly different between ECRSwNP and the other two groups. The receiver operating characteristic curve revealed that INPP4A mRNA has a high predictive accuracy for ECRSwNP. Conclusion: DNA hydroxymethylation regulates the expression of multiple genes in ECRSwNP. INPP4A mRNA was markedly decreased in ECRSwNP polyps and can predict ECRSwNP.
Collapse
Affiliation(s)
- Hanyu Tan
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoting Tong
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ziang Gao
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingying Xu
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lu Tan
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Zhang
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rong Xiang
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Xu
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
9
|
Hamila SA, Ooms LM, Rodgers SJ, Mitchell CA. The INPP4B paradox: Like PTEN, but different. Adv Biol Regul 2021; 82:100817. [PMID: 34216856 DOI: 10.1016/j.jbior.2021.100817] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Cancer is a complex and heterogeneous disease marked by the dysregulation of cancer driver genes historically classified as oncogenes or tumour suppressors according to their ability to promote or inhibit tumour development and growth, respectively. Certain genes display both oncogenic and tumour suppressor functions depending on the biological context, and as such have been termed dual-role cancer driver genes. However, because of their context-dependent behaviour, the tumourigenic mechanism of many dual-role genes is elusive and remains a significant knowledge gap in our effort to understand and treat cancer. Inositol polyphosphate 4-phosphatase type II (INPP4B) is an emerging dual-role cancer driver gene, primarily known for its role as a negative regulator of the phosphoinositide 3-kinase (PI3K)/AKT signalling pathway. In response to growth factor stimulation, class I PI3K generates PtdIns(3,4,5)P3 at the plasma membrane. PtdIns(3,4,5)P3 can be hydrolysed by inositol polyphosphate 5-phosphatases to generate PtdIns(3,4)P2, which, together with PtdIns(3,4,5)P3, facilitates the activation of AKT to promote cell proliferation, survival, migration, and metabolism. Phosphatase and tensin homology on chromosome 10 (PTEN) and INPP4B are dual-specificity phosphatases that hydrolyse PtdIns(3,4,5)P3 and PtdIns(3,4)P2, respectively, and thus negatively regulate PI3K/AKT signalling. PTEN is a bona fide tumour suppressor that is frequently lost in human tumours. INPP4B was initially characterised as a tumour suppressor akin to PTEN, and has been implicated as such in a number of cancers, including prostate, thyroid, and basal-like breast cancers. However, evidence has since emerged revealing INPP4B as a paradoxical oncogene in several malignancies, with increased INPP4B expression reported in AML, melanoma and colon cancers among others. Although the tumour suppressive function of INPP4B has been mostly ascribed to its ability to negatively regulate PI3K/AKT signalling, its oncogenic function remains less clear, with proposed mechanisms including promotion of PtdIns(3)P-dependent SGK3 signalling, inhibition of PTEN-dependent AKT activation, and enhancing DNA repair mechanisms to confer chemoresistance. Nevertheless, research is ongoing to identify the factors that dictate the tumourigenic output of INPP4B in different human cancers. In this review we discuss the dualistic role that INPP4B plays in the context of cancer development, progression and treatment, drawing comparisons to PTEN to explore how their similarities and, importantly, their differences may account for their diverging roles in tumourigenesis.
Collapse
Affiliation(s)
- Sabryn A Hamila
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Lisa M Ooms
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Samuel J Rodgers
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
10
|
Drosophila ß Heavy-Spectrin is required in polarized ensheathing glia that form a diffusion-barrier around the neuropil. Nat Commun 2021; 12:6357. [PMID: 34737284 PMCID: PMC8569210 DOI: 10.1038/s41467-021-26462-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 10/06/2021] [Indexed: 01/03/2023] Open
Abstract
In the central nervous system (CNS), functional tasks are often allocated to distinct compartments. This is also evident in the Drosophila CNS where synapses and dendrites are clustered in distinct neuropil regions. The neuropil is separated from neuronal cell bodies by ensheathing glia, which as we show using dye injection experiments, contribute to the formation of an internal diffusion barrier. We find that ensheathing glia are polarized with a basolateral plasma membrane rich in phosphatidylinositol-(3,4,5)-triphosphate (PIP3) and the Na+/K+-ATPase Nervana2 (Nrv2) that abuts an extracellular matrix formed at neuropil-cortex interface. The apical plasma membrane is facing the neuropil and is rich in phosphatidylinositol-(4,5)-bisphosphate (PIP2) that is supported by a sub-membranous ßHeavy-Spectrin cytoskeleton. ßHeavy-spectrin mutant larvae affect ensheathing glial cell polarity with delocalized PIP2 and Nrv2 and exhibit an abnormal locomotion which is similarly shown by ensheathing glia ablated larvae. Thus, polarized glia compartmentalizes the brain and is essential for proper nervous system function.
Collapse
|
11
|
Targeting SHIP1 and SHIP2 in Cancer. Cancers (Basel) 2021; 13:cancers13040890. [PMID: 33672717 PMCID: PMC7924360 DOI: 10.3390/cancers13040890] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Phosphoinositol signaling pathways and their dysregulation have been shown to have a fundamental role in health and disease, respectively. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, are regulators of the PI3K/AKT pathway that have crucial roles in cancer progression. This review aims to summarize the role of SHIP1 and SHIP2 in cancer signaling and the immune response to cancer, the discovery and use of SHIP inhibitors and agonists as possible cancer therapeutics. Abstract Membrane-anchored and soluble inositol phospholipid species are critical mediators of intracellular cell signaling cascades. Alterations in their normal production or degradation are implicated in the pathology of a number of disorders including cancer and pro-inflammatory conditions. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, play a fundamental role in these processes by depleting PI(3,4,5)P3, but also by producing PI(3,4)P2 at the inner leaflet of the plasma membrane. With the intent of targeting SHIP1 or SHIP2 selectively, or both paralogs simultaneously, small molecule inhibitors and agonists have been developed and tested in vitro and in vivo over the last decade in various disease models. These studies have shown promising results in various pre-clinical models of disease including cancer and tumor immunotherapy. In this review the potential use of SHIP inhibitors in cancer is discussed with particular attention to the molecular structure, binding site and efficacy of these SHIP inhibitors.
Collapse
|
12
|
Bagchi D, Mason BD, Baldino K, Li B, Lee EJ, Zhang Y, Chu LK, El Raheb S, Sinha I, Neppl RL. Adult-Onset Myopathy with Constitutive Activation of Akt following the Loss of hnRNP-U. iScience 2020; 23:101319. [PMID: 32659719 PMCID: PMC7358745 DOI: 10.1016/j.isci.2020.101319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/30/2020] [Accepted: 06/24/2020] [Indexed: 01/03/2023] Open
Abstract
Skeletal muscle has the remarkable ability to modulate its mass in response to changes in nutritional input, functional utilization, systemic disease, and age. This is achieved by the coordination of transcriptional and post-transcriptional networks and the signaling cascades balancing anabolic and catabolic processes with energy and nutrient availability. The extent to which alternative splicing regulates these signaling networks is uncertain. Here we investigate the role of the RNA-binding protein hnRNP-U on the expression and splicing of genes and the signaling processes regulating skeletal muscle hypertrophic growth. Muscle-specific Hnrnpu knockout (mKO) mice develop an adult-onset myopathy characterized by the selective atrophy of glycolytic muscle, the constitutive activation of Akt, increases in cellular and metabolic stress gene expression, and changes in the expression and splicing of metabolic and signal transduction genes. These findings link Hnrnpu with the balance between anabolic signaling, cellular and metabolic stress, and physiological growth. Hnrnpu mKO mice develop adult-onset myopathy with selective glycolytic muscle atrophy Akt is constitutively active in the atrophied muscles of Hnrnpu mKO mice Hnrnpu mutants show altered gene expression and alternative splicing patterns Induction of genes associated with cellular and metabolic stress
Collapse
Affiliation(s)
- Debalina Bagchi
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Benjamin D Mason
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Kodilichi Baldino
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Bin Li
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Eun-Joo Lee
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Yuteng Zhang
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Linh Khanh Chu
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Sherif El Raheb
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Indranil Sinha
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Ronald L Neppl
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Small molecule targeting of SHIP1 and SHIP2. Biochem Soc Trans 2020; 48:291-300. [DOI: 10.1042/bst20190775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Modulating the activity of the Src Homology 2 (SH2) — containing Inositol 5′-Phosphatase (SHIP) enzyme family with small molecule inhibitors provides a useful and unconventional method of influencing cell signaling in the PI3K pathway. The development of small molecules that selectively target one of the SHIP paralogs (SHIP1 or SHIP2) as well as inhibitors that simultaneously target both enzymes have provided promising data linking the phosphatase activity of the SHIP enzymes to disorders and disease states that are in dire need of new therapeutic targets. These include cancer, immunotherapy, diabetes, obesity, and Alzheimer's disease. In this mini-review, we will provide a brief overview of research in these areas that support targeting SHIP1, SHIP2 or both enzymes for therapeutic purposes.
Collapse
|
14
|
Aki S, Yoshioka K, Takuwa N, Takuwa Y. TGFβ receptor endocytosis and Smad signaling require synaptojanin1, PI3K-C2α-, and INPP4B-mediated phosphoinositide conversions. Mol Biol Cell 2020; 31:360-372. [PMID: 31913757 PMCID: PMC7183790 DOI: 10.1091/mbc.e19-11-0662] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphoinositide conversion regulates a diverse array of dynamic membrane events including endocytosis. However, it is not well understood which enzymes are involved in phosphoinositide conversions for receptor endocytosis. We found by small interfering RNA (siRNA)-mediated knockdown (KD) that class II PI3K α-isoform (PI3K-C2α), the 5'-phosphatase synaptojanin1 (Synj1), and the 4'-phosphatase INPP4B, but not PI3K-C2β, Synj2, or INPP4A, were required for TGFβ-induced endocytosis of TGFβ receptor. TGFβ induced rapid decreases in PI(4,5)P2 at the plasma membrane (PM) with increases in PI(4)P, followed by increases in PI(3,4)P2, in a TGFβ receptor kinase ALK5-dependent manner. TGFβ induced the recruitment of both synaptojanin1 and PI3K-C2α to the PM with their substantial colocalization. Knockdown of synaptojanin1 abolished TGFβ-induced PI(4,5)P2 decreases and PI(4)P increases. Interestingly, PI3K-C2α KD abolished not only TGFβ-induced PI(3,4)P2 increases but also TGFβ-induced synaptojanin1 recruitment to the PM, PI(4,5)P2 decreases, and PI(4)P increases. Finally, the phosphoinositide conversions were necessary for TGFβ-induced activation of Smad2 and Smad3. These observations demonstrate that the sequential phosphoinositide conversions mediated by Synj1, PI3K-C2α, and INPP4B are essential for TGFβ receptor endocytosis and its signaling.
Collapse
Affiliation(s)
- Sho Aki
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa 920-8640, Japan
| | - Kazuaki Yoshioka
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa 920-8640, Japan
| | - Noriko Takuwa
- Department of Health Science, Ishikawa Prefectural University, Kahoku, Ishikawa 929-1210, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
15
|
Li X, Miao Y, Pal DS, Devreotes PN. Excitable networks controlling cell migration during development and disease. Semin Cell Dev Biol 2019; 100:133-142. [PMID: 31836289 DOI: 10.1016/j.semcdb.2019.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022]
Abstract
The directed movements of individual, groups, or sheets of cells at specific times in particular locations bring about form and complexity to developing organisms. Cells move by extending protrusions, such as macropinosomes, pseudopods, lamellipods, filopods, or blebs. Although many of the cytoskeletal components within these structures are known, less is known about the mechanisms that determine their location, number, and characteristics. Recent evidence suggests that control may be exerted by a signal transduction excitable network whose components and activities, including Ras, PI3K, TorC2, and phosphoinositides, self-organize on the plasma membrane and propagate in waves. The waves drive the various types of protrusions, which in turn, determine the modes of cell migration. Acute perturbations at specific points in the network produce abrupt shifts in protrusion type, including transitions from pseudopods to filopods or lamellipods. These observations have also contributed to a delineation of the signal transduction network, including candidate fast positive and delayed negative feedback loops. The network contains many oncogenes and tumor suppressors, and other molecules which have recently been implicated in developmental and metabolic abnormalities. Thus, the concept of signal transduction network excitability in cell migration can be used to understand disease states and morphological changes occurring in development.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Mangialardi EM, Chen K, Salmon B, Vacher J, Salmena L. Investigating the duality of Inpp4b function in the cellular transformation of mouse fibroblasts. Oncotarget 2019; 10:6378-6390. [PMID: 31695845 PMCID: PMC6824866 DOI: 10.18632/oncotarget.27293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/19/2019] [Indexed: 11/25/2022] Open
Abstract
Inositol Polyphosphate 4-Phosphatase, Type II (INPP4B) is a tumour suppressor in breast, ovarian, prostate, thyroid and other cancers, attributed to its ability to reduce oncogenic Akt-signaling. However, emerging studies show that INPP4B also has tumour-promoting properties in cancers including acute myeloid leukemia, colon cancer, melanoma and breast cancer. Together these findings suggest that INPP4B may be a context dependent cancer gene. Whether INPP4B functions solely in a tumour suppressing or tumour promoting manner, or both in non-transformed cells is currently not clear. In this study, consequences of deficiency and overexpression of INPP4B on cellular transformation was investigated using a mouse embryonic fibroblast (MEF) model of cellular transformation. We observed that neither deficiency nor overexpression of INPP4B was sufficient to induce neoplastic transformation, alone or in combination with H-Ras V12 or E1A overexpression. However, Inpp4b-deficiency did cooperate with SV40 T-Large-mediated cellular transformation, a finding which was associated with increased phosphorylated-Akt levels. Transformation and phosphorylated-Akt levels were dampened upon overexpression of INPP4B in SV40 T-Large-MEF. Together, our findings support a model where INPP4B function suppresses transformation mediated by SV40 T-Large, but is inconsequential for Ras and E1A mediated transformation.
Collapse
Affiliation(s)
| | - Keyue Chen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Brittany Salmon
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jean Vacher
- Institut de Recherches Cliniques de Montréal, Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Siess KM, Leonard TA. Lipid-dependent Akt-ivity: where, when, and how. Biochem Soc Trans 2019; 47:897-908. [PMID: 31147387 PMCID: PMC6599160 DOI: 10.1042/bst20190013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Akt is an essential protein kinase activated downstream of phosphoinositide 3-kinase and frequently hyperactivated in cancer. Canonically, Akt is activated by phosphoinositide-dependent kinase 1 and mechanistic target of rapamycin complex 2, which phosphorylate it on two regulatory residues in its kinase domain upon targeting of Akt to the plasma membrane by PI(3,4,5)P3 Recent evidence, however, has shown that, in addition to phosphorylation, Akt activity is allosterically coupled to the engagement of PI(3,4,5)P3 or PI(3,4)P2 in cellular membranes. Furthermore, the active membrane-bound conformation of Akt is protected from dephosphorylation, and Akt inactivation by phosphatases is rate-limited by its dissociation. Thus, Akt activity is restricted to membranes containing either PI(3,4,5)P3 or PI(3,4)P2 While PI(3,4,5)P3 has long been associated with signaling at the plasma membrane, PI(3,4)P2 is gaining increasing traction as a signaling lipid and has been implicated in controlling Akt activity throughout the endomembrane system. This has clear implications for the phosphorylation of both freely diffusible substrates and those localized to discrete subcellular compartments.
Collapse
Affiliation(s)
- Katharina M Siess
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
18
|
Nakada-Tsukui K, Watanabe N, Maehama T, Nozaki T. Phosphatidylinositol Kinases and Phosphatases in Entamoeba histolytica. Front Cell Infect Microbiol 2019; 9:150. [PMID: 31245297 PMCID: PMC6563779 DOI: 10.3389/fcimb.2019.00150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol (PtdIns) metabolism is indispensable in eukaryotes. Phosphoinositides (PIs) are phosphorylated derivatives of PtdIns and consist of seven species generated by reversible phosphorylation of the inositol moieties at the positions 3, 4, and 5. Each of the seven PIs has a unique subcellular and membrane domain distribution. In the enteric protozoan parasite Entamoeba histolytica, it has been previously shown that the PIs phosphatidylinositol 3-phosphate (PtdIns3P), PtdIns(4,5)P2, and PtdIns(3,4,5)P3 are localized to phagosomes/phagocytic cups, plasma membrane, and phagocytic cups, respectively. The localization of these PIs in E. histolytica is similar to that in mammalian cells, suggesting that PIs have orthologous functions in E. histolytica. In contrast, the conservation of the enzymes that metabolize PIs in this organism has not been well-documented. In this review, we summarized the full repertoire of the PI kinases and PI phosphatases found in E. histolytica via a genome-wide survey of the current genomic information. E. histolytica appears to have 10 PI kinases and 23 PI phosphatases. It has a panel of evolutionarily conserved enzymes that generate all the seven PI species. However, class II PI 3-kinases, type II PI 4-kinases, type III PI 5-phosphatases, and PI 4P-specific phosphatases are not present. Additionally, regulatory subunits of class I PI 3-kinases and type III PI 4-kinases have not been identified. Instead, homologs of class I PI 3-kinases and PTEN, a PI 3-phosphatase, exist as multiple isoforms, which likely reflects that elaborate signaling cascades mediated by PtdIns(3,4,5)P3 are present in this organism. There are several enzymes that have the nuclear localization signal: one phosphatidylinositol phosphate (PIP) kinase, two PI 3-phosphatases, and one PI 5-phosphatase; this suggests that PI metabolism also has conserved roles related to nuclear functions in E. histolytica, as it does in model organisms.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Natsuki Watanabe
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Khanna K, Chaudhuri R, Aich J, Pattnaik B, Panda L, Prakash YS, Mabalirajan U, Ghosh B, Agrawal A. Secretory Inositol Polyphosphate 4-Phosphatase Protects against Airway Inflammation and Remodeling. Am J Respir Cell Mol Biol 2019; 60:399-412. [PMID: 30335467 PMCID: PMC6444634 DOI: 10.1165/rcmb.2017-0353oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 09/14/2018] [Indexed: 01/16/2023] Open
Abstract
The asthma candidate gene inositol polyphosphate 4-phosphatase type I A (INPP4A) is a lipid phosphatase that negatively regulates the PI3K/Akt pathway. Destabilizing genetic variants of INPP4A increase the risk of asthma, and lung-specific INPP4A knockdown induces asthma-like features. INPP4A is known to localize intracellularly, and its extracellular presence has not been reported yet. Here we show for the first time that INPP4A is secreted by airway epithelial cells and that extracellular INPP4A critically inhibits airway inflammation and remodeling. INPP4A was present in blood and BAL fluid, and this extracellular INPP4A was reduced in patients with asthma and mice with allergic airway inflammation. In both naive mice and mice with allergic airway inflammation, antibody-mediated neutralization of extracellular INPP4A potentiated PI3K/Akt signaling and induced airway hyperresponsiveness, with prominent airway remodeling, subepithelial fibroblast proliferation, and collagen deposition. The link between extracellular INPP4A and fibroblasts was investigated in vitro. Cultured airway epithelial cells secreted enzymatically active INPP4A in extracellular vesicles and in a free form. Extracellular vesicle-mediated transfer of labeled INPP4A, from epithelial cells to fibroblasts, was observed. Inhibition of such transfer by anti-INPP4A antibody increased fibroblast proliferation. We propose that secretory INPP4A is a novel "paracrine" layer of the intricate regulation of lung homeostasis, by which airway epithelium dampens PI3K/Akt signaling in inflammatory cells or local fibroblasts, thereby limiting inflammation and remodeling.
Collapse
Affiliation(s)
- Kritika Khanna
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Rituparna Chaudhuri
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Jyotirmoi Aich
- Centre of Excellence for Translational Research in Asthma and Lung Disease
| | - Bijay Pattnaik
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India; and
| | - Lipsa Panda
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Y. S. Prakash
- Department of Anesthesiology
- Department of Physiology, and
- Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Ulaganathan Mabalirajan
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
| | - Balaram Ghosh
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Anurag Agrawal
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
20
|
Abstract
The membrane lipid phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2) is an important signaling effector, controlling both anabolic pathways and membrane trafficking. In this issue, Goulden et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201809026) report a new PI(3,4)P2 probe and show that plasma membrane PI(3,4)P2 is a product of PI(3,4,5)P3 dephosphorylation.
Collapse
Affiliation(s)
- Ivan Yudushkin
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Yudushkin I. Getting the Akt Together: Guiding Intracellular Akt Activity by PI3K. Biomolecules 2019; 9:biom9020067. [PMID: 30781447 PMCID: PMC6406913 DOI: 10.3390/biom9020067] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 01/02/2023] Open
Abstract
Intracellular signaling pathways mediate the rapid response of cells to environmental cues. To control the fidelity of these responses, cells coordinate the activities of signaling enzymes with the strength, timing, and localization of the upstream stimuli. Protein kinase Akt links the PI3K-coupled receptors to cellular anabolic processes by phosphorylating multiple substrates. How the cells ensure that Akt activity remains proportional to upstream signals and control its substrate specificity is unclear. In this review, I examine how cell-autonomous and intrinsic allosteric mechanisms cooperate to ensure localized, context-specific signaling in the PI3K/Akt axis.
Collapse
Affiliation(s)
- Ivan Yudushkin
- Department of Structural and Computational Biology, University of Vienna, Max F. Perutz Laboratories Vienna BioCenter, Campus Vienna Biocenter 5, Rm. 1.624, 1030 Vienna, Austria.
| |
Collapse
|
22
|
Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J 2019; 476:1-23. [PMID: 30617162 DOI: 10.1042/bcj20180022] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/15/2022]
Abstract
Polyphosphoinositides (PPIs) are essential phospholipids located in the cytoplasmic leaflet of eukaryotic cell membranes. Despite contributing only a small fraction to the bulk of cellular phospholipids, they make remarkable contributions to practically all aspects of a cell's life and death. They do so by recruiting cytoplasmic proteins/effectors or by interacting with cytoplasmic domains of membrane proteins at the membrane-cytoplasm interface to organize and mold organelle identity. The present study summarizes aspects of our current understanding concerning the metabolism, manipulation, measurement, and intimate roles these lipids play in regulating membrane homeostasis and vital cell signaling reactions in health and disease.
Collapse
|
23
|
So EY, Sun C, Reginato AM, Dubielecka PM, Ouchi T, Liang OD. Loss of lipid phosphatase SHIP1 promotes macrophage differentiation through suppression of dendritic cell differentiation. Cancer Biol Ther 2018; 20:201-211. [PMID: 30277839 DOI: 10.1080/15384047.2018.1523846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
SH2-containing inositol 5'-phosphatase-1 (SHIP1) deficiency in mice results in abnormal myeloid expansion, and proinflammatory conditions in the lung. However, the mechanisms involved in SHIP1-mediated regulation of myeloid differentiation remain unclear. Here we show that SHIP1 is a key regulator of early differentiation for dendritic cells (DCs). We also provide critical evidence to modify the function of SHIP1 in in vitro development of BMDCs using the recent framework of defining DCs. We found that loss of SHIP1 suppresses GM-CSF-induced formation of bone marrow-derived DC (BMDC) colonies, leading to reduced BMDC number in BM cell culture. The number of maturated BMDCs decreased in SHIP1-KO culture, due to reduction of immature BMDCs, suggesting SHIP1 is critical for lineage commitment rather than for maturation from myeloid precursors to DCs. We further showed that F4/80+/MHCIIlow BM macrophage-like cells (BMMs) were the main population of SHIP1-KO BM culture. Treatment of wild-type BM culture with 3 α-aminocholestane (3AC), a specific inhibitor for functional activity of SHIP1, caused a similar developmental defect in BMDCs as seen in SHIP1-KO cells, resulting in the absence of BMDC colony, and increased number of BMMs in BM culture. In conclusion, our results suggest that differentiation of BMDCs are markedly impaired under SHIP1 deficient condition, which causes skewed development of myeloid lineage cells manifested as pathological conditions associated with an excess of macrophage population.
Collapse
Affiliation(s)
- Eui Young So
- a Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital , Warren Alpert Medical School of Brown University , Providence , USA
| | - Changqi Sun
- b Division of Rheumatology, Department of Medicine, Rhode Island Hospital , Warren Alpert Medical School of Brown University , Providence , USA
| | - Anthony M Reginato
- b Division of Rheumatology, Department of Medicine, Rhode Island Hospital , Warren Alpert Medical School of Brown University , Providence , USA
| | - Patrycia M Dubielecka
- a Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital , Warren Alpert Medical School of Brown University , Providence , USA
| | - Toru Ouchi
- c Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , USA
| | - Olin D Liang
- a Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital , Warren Alpert Medical School of Brown University , Providence , USA
| |
Collapse
|
24
|
Chaudhuri R, Khanna K, Koundinya D, Pattnaik B, Vatsa D, Agrawal A, Ghosh B. Novel nuclear translocation of inositol polyphosphate 4-phosphatase is associated with cell cycle, proliferation and survival. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:S0167-4889(18)30188-5. [PMID: 30071275 DOI: 10.1016/j.bbamcr.2018.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Inositol polyphosphate 4 phosphatase type I enzyme (INPP4A) has a well-documented function in the cytoplasm where it terminates the phosphatidylinositol 3-kinase (PI 3-K) pathway by acting as a negative regulator. In this study, we demonstrate for the first time that INPP4A shuttles between the cytoplasm and the nucleus. Nuclear INPP4A is enzymatically active and in dynamic equilibrium between the nucleus and cytoplasm depending on the cell cycle stage, with highest amounts detected in the nucleus during the G0/G1 phase. Moreover, nuclear INPP4A is found to have direct proliferation suppressive activity. Cells constitutively overexpressing nuclear INPP4A exhibit massive apoptosis. In human tissues as well as cell lines, lower nuclear localization of INPP4A correlate with cancerous growth. Together, our findings suggest that nuclear compartmentalization of INPP4A may be a mechanism to regulate cell cycle progression, proliferation and apoptosis. Our results imply a role for nuclear-localized INPP4A in tumor suppression in humans.
Collapse
Affiliation(s)
- Rituparna Chaudhuri
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007,India.; Academy of Scientific & Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Kritika Khanna
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007,India.; Academy of Scientific & Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - D Koundinya
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007,India.; Academy of Scientific & Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Bijay Pattnaik
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007,India.; Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Damini Vatsa
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007,India
| | - Anurag Agrawal
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007,India.; Academy of Scientific & Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Balaram Ghosh
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007,India.; Academy of Scientific & Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India..
| |
Collapse
|
25
|
Wang R, Wu Y, Huang W, Chen W. MicroRNA-940 Targets INPP4A or GSK3β and Activates the Wnt/β-Catenin Pathway to Regulate the Malignant Behavior of Bladder Cancer Cells. Oncol Res 2018; 26:145-155. [PMID: 28337959 PMCID: PMC7844674 DOI: 10.3727/096504017x14902261600566] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In this report, we aimed to explore the role and regulatory mechanism of microRNA-940 (miR-940) in bladder cancer development. The expressions of miR-940 in bladder cancer tissues and cells were measured. miR-940 mimics, miR-940 inhibitor small interference RNA against INPP4A (si-INPP4A), and GSK3β (si-GSK3β) and their corresponding controls were then transfected into cells. We investigated the effects of miR-940, INPP4A, or GSK3β on cell proliferation, migration, invasion, and apoptosis. Additionally, target prediction and luciferase reporter assays were performed to investigate the targets of miR-940. The regulatory relationship between miR-940 and the Wnt/β-catenin pathway was also investigated. miR-940 was upregulated in bladder cancer tissues and cells. Overexpression of miR-940 significantly increased bladder cancer cell proliferation, promoted migration and invasion, and inhibited cell apoptosis. INPP4A and GSK3β were the direct targets of miR-940, and knockdown of INPP4A or GSK3β significantly increased cancer cell proliferation, migration, and invasion and inhibited cell apoptosis. After miR-940 overexpression, the protein expression levels of c-Myc, cyclin D1, and β-catenin were significantly increased, and the expression levels of p27 and p-β-catenin were markedly decreased. The opposite effects were obtained after suppression of miR-940. XAV939, a tankyrase 1 inhibitor that could inhibit Wnt/β-catenin signaling, significantly reversed the effects of miR-940 overexpression on cell migration and invasion. Our results indicate that overexpression of miR-940 may promote bladder cancer cell proliferation, migration, and invasion and inhibit cell apoptosis via targeting INPP4A or GSK3β and activating the Wnt/β-catenin pathway. Our findings imply the key roles of suppressing miRNA-940 in the therapy of bladder cancer.
Collapse
Affiliation(s)
- Rong Wang
- Department of Urology, The Jintan Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, P.R. China
| | - Yunfeng Wu
- Department of Urology, The Jintan Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, P.R. China
| | - Weihua Huang
- Department of Urology, The Jintan Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, P.R. China
| | - Weijun Chen
- Department of Urology, The Jintan Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, P.R. China
| |
Collapse
|
26
|
Jiang J, Zhang Y, Guo Y, Yu C, Chen M, Li Z, Tian S, Sun C. MicroRNA-3127 promotes cell proliferation and tumorigenicity in hepatocellular carcinoma by disrupting of PI3K/AKT negative regulation. Oncotarget 2016; 6:6359-72. [PMID: 25849943 PMCID: PMC4467442 DOI: 10.18632/oncotarget.3438] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/21/2015] [Indexed: 11/25/2022] Open
Abstract
Recent studies have shown that multiple phosphatases deactivate the PI3K/AKT signaling pathway. Here we demonstrated that, by suppressing multiple phosphatases, miR-3127 promotes growth of hepatocellular carcinoma (HCC). Our study also reveals clinical significance of miR-3127 expression in HCC patients. MiR-3127 expression was markedly upregulated in HCC tissues and cells. Furthermore, high miR-3127 expression was associated with an aggressive phenotype and poor prognosis. MiR-3127 overexpression promoted HCC cell proliferation in vitro and tumor growth in vivo. Also, miR-3127 accelerated G1-S transition by activating AKT/ FOXO1 signaling, by directly targeting the 3' untranslated regions (3`UTR) of pleckstrin homology domain leucine-rich repeat protein phosphatase 1/2 (PHLPP1/2), inositol polyphosphate phosphatase 4A (INPP4A), and inositol polyphosphate-5-phosphatase J (INPP5J) mRNA, repressing their expression. In agreement, the miRNA antagonist antagomir-3127 suppressed HCC cell proliferation and tumor growth by inhibiting the AKT/FOXO1 signaling. Taken together, these findings suggest that silencing miR-3127 might be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jianxin Jiang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Yi Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Yuting Guo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Chao Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Meiyuan Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Zhu Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Se Tian
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Chengyi Sun
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| |
Collapse
|
27
|
Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: A distinct branch of PI3K signaling. Cell Signal 2015; 27:1789-98. [DOI: 10.1016/j.cellsig.2015.05.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/16/2015] [Accepted: 05/20/2015] [Indexed: 01/22/2023]
|
28
|
Rudge SA, Wakelam MJO. Phosphatidylinositolphosphate phosphatase activities and cancer. J Lipid Res 2015; 57:176-92. [PMID: 26302980 DOI: 10.1194/jlr.r059154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 12/13/2022] Open
Abstract
Signaling through the phosphoinositide 3-kinase pathways mediates the actions of a plethora of hormones, growth factors, cytokines, and neurotransmitters upon their target cells following receptor occupation. Overactivation of these pathways has been implicated in a number of pathologies, in particular a range of malignancies. The tight regulation of signaling pathways necessitates the involvement of both stimulatory and terminating enzymes; inappropriate activation of a pathway can thus result from activation or inhibition of the two signaling arms. The focus of this review is to discuss, in detail, the activities of the identified families of phosphoinositide phosphatase expressed in humans, and how they regulate the levels of phosphoinositides implicated in promoting malignancy.
Collapse
Affiliation(s)
- Simon A Rudge
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Michael J O Wakelam
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| |
Collapse
|
29
|
Ooms LM, Binge LC, Davies EM, Rahman P, Conway JRW, Gurung R, Ferguson DT, Papa A, Fedele CG, Vieusseux JL, Chai RC, Koentgen F, Price JT, Tiganis T, Timpson P, McLean CA, Mitchell CA. The Inositol Polyphosphate 5-Phosphatase PIPP Regulates AKT1-Dependent Breast Cancer Growth and Metastasis. Cancer Cell 2015; 28:155-69. [PMID: 26267533 DOI: 10.1016/j.ccell.2015.07.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 06/03/2015] [Accepted: 07/10/2015] [Indexed: 12/11/2022]
Abstract
Metastasis is the major cause of breast cancer mortality. Phosphoinositide 3-kinase (PI3K) generated PtdIns(3,4,5)P3 activates AKT, which promotes breast cancer cell proliferation and regulates migration. To date, none of the inositol polyphosphate 5-phosphatases that inhibit PI3K/AKT signaling have been reported as tumor suppressors in breast cancer. Here, we show depletion of the inositol polyphosphate 5-phosphatase PIPP (INPP5J) increases breast cancer cell transformation, but reduces cell migration and invasion. Pipp ablation accelerates oncogene-driven breast cancer tumor growth in vivo, but paradoxically reduces metastasis by regulating AKT1-dependent tumor cell migration. PIPP mRNA expression is reduced in human ER-negative breast cancers associated with reduced long-term outcome. Collectively, our findings identify PIPP as a suppressor of oncogenic PI3K/AKT signaling in breast cancer.
Collapse
Affiliation(s)
- Lisa M Ooms
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Lauren C Binge
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Elizabeth M Davies
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Parvin Rahman
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - James R W Conway
- Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Faculty of Medicine, St Vincent's Clinical School, University of NSW, Darlinghurst, NSW 2010, Australia
| | - Rajendra Gurung
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Daniel T Ferguson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Antonella Papa
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Clare G Fedele
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Jessica L Vieusseux
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ryan C Chai
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | | | - John T Price
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Faculty of Medicine, St Vincent's Clinical School, University of NSW, Darlinghurst, NSW 2010, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, VIC 3181, Australia
| | - Christina A Mitchell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
30
|
PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat Commun 2015; 6:7400. [PMID: 26100075 PMCID: PMC4479417 DOI: 10.1038/ncomms8400] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/06/2015] [Indexed: 01/09/2023] Open
Abstract
In the liver, insulin-mediated activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is at the core of metabolic control. Multiple PI3K and Akt isoenzymes are found in hepatocytes and whether isoform-selective interplays exist is currently unclear. Here we report that insulin signalling triggers the association of the liver-specific class II PI3K isoform γ (PI3K-C2γ) with Rab5-GTP, and its recruitment to Rab5-positive early endosomes. In these vesicles, PI3K-C2γ produces a phosphatidylinositol-3,4-bisphosphate pool specifically required for delayed and sustained endosomal Akt2 stimulation. Accordingly, loss of PI3K-C2γ does not affect insulin-dependent Akt1 activation as well as S6K and FoxO1-3 phosphorylation, but selectively reduces Akt2 activation, which specifically inhibits glycogen synthase activity. As a consequence, PI3K-C2γ-deficient mice display severely reduced liver accumulation of glycogen and develop hyperlipidemia, adiposity as well as insulin resistance with age or after consumption of a high-fat diet. Our data indicate PI3K-C2γ supports an isoenzyme-specific forking of insulin-mediated signal transduction to an endosomal pool of Akt2, required for glucose homeostasis. The kinase PI3K is crucial for insulin signalling in the liver but the roles of individual PI3K isoforms are largely unclear. Using mice that lack class II PI3K isoform γ (PI3K-C2γ), the authors here show that PI3K-C2γ selectively activates endosomal Akt2 by regulating the localized production of PIP2.
Collapse
|
31
|
Inositol polyphosphate 4-phosphatase II (INPP4B) is associated with chemoresistance and poor outcome in AML. Blood 2015; 125:2815-24. [DOI: 10.1182/blood-2014-09-603555] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 02/19/2015] [Indexed: 01/06/2023] Open
Abstract
Key Points
INPP4B promotes chemoresistance in AML independent of phosphoinositide phosphatase function.
Collapse
|
32
|
Gasser JA, Inuzuka H, Lau AW, Wei W, Beroukhim R, Toker A. SGK3 mediates INPP4B-dependent PI3K signaling in breast cancer. Mol Cell 2014; 56:595-607. [PMID: 25458846 DOI: 10.1016/j.molcel.2014.09.023] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 08/15/2014] [Accepted: 09/25/2014] [Indexed: 11/26/2022]
Abstract
Oncogenic mutations in PIK3CA, the gene encoding the catalytic subunit of phosphoinositide 3-kinase (PI3K), occur with high frequency in breast cancer. The protein kinase Akt is considered to be the primary effector of PIK3CA, although mechanisms by which PI3K mediates Akt-independent tumorigenic signals remain obscure. We show that serum and glucocorticoid-regulated kinase 3 (SGK3) is amplified in breast cancer and activated downstream of PIK3CA in a manner dependent on the phosphoinositide phosphatase INPP4B. Expression of INPP4B leads to enhanced SGK3 activation and suppression of Akt phosphorylation. Activation of SGK3 downstream of PIK3CA and INPP4B is required for 3D proliferation, invasive migration, and tumorigenesis in vivo. We further show that SGK3 targets the metastasis suppressor NDRG1 for degradation by Fbw7. We propose a model in which breast cancers harboring oncogenic PIK3CA activate SGK3 signaling while suppressing Akt, indicative of oncogenic functions for both INPP4B and SGK3 in these tumors.
Collapse
Affiliation(s)
- Jessica A Gasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alan W Lau
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rameen Beroukhim
- Cancer Program and Medical and Population Genetics Group, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Departments of Medical Oncology, Pediatric Oncology, and Cancer Biology and Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Departments of Medicine and Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA; Departments of Medicine, Pathology, Pediatrics, and Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
33
|
Ahmad F, Nidadavolu P, Durgadoss L, Ravindranath V. Critical cysteines in Akt1 regulate its activity and proteasomal degradation: implications for neurodegenerative diseases. Free Radic Biol Med 2014; 74:118-28. [PMID: 24933620 DOI: 10.1016/j.freeradbiomed.2014.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 12/25/2022]
Abstract
Impaired Akt1 signaling is observed in neurodegenerative diseases, including Parkinson׳s disease (PD). In PD models oxidative modification of Akt1 leads to its dephosphorylation and consequent loss of its kinase activity. To explore the underlying mechanism we exposed Neuro2A cells to cadmium, a pan inhibitor of protein thiol disulfide oxidoreductases, including glutaredoxin 1 (Grx1), or downregulated Grx1, which led to dephosphorylation of Akt1, loss of its kinase activity, and also decreased Akt1 protein levels. Mutation of cysteines to serines at 296 and 310 in Akt1 did not affect its basal kinase activity but abolished cadmium- and Grx1 downregulation-induced reduction in Akt1 kinase activity, indicating their critical role in redox modulation of Akt1 function and turnover. Cadmium-induced decrease in phosphorylated Akt1 correlated with increased association of wild-type (WT) Akt1 with PP2A, which was absent in the C296-310S Akt1 mutant and was also abolished by N-acetylcysteine treatment. Further, increased proteasomal degradation of Akt1 by cadmium was not seen in the C296-310S Akt1 mutant, indicating that oxidation of cysteine residues facilitates degradation of WT Akt1. Moreover, preventing oxidative modification of Akt1 cysteines 296 and 310 by mutating them to serines increased the cell survival effects of Akt1. Thus, in neurodegenerative states such as PD, maintaining the thiol status of cysteines 296 and 310 in Akt1 would be critical for Akt1 kinase activity and for preventing its degradation by proteasomes. Preventing downregulation of Akt signaling not only has long-range consequences for cell survival but could also affect the multiple roles that Akt plays, including in the Akt-mTOR signaling cascade.
Collapse
Affiliation(s)
- Faraz Ahmad
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Prakash Nidadavolu
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Lalitha Durgadoss
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
34
|
Abstract
The specific interaction of phosphoinositides with proteins is critical for a plethora of cellular processes, including cytoskeleton remodelling, mitogenic signalling, ion channel regulation and membrane traffic. The spatiotemporal restriction of different phosphoinositide species helps to define compartments within the cell, and this is particularly important for membrane trafficking within both the secretory and endocytic pathways. Phosphoinositide homoeostasis is tightly regulated by a large number of inositol kinases and phosphatases, which respectively phosphorylate and dephosphorylate distinct phosphoinositide species. Many of these enzymes have been implicated in regulating membrane trafficking and, accordingly, their dysregulation has been linked to a number of human diseases. In the present review, we focus on the inositol phosphatases, concentrating on their roles in membrane trafficking and the human diseases with which they have been associated.
Collapse
|
35
|
miR-508 sustains phosphoinositide signalling and promotes aggressive phenotype of oesophageal squamous cell carcinoma. Nat Commun 2014; 5:4620. [PMID: 25099196 DOI: 10.1038/ncomms5620] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/08/2014] [Indexed: 12/21/2022] Open
Abstract
The strength and duration of phosphoinositide signalling from phosphatidylinositol-3-kinase (PI3K) activation to Akt is tightly balanced by phosphoinositide kinases and phosphatases. However, how phosphatase-mediated negative regulatory effects are concomitantly disrupted in cancers, which commonly exhibit constitutively activated PI3K/Akt signalling, remains undefined. Here we report that miR-508 directly suppresses multiple phosphatases, including inositol polyphosphate-5-phosphatase J (INPP5J), phosphatase and tensin homologue (PTEN) and inositol polyphosphate 4-phosphatase type I (INPP4A), resulting in constitutive activation of PI3K/Akt signalling. Furthermore, we find that overexpressing miR-508 promotes, while silencing miR-508 impairs, the aggressive phenotype of oesophageal squamous cell carcinoma (ESCC) both in vitro and in vivo. Importantly, the level of miR-508 correlates with poor survival and activated PI3K/Akt signalling in a large cohort of ESCC specimens. These findings uncover a mechanism for constitutive PI3K/Akt activation in ESCC, and support a functionally and clinically relevant epigenetic mechanism in cancer progression.
Collapse
|
36
|
Morrow AA, Alipour MA, Bridges D, Yao Z, Saltiel AR, Lee JM. The Lipid Kinase PI4KIIIβ Is Highly Expressed in Breast Tumors and Activates Akt in Cooperation with Rab11a. Mol Cancer Res 2014; 12:1492-508. [DOI: 10.1158/1541-7786.mcr-13-0604] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Mehta ZB, Pietka G, Lowe M. The cellular and physiological functions of the Lowe syndrome protein OCRL1. Traffic 2014; 15:471-87. [PMID: 24499450 PMCID: PMC4278560 DOI: 10.1111/tra.12160] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 12/17/2022]
Abstract
Phosphoinositide lipids play a key role in cellular physiology, participating in a wide array of cellular processes. Consequently, mutation of phosphoinositide-metabolizing enzymes is responsible for a growing number of diseases in humans. Two related disorders, oculocerebrorenal syndrome of Lowe (OCRL) and Dent-2 disease, are caused by mutation of the inositol 5-phosphatase OCRL1. Here, we review recent advances in our understanding of OCRL1 function. OCRL1 appears to regulate many processes within the cell, most of which depend upon coordination of membrane dynamics with remodeling of the actin cytoskeleton. Recently developed animal models have managed to recapitulate features of Lowe syndrome and Dent-2 disease, and revealed new insights into the underlying mechanisms of these disorders. The continued use of both cell-based approaches and animal models will be key to fully unraveling OCRL1 function, how its loss leads to disease and, importantly, the development of therapeutics to treat patients.
Collapse
Affiliation(s)
- Zenobia B Mehta
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK; Current address: Faculty of Medicine, Imperial College, London, UK
| | | | | |
Collapse
|
38
|
Viernes DR, Choi LB, Kerr WG, Chisholm JD. Discovery and development of small molecule SHIP phosphatase modulators. Med Res Rev 2013; 34:795-824. [PMID: 24302498 DOI: 10.1002/med.21305] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Inositol phospholipids play an important role in the transfer of signaling information across the cell membrane in eukaryotes. These signals are often governed by the phosphorylation patterns on the inositols, which are mediated by a number of inositol kinases and phosphatases. The src homology 2 (SH2) containing inositol 5-phosphatase (SHIP) plays a central role in these processes, influencing signals delivered through the PI3K/Akt/mTOR pathway. SHIP modulation by small molecules has been implicated as a treatment in a number of human disease states, including cancer, inflammatory diseases, diabetes, atherosclerosis, and Alzheimer's disease. In addition, alteration of SHIP phosphatase activity may provide a means to facilitate bone marrow transplantation and increase blood cell production. This review discusses the cellular signaling pathways and protein-protein interactions that provide the molecular basis for targeting the SHIP enzyme in these disease states. In addition, a comprehensive survey of small molecule modulators of SHIP1 and SHIP2 is provided, with a focus on the structure, potency, selectivity, and solubility properties of these compounds.
Collapse
Affiliation(s)
- Dennis R Viernes
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| | - Lydia B Choi
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| | - William G Kerr
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244.,Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA 13210.,Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA 13210
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| |
Collapse
|
39
|
Bertucci MC, Mitchell CA. Phosphoinositide 3-kinase and INPP4B in human breast cancer. Ann N Y Acad Sci 2013; 1280:1-5. [PMID: 23551093 DOI: 10.1111/nyas.12036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The PI3K/Akt signaling pathway is frequently increased in many human cancers, including breast cancer. Recent studies have identified INPP4B, which inhibits PI3K signaling, as an emerging tumor suppressor in breast cancer. This short review discusses these issues and the possibility that INPP4B is an important regulator in many cancers.
Collapse
Affiliation(s)
- Micka C Bertucci
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
40
|
Srivastava N, Sudan R, Kerr WG. Role of inositol poly-phosphatases and their targets in T cell biology. Front Immunol 2013; 4:288. [PMID: 24069021 PMCID: PMC3779868 DOI: 10.3389/fimmu.2013.00288] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/03/2013] [Indexed: 11/13/2022] Open
Abstract
T lymphocytes play a critical role in host defense in all anatomical sites including mucosal surfaces. This not only includes the effector arm of the immune system, but also regulation of immune responses in order to prevent autoimmunity. Genetic targeting of PI3K isoforms suggests that generation of PI(3,4,5)P3 by PI3K plays a critical role in promoting effector T cell responses. Consequently, the 5'- and 3'-inositol poly-phosphatases SHIP1, SHIP2, and phosphatase and tensin homolog capable of targeting PI(3,4,5)P3 are potential genetic determinants of T cell effector functions in vivo. In addition, the 5'-inositol poly-phosphatases SHIP1 and 2 can shunt PI(3,4,5)P3 to the rare but potent signaling phosphoinositide species PI(3,4)P2 and thus these SHIP1/2, and the INPP4A/B enzymes that deplete PI(3,4)P2 may have precise roles in T cell biology to amplify or inhibit effectors of PI3K signaling that are selectively recruited to and activated by PI(3,4)P2. Here we summarize recent genetic and chemical evidence that indicates the inositol poly-phosphatases have important roles in both the effector and regulatory functions of the T cell compartment. In addition, we will discuss future genetic studies that might be undertaken to further elaborate the role of these enzymes in T cell biology as well as potential pharmaceutical manipulation of these enzymes for therapeutic purposes in disease settings where T cell function is a key in vivo target.
Collapse
Affiliation(s)
- Neetu Srivastava
- Department of Microbiology and Immunology, SUNY Upstate Medical University , Syracuse, NY , USA
| | | | | |
Collapse
|
41
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
42
|
Abstract
Phosphoinositide signalling molecules interact with a plethora of effector proteins to regulate cell proliferation and survival, vesicular trafficking, metabolism, actin dynamics and many other cellular functions. The generation of specific phosphoinositide species is achieved by the activity of phosphoinositide kinases and phosphatases, which phosphorylate and dephosphorylate, respectively, the inositol headgroup of phosphoinositide molecules. The phosphoinositide phosphatases can be classified as 3-, 4- and 5-phosphatases based on their specificity for dephosphorylating phosphates from specific positions on the inositol head group. The SAC phosphatases show less specificity for the position of the phosphate on the inositol ring. The phosphoinositide phosphatases regulate PI3K/Akt signalling, insulin signalling, endocytosis, vesicle trafficking, cell migration, proliferation and apoptosis. Mouse knockout models of several of the phosphoinositide phosphatases have revealed significant physiological roles for these enzymes, including the regulation of embryonic development, fertility, neurological function, the immune system and insulin sensitivity. Importantly, several phosphoinositide phosphatases have been directly associated with a range of human diseases. Genetic mutations in the 5-phosphatase INPP5E are causative of the ciliopathy syndromes Joubert and MORM, and mutations in the 5-phosphatase OCRL result in Lowe's syndrome and Dent 2 disease. Additionally, polymorphisms in the 5-phosphatase SHIP2 confer diabetes susceptibility in specific populations, whereas reduced protein expression of SHIP1 is reported in several human leukaemias. The 4-phosphatase, INPP4B, has recently been identified as a tumour suppressor in human breast and prostate cancer. Mutations in one SAC phosphatase, SAC3/FIG4, results in the degenerative neuropathy, Charcot-Marie-Tooth disease. Indeed, an understanding of the precise functions of phosphoinositide phosphatases is not only important in the context of normal human physiology, but to reveal the mechanisms by which these enzyme families are implicated in an increasing repertoire of human diseases.
Collapse
|
43
|
Miyazawa K. Phosphoinositide 5-phosphatases: How do they affect tumourigenesis? J Biochem 2013; 153:1-3. [PMID: 23015060 PMCID: PMC3527994 DOI: 10.1093/jb/mvs107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/06/2012] [Indexed: 12/21/2022] Open
Abstract
The activity of biological molecules is often affected by their phosphorylation state. Regulatory phosphorylation operates as a binary switch and is usually controlled by counteracting kinases and phosphatases. However, phosphatidylinositol (PtdIns) has three phosphorylation sites on its inositol ring. The phosphorylation status of PtdIns is controlled by multiple kinases and phosphatases with distinct substrate specificities, serving as a 'lipid code' or 'phosphoinositide code'. Class I phosphoinositide 3-kinase (PI3K) converts PtdIns(4,5)P₂ to PtdIns(3,4,5)P₃, which plays a pivotal role in signals controlling glucose uptake, cytoskeletal reorganization, cell proliferation and apoptosis. PI3K is pro-oncogenic, whereas phosphoinositide phosphatases that degrade PtdIns(3,4,5)P₃ are not always anti-oncogenic. Recent studies have revealed the unique characteristics of phosphoinositide 5-phosphatases.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| |
Collapse
|
44
|
Collazo MM, Paraiso KHT, Park MY, Hazen AL, Kerr WG. Lineage extrinsic and intrinsic control of immunoregulatory cell numbers by SHIP. Eur J Immunol 2012; 42:1785-95. [PMID: 22535653 DOI: 10.1002/eji.201142092] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We previously showed that germline or induced SHIP deficiency expands immuno-regulatory cell numbers in T lymphoid and myeloid lineages. We postulated these increases could be interrelated. Here, we show that myeloid-specific ablation of SHIP leads to the expansion of both myeloid-derived suppressor cell (MDSC) and regulatory T (Treg) cell numbers, indicating SHIP-dependent control of Treg-cell numbers by a myeloid cell type. Conversely, T-lineage specific ablation of SHIP leads to expansion of Treg-cell numbers, but not expansion of the MDSC compartment, indicating SHIP also has a lineage intrinsic role in limiting Treg-cell numbers. However, the SHIP-deficient myeloid cell that promotes MDSC and Treg-cell expansion is not an MDSC as they lack SHIP protein expression. Thus, regulation of MDSC numbers in vivo must be controlled in a cell-extrinsic fashion by another myeloid cell type. We had previously shown that G-CSF levels are profoundly increased in SHIP(-/-) mice, suggesting this myelopoietic growth factor could promote MDSC expansion in a cell-extrinsic fashion. Consistent with this hypothesis, we find that G-CSF is required for expansion of the MDSC splenic compartment in mice rendered SHIP-deficient as adults. Thus, SHIP controls MDSC numbers, in part, by limiting production of the myelopoietic growth factor G-CSF.
Collapse
Affiliation(s)
- Michelle M Collazo
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
45
|
Resveratrol attenuates experimental allergic asthma in mice by restoring inositol polyphosphate 4 phosphatase (INPP4A). Int Immunopharmacol 2012; 14:438-43. [PMID: 22986054 DOI: 10.1016/j.intimp.2012.08.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 12/13/2022]
Abstract
Asthma is a chronic airway inflammatory disorder which is characterized by reversible airway obstruction, airway hyperresponsiveness and airway inflammation. Oxidative stress has been shown to be strongly associated with most of the features of asthma and leads to accumulation of phosphatidyl inositol (3,4) bis-phosphate {PtdIns(3,4)P2} which is the major substrate for inositol polyphosphate 4 phosphatase (INPP4A). PtdIns(3,4)P2 in turn activates PI3K pathway and contributes to oxidative stress. Thus, there exists a vicious loop between oxidative stress and lipid phosphatase signaling. In this context, we have recently shown that INPP4A, a crucial molecular checkpoint in controlling PI3K-Akt signaling pathway, is downregulated in allergic airway inflammation. Resveratrol, a potent antioxidant found in red wines, has been shown to attenuate asthma features in murine model of allergic airway inflammation (AAI), however the underlying mode of its action was not completely understood. In this study, the effect of resveratrol on mitochondrial dysfunction, PI3K-Akt signaling and inositol polyphosphate 4 phosphatase was studied in murine model of allergic airway inflammation. We observed that resveratrol treatment of allergic mice was found to significantly downregulate oxidative stress and restore mitochondrial function. It also decreased calpain activity and restored the expression of INPP4A in lungs which in turn reduced Akt kinase activity and Akt phosphorylation. These results suggest a novel mechanism of action of resveratrol in attenuating asthma phenotype by downregulating PI3K-Akt pathway via upregulating INPP4A.
Collapse
|
46
|
Pauls SD, Lafarge ST, Landego I, Zhang T, Marshall AJ. The phosphoinositide 3-kinase signaling pathway in normal and malignant B cells: activation mechanisms, regulation and impact on cellular functions. Front Immunol 2012; 3:224. [PMID: 22908014 PMCID: PMC3414724 DOI: 10.3389/fimmu.2012.00224] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/10/2012] [Indexed: 12/20/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a central signal transduction axis controlling normal B cell homeostasis and activation in humoral immunity. The p110δ PI3K catalytic subunit has emerged as a critical mediator of multiple B cell functions. The activity of this pathway is regulated at multiple levels, with inositol phosphatases PTEN and SHIP both playing critical roles. When deregulated, the PI3K pathway can contribute to B cell malignancies and autoantibody production. This review summarizes current knowledge on key mechanisms that activate and regulate the PI3K pathway and influence normal B cell functional responses including the development of B cell subsets, antigen presentation, immunoglobulin isotype switch, germinal center responses, and maintenance of B cell anergy. We also discuss PI3K pathway alterations reported in select B cell malignancies and highlight studies indicating the functional significance of this pathway in malignant B cell survival and growth within tissue microenvironments. Finally, we comment on early clinical trial results, which support PI3K inhibition as a promising treatment of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
47
|
Loss-of-function of inositol polyphosphate-4-phosphatase reversibly increases the severity of allergic airway inflammation. Nat Commun 2012; 3:877. [PMID: 22673904 DOI: 10.1038/ncomms1880] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 05/02/2012] [Indexed: 01/09/2023] Open
Abstract
Inositol polyphosphate phosphatases regulate the magnitude of phosphoinositide-3 kinase signalling output. Although inositol polyphosphate-4-phosphatase is known to regulate phosphoinositide-3 kinase signalling, little is known regarding its role in asthma pathogenesis. Here we show that modulation of inositol polyphosphate-4-phosphatase alters the severity of asthma. Allergic airway inflammation in mice led to calpain-mediated degradation of inositol polyphosphate-4-phosphatase. In allergic airway inflammation models, preventing inositol polyphosphate-4-phosphatase degradation by inhibiting calpain activity, or overexpression of inositol polyphosphate-4-phosphatase in mouse lungs, led to attenuation of the asthma phenotype. Conversely, knockdown of inositol polyphosphate-4-phosphatase severely aggravated the allergic airway inflammation and the asthma phenotype. Interestingly, inositol polyphosphate-4-phosphatase knockdown in lungs of naive mice led to spontaneous airway hyper-responsiveness, suggesting that inositol polyphosphate-4-phosphatase could be vital in maintaining the lung homeostasis. We suggest that inositol polyphosphate-4-phosphatase has an important role in modulating inflammatory response in asthma, and thus, uncover a new understanding of the complex interplay between inositol signalling and asthma, which could provide alternative strategies in asthma management.
Collapse
|
48
|
|
49
|
Fuhler GM, Brooks R, Toms B, Iyer S, Gengo EA, Park MY, Gumbleton M, Viernes DR, Chisholm JD, Kerr WG. Therapeutic potential of SH2 domain-containing inositol-5'-phosphatase 1 (SHIP1) and SHIP2 inhibition in cancer. Mol Med 2012; 18:65-75. [PMID: 22033675 DOI: 10.2119/molmed.2011.00178] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 10/20/2011] [Indexed: 11/06/2022] Open
Abstract
Many tumors present with increased activation of the phosphatidylinositol 3-kinase (PI3K)-PtdIns(3,4,5)P(3)-protein kinase B (PKB/Akt) signaling pathway. It has long been thought that the lipid phosphatases SH2 domain-containing inositol-5'-phosphatase 1 (SHIP1) and SHIP2 act as tumor suppressors by counteracting with the survival signal induced by this pathway through hydrolysis or PtdIns(3,4,5)P(3) to PtdIns(3,4)P(2). However, a growing body of evidence suggests that PtdInd(3,4)P(2) is capable of, and essential for, Akt activation, thus suggesting a potential role for SHIP1/2 enzymes as proto-oncogenes. We recently described a novel SHIP1-selective chemical inhibitor (3α-aminocholestane [3AC]) that is capable of killing malignant hematologic cells. In this study, we further investigate the biochemical consequences of 3AC treatment in multiple myeloma (MM) and demonstrate that SHIP1 inhibition arrests MM cell lines in either G0/G1 or G2/M stages of the cell cycle, leading to caspase activation and apoptosis. In addition, we show that in vivo growth of MM cells is blocked by treatment of mice with the SHIP1 inhibitor 3AC. Furthermore, we identify three novel pan-SHIP1/2 inhibitors that efficiently kill MM cells through G2/M arrest, caspase activation and apoptosis induction. Interestingly, in SHIP2-expressing breast cancer cells that lack SHIP1 expression, pan-SHIP1/2 inhibition also reduces viable cell numbers, which can be rescued by addition of exogenous PtdIns(3,4)P(2). In conclusion, this study shows that inhibition of SHIP1 and SHIP2 may have broad clinical application in the treatment of multiple tumor types.
Collapse
Affiliation(s)
- Gwenny M Fuhler
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York 13210, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dyson JM, Fedele CG, Davies EM, Becanovic J, Mitchell CA. Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 2012; 58:215-279. [PMID: 22403078 DOI: 10.1007/978-94-007-3012-0_7] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.
Collapse
Affiliation(s)
- Jennifer M Dyson
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, 3800, Clayton, Australia
| | | | | | | | | |
Collapse
|