1
|
Rehman A, Fatima I, Noor F, Qasim M, Wang P, Jia J, Alshabrmi FM, Liao M. Role of small molecules as drug candidates for reprogramming somatic cells into induced pluripotent stem cells: A comprehensive review. Comput Biol Med 2024; 177:108661. [PMID: 38810477 DOI: 10.1016/j.compbiomed.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
With the use of specific genetic factors and recent developments in cellular reprogramming, it is now possible to generate lineage-committed cells or induced pluripotent stem cells (iPSCs) from readily available and common somatic cell types. However, there are still significant doubts regarding the safety and effectiveness of the current genetic methods for reprogramming cells, as well as the conventional culture methods for maintaining stem cells. Small molecules that target specific epigenetic processes, signaling pathways, and other cellular processes can be used as a complementary approach to manipulate cell fate to achieve a desired objective. It has been discovered that a growing number of small molecules can support lineage differentiation, maintain stem cell self-renewal potential, and facilitate reprogramming by either increasing the efficiency of reprogramming or acting as a genetic reprogramming factor substitute. However, ongoing challenges include improving reprogramming efficiency, ensuring the safety of small molecules, and addressing issues with incomplete epigenetic resetting. Small molecule iPSCs have significant clinical applications in regenerative medicine and personalized therapies. This review emphasizes the versatility and potential safety benefits of small molecules in overcoming challenges associated with the iPSCs reprogramming process.
Collapse
Affiliation(s)
- Abdur Rehman
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Israr Fatima
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fatima Noor
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan; Department of Bioinformatics and Biotechnology, Government College University of Faisalabad, 38000, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University of Faisalabad, 38000, Pakistan
| | - Peng Wang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jinrui Jia
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mingzhi Liao
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
2
|
Rubin de Celis MF, Bonner-Weir S. Reversing and modulating cellular senescence in beta cells, a new field of opportunities to treat diabetes. Front Endocrinol (Lausanne) 2023; 14:1217729. [PMID: 37822597 PMCID: PMC10562723 DOI: 10.3389/fendo.2023.1217729] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Diabetes constitutes a world-wide pandemic that requires searching for new treatments to halt its progression. Cellular senescence of pancreatic beta cells has been described as a major contributor to development and worsening of diabetes. The concept of reversibility of cellular senescence is critical as is the timing to take actions against this "dormant" senescent state. The reversal of cellular senescence can be considered as rejuvenation of the specific cell if it returns to the original "healthy state" and doesn't behave aberrantly as seen in some cancer cells. In rodents, treatment with senolytics and senomorphics blunted or prevented disease progression, however their use carry drawbacks. Modulators of cellular senescence is a new area of research that seeks to reverse the senescence. More research in each of these modalities should lead to new treatments to stop diabetes development and progression.
Collapse
Affiliation(s)
- Maria F. Rubin de Celis
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Susan Bonner-Weir
- Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Cui CP, Huo QJ, Xiong X, Li KX, Ma P, Qiang GF, Pandya PH, Saadatzadeh MR, Bijangi Vishehsaraei K, Kacena MA, Aryal UK, Pollok KE, Li BY, Yokota H. Anticancer peptides from induced tumor-suppressing cells for inhibiting osteosarcoma cells. Am J Cancer Res 2023; 13:4057-4072. [PMID: 37818062 PMCID: PMC10560922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/09/2023] [Indexed: 10/12/2023] Open
Abstract
Osteosarcoma (OS) is the most frequent primary bone cancer, which is mainly suffered by children and young adults. While the current surgical treatment combined with chemotherapy is effective for the early stage of OS, advanced OS preferentially metastasizes to the lung and is difficult to treat. Here, we examined the efficacy of ten anti-OS peptide candidates from a trypsin-digested conditioned medium that was derived from the secretome of induced tumor-suppressing cells (iTSCs). Using OS cell lines, the antitumor capabilities of the peptide candidates were evaluated by assaying the alterations in metabolic activities, proliferation, motility, and invasion of OS cells. Among ten candidates, peptide P05 (ADDGRPFPQVIK), a fragment of aldolase A (ALDOA), presented the most potent OS-suppressing capabilities. Its efficacy was additive with standard-of-care chemotherapeutic agents such as cisplatin and doxorubicin, and it downregulated oncoproteins such as epidermal growth factor receptor (EGFR), Snail, and Src in OS cells. Interestingly, P05 did not present inhibitory effects on non-OS skeletal cells such as mesenchymal stem cells and osteoblast cells. Collectively, this study demonstrated that iTSC-derived secretomes may provide a source for identifying anticancer peptides, and P05 may warrant further evaluations for the treatment of OS.
Collapse
Affiliation(s)
- Chang-Peng Cui
- Department of Pharmacology, School of Pharmacy, Harbin Medical UniversityHarbin 150081, Heilongjiang, China
- Department of Biomedical Engineering, Indiana University Purdue University IndianapolisIndianapolis, IN 46202, USA
| | - Qing-Ji Huo
- Department of Pharmacology, School of Pharmacy, Harbin Medical UniversityHarbin 150081, Heilongjiang, China
- Department of Biomedical Engineering, Indiana University Purdue University IndianapolisIndianapolis, IN 46202, USA
| | - Xue Xiong
- Department of Pharmacology, School of Pharmacy, Harbin Medical UniversityHarbin 150081, Heilongjiang, China
- Department of Biomedical Engineering, Indiana University Purdue University IndianapolisIndianapolis, IN 46202, USA
| | - Ke-Xin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical UniversityHarbin 150081, Heilongjiang, China
- Department of Biomedical Engineering, Indiana University Purdue University IndianapolisIndianapolis, IN 46202, USA
| | - Peng Ma
- State Key Laboratory of Bioactive Substance and Function for Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening ResearchBeijing 100050, China
| | - Gui-Fen Qiang
- State Key Laboratory of Bioactive Substance and Function for Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening ResearchBeijing 100050, China
| | - Pankita H Pandya
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of MedicineIndianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - Mohammad R Saadatzadeh
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of MedicineIndianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | | | - Melissa A Kacena
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of MedicineIndianapolis, IN 46202, USA
- Department of Orthopaedic Surgery, Indiana University School of MedicineIndianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - Uma K Aryal
- Department of Basic Medical Sciences, Interdisciplinary Biomedical Sciences Program, Purdue UniversityWest Lafayette, IN 47907, USA
| | - Karen E Pollok
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of MedicineIndianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical UniversityHarbin 150081, Heilongjiang, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University IndianapolisIndianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of MedicineIndianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of MedicineIndianapolis, IN 46202, USA
| |
Collapse
|
4
|
Kaneko H, Kaitsuka T, Tomizawa K. Artificial induction of circadian rhythm by combining exogenous BMAL1 expression and polycomb repressive complex 2 inhibition in human induced pluripotent stem cells. Cell Mol Life Sci 2023; 80:200. [PMID: 37421441 PMCID: PMC11072008 DOI: 10.1007/s00018-023-04847-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Understanding the physiology of human-induced pluripotent stem cells (iPSCs) is necessary for directed differentiation, mimicking embryonic development, and regenerative medicine applications. Pluripotent stem cells (PSCs) exhibit unique abilities such as self-renewal and pluripotency, but they lack some functions that are associated with normal somatic cells. One such function is the circadian oscillation of clock genes; however, whether or not PSCs demonstrate this capability remains unclear. In this study, the reason why circadian rhythm does not oscillate in human iPSCs was examined. This phenomenon may be due to the transcriptional repression of clock genes resulting from the hypermethylation of histone H3 at lysine 27 (H3K27), or it may be due to the low levels of brain and muscle ARNT-like 1 (BMAL1) protein. Therefore, BMAL1-overexpressing cells were generated and pre-treated with GSK126, an inhibitor of enhancer of zest homologue 2 (EZH2), which is a methyltransferase of H3K27 and a component of polycomb repressive complex 2. Consequently, a significant circadian rhythm following endogenous BMAL1, period 2 (PER2), and other clock gene expression was induced by these two factors, suggesting a candidate mechanism for the lack of rhythmicity of clock gene expression in iPSCs.
Collapse
Affiliation(s)
- Hitomi Kaneko
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Taku Kaitsuka
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Enokizu 137-1, Okawa, Fukuoka, 831-8501, Japan.
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
5
|
Li K, Huo Q, Li BY, Yokota H. Three unconventional maxims in the natural selection of cancer cells: Generation of induced tumor-suppressing cells (iTSCs). Int J Biol Sci 2023; 19:1403-1412. [PMID: 37056934 PMCID: PMC10086743 DOI: 10.7150/ijbs.79155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Induced tumor-suppressing cells (iTSCs) can be generated from cancer and non-cancer cells. Here, three paradoxical maxims for the action of iTSCs are reviewed: the secretion of tumor-suppressing proteins, their role as a "double-edged" sword, and the elimination of lesser-fit cancer cells. "Super-fit" cancer cells secrete an array of proteins, most of which contribute to enhancing their growth and removing "lesser-fit" cancer cells. These maxims explain the potential dilemma with therapeutic agents since the inhibitory agents tend to promote the synthesis of tumor-promoting proteins. The maxims suggest the possibility of a novel treatment option using cancer-guided evolutionary-fit iTSCs.
Collapse
Affiliation(s)
- Kexin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Qingji Huo
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Hekman KE, Koss KM, Ivancic DZ, He C, Wertheim JA. Autophagy Enhances Longevity of Induced Pluripotent Stem Cell-Derived Endothelium via mTOR-Independent ULK1 Kinase. Stem Cells Transl Med 2022; 11:1151-1164. [PMID: 36173887 PMCID: PMC9672854 DOI: 10.1093/stcltm/szac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Stem cells are enabling an improved understanding of the peripheral arterial disease, and patient-specific stem cell-derived endothelial cells (ECs) present major advantages as a therapeutic modality. However, applications of patient-specific induced pluripotent stem cell (iPSC)-derived ECs are limited by rapid loss of mature cellular function in culture. We hypothesized that changes in autophagy impact the phenotype and cellular proliferation of iPSC-ECs. Endothelial cells were differentiated from distinct induced pluripotent stem cell lines in 2D culture and purified for CD144 positive cells. Autophagy, mitochondrial morphology, and proliferation were characterized during differentiation and over serial passages in culture. We found that autophagy activity was stimulated during differentiation but stagnated in mature iPSC-ECs. Mitochondria remodeled through mitophagy during differentiation and demonstrated increasing membrane potential and mass through serial passages; however, these plateaued, coinciding with decreased proliferation. To evaluate for oxidative damage, iPSC-ECs were alternatively grown under hypoxic culture conditions; however, hypoxia only transiently improved the proliferation. Stimulating mTOR-independent ULK1-mediated autophagy with a plant derivative AMP kinase activator Rg2 significantly improved proliferative capacity of iPSC-ECs over multiple passages. Therefore, autophagy, a known mediator of longevity, played an active role in remodeling mitochondria during maturation from pluripotency to a terminally differentiated state. Autophagy failed to compensate for increasing mitochondrial mass over serial passages, which correlated with loss of proliferation in iPSC-ECs. Stimulating ULK1-kinase-driven autophagy conferred improved proliferation and longevity over multiple passages in culture. This represents a novel approach to overcoming a major barrier limiting the use of iPSC-ECs for clinical and research applications.
Collapse
Affiliation(s)
- Katherine E Hekman
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Emory School of Medicine, Emory University, Atlanta, GA, USA.,Division of Vascular Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Section of Vascular Surgery, Surgery Service Line, Atlanta VA Healthcare System, Decatur, GA, USA
| | - Kyle M Koss
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA.,Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David Z Ivancic
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Congcong He
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jason A Wertheim
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA.,Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Surgery Service Line, Southern Arizona VA Healthcare System, Tucson, AZ, USA
| |
Collapse
|
7
|
Tabibzadeh S. Repair, regeneration and rejuvenation require un-entangling pluripotency from senescence. Ageing Res Rev 2022; 80:101663. [PMID: 35690382 DOI: 10.1016/j.arr.2022.101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022]
Abstract
There is a notion that pluripotency and senescence, represent two extremes of life of cells. Pluripotent cells display epigenetic youth, unlimited proliferative capacity and pluripotent differentiating potential whereas cells that reach the Hayflick limit, transit to senescence, undergo permanent inhibition of cell replication and create an aging tissue landscape. However, pluripotency and senescence appear to be intimately linked and are jointly generated in many different contexts such as during embryogenesis or formation of tissue spheroids, in stem cell niches, cancer, or by induction of a pluripotent state (induced pluripotency). Tissue damage and senescence provide signals that are critical to generation of a pluripotent state and, in turn, pluripotency, induces senescence. Thus, it follows, that precisely timed control of senescence is required for harnessing the full benefits of both senescence and its associated pluripotency during tissue regeneration or rejuvenation.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, 16471 Scientific Way, Irvine, CA 92618.
| |
Collapse
|
8
|
Zhang DY, Monteiro MJ, Liu JP, Gu WY. Mechanisms of cancer stem cell senescence: Current understanding and future perspectives. Clin Exp Pharmacol Physiol 2021; 48:1185-1202. [PMID: 34046925 DOI: 10.1111/1440-1681.13528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are a small population of heterogeneous tumor cells with the capacity of self-renewal and aberrant differentiation for immortality and divergent lineages of cancer cells. In contrast to bulky tumor cells, CSCs remain less differentiated and resistant to therapy even when targeted with tissue-specific antigenic markers. This makes CSCs responsible for not only tumor initiation, development, but also tumor recurrence. Emerging evidence suggests that CSCs can undergo cell senescence, a non-proliferative state of cells in response to stress. While cell senescence attenuates tumor cell proliferation, it is commonly regarded as a tumor suppressive mechanism. However, mounting research indicates that CSC senescence also provides these cells with the capacity to evade cytotoxic effects from cancer therapy, exacerbating cancer relapse and metastasis. Recent studies demonstrate that senescence drives reprogramming of cancer cell toward stemness and promotes CSC generation. In this review, we highlight the origin, heterogeneity and senescence regulatory mechanisms of CSCs, the complex relationship between CSC senescence and tumor therapy, and the recent beneficial effects of senotherapy on eliminating senescent tumor cells.
Collapse
Affiliation(s)
- Da-Yong Zhang
- Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, Hangzhou, China
- Department of Immunology, Monash University Faculty of Medicine, Prahran, Vic, Australia
- Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University Faculty of Medicine, Clayton, Vic, Australia
| | - Wen-Yi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
9
|
Istiaq A, Ohta K. Ribosome-Induced Cellular Multipotency, an Emerging Avenue in Cell Fate Reversal. Cells 2021; 10:cells10092276. [PMID: 34571922 PMCID: PMC8469204 DOI: 10.3390/cells10092276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 01/23/2023] Open
Abstract
The ribosome, which is present in all three domains of life, plays a well-established, critical role in the translation process by decoding messenger RNA into protein. Ribosomal proteins, in contrast, appear to play non-translational roles in growth, differentiation, and disease. We recently discovered that ribosomes are involved in reverting cellular potency to a multipotent state. Ribosomal incorporation (the uptake of free ribosome by living cells) can direct the fate of both somatic and cancer cells into multipotency, allowing them to switch cell lineage. During this process, both types of cells experienced cell-cycle arrest and cellular stress while remaining multipotent. This review provides a molecular perspective on current insights into ribosome-induced multipotency and sheds light on how a common stress-associated mechanism may be involved. We also discuss the impact of this phenomenon on cancer cell reprogramming and its potential in cancer therapy.
Collapse
Affiliation(s)
- Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan;
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-8555, Japan
- HIGO Program, Kumamoto University, Kumamoto 860-8555, Japan
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan;
- Correspondence: ; Tel.: +81-92-802-6014
| |
Collapse
|
10
|
Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol 2021; 9:645593. [PMID: 33855023 PMCID: PMC8039141 DOI: 10.3389/fcell.2021.645593] [Citation(s) in RCA: 685] [Impact Index Per Article: 228.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stable cell cycle arrest that can be triggered in normal cells in response to various intrinsic and extrinsic stimuli, as well as developmental signals. Senescence is considered to be a highly dynamic, multi-step process, during which the properties of senescent cells continuously evolve and diversify in a context dependent manner. It is associated with multiple cellular and molecular changes and distinct phenotypic alterations, including a stable proliferation arrest unresponsive to mitogenic stimuli. Senescent cells remain viable, have alterations in metabolic activity and undergo dramatic changes in gene expression and develop a complex senescence-associated secretory phenotype. Cellular senescence can compromise tissue repair and regeneration, thereby contributing toward aging. Removal of senescent cells can attenuate age-related tissue dysfunction and extend health span. Senescence can also act as a potent anti-tumor mechanism, by preventing proliferation of potentially cancerous cells. It is a cellular program which acts as a double-edged sword, with both beneficial and detrimental effects on the health of the organism, and considered to be an example of evolutionary antagonistic pleiotropy. Activation of the p53/p21WAF1/CIP1 and p16INK4A/pRB tumor suppressor pathways play a central role in regulating senescence. Several other pathways have recently been implicated in mediating senescence and the senescent phenotype. Herein we review the molecular mechanisms that underlie cellular senescence and the senescence associated growth arrest with a particular focus on why cells stop dividing, the stability of the growth arrest, the hypersecretory phenotype and how the different pathways are all integrated.
Collapse
Affiliation(s)
- Ruchi Kumari
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Parmjit Jat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| |
Collapse
|
11
|
Zhang X, Li Z, Liu Y, Gai Z. Great Expectations: Induced pluripotent stem cell technologies in neurodevelopmental impairments. Int J Med Sci 2021; 18:459-473. [PMID: 33390815 PMCID: PMC7757149 DOI: 10.7150/ijms.51842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Somatic cells such as skin fibroblasts, umbilical cord blood, peripheral blood, urinary epithelial cells, etc., are transformed into induced pluripotent stem cells (iPSCs) by reprogramming technology, a milestone in the stem-cell research field. IPSCs are similar to embryonic stem cells (ESCs), exhibiting the potential to differentiate into various somatic cells. Still, the former avoid problems of immune rejection and medical ethics in the study of ESCs and clinical trials. Neurodevelopmental disorders are chronic developmental brain dysfunctions that affect cognition, exercise, social adaptability, behavior, etc. Due to various inherited or acquired causes, they seriously affect the physical and psychological health of infants and children. These include generalized stunting / mental disability (GDD/ID), Epilepsy, autism spectrum disease (ASD), and attention deficit hyperactivity disorder (ADHD). Most neurodevelopmental disorders are challenging to cure. Establishing a neurodevelopmental disorder system model is essential for researching and treating neurodevelopmental disorders. At this stage, the scarcity of samples is a bigger problem for studying neurological diseases based on the donor, ethics, etc. Some iPSCs are reprogrammed from somatic cells that carry disease-causing mutations. They differentiate into nerve cells by induction, which has the original characteristics of diseases. Disease-specific iPSCs are used to study the mechanism and pathogenesis of neurodevelopmental disorders. The process provided samples and the impetus for developing drugs and developing treatment plans for neurodevelopmental disorders. Here, this article mainly introduced the development of iPSCs, the currently established iPSCs disease models, and artificial organoids related to neurodevelopmental impairments. This technology will promote our understanding of neurodevelopmental impairments and bring great expectations to children with neurological disorders.
Collapse
Affiliation(s)
- Xue Zhang
- Pediatric Research Institute, Qilu Children's Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan 250022, China.,Jinan Pediatric Research Institute, Jinan Children's Hospital, Ji'nan 250022, China.,Neonatal Intensive Care Unit, Children's Medical Center, The Second Hospital of Shandong University, Ji'nan 250033, China
| | - Zilong Li
- Pediatric Research Institute, Qilu Children's Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan 250022, China.,Jinan Pediatric Research Institute, Jinan Children's Hospital, Ji'nan 250022, China
| | - Yi Liu
- Pediatric Research Institute, Qilu Children's Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan 250022, China.,Jinan Pediatric Research Institute, Jinan Children's Hospital, Ji'nan 250022, China
| | - Zhongtao Gai
- Pediatric Research Institute, Qilu Children's Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan 250022, China.,Jinan Pediatric Research Institute, Jinan Children's Hospital, Ji'nan 250022, China
| |
Collapse
|
12
|
Induced Pluripotent Stem Cell-Differentiated Chondrocytes Repair Cartilage Defect in a Rabbit Osteoarthritis Model. Stem Cells Int 2020; 2020:8867349. [PMID: 33224204 PMCID: PMC7671807 DOI: 10.1155/2020/8867349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to explore the therapeutic effect of iPSC-mesenchymal stem cell (MSC)-derived chondrocytes in a rabbit osteoarthritis (OA) model. The iPSCs were characterized by gene expressions, immunostaining of pluripotent markers, and in vivo teratoma formation. iPSC-differentiated MSCs were characterized by flow cytometry and trilineage differentiation. A rabbit OA model was established by the transection of the anterior cruciate ligament. The therapeutic effect of transplanted iPSC-MSC-chondrocytes on the OA was evaluated by the histology, immunostaining, and qPCR of defective cartilage. The results showed iPSC could express pluripotency markers such as OCT4, SOX2, and NANOG and form an embryoid body and a teratoma. After differentiation of iPSCs for 30 days, MSCs were established. The iPSC-MSC could express typical MSC markers such as CD29, CD44, CD90, CD105, and HLA-ABC. They could differentiate into adipocytes, osteocytes, and chondrocytes. In this model, iPSC-MSC-chondrocytes significantly improved the histology and ICRS (International Cartilage Repair Society) scores. The transplanted cartilage expressed less IL-1β, TNF-α, and MMP13 than control cartilage. In conclusion, the iPSCs we derived might represent an emerging source for differentiated MSC-chondrocyte and might rescue cartilage defects through its anti-inflammatory and anti-catabolic effects.
Collapse
|
13
|
Huang Y, Zhang H, Wang L, Tang C, Qin X, Wu X, Pan M, Tang Y, Yang Z, Babarinde IA, Lin R, Ji G, Lai Y, Xu X, Su J, Wen X, Satoh T, Ahmed T, Malik V, Ward C, Volpe G, Guo L, Chen J, Sun L, Li Y, Huang X, Bao X, Gao F, Liu B, Zheng H, Jauch R, Lai L, Pan G, Chen J, Testa G, Akira S, Hu J, Pei D, Hutchins AP, Esteban MA, Qin B. JMJD3 acts in tandem with KLF4 to facilitate reprogramming to pluripotency. Nat Commun 2020; 11:5061. [PMID: 33033262 PMCID: PMC7545202 DOI: 10.1038/s41467-020-18900-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The interplay between the Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) and transcriptional/epigenetic co-regulators in somatic cell reprogramming is incompletely understood. Here, we demonstrate that the histone H3 lysine 27 trimethylation (H3K27me3) demethylase JMJD3 plays conflicting roles in mouse reprogramming. On one side, JMJD3 induces the pro-senescence factor Ink4a and degrades the pluripotency regulator PHF20 in a reprogramming factor-independent manner. On the other side, JMJD3 is specifically recruited by KLF4 to reduce H3K27me3 at both enhancers and promoters of epithelial and pluripotency genes. JMJD3 also promotes enhancer-promoter looping through the cohesin loading factor NIPBL and ultimately transcriptional elongation. This competition of forces can be shifted towards improved reprogramming by using early passage fibroblasts or boosting JMJD3’s catalytic activity with vitamin C. Our work, thus, establishes a multifaceted role for JMJD3, placing it as a key partner of KLF4 and a scaffold that assists chromatin interactions and activates gene transcription. Previous work suggested that histone demethylase JMJD3 is detrimental to somatic cell reprogramming. Here, the authors show that while JMJD3 has a context-independent detrimental effect on early stages of reprogramming, during late stages it activates epithelial and pluripotency genes together with Klf4.
Collapse
Affiliation(s)
- Yinghua Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China
| | - Hui Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Lulu Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China
| | - Chuanqing Tang
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China
| | - Xiaogan Qin
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China
| | - Xinyu Wu
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Meifang Pan
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yujia Tang
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China
| | - Zhongzhou Yang
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China
| | - Isaac A Babarinde
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Runxia Lin
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guanyu Ji
- Science and Technology Department, E-GENE, 518118, Shenzhen, China
| | - Yiwei Lai
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Integrative Biology, GIBH, CAS, 510530, Guangzhou, China
| | - Xueting Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China.,School of Life Sciences, University of Science and Technology of China, 230027, Hefei, China
| | - Jianbin Su
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China
| | - Xue Wen
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, 130061, Changchun, China
| | - Takashi Satoh
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Tanveer Ahmed
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China
| | - Vikas Malik
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Integrative Biology, GIBH, CAS, 510530, Guangzhou, China
| | - Carl Ward
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Integrative Biology, GIBH, CAS, 510530, Guangzhou, China
| | - Giacomo Volpe
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Integrative Biology, GIBH, CAS, 510530, Guangzhou, China
| | - Lin Guo
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China
| | - Jinlong Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China
| | - Li Sun
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yingying Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Xiaofen Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China
| | - Xichen Bao
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, 511436, Guangzhou, China
| | - Fei Gao
- Science and Technology Department, E-GENE, 518118, Shenzhen, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Baohua Liu
- Health Science Center, Shenzhen University, 518060, Shenzhen, China
| | - Hui Zheng
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, 511436, Guangzhou, China
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Liangxue Lai
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, 511436, Guangzhou, China
| | - Guangjin Pan
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, 511436, Guangzhou, China
| | - Jiekai Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, 511436, Guangzhou, China
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology, Milan, 20139, Italy
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Jifan Hu
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, 130061, Changchun, China
| | - Duanqing Pei
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Andrew P Hutchins
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Miguel A Esteban
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China. .,Laboratory of Integrative Biology, GIBH, CAS, 510530, Guangzhou, China. .,Joint School of Life Sciences, GIBH and Guangzhou Medical University, 511436, Guangzhou, China. .,Institute for Stem Cells and Regeneration, CAS, 100101, Beijing, China.
| | - Baoming Qin
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China. .,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China. .,Joint School of Life Sciences, GIBH and Guangzhou Medical University, 511436, Guangzhou, China.
| |
Collapse
|
14
|
Sanjurjo-Rodríguez C, Castro-Viñuelas R, Piñeiro-Ramil M, Rodríguez-Fernández S, Fuentes-Boquete I, Blanco FJ, Díaz-Prado S. Versatility of Induced Pluripotent Stem Cells (iPSCs) for Improving the Knowledge on Musculoskeletal Diseases. Int J Mol Sci 2020; 21:ijms21176124. [PMID: 32854405 PMCID: PMC7504376 DOI: 10.3390/ijms21176124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) represent an unlimited source of pluripotent cells capable of differentiating into any cell type of the body. Several studies have demonstrated the valuable use of iPSCs as a tool for studying the molecular and cellular mechanisms underlying disorders affecting bone, cartilage and muscle, as well as their potential for tissue repair. Musculoskeletal diseases are one of the major causes of disability worldwide and impose an important socio-economic burden. To date there is neither cure nor proven approach for effectively treating most of these conditions and therefore new strategies involving the use of cells have been increasingly investigated in the recent years. Nevertheless, some limitations related to the safety and differentiation protocols among others remain, which humpers the translational application of these strategies. Nonetheless, the potential is indisputable and iPSCs are likely to be a source of different types of cells useful in the musculoskeletal field, for either disease modeling or regenerative medicine. In this review, we aim to illustrate the great potential of iPSCs by summarizing and discussing the in vitro tissue regeneration preclinical studies that have been carried out in the musculoskeletal field by using iPSCs.
Collapse
Affiliation(s)
- Clara Sanjurjo-Rodríguez
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
- Correspondence: (C.S.-R.); (S.D.-P.)
| | - Rocío Castro-Viñuelas
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
| | - María Piñeiro-Ramil
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
| | - Silvia Rodríguez-Fernández
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
| | - Isaac Fuentes-Boquete
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
| | - Francisco J. Blanco
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
- Tissular Bioengineering and Cell Therapy Unit (GBTTC-CHUAC), Rheumatology Group, 15006 A Coruña, Galicia, Spain
| | - Silvia Díaz-Prado
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
- Correspondence: (C.S.-R.); (S.D.-P.)
| |
Collapse
|
15
|
Ward C, Volpe G, Cauchy P, Ptasinska A, Almaghrabi R, Blakemore D, Nafria M, Kestner D, Frampton J, Murphy G, Buganim Y, Kaji K, García P. Fine-Tuning Mybl2 Is Required for Proper Mesenchymal-to-Epithelial Transition during Somatic Reprogramming. Cell Rep 2020; 24:1496-1511.e8. [PMID: 30089261 PMCID: PMC6092268 DOI: 10.1016/j.celrep.2018.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/18/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022] Open
Abstract
During somatic reprogramming, Yamanaka’s pioneer factors regulate a complex sequence of molecular events leading to the activation of a network of pluripotency factors, ultimately resulting in the acquisition and maintenance of a pluripotent state. Here, we show that, contrary to the pluripotency factors studied so far, overexpression of Mybl2 inhibits somatic reprogramming. Our results demonstrate that Mybl2 levels are crucial to the dynamics of the reprogramming process. Mybl2 overexpression changes chromatin conformation, affecting the accessibility of pioneer factors to the chromatin and promoting accessibility for early immediate response genes known to be reprogramming blockers. These changes in the chromatin landscape ultimately lead to a deregulation of key genes that are important for the mesenchymal-to-epithelial transition. This work defines Mybl2 level as a gatekeeper for the initiation of reprogramming, providing further insights into the tight regulation and required coordination of molecular events that are necessary for changes in cell fate identity during the reprogramming process. Deletion and overexpression of MYBL2 pluripotency factor inhibit somatic reprogramming Mybl2 overexpression affects the accessibility of pioneer factors to the chromatin Mybl2 overexpression promotes accessibility of reprogramming blockers to the chromatin High Mybl2 levels deregulate key genes for proper MET, a requirement for reprogramming
Collapse
Affiliation(s)
- Carl Ward
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Giacomo Volpe
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Department of Molecular and Cellular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Anetta Ptasinska
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ruba Almaghrabi
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Daniel Blakemore
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Monica Nafria
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Doris Kestner
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jon Frampton
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - George Murphy
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yosef Buganim
- The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Keisuke Kaji
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Paloma García
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
16
|
Wang L, Xu X, Jiang C, Ma G, Huang Y, Zhang H, Lai Y, Wang M, Ahmed T, Lin R, Guo W, Luo Z, Li W, Zhang M, Ward C, Qian M, Liu B, Esteban MA, Qin B. mTORC1-PGC1 axis regulates mitochondrial remodeling during reprogramming. FEBS J 2019; 287:108-121. [PMID: 31361392 DOI: 10.1111/febs.15024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023]
Abstract
Metabolic reprogramming, hallmarked by enhanced glycolysis and reduced mitochondrial activity, is a key event in the early phase of somatic cell reprogramming. Although extensive work has been conducted to identify the mechanisms of mitochondrial remodeling in reprogramming, many questions remain. In this regard, different laboratories have proposed a role in this process for either canonical (ATG5-dependent) autophagy-mediated mitochondrial degradation (mitophagy), noncanonical (ULK1-dependent, ATG5-independent) mitophagy, mitochondrial fission or reduced biogenesis due to mTORC1 suppression. Clarifying these discrepancies is important for providing a comprehensive picture of metabolic changes in reprogramming. Yet, the comparison among these studies is difficult because they use different reprogramming conditions and mitophagy detection/quantification methods. Here, we have systematically explored mitochondrial remodeling in reprogramming using different culture media and reprogramming factor cocktails, together with appropriate quantification methods and thorough statistical analysis. Our experiments show lack of evidence for mitophagy in mitochondrial remodeling in reprogramming, and further confirm that the suppression of the mTORC1-PGC1 pathway drives this process. Our work helps to clarify the complex interplay between metabolic changes and nutrient sensing pathways in reprogramming, which may also shed light on other contexts such as development, aging and cancer.
Collapse
Affiliation(s)
- Lulu Wang
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xueting Xu
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Che Jiang
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gang Ma
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), China
| | - Yinghua Huang
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), China
| | - Hui Zhang
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), China
| | - Yiwei Lai
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), China.,University of Chinese Academy of Sciences, Beijing, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Ming Wang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, Shenzhen University Health Science Center, China
| | - Tanveer Ahmed
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), China.,Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Runxia Lin
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenjing Guo
- Scientific Instruments Center, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Zhiwei Luo
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Guangzhou Medical University, China
| | - Wenjuan Li
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Guangzhou Medical University, China
| | - Meng Zhang
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), China.,University of Chinese Academy of Sciences, Beijing, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Carl Ward
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Minxian Qian
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, Shenzhen University Health Science Center, China
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, Shenzhen University Health Science Center, China
| | - Miguel A Esteban
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Baoming Qin
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), China
| |
Collapse
|
17
|
Amniotic Fluid Cells, Stem Cells, and p53: Can We Stereotype p53 Functions? Int J Mol Sci 2019; 20:ijms20092236. [PMID: 31067653 PMCID: PMC6539965 DOI: 10.3390/ijms20092236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022] Open
Abstract
In recent years, great interest has been devoted to finding alternative sources for human stem cells which can be easily isolated, ideally without raising ethical objections. These stem cells should furthermore have a high proliferation rate and the ability to differentiate into all three germ layers. Amniotic fluid, ordinarily discarded as medical waste, is potentially such a novel source of stem cells, and these amniotic fluid derived stem cells are currently gaining a lot of attention. However, further information will be required about the properties of these cells before they can be used for therapeutic purposes. For example, the risk of tumor formation after cell transplantation needs to be explored. The tumor suppressor protein p53, well known for its activity in controlling Cell Prolif.eration and cell death in differentiated cells, has more recently been found to be also active in amniotic fluid stem cells. In this review, we summarize the major findings about human amniotic fluid stem cells since their discovery, followed by a brief overview of the important role played by p53 in embryonic and adult stem cells. In addition, we explore what is known about p53 in amniotic fluid stem cells to date, and emphasize the need to investigate its role, particularly in the context of cell tumorigenicity.
Collapse
|
18
|
Ferreirós A, Pedrosa P, Da Silva-Álvarez S, Triana-Martínez F, Vilas JM, Picallos-Rabina P, González P, Gómez M, Li H, García-Caballero T, González-Barcia M, Vidal A, Collado M. Context-Dependent Impact of RAS Oncogene Expression on Cellular Reprogramming to Pluripotency. Stem Cell Reports 2019; 12:1099-1112. [PMID: 31056476 PMCID: PMC6524732 DOI: 10.1016/j.stemcr.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/30/2022] Open
Abstract
Induction of pluripotency in somatic cells with defined genetic factors has been successfully used to investigate the mechanisms of disease initiation and progression. Cellular reprogramming and oncogenic transformation share common features; both involve undergoing a dramatic change in cell identity, and immortalization is a key step for cancer progression that enhances reprogramming. However, there are very few examples of complete successful reprogramming of tumor cells. Here we address the effect of expressing an active oncogene, RAS, on the process of reprogramming and found that, while combined expression with reprogramming factors enhanced dedifferentiation, expression within the context of neoplastic transformation impaired reprogramming. RAS induces expression changes that promote loss of cell identity and acquisition of stemness in a paracrine manner and these changes result in reprogramming when combined with reprogramming factors. When cells carry cooperating oncogenic defects, RAS drives cells into an incompatible cellular fate of malignancy. Oncogenic Ras enhances cell reprogramming in a wild-type context Ras induces gene expression changes that favor reprogramming Ras expression in immortal cells impairs cell reprogramming Oncogenic transformation and cellular reprogramming are incompatible cell fates
Collapse
Affiliation(s)
- Alba Ferreirós
- Laboratorio de Células Madre en Cáncer y Envejecimiento, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), E15706 Santiago de Compostela, Spain
| | - Pablo Pedrosa
- Laboratorio de Células Madre en Cáncer y Envejecimiento, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), E15706 Santiago de Compostela, Spain
| | - Sabela Da Silva-Álvarez
- Laboratorio de Células Madre en Cáncer y Envejecimiento, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), E15706 Santiago de Compostela, Spain
| | - Francisco Triana-Martínez
- Laboratorio de Células Madre en Cáncer y Envejecimiento, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), E15706 Santiago de Compostela, Spain
| | - Jéssica M Vilas
- Laboratorio de Células Madre en Cáncer y Envejecimiento, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), E15706 Santiago de Compostela, Spain
| | - Pilar Picallos-Rabina
- Laboratorio de Células Madre en Cáncer y Envejecimiento, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), E15706 Santiago de Compostela, Spain
| | - Patricia González
- Histopathology Core Unit, Spanish National Cancer Research Centre (CNIO), E28029 Madrid, Spain
| | - María Gómez
- Histopathology Core Unit, Spanish National Cancer Research Centre (CNIO), E28029 Madrid, Spain
| | - Han Li
- Cellular Plasticity & Disease Modelling, Department of Developmental & Stem Cell Biology, CNRS UMR 3738 Institut Pasteur, 75015 Paris, France
| | - Tomás García-Caballero
- Departamento de Ciencias Morfológicas, Facultad de Medicina, USC, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), E15706 Santiago de Compostela, Spain
| | - Miguel González-Barcia
- Servicio de Farmacia, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), E15706 Santiago de Compostela, Spain
| | - Anxo Vidal
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), E15782 Santiago de Compostela, Spain.
| | - Manuel Collado
- Laboratorio de Células Madre en Cáncer y Envejecimiento, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), E15706 Santiago de Compostela, Spain.
| |
Collapse
|
19
|
Sogabe Y, Seno H, Yamamoto T, Yamada Y. Unveiling epigenetic regulation in cancer, aging, and rejuvenation with in vivo reprogramming technology. Cancer Sci 2018; 109:2641-2650. [PMID: 29989289 PMCID: PMC6125454 DOI: 10.1111/cas.13731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Reprogramming technology has enabled the fate conversion of terminally differentiated somatic cells into pluripotent stem cells or into another differentiated state. A dynamic reorganization of epigenetic regulation takes place during cellular reprogramming. Given that reprogramming does not require changes in the underlying genome, the technology can be used to actively modify epigenetic regulation. Although reprogramming has been investigated mostly at the cellular level in vitro, studies have reported that somatic cells are reprogrammable in multicellular organisms in vivo. In vivo reprogramming provides a potential strategy for regenerative medicine. Notably, recent studies using in vivo reprogramming technology to alter epigenetic regulation at organismal levels have revealed unappreciated epigenetic mechanisms in various biological phenomena, including cancer development, tissue regeneration, aging, and rejuvenation in mammals. Moreover, in vivo reprogramming technology can be applied to abrogate epigenetic aberrations associated with aging and cancer, which raises the possibility that the technology could provide a potential strategy to control the fate of detrimental cells such as senescent cells and cancer cells in vivo. Here, we review recent progress and future perspectives of in vivo reprogramming.
Collapse
Affiliation(s)
- Yuko Sogabe
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,AMED-CREST, AMED, Tokyo, Japan
| | - Yasuhiro Yamada
- AMED-CREST, AMED, Tokyo, Japan.,Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Carrero D, Soria-Valles C, López-Otín C. Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells. Dis Model Mech 2017; 9:719-35. [PMID: 27482812 PMCID: PMC4958309 DOI: 10.1242/dmm.024711] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ageing is a process that inevitably affects most living organisms and involves the accumulation of macromolecular damage, genomic instability and loss of heterochromatin. Together, these alterations lead to a decline in stem cell function and to a reduced capability to regenerate tissue. In recent years, several genetic pathways and biochemical mechanisms that contribute to physiological ageing have been described, but further research is needed to better characterize this complex biological process. Because premature ageing (progeroid) syndromes, including progeria, mimic many of the characteristics of human ageing, research into these conditions has proven to be very useful not only to identify the underlying causal mechanisms and identify treatments for these pathologies, but also for the study of physiological ageing. In this Review, we summarize the main cellular and animal models used in progeria research, with an emphasis on patient-derived induced pluripotent stem cell models, and define a series of molecular and cellular hallmarks that characterize progeroid syndromes and parallel physiological ageing. Finally, we describe the therapeutic strategies being investigated for the treatment of progeroid syndromes, and their main limitations. Summary: This Review defines the molecular and cellular hallmarks of progeroid syndromes according to the main cellular and animal models, and discusses the therapeutic strategies developed to date.
Collapse
Affiliation(s)
- Dido Carrero
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo 33006, Spain
| | - Clara Soria-Valles
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo 33006, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo 33006, Spain
| |
Collapse
|
21
|
Aarts M, Georgilis A, Beniazza M, Beolchi P, Banito A, Carroll T, Kulisic M, Kaemena DF, Dharmalingam G, Martin N, Reik W, Zuber J, Kaji K, Chandra T, Gil J. Coupling shRNA screens with single-cell RNA-seq identifies a dual role for mTOR in reprogramming-induced senescence. Genes Dev 2017; 31:2085-2098. [PMID: 29138277 PMCID: PMC5733499 DOI: 10.1101/gad.297796.117] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/18/2017] [Indexed: 11/25/2022]
Abstract
Aarts et al. developed an innovative approach that integrates single-cell RNA sequencing with a shRNA screen in primary human fibroblasts expressing OCT4, SOX2, KLF4, and cMYC to investigate the mechanism of action of the identified candidates. This approach unveiled regulation of senescence as a novel way by which mechanistic target of rapamycin (mTOR) influences reprogramming. Expression of the transcription factors OCT4, SOX2, KLF4, and cMYC (OSKM) reprograms somatic cells into induced pluripotent stem cells (iPSCs). Reprogramming is a slow and inefficient process, suggesting the presence of safeguarding mechanisms that counteract cell fate conversion. One such mechanism is senescence. To identify modulators of reprogramming-induced senescence, we performed a genome-wide shRNA screen in primary human fibroblasts expressing OSKM. In the screen, we identified novel mediators of OSKM-induced senescence and validated previously implicated genes such as CDKN1A. We developed an innovative approach that integrates single-cell RNA sequencing (scRNA-seq) with the shRNA screen to investigate the mechanism of action of the identified candidates. Our data unveiled regulation of senescence as a novel way by which mechanistic target of rapamycin (mTOR) influences reprogramming. On one hand, mTOR inhibition blunts the induction of cyclin-dependent kinase (CDK) inhibitors (CDKIs), including p16INK4a, p21CIP1, and p15INK4b, preventing OSKM-induced senescence. On the other hand, inhibition of mTOR blunts the senescence-associated secretory phenotype (SASP), which itself favors reprogramming. These contrasting actions contribute to explain the complex effect that mTOR has on reprogramming. Overall, our study highlights the advantage of combining functional screens with scRNA-seq to accelerate the discovery of pathways controlling complex phenotypes.
Collapse
Affiliation(s)
- Marieke Aarts
- Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Athena Georgilis
- Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Meryam Beniazza
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Patrizia Beolchi
- Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Ana Banito
- Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Thomas Carroll
- Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | | | - Daniel F Kaemena
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Gopuraja Dharmalingam
- Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Nadine Martin
- Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Keisuke Kaji
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Tamir Chandra
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom.,MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Jesús Gil
- Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
22
|
Nakamura Y, Shimizu Y, Horibata Y, Tei R, Koike R, Masawa M, Watanabe T, Shiobara T, Arai R, Chibana K, Takemasa A, Sugimoto H, Ishii Y. Changes of plasmalogen phospholipid levels during differentiation of induced pluripotent stem cells 409B2 to endothelial phenotype cells. Sci Rep 2017; 7:9377. [PMID: 28839272 PMCID: PMC5571164 DOI: 10.1038/s41598-017-09980-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/02/2017] [Indexed: 01/07/2023] Open
Abstract
Endothelial cells (EC) are involved in regulating several aspects of lipid metabolism, with recent research revealing the clinicopathological significance of interactions between EC and lipids. Induced pluripotent stem cells (iPSC) have various possible medical uses, so understanding the metabolism of these cells is important. In this study, endothelial phenotype cells generated from human iPSC formed cell networks in co-culture with fibroblasts. Changes of plasmalogen lipids and sphingomyelins in endothelial phenotype cells generated from human iPSC were investigated by reverse-phase ultra-high-pressure liquid chromatography mass spectrometry (UHPLC-MS/MS) analysis. The levels of plasmalogen phosphatidylethanolamines (38:5) and (38:4) increased during differentiation of EC, while sphingomyelin levels decreased transiently. These changes of plasmalogen lipids and sphingomyelins may have physiological significance for EC and could be used as markers of differentiation.
Collapse
Affiliation(s)
- Yusuke Nakamura
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.
| | - Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Rinna Tei
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Ryosuke Koike
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Meitetsu Masawa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Taiji Watanabe
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Taichi Shiobara
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Ryo Arai
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Kazuyuki Chibana
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Akihiro Takemasa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Yoshiki Ishii
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| |
Collapse
|
23
|
Baranek M, Belter A, Naskręt-Barciszewska MZ, Stobiecki M, Markiewicz WT, Barciszewski J. Effect of small molecules on cell reprogramming. MOLECULAR BIOSYSTEMS 2017; 13:277-313. [PMID: 27918060 DOI: 10.1039/c6mb00595k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The essential idea of regenerative medicine is to fix or replace tissues or organs with alive and patient-specific implants. Pluripotent stem cells are able to indefinitely self-renew and differentiate into all cell types of the body which makes them a potent substantial player in regenerative medicine. The easily accessible source of induced pluripotent stem cells may allow obtaining and cultivating tissues in vitro. Reprogramming refers to regression of mature cells to its initial pluripotent state. One of the approaches affecting pluripotency is the usage of low molecular mass compounds that can modulate enzymes and receptors leading to the formation of pluripotent stem cells (iPSCs). It would be great to assess the general character of such compounds and reveal their new derivatives or modifications to increase the cell reprogramming efficiency. Many improvements in the methods of pluripotency induction have been made by various groups in order to limit the immunogenicity and tumorigenesis, increase the efficiency and accelerate the kinetics. Understanding the epigenetic changes during the cellular reprogramming process will extend the comprehension of stem cell biology and lead to potential therapeutic approaches. There are compounds which have been already proven to be or for now only putative inducers of the pluripotent state that may substitute for the classic reprogramming factors (Oct3/4, Sox2, Klf4, c-Myc) in order to improve the time and efficiency of pluripotency induction. The effect of small molecules on gene expression is dosage-dependent and their application concentration needs to be strictly determined. In this review we analysed the role of small molecules in modulations leading to pluripotency induction, thereby contributing to our understanding of stem cell biology and uncovering the major mechanisms involved in that process.
Collapse
Affiliation(s)
- M Baranek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - A Belter
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - M Z Naskręt-Barciszewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - M Stobiecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - W T Markiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - J Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
24
|
Bueno C, Menendez P. Human acute leukemia induced pluripotent stem cells: a unique model for investigating disease development and pathogenesis. Stem Cell Investig 2017; 4:55. [PMID: 28725651 DOI: 10.21037/sci.2017.05.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Clara Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain.,Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
25
|
Neganova I, Chichagova V, Armstrong L, Lako M. A critical role for p38MAPK signalling pathway during reprogramming of human fibroblasts to iPSCs. Sci Rep 2017; 7:41693. [PMID: 28155868 PMCID: PMC5290526 DOI: 10.1038/srep41693] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/09/2016] [Indexed: 01/17/2023] Open
Abstract
Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) holds enormous promise for regenerative medicine. Reprogramming is a stepwise process with well-defined stages of initiation, maturation and stabilisation which are critically dependent on interactions between key pluripotency transcription factors, epigenetic regulators and signalling pathways. In this manuscript we have investigated the role of p38 MAPK signalling pathway and have shown a subpopulation- and phase-specific pattern of activation occurring during the initiation and maturation stage of reprogramming in partially and fully reprogrammed cells respectively. Downregulation of p38 MAPK activity via RNA interference or small molecule inhibitor led to cell accumulation in G1 phase of the cell cycle and reduced expression of cell cycle regulators during the initiation stage of reprogramming. This was associated with a significant downregulation of key pluripotency marker expression, disruption of mesenchymal to epithelial transition (MET), increased expression of differentiation markers and presence of partially reprogrammed cells which retained a typical gene expression profile of mesendodermal cells and were unable to progress to fully reprogrammed phenotype. Together our data indicate an important role for p38 MAPK activity in proliferation, MET progression and establishment of pluripotent phenotype, which are necessary steps for the development of human iPSCs.
Collapse
Affiliation(s)
- Irina Neganova
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, NE1 3BZ, UK
| | - Valeria Chichagova
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, NE1 3BZ, UK
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, NE1 3BZ, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, NE1 3BZ, UK
| |
Collapse
|
26
|
Zhang H, Wei M, Jiang Y, Wang X, She L, Yan Z, Dong L, Pang L, Wang X. Reprogramming A375 cells to induced‑resembled neuronal cells by structured overexpression of specific transcription genes. Mol Med Rep 2016; 14:3134-44. [PMID: 27510459 PMCID: PMC5042733 DOI: 10.3892/mmr.2016.5598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/06/2016] [Indexed: 01/06/2023] Open
Abstract
Induced-resembled neuronal cells (irNCs) are generated by reprogramming human melanoma cells through the introduction of key transcription factors, providing novel concepts in the treatment of malignant tumor cells and making it possible to supply neural cells for laboratory use. In the present study, irNCs were derived from A375 cells by inducing the 'forced' overexpression of specific genes, including achaete-scute homolog 1 (Ascl1), neuronal differentiation factor 1 (Neurod1), myelin transcription factor 1 (Myt1), brain protein 2 (Brn2, also termed POU3F2) and human brain-derived neurotrophic factor (h-BDNF). irNCs induced from A375 cells express multiple neuronal markers and fire action potentials, exhibiting properties similar to those of motor neurons. The reprogramming procedure comprised reverse transcription-polymerase chain reaction and immunofluorescence staining; furthermore, electrophysiological profiling demonstrated the characteristics of the induced-resembled neurons. The present study obtained a novel type of human irNC from human melanoma, which secreted BDNF continuously, providing a model for neuron-like cells. Thus, irNCs offer promise in investigating various neural diseases by using neural-like cells derived directly from the patient of interest.
Collapse
Affiliation(s)
- Hengzhu Zhang
- Department of Neurosurgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Min Wei
- Department of Neurosurgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Yangyang Jiang
- Department of Neurosurgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaodong Wang
- Department of Neurosurgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Lei She
- Department of Neurosurgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Zhengcun Yan
- Department of Neurosurgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Lun Dong
- Department of Neurosurgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Lujun Pang
- Department of Neurosurgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Xingdong Wang
- Department of Neurosurgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
27
|
Son MJ, Kwon Y, Son T, Cho YS. Restoration of Mitochondrial NAD + Levels Delays Stem Cell Senescence and Facilitates Reprogramming of Aged Somatic Cells. Stem Cells 2016; 34:2840-2851. [PMID: 27428041 DOI: 10.1002/stem.2460] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/27/2016] [Accepted: 06/30/2016] [Indexed: 12/14/2022]
Abstract
The fundamental tenet that aging is irreversible has been challenged by the development of reprogramming technology that can restore molecular and cellular age by reversing the progression of aging. The use of cells from aged individuals as sources for reprogramming or transplantation creates a major barrier in stem cell therapy with respect to cell quality and quantity. Here, we investigated the molecular features underlying senescence and rejuvenation during aged cell reprogramming and identified novel factors that can overcome age-associated barriers. Enzymes, such as nicotinamide nucleotide transhydrogenase (NNT) and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3), that control mitochondrial NAD+ levels appear to be susceptible to aging. In aged cells, mitochondrial NAD+ levels decrease, accompanied by reduced SIRT3 activity; these changes severely impede cell fate transition. However, in cells collected from aged p16 knockout mice, which exhibit delayed cellular senescence, no changes in NNT or NMNAT3 expression were found. Importantly, restoring mitochondrial NAD+ levels by overexpressing NNT and NMNAT3 enhanced reprogramming efficiency of aged somatic cells and extended the lifespan of human mesenchymal stem cells by delaying replicative senescence. These results demonstrate that maintenance of mitochondrial NAD+ levels is critical for reversing the mechanisms of aging and ensuring that cells collected from aged individuals are of high quality. Stem Cells 2016;34:2840-2851.
Collapse
Affiliation(s)
- Myung Jin Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-Gu, Daejeon, Republic of Korea.,Department of Functional Genomics, University of Science & Technology (UST), Yuseong-Gu, Daejeon, Republic of Korea
| | - Youjeong Kwon
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-Gu, Daejeon, Republic of Korea.,Department of Functional Genomics, University of Science & Technology (UST), Yuseong-Gu, Daejeon, Republic of Korea
| | - Taekwon Son
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yee Sook Cho
- Department of Functional Genomics, University of Science & Technology (UST), Yuseong-Gu, Daejeon, Republic of Korea.,Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, KRIBB, Yuseong-Gu, Daejeon, Republic of Korea
| |
Collapse
|
28
|
Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun 2016; 7:11471. [PMID: 27161380 PMCID: PMC4866046 DOI: 10.1038/ncomms11471] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/30/2016] [Indexed: 12/19/2022] Open
Abstract
The naked mole-rat (NMR, Heterocephalus glaber), which is the longest-lived rodent species, exhibits extraordinary resistance to cancer. Here we report that NMR somatic cells exhibit a unique tumour-suppressor response to reprogramming induction. In this study, we generate NMR-induced pluripotent stem cells (NMR-iPSCs) and find that NMR-iPSCs do not exhibit teratoma-forming tumorigenicity due to the species-specific activation of tumour-suppressor alternative reading frame (ARF) and a disruption mutation of the oncogene ES cell-expressed Ras (ERAS). The forced expression of Arf in mouse iPSCs markedly reduces tumorigenicity. Furthermore, we identify an NMR-specific tumour-suppression phenotype—ARF suppression-induced senescence (ASIS)—that may protect iPSCs and somatic cells from ARF suppression and, as a consequence, tumorigenicity. Thus, NMR-specific ARF regulation and the disruption of ERAS regulate tumour resistance in NMR-iPSCs. Our findings obtained from studies of NMR-iPSCs provide new insight into the mechanisms of tumorigenicity in iPSCs and cancer resistance in the NMR. The naked mole-rat exhibits an exceptional resistance to cancer. Here, the authors show that induced pluripotent stem cells derived from the naked mole-rat lack teratoma-forming tumorigenicity due to a naked mole-rat-specific ARF-dependent tumour-suppression mechanism.
Collapse
|
29
|
Xu Y, Zhang M, Li W, Zhu X, Bao X, Qin B, Hutchins AP, Esteban MA. Transcriptional Control of Somatic Cell Reprogramming. Trends Cell Biol 2016; 26:272-288. [DOI: 10.1016/j.tcb.2015.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 01/26/2023]
|
30
|
Nóbrega-Pereira S, Fernandez-Marcos PJ, Brioche T, Gomez-Cabrera MC, Salvador-Pascual A, Flores JM, Viña J, Serrano M. G6PD protects from oxidative damage and improves healthspan in mice. Nat Commun 2016; 7:10894. [PMID: 26976705 PMCID: PMC4796314 DOI: 10.1038/ncomms10894] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/01/2016] [Indexed: 01/06/2023] Open
Abstract
Reactive oxygen species (ROS) are constantly generated by cells and ROS-derived damage contributes to ageing. Protection against oxidative damage largely relies on the reductive power of NAPDH, whose levels are mostly determined by the enzyme glucose-6-phosphate dehydrogenase (G6PD). Here, we report a transgenic mouse model with moderate overexpression of human G6PD under its endogenous promoter. Importantly, G6PD-Tg mice have higher levels of NADPH, lower levels of ROS-derived damage, and better protection from ageing-associated functional decline, including extended median lifespan in females. The G6PD transgene has no effect on tumour development, even after combining with various tumour-prone genetic alterations. We conclude that a modest increase in G6PD activity is beneficial for healthspan through increased NADPH levels and protection from the deleterious effects of ROS. The enzyme G6PD generates the reductive metabolite NADPH, which has antioxidant effects, but has also been linked to tumour growth. Here the authors generate mice that modestly overexpress G6PD and report increased lifespan in females, and no negative effects on tumour formation in various genetic models.
Collapse
Affiliation(s)
- Sandrina Nóbrega-Pereira
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Pablo J Fernandez-Marcos
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain.,Bioactive Products and Metabolic Syndrome Group, Madrid Institute of Advanced Studies (IMDEA) Food, Madrid E28049, Spain
| | - Thomas Brioche
- Université de Montpellier, INRA, UMR866, Dynamique Musculaire et Métabolisme, F-34060 Montpellier, France
| | - Mari Carmen Gomez-Cabrera
- Department of Physiology, Faculty of Medicine, University of Valencia and Investigaciòn Hospital Clínico Universitario (INCLIVA), Valencia E46010, Spain
| | - Andrea Salvador-Pascual
- Department of Physiology, Faculty of Medicine, University of Valencia and Investigaciòn Hospital Clínico Universitario (INCLIVA), Valencia E46010, Spain
| | - Juana M Flores
- Animal Surgery and Medicine Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid E28040, Spain
| | - Jose Viña
- Department of Physiology, Faculty of Medicine, University of Valencia and Investigaciòn Hospital Clínico Universitario (INCLIVA), Valencia E46010, Spain
| | - Manuel Serrano
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| |
Collapse
|
31
|
Chen X, Zhai Y, Yu D, Cui J, Hu JF, Li W. Valproic Acid Enhances iPSC Induction From Human Bone Marrow-Derived Cells Through the Suppression of Reprogramming-Induced Senescence. J Cell Physiol 2015; 231:1719-27. [PMID: 26620855 DOI: 10.1002/jcp.25270] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/23/2015] [Indexed: 01/19/2023]
Abstract
Reprogramming of human somatic cells into pluripotent cells (iPSCs) by defined transcription factors is an extremely inefficient process. Treatment with the histone deacetylase inhibitor valproic acid (VPA) during reprogramming can improve the induction of iPSCs. To examine the specific mechanism underlying the role of VPA in reprogramming, we transfected human bone marrow-derived cells (HSC-J2 and HSC-L1) with lentiviruses carrying defined factors (OCT4, SOX2, KLF4, and c-MYC, OSKM) in the presence of VPA. We found that, OSKM lentiviruses caused significant senescence in transfected cells. Administration of VPA, however, significantly suppressed this reprogramming-induced stress. Notably, VPA treatment improved cell proliferation in the early stages of reprogramming, and this was related to the down-regulation of the activated p16/p21 pathway. In addition, VPA also released the G2/M phase blockade in lentivirus-transfected cells. This study demonstrates a new mechanistic role of the histone deacetylase inhibitor in enhancing the induction of pluripotency. J. Cell. Physiol. 231: 1719-1727, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xi Chen
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, P.R. China.,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, California
| | - Yingying Zhai
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, P.R. China.,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, California
| | - Dehai Yu
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, P.R. China.,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, California
| | - Jiuwei Cui
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Ji-Fan Hu
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, P.R. China.,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, California
| | - Wei Li
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
32
|
Huang GL, Zhang W, Ren HY, Shen XY, Chen QX, Shen DY. Retinoid X receptor α enhances human cholangiocarcinoma growth through simultaneous activation of Wnt/β-catenin and nuclear factor-κB pathways. Cancer Sci 2015; 106:1515-23. [PMID: 26310932 PMCID: PMC4714697 DOI: 10.1111/cas.12802] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/10/2015] [Accepted: 08/22/2015] [Indexed: 01/28/2023] Open
Abstract
Retinoid X receptor α (RXRα) plays important roles in the malignancy of several cancers such as human prostate tumor, breast cancer, and thyroid tumor. However, its exact functions and molecular mechanisms in cholangiocarcinoma (CCA), a chemoresistant carcinoma with poor prognosis, remain unclear. In this study we found that RXRα was frequently overexpressed in human CCA tissues and CCA cell lines. Downregulation of RXRα led to decreased expression of mitosis‐promoting factors including cyclin D1and cyclin E, and the proliferating cell nuclear antigen, as well as increased expression of cell cycle inhibitor p21, resulting in inhibition of CCA cell proliferation. Furthermore, RXRα knockdown attenuated the expression of cyclin D1 through suppression of Wnt/β‐catenin signaling. Retinoid X receptor α upregulated proliferating cell nuclear antigen expression through nuclear factor‐κB (NF‐κB) pathways, paralleled with downregulation of p21. Thus, the Wnt/β‐catenin and NF‐κB pathways account for the inhibition of CCA cell growth induced by RXRα downregulation. Retinoid X receptor α plays an important role in proliferation of CCA through simultaneous activation of Wnt/β‐catenin and NF‐κB pathways, indicating that RXRα might serve as a potential molecular target for CCA treatment.
Collapse
Affiliation(s)
- Gui-Li Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wei Zhang
- Division of Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hong-Yue Ren
- Division of Biobank, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xue-Ying Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qing-Xi Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Dong-Yan Shen
- Division of Biobank, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
33
|
Gonzalez LC, Ghadaouia S, Martinez A, Rodier F. Premature aging/senescence in cancer cells facing therapy: good or bad? Biogerontology 2015; 17:71-87. [DOI: 10.1007/s10522-015-9593-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/22/2015] [Indexed: 01/07/2023]
|
34
|
Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ, Raguz S, Acosta JC, Innes AJ, Banito A, Georgilis A, Montoya A, Wolter K, Dharmalingam G, Faull P, Carroll T, Martínez-Barbera JP, Cutillas P, Reisinger F, Heikenwalder M, Miller RA, Withers D, Zender L, Thomas GJ, Gil J. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol 2015; 17:1205-17. [PMID: 26280535 PMCID: PMC4589897 DOI: 10.1038/ncb3225] [Citation(s) in RCA: 514] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/20/2015] [Indexed: 12/15/2022]
Abstract
Senescent cells secrete a combination of factors collectively known as the senescence-associated secretory phenotype (SASP). The SASP reinforces senescence and activates an immune surveillance response, but it can also show pro-tumorigenic properties and contribute to age-related pathologies. In a drug screen to find new SASP regulators, we uncovered the mTOR inhibitor rapamycin as a potent SASP suppressor. Here we report a mechanism by which mTOR controls the SASP by differentially regulating the translation of the MK2 (also known as MAPKAPK2) kinase through 4EBP1. In turn, MAPKAPK2 phosphorylates the RNA-binding protein ZFP36L1 during senescence, inhibiting its ability to degrade the transcripts of numerous SASP components. Consequently, mTOR inhibition or constitutive activation of ZFP36L1 impairs the non-cell-autonomous effects of senescent cells in both tumour-suppressive and tumour-promoting contexts. Altogether, our results place regulation of the SASP as a key mechanism by which mTOR could influence cancer, age-related diseases and immune responses.
Collapse
Affiliation(s)
- Nicolás Herranz
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Suchira Gallage
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Metabolic Signalling Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Massimiliano Mellone
- Cancer Sciences Unit, Cancer Research UK Centre, Somers Building, University of Southampton, Southampton SO16 6YD, UK
| | - Torsten Wuestefeld
- Division of Molecular Oncology of Solid Tumors, Dept. of Internal Medicine I, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Sabrina Klotz
- Division of Molecular Oncology of Solid Tumors, Dept. of Internal Medicine I, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Christopher J. Hanley
- Cancer Sciences Unit, Cancer Research UK Centre, Somers Building, University of Southampton, Southampton SO16 6YD, UK
| | - Selina Raguz
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Juan Carlos Acosta
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Andrew J Innes
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Ana Banito
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Athena Georgilis
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Alex Montoya
- Proteomics Facility; MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Katharina Wolter
- Division of Molecular Oncology of Solid Tumors, Dept. of Internal Medicine I, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Gopuraja Dharmalingam
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Peter Faull
- Proteomics Facility; MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Thomas Carroll
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | | | - Pedro Cutillas
- Proteomics Facility; MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Florian Reisinger
- Institute for Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Mathias Heikenwalder
- Institute for Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research (DKFZ), Heidelberg, Germany
| | - Richard A. Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Dominic Withers
- Metabolic Signalling Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Lars Zender
- Division of Molecular Oncology of Solid Tumors, Dept. of Internal Medicine I, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Gareth J. Thomas
- Cancer Sciences Unit, Cancer Research UK Centre, Somers Building, University of Southampton, Southampton SO16 6YD, UK
| | - Jesús Gil
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| |
Collapse
|
35
|
Kim JJ. Applications of iPSCs in Cancer Research. Biomark Insights 2015; 10:125-31. [PMID: 26279620 PMCID: PMC4521640 DOI: 10.4137/bmi.s20065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) derived from reprogrammed somatic cells are emerging as one of the most versatile tools in biomedical research and pharmacological studies. Oncogenic transformation and somatic cell reprogramming are multistep processes that share some common features, and iPSCs generated from cancerous cells can help us better understand the molecular mechanisms underlying the initiation and progression of human cancers and overcome them. Aside from the mechanistic modeling of human tumorigenesis, immediate applications of this technology in cancer research include high-throughput drug screening, toxicological testing, early biomarker identification, and bioengineering of replacement tissues. Here, we review the current advances in generating iPSCs from cancer cell lines and patient-derived primary cancer tissues, and discuss their potential applications.
Collapse
Affiliation(s)
- Jean J Kim
- Department of Molecular and Cellular Biology, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
36
|
Zhai Y, Chen X, Yu D, Li T, Cui J, Wang G, Hu JF, Li W. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress. Exp Cell Res 2015; 337:61-7. [PMID: 26112217 DOI: 10.1016/j.yexcr.2015.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 02/02/2023]
Abstract
Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency.
Collapse
Affiliation(s)
- Yingying Zhai
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China; Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304, USA
| | - Xi Chen
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China; Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304, USA
| | - Dehai Yu
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China; Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304, USA
| | - Tao Li
- Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304, USA
| | - Jiuwei Cui
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China
| | - Guanjun Wang
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China
| | - Ji-Fan Hu
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China; Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304, USA.
| | - Wei Li
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China.
| |
Collapse
|
37
|
Lin YC, Murayama Y, Hashimoto K, Nakamura Y, Lin CS, Yokoyama KK, Saito S. Role of tumor suppressor genes in the cancer-associated reprogramming of human induced pluripotent stem cells. Stem Cell Res Ther 2015; 5:58. [PMID: 25157408 PMCID: PMC4056745 DOI: 10.1186/scrt447] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Because of their pluripotent characteristics, human induced pluripotent stem cells (iPSCs) possess great potential for therapeutic application and for the study of degenerative disorders. These cells are generated from normal somatic cells, multipotent stem cells, or cancer cells. They express embryonic stem cell markers, such as OCT4, SOX2, NANOG, SSEA-3, SSEA-4, and REX1, and can differentiate into all adult tissue types, both in vitro and in vivo. However, some of the pluripotency-promoting factors have been implicated in tumorigenesis. Here, we describe the merits of tumor suppresser genes as reprogramming factors for the generation of iPSCs without tumorigenic activity. The initial step of reprogramming is induction of the exogenous pluripotent factors to generate the oxidative stress that leads to senescence by DNA damage and metabolic stresses, thus inducing the expression of tumor suppressor genes such as p21CIP1 and p16INK4a through the activation of p53 to be the pre-induced pluripotent stem cells (pre-iPSCs). The later stage includes overcoming the barrier of reprogramming-induced senescence or cell-cycle arrest by shutting off the function of these tumor suppressor genes, followed by the induction of endogenous stemness genes for the full commitment of iPSCs (full-iPSCs). Thus, the reactive oxygen species (ROS) produced by oxidative stress might be critical for the induction of endogenous reprogramming-factor genes via epigenetic changes or antioxidant reactions. We also discuss the critical role of tumor suppressor genes in the evaluation of the tumorigenicity of human cancer cell-derived pluripotent stem cells, and describe how to overcome their tumorigenic properties for application in stem cell therapy in the field of regenerative medicine.
Collapse
|
38
|
Kovacic B, Rosner M, Schipany K, Ionce L, Hengstschläger M. Clinical impact of studying epithelial-mesenchymal plasticity in pluripotent stem cells. Eur J Clin Invest 2015; 45:415-22. [PMID: 25646864 DOI: 10.1111/eci.12415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/28/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND The ability of cells to travel long distances in order to form tissues and organs is inherently connected to embryogenesis. The process in which epithelial-like embryonic cells become motile and invasive is termed 'epithelial-to-mesenchymal transition' (EMT), while the reversion of this programme--yielding differentiated cells and organs--is called 'mesenchymal-to-epithelial transition' (MET). DESIGN Here, we review the processes of EMT and MET in development and cancer and combine them with knowledge from pluripotent stem cell research. RESULTS Research has shown that these processes are activated in many cancers leading to dissemination of cancer cells throughout the body and formation of metastasis. While the regulation of EMT during cancer progression has been extensively studied for decades, many fundamental processes that govern normal development are only poorly understood. Recent discoveries, such as reprogramming to pluripotent stem cells and identification of ground and primed states of pluripotent stem cells, have redirected much attention to EMT and MET. CONCLUSION Findings from pluripotent stem cell research and EMT/MET should be combined in order to design future strategies aimed to improve our understanding of cancer progression and to help develop novel anticancer strategies.
Collapse
Affiliation(s)
- Boris Kovacic
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
39
|
DRAKULIC DANIJELA, VICENTIC JELENAMARJANOVIC, SCHWIRTLICH MARIJA, TOSIC JELENA, KRSTIC ALEKSANDAR, KLAJN ANDRIJANA, STEVANOVIC MILENA. The overexpression of SOX2 affects the migration of human teratocarcinoma cell line NT2/D1. ACTA ACUST UNITED AC 2015; 87:389-404. [DOI: 10.1590/0001-3765201520140352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/14/2014] [Indexed: 12/15/2022]
Abstract
The altered expression of the SOX2 transcription factor is associated with oncogenic or tumor suppressor functions in human cancers. This factor regulates the migration and invasion of different cancer cells. In this study we investigated the effect of constitutive SOX2 overexpression on the migration and adhesion capacity of embryonal teratocarcinoma NT2/D1 cells derived from a metastasis of a human testicular germ cell tumor. We detected that increased SOX2 expression changed the speed, mode and path of cell migration, but not the adhesion ability of NT2/D1 cells. Additionally, we demonstrated that SOX2 overexpression increased the expression of the tumor suppressor protein p53 and the HDM2 oncogene. Our results contribute to the better understanding of the effect of SOX2 on the behavior of tumor cells originating from a human testicular germ cell tumor. Considering that NT2/D1 cells resemble cancer stem cells in many features, our results could contribute to the elucidation of the role of SOX2 in cancer stem cells behavior and the process of metastasis.
Collapse
Affiliation(s)
| | | | | | - JELENA TOSIC
- University of Belgrade, Serbia; University of Lausanne, Switzerland
| | | | | | | |
Collapse
|
40
|
Yu KR, Shin JH, Kim JJ, Koog MG, Lee JY, Choi SW, Kim HS, Seo Y, Lee S, Shin TH, Jee MK, Kim DW, Jung SJ, Shin S, Han DW, Kang KS. Rapid and Efficient Direct Conversion of Human Adult Somatic Cells into Neural Stem Cells by HMGA2/let-7b. Cell Rep 2015; 10:441-452. [PMID: 25600877 DOI: 10.1016/j.celrep.2014.12.038] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/13/2014] [Accepted: 12/16/2014] [Indexed: 12/13/2022] Open
Abstract
A recent study has suggested that fibroblasts can be converted into mouse-induced neural stem cells (miNSCs) through the expression of defined factors. However, successful generation of human iNSCs (hiNSCs) has proven challenging to achieve. Here, using microRNA (miRNA) expression profile analyses, we showed that let-7 microRNA has critical roles for the formation of PAX6/NESTIN-positive colonies from human adult fibroblasts and the proliferation and self-renewal of hiNSCs. HMGA2, a let-7-targeting gene, enables induction of hiNSCs that displayed morphological/molecular features and in vitro/in vivo differentiation potential similar to H9-derived NSCs. Interestingly, HMGA2 facilitated the efficient conversion of senescent somatic cells or blood CD34+ cells into hiNSCs through an interaction with SOX2, whereas other combinations or SOX2 alone showed a limited conversion ability. Taken together, these findings suggest that HMGA2/let-7 facilitates direct reprogramming toward hiNSCs in minimal conditions and maintains hiNSC self-renewal, providing a strategy for the clinical treatment of neurological diseases.
Collapse
Affiliation(s)
- Kyung-Rok Yu
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Ji-Hee Shin
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Jae-Jun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Myung Guen Koog
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Jin Young Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Hyung-Sik Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Yoojin Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - SeungHee Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea; Institute for Stem Cell and Regenerative Medicine in Kang Stem Biotech, Biotechnology Incubating Center, Seoul National University, Seoul 151-742, Korea
| | - Tae-Hoon Shin
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Min Ki Jee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Dong-Wook Kim
- Department of Physiology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Sung Jun Jung
- Department of Physiology, School of Medicine, Hanyang University, Seoul 133-791, Korea
| | - Sue Shin
- Department of Laboratory Medicine, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul 156-707, Korea; Seoul Metropolitan Public Cord Blood Bank, Allcord, Seoul 156-707, Korea
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
41
|
Zhao H, Davies TJ, Ning J, Chang Y, Sachamitr P, Sattler S, Fairchild PJ, Huang FP. A highly optimized protocol for reprogramming cancer cells to pluripotency using nonviral plasmid vectors. Cell Reprogram 2014; 17:7-18. [PMID: 25549177 DOI: 10.1089/cell.2014.0046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In spite of considerable interest in the field, reprogramming induced pluripotent stem cells (iPSCs) directly from cancer cells has encountered considerable challenges, including the extremely low reprogramming efficiency and instability of cancer-derived iPSCs (C-iPSCs). In this study, we aimed to identify the main obstacles that limit cancer cell reprogramming. Through a detailed multidimensional kinetic optimization, a highly optimized protocol is established for reprogramming C-iPSCs using nonviral plasmid vectors. We demonstrated how the initial cancer cell density seeded could be the most critical factor ultimately affecting C-iPSCs reprogramming. We have consistently achieved an unprecedented high C-iPSC reprogramming efficiency, establishing stable colonies with typical iPSC morphology, up to 50% of which express the iPSC phenotypic (Oct3/4, Sox2, Nanog) and enzymatic (alkaline phosphatase) markers. Furthermore, established C-iPSC lines were shown to be capable of forming teratomas in vivo, containing cell types and tissues from each of the embryonic germ layers, fully consistent with their acquisition of pluripotency. This protocol was tested and confirmed in two completely unrelated human lung adenocarcinoma (A549) and mouse melanoma (B16f10) cancer cell lines and thus offers a potentially valuable method for generating effectively virus-free C-iPSCs for future applications.
Collapse
Affiliation(s)
- Hongzhi Zhao
- 1 Division of Immunology & Inflammation, Department of Medicine, Imperial College , London, W12 0NN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Martin N, Beach D, Gil J. Ageing as developmental decay: insights from p16INK4a. Trends Mol Med 2014; 20:667-74. [DOI: 10.1016/j.molmed.2014.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/07/2014] [Accepted: 09/09/2014] [Indexed: 01/03/2023]
|
43
|
Menendez JA, Joven J. Energy metabolism and metabolic sensors in stem cells: the metabostem crossroads of aging and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 824:117-40. [PMID: 25038997 DOI: 10.1007/978-3-319-07320-0_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We are as old as our adult stem cells are; therefore, stem cell exhaustion is considered a hallmark of aging. Our tumors are as aggressive as the number of cancer stem cells (CSCs) they bear because CSCs can survive treatments with hormones, radiation, chemotherapy, and molecularly targeted drugs, thus increasing the difficulty of curing cancer. Not surprisingly, interest in stem cell research has never been greater among members of the public, politicians, and scientists. But how can we slow the rate at which our adult stem cells decline over our lifetime, reducing the regenerative potential of tissues, while efficiently eliminating the aberrant, life-threatening activity of "selfish", immortal, and migrating CSCs? Frustrated by the gene-centric limitations of conventional approaches to aging diseases, our group and other groups have begun to appreciate that bioenergetic metabolism, i.e., the production of fuel & building blocks for growth and division, and autophagy/mitophagy, i.e., the quality-control, self-cannibalistic system responsible for "cleaning house" and "recycling the trash", can govern the genetic and epigenetic networks that facilitate stem cell behaviors. Indeed, it is reasonable to suggest the existence of a "metabostem" infrastructure that operates as a shared hallmark of aging and cancer, thus making it physiologically plausible to maintain or even increase the functionality of adult stem cells while reducing the incidence of cancer and extending the lifespan. This "metabostemness" property could lead to the discovery of new drugs that reprogram cell metabotypes to increase the structural and functional integrity of adult stem cells and positively influence their lineage determination, while preventing the development and aberrant function of stem cells in cancer tissues. While it is obvious that the antifungal antibiotic rapamycin, the polyphenol resveratrol, and the biguanide metformin already belong to this new family of metabostemness-targeting drugs, we can expect a rapid identification of new drug candidates (e.g., polyphenolic xenohormetins) that reverse or postpone "geroncogenesis", i.e., aging-induced metabolic decline as a driver of tumorigenesis, at the stem cell level.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Spain,
| | | |
Collapse
|
44
|
TRIM28/KAP1 regulates senescence. Immunol Lett 2014; 162:281-9. [PMID: 25160591 DOI: 10.1016/j.imlet.2014.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/29/2014] [Accepted: 08/18/2014] [Indexed: 01/07/2023]
Abstract
Senescence is a highly stable cell cycle arrest which limits the replication of cells with damaged genomes. The senescence program is activated during aging or in response to insults like DNA damage or oncogenic signaling. Upon induction of senescence, cells undergo profound changes on their transcription program, chromatin organization, and they secrete a complex mixture of mainly pro-inflammatory components termed the senescence-associated secretory phenotype (SASP). The SASP mediates multiple effects, including reinforcing senescence and activating immune surveillance responses. Given the important role that senescence has in aging, cancer and other pathologies, identifying mechanisms regulating senescence has therapeutic potential. Here we describe a role for TRIM28 (also known as KRAB-associated protein 1, KAP1) on mediating oncogene-induced senescence (OIS). TRIM28 accumulates during OIS becoming phosphorylated on serine 824. To investigate the role of TRIM28, we knocked down its expression and observed that the depletion of TRIM28 partially prevented cell arrest during OIS. While induction of p53 and p21 during OIS, was not affected by TRIM28 depletion, p16(INK4a) induction was partially prevented. Finally, we observed that the induction of IL8, IL6 and other SASP components were strongly suppressed upon TRIM28 depletion. In conclusion, the above-described results show that TRIM28 regulates senescence and affects the induction of the senescence-associated secretory phenotype.
Collapse
|
45
|
MiRiad Roles for MicroRNAs in Cardiac Development and Regeneration. Cells 2014; 3:724-50. [PMID: 25055156 PMCID: PMC4197632 DOI: 10.3390/cells3030724] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/25/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
Cardiac development is an exquisitely regulated process that is sensitive to perturbations in transcriptional activity and gene dosage. Accordingly, congenital heart abnormalities are prevalent worldwide, and are estimated to occur in approximately 1% of live births. Recently, small non-coding RNAs, known as microRNAs, have emerged as critical components of the cardiogenic regulatory network, and have been shown to play numerous roles in the growth, differentiation, and morphogenesis of the developing heart. Moreover, the importance of miRNA function in cardiac development has facilitated the identification of prospective therapeutic targets for patients with congenital and acquired cardiac diseases. Here, we discuss findings attesting to the critical role of miRNAs in cardiogenesis and cardiac regeneration, and present evidence regarding the therapeutic potential of miRNAs for cardiovascular diseases.
Collapse
|
46
|
High-risk human papillomavirus E6 protein promotes reprogramming of Fanconi anemia patient cells through repression of p53 but does not allow for sustained growth of induced pluripotent stem cells. J Virol 2014; 88:11315-26. [PMID: 25031356 DOI: 10.1128/jvi.01533-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED DNA repair plays a crucial role in embryonic and somatic stem cell biology and cell reprogramming. The Fanconi anemia (FA) pathway, which promotes error-free repair of DNA double-strand breaks, is required for somatic cell reprogramming to induced pluripotent stem cells (iPSC). Thus, cells from Fanconi anemia patients, which lack this critical pathway, fail to be reprogrammed to iPSC under standard conditions unless the defective FA gene is complemented. In this study, we utilized the oncogenes of high-risk human papillomavirus 16 (HPV16) to overcome the resistance of FA patient cells to reprogramming. We found that E6, but not E7, recovers FA iPSC colony formation and, furthermore, that p53 inhibition is necessary and sufficient for this activity. The iPSC colonies resulting from each of these approaches stained positive for alkaline phosphatase, NANOG, and Tra-1-60, indicating that they were fully reprogrammed into pluripotent cells. However, FA iPSC were incapable of outgrowth into stable iPSC lines regardless of p53 suppression, whereas their FA-complemented counterparts grew efficiently. Thus, we conclude that the FA pathway is required for the growth of iPSC beyond reprogramming and that p53-independent mechanisms are involved. IMPORTANCE A novel approach is described whereby HPV oncogenes are used as tools to uncover DNA repair-related molecular mechanisms affecting somatic cell reprogramming. The findings indicate that p53-dependent mechanisms block FA cells from reprogramming but also uncover a previously unrecognized defect in FA iPSC proliferation independent of p53.
Collapse
|
47
|
Zhao H, Darzynkiewicz Z. Attenuation of replication stress-induced premature cellular senescence to assess anti-aging modalities. ACTA ACUST UNITED AC 2014; 69:9.47.1-9.47.10. [PMID: 24984966 DOI: 10.1002/0471142956.cy0947s69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Described is an in vitro model of premature senescence in pulmonary adenocarcinoma A549 cells induced by persistent DNA replication stress in response to treatment with the DNA damaging drug mitoxantrone (Mxt). The degree of cellular senescence, based on characteristic changes in cell morphology, is measured by laser scanning cytometry. Specifically, the flattening of cells grown on slides (considered the hallmark of cellular senescence) is measured as the decline in local intensity of DNA-associated DAPI fluorescence (represented by maximal pixels). This change is paralleled by an increase in nuclear area. Thus, the ratio of mean intensity of maximal pixels to nuclear area provides a very sensitive morphometric biomarker for the degree of senescence. This analysis is combined with immunocytochemical detection of senescence markers, such as overexpression of cyclin kinase inhibitors (e.g., p21(WAF1) ) and phosphorylation of ribosomal protein S6 (rpS6), a key marker associated with aging/senescence that is detected using a phospho-specific antibody. These biomarker indices are presented in quantitative terms defined as a senescence index (SI), which is the fraction of the marker in test cultures relative to the same marker in exponentially growing control cultures. This system can be used to evaluate the anti-aging potential of test agents by assessing attenuation of maximal senescence. As an example, the inclusion of berberine, a natural alkaloid with reported anti-aging properties and a long history of use in traditional Chinese medicine, is shown to markedly attenuate the Mxt-induced SI and phosphorylation of rpS6. The multivariate analysis of senescence markers by laser scanning cytometry offers a promising tool to explore the potential anti-aging properties of a variety agents.
Collapse
Affiliation(s)
- Hong Zhao
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, New York
| | | |
Collapse
|
48
|
Sun CK, Zhou D, Zhang Z, He L, Zhang F, Wang X, Yuan J, Chen Q, Wu LG, Yang Q. Senescence impairs direct conversion of human somatic cells to neurons. Nat Commun 2014; 5:4112. [PMID: 24934763 PMCID: PMC4762026 DOI: 10.1038/ncomms5112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 05/13/2014] [Indexed: 02/08/2023] Open
Abstract
Recent reports have shown that fibroblasts can be converted to neurons by forced expression of transcription factors. However, the mechanisms underlying this conversion remain unclear. Here, we show that the efficiency of neuronal conversion of embryonic human fibroblasts aged in culture is lower than that in cells in early culture stages. Moreover, depletion of p16(Ink4a) and p19(Arf) involved in the activation of cellular senescence is sufficient to convert human fibroblast and epithelial cells into neurons. The induced neurons express neuron-specific proteins, generate action potentials and neurotransmitter receptor-mediated currents. Genome-wide transcriptional analysis shows that the induced neurons have a profile different from fibroblasts and similar to that of control neurons induced by established methods. We further noted that expression of p53 blocks the neuronal conversion, whereas expression of human telomerase reverse transcriptase (hTERT) induces it. Our results indicate that overcoming senescence is a crucial step for neuronal conversion of somatic cells.
Collapse
Affiliation(s)
- Chong-Kui Sun
- Cancer Biology Division, Washington University School of Medicine, Saint Louis, Missouri 63108, USA
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Di Zhou
- Cancer Biology Division, Washington University School of Medicine, Saint Louis, Missouri 63108, USA
| | - Zhen Zhang
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, USA
| | - Liming He
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, USA
| | - Fan Zhang
- Cancer Biology Division, Washington University School of Medicine, Saint Louis, Missouri 63108, USA
| | - Xiaowei Wang
- Cancer Biology Division, Washington University School of Medicine, Saint Louis, Missouri 63108, USA
| | - Jie Yuan
- Medical College, Jinan University, Guangzhou 510632, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, USA
| | - Qin Yang
- Cancer Biology Division, Washington University School of Medicine, Saint Louis, Missouri 63108, USA
| |
Collapse
|
49
|
Martin N, Raguz S, Dharmalingam G, Gil J. Co-regulation of senescence-associated genes by oncogenic homeobox proteins and polycomb repressive complexes. Cell Cycle 2014; 12:2194-9. [PMID: 24067365 DOI: 10.4161/cc.25331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is a stable cell cycle arrest that can be induced by stresses such as telomere shortening, oncogene activation or DNA damage. Senescence is a potent anticancer barrier that needs to be circumvented during tumorigenesis. The cell cycle regulator p16(INK4a) is a key effector upregulated during senescence. Polycomb repressive complexes (PRCs) play a crucial role in silencing the INK4/ARF locus, which encodes for p16(INK4a), but the mechanisms by which PRCs are recruited to this locus as well as to other targets remain poorly understood. Recently we discovered the ability of the homeobox proteins HLX1 (H2.0-like homeobox 1) and HOXA9 (Homeobox A9) to bypass senescence. We showed that HLX1 and HOXA9 recruit PRCs to repress INK4a, which constitutes a key mechanism explaining their effects on senescence. Here we provide evidence for the regulation of additional senescence-associated PRC target genes by HLX1 and HOXA9. As both HLX1 and HOXA9 are oncogenes implicated in leukemogenesis, we discuss the implications that the collaboration between Homeobox proteins and PRCs has for senescence and cancer.
Collapse
Affiliation(s)
- Nadine Martin
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, London, UK
| | | | | | | |
Collapse
|
50
|
Ma K, Song G, An X, Fan A, Tan W, Tang B, Zhang X, Li Z. miRNAs promote generation of porcine-induced pluripotent stem cells. Mol Cell Biochem 2014; 389:209-18. [PMID: 24464032 DOI: 10.1007/s11010-013-1942-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022]
Abstract
The pigs have similarities of organ size, immunology and physiology with humans. Porcine-induced pluripotent stem cells (piPSCs) have great potential application in regenerative medicine. Here, we established piPSCs induced from porcine fetal fibroblasts by the retroviral overexpression of Oct4, Sox2, Klf4, and c-Myc. The piPSCs not only express pluripotent markers but also have the capacity for differentiation in vivo and in vitro, including EB and teratoma formation. We supplemented microRNAs during the induction process because miR-302a, miR-302b, and miR-200c have been reported to be highly expressed in human and mouse embryonic stem cells and in iPSCs. In this study, we found that the overexpression of miR-302a, miR-302b, and miR-200c effectively improved the reprogramming efficiency and reduced the induction time for piPSCs in the OSKM and OSK induction systems. Due to the similar induction efficiency of 4F-induced piPSCs or of three factors combined with miR-302a, miR-302b, and miR-200c (3F-miRNA-induced piPSCs), we recommend the addition of miRNAs instead of c-Myc to reduce the tumorigenicity of piPSCs.
Collapse
Affiliation(s)
- Kuiying Ma
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, The Center for Animal Embryo Engineering of Jilin Province, College of Veterinary Medicine, Jilin University, 5333 Xi An Da Lu, Changchun, 130062, Jilin, China,
| | | | | | | | | | | | | | | |
Collapse
|